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Abstract

We analyze strategic experimentation in which information arrives through fully

revealing, publicly observable “breakdowns.” When actions are hidden, there exists a

unique symmetric equilibrium that involves randomization over stopping times. With

two players, this is the unique equilibrium. Randomization leads to dispersion in

actions and to belief disagreement on the equilibrium path. The resulting lack of coor-

dination has significant welfare consequences. In contrast, when actions are observable,

the equilibrium is pure and welfare improves.
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1 Introduction

This paper studies games of strategic experimentation in which information arrives through

public breakdowns. Such bad-news learning processes naturally occur upon the introduction

of a new technology that holds out hopes of cost savings but entails risks. Such risky tech-

nologies include new drugs and medical devices, and innovative processes such as hydraulic

fracturing for oil production. Some technologies that are socially undesirable (perhaps be-

cause they impose negative externalities on other sectors) also fit in this broad class. Consider

financial fraud or tax evasion when agents have incomplete information about the effective-

ness of the detection technology. In all these cases, there also exist significant barriers to

information, making unobservable actions a good starting point. For example, the decision

to evade taxes is private, but getting caught is typically a public event.

We show that unobservable actions and learning through bad newsmust lead to dispersion

in actions (e.g., in the timing of technology adoption). In turn, differences in unobserved

actions lead to differences in beliefs, including higher-order beliefs, despite perfectly aligned

fundamentals and outcomes that are common knowledge.

To explain how dispersion and disagreement arise, we rely on a strategic experimentation

model with exponential bandits. Players choose whether to experiment in the face of purely

aggregate uncertainty. Formally, they continuously choose how much weight to assign to

a risky action. Externalities are informational only. Players observe only one another’s

outcomes, not their actions. We assume binary individual outcomes (a “breakdown” or not)

and a common binary state of the world (good or bad). Occasional, publicly observable

breakdowns occur when a player puts weight on the risky action and when the state is

bad. Hence, whereas a breakdown reveals the state of the world to all players, the absence

thereof causes objective and strategic uncertainty: inferences regarding the state interact

with inferences regarding the actions of others. In the continuing absence of any breakdown,

players grow increasingly optimistic about the state over time. As a result, they are tempted

to delay their use of the risky arm to free-ride on the experimentation of others.

The game admits a unique symmetric mixed-strategy equilibrium. In particular, no

pure-strategy Nash equilibrium exists and, with two players, no asymmetric mixed-strategy

equilibrium exists either. In light of the literature, this is surprising because we do not assume

discrete action sets: by definition, giving (say) equal weight to both the risky action and its

safe alternative is a pure action in our framework. Because time is also continuous, mixing is

caused not by discreteness but by the intrinsic nature of incentives. This relationship stands

in contrast to the experimentation literature, discussed below, in which a “mixed strategy”

is merely an interpretation of actions that are interior (i.e., players assign positive weight to
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both arms) as opposed to extremal (“bang-bang”).

In equilibrium, mixing involves each player choosing at random a time before which he

exclusively plays safe and after which he only plays risky. The distribution of switching

times is continuously increasing over an interval, with an atom at the upper end. Despite

being indifferent over an entire interval of such random times, players are unwilling to play an

interior action during that interval (pure strategies involving such actions are strictly worse).

Another way to appreciate the difference is that players are uncertain of the aggregate amount

of experimentation undertaken up to a given time.

Randomization over switching times drives the dispersion of beliefs. Not observing a

breakdown can be explained in two ways: either the other players have not yet begun

experimenting, or the state of the world is good. A player’s own choice of action helps him

sort through these competing explanations: the earlier he began experimenting himself, the

more likely he is to believe that the lack of a breakdown can be attributed to the state of the

world being good rather than to the other players waiting to experiment. In the absence of

a breakdown, beliefs about the state remain private at all times: while there exists a finite

time at which players commonly know that everyone is experimenting, they still do not know

when everyone else began experimenting.

Why do players mix? Two forces are combined here. The first and familiar force is

mentioned above: free-riding prevents players from adopting the same extremal pure strategy.

If his opponent is switching to the risky arm at a given time, then a player’s best reply

can involve experimenting immediately to avoid wasting time, as nothing will be learned

until then, or taking advantage of his experimentation by choosing to wait long enough to

benefit from it. In existing experimentation models, this force drives the players’ equilibrium

choice of interior actions.1 Here, a second force compels players to choose extremal actions.

Experimentation breeds experimentation: a player who deviates from an interior action to

an action that places greater emphasis on the risky arm will see his choice confirmed by the

absence of a breakdown; this observation makes him more optimistic about the state of the

world. If he were indifferent between risky and safe if he had not deviated, his deviation

would have led him to strictly prefer experimentation in the future.

Methodological contribution. Solving the game requires understanding the structure of

the best-reply correspondence, and then exploiting this structure to identify the equilibrium.

The main methodological contribution of the paper lies in the first step. We identify the

certainty-equivalent problem, that is, a deterministic optimization program that is equiva-

lent to the best-reply problem under uncertainty faced by a player whose opponents play

1For example, Keller, Rady and Cripps (2005), Bonatti and Hörner (2011), and Keller and Rady (2015).
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arbitrary strategies. Such a reduction is systematic, if not necessarily explicit, in the lit-

erature on strategic bandits: the repeated game of incomplete information is reduced to

a stochastic game of complete information via the (piecewise) deterministic process of the

posterior probability that the arm is good. This approach is insufficient in our model, as

there is also uncertainty regarding the (pure) strategy randomly selected by the other play-

ers. A second (deterministic, but arbitrary) process is introduced, which follows no simple

recursive dynamics, but summarizes how the strategies of others affect the hazard rate of a

breakdown, as evaluated by a given player.2

Equipped with these two processes, the certainty-equivalent problem of the best-reply

problem can be formulated, and analyzed using standard methods from (deterministic) op-

timal control.3 Up to this point, all that is required is that a player cares about the other

players’ actions only to the extent that they affect the arrival of breakdowns.

On the other hand, the solution of this deterministic problem does depend on the par-

ticular payoff structure. For instance, the convexity properties of the objective imply that

any best-reply must involve the exclusive use of the safe (resp., risky) arm above (below)

a given (but possibly random) threshold. Hence, a strategy (a distribution over functions)

can be summarized by one function only, the c.d.f. of the switching time from safe to risky.

Of course, solving for the fixed-points in this infinite-dimensional space remains challenging,

and forms the bulk of the analysis.

Game-Theoretic contribution. In our game, breakdowns are common-knowledge events.

Yet players receive private signals about the state through the absence of a breakdown, be-

cause the informativeness of this signal depends on the player’s private experimentation

decision. Thus, belief heterogeneity despite public signals bears resemblance to repeated

games in which players use private strategies. But in contrast to repeated games, equilibria

in private strategies are not merely some of many possibilities: there are no other equilib-

ria. Indeed, relative to the literature on strategic experimentation (Bolton and Harris, 1999,

Keller, Rady and Cripps, 2005, Bonatti and Hörner, 2011, or Keller and Rady, 2015) our is

the first game in which (i) the equilibrium is known to be unique (this is an open question

in the case of Bolton and Harris, 1999), and (ii) any equilibrium is in mixed strategies.

Economic contribution and empirical evidence. We find that dispersion in actions

and dispersion in beliefs add to the cost of under-experimentation due to free-riding: given

2Because of the lack of recursive structure, dynamic programming does not appear to be the best method

to use, and we rely on Pontryagin’s maximum principle instead.
3This step applies to the best-reply problem only, and we do not identify a stochastic game of complete

information that is equivalent to the game of incomplete information.

4



the overall amount of experimentation, the dispersion in timing is costly; holding his oppo-

nents’ strategies fixed, a player would be strictly better off if he could determine when his

opponents actually began experimenting.

This last statement extends to equilibrium analysis: players are better off in the (sym-

metric) Markov equilibrium in the game in which they can observe one another’s actions.

Intuitively, when actions are observable, each player can accelerate the common learning by

deviating to the risky arm. In the absence of a breakdown, this leads to greater optimism and

more experimentation by others, which in turn alleviates the under-provision problem and

improves payoffs. This is in contrast with good-news models, where observable experimenta-

tion leads to greater pessimism and depresses further experimentation. Finally, players also

benefit from a mediator helping them to coordinate their play via private recommendations.

A growing body of empirical evidence is broadly consistent with our model’s findings.

Indeed, to the extent that they have been documented, there is substantial dispersion in

practices and productivity across firms and industries.4 In particular, Skinner and Staiger

(2007) document U.S. state-level variation in the adoption rates for four technological in-

novations (hybrid corn, tractors, computers, and beta-blockers) and suggest informational

barriers as a potential explanation. Consistent with the idea that barriers to information

generate cross-sectional heterogeneity in the new technology adoption rate, Covert (2015)

documents frictions in drilling companies’ learning processes regarding the relationship be-

tween inputs and oil production.5

With monitoring used as a design variable, our results in Section 6 help explain the infor-

mation sharing observed in several industries. Indeed, in health care, industry associations

and government agencies promote the sharing of information on best practices. For instance,

the U.S. Food and Drug Administration (FDA) recently launched the Unique Device Iden-

tification (UDI) system “to adequately identify medical devices through their distribution

and use.” The UDI system provides information on outcomes and on adoption rates through

usage intensity.6 In oil drilling, regulations encourage sharing information regarding input

4A long history of empirical literature has documented heterogeneity in the adoption rates for new tech-

nologies: Mansfield (1961) observes patterns of “slow imitation” for a small number of innovations; Coleman,

Katz, and Menzel (1966) show distinct differences across physicians in the adoption of new medical tech-

nology; and more recent studies (Bloom and Van Reenen, 2007, Syverson, 2011, Gibbons and Henderson,

2013) document the wide dispersion in managerial practices within an industry and relate it to persistent

productivity differences.
5For an example of breakdowns in that context, see “The Downside of the Boom,” The New York Times,

November 22, 2014.
6See http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/UniqueDeviceIdentification/

for more details.
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choices for fracking operations (see Covert, 2015).

Related Literature. From a theoretical perspective, our work is closest to Keller and

Rady (2015) and our earlier paper (Bonatti and Hörner, 2011). Our game differs from

the former in that actions are not observed, and from the latter in that the news is bad

rather than good. In addition, our earlier work features payoff externalities that are absent

from the current model. These differences have significant implications: with good news,

the equilibrium is not unique, and the symmetric equilibrium is in interior pure strategies,

with experimentation dwindling but never ceasing. With good news, a deviation to greater

experimentation leads to increased pessimism and hence less future experimentation; thus,

behavior is “mean-reverting,” and best replies are necessarily pure. This also explains why,

with good news, the Markov equilibrium with observable actions is worse than the sym-

metric equilibrium with unobservable actions, contrary to what we find with bad news. A

comparison with Keller and Rady is in Section 6.

From the point of the motivation, which emphasizes the interplay between experimenta-

tion and observational learning, Murto and Välimäki (2011) is close. In their model, players

receive exogenous (random) private signals over time. In the present study, however, learning

is endogenous, with players’ actions influencing their private beliefs. Another major differ-

ence is that although signals are private in their model, actions (exit or not) are publicly

observed. As a result, the dynamics that they identify are different from ours, with waves of

exits alternating with what they term “flow modes” until a collapse ends the game. In our

game, unless a breakdown occurs, players’ unobserved behavior leads to smooth updating of

their beliefs, except for the atom at the last switching time assigned a positive probability.

Mixed strategies are new to the literature on experimentation, as mentioned. As noted,

the necessity of considering mixed strategies in our game should not be confused with the

necessity of allowing pure actions that are not extremal appearing elsewhere. To restore

existence in games of strategic experimentation without needing to confront the measure-

theoretic difficulties raised by the modeling of independent randomization in continuous

time, various authors (e.g., Bolton and Harris 1999; Keller, Rady and Cripps, 2005; Keller

and Rady, 2015) have redefined the space of actions available to a player at a given instant to

be a convex set (that is, the set of pure strategies is sectionally convex). This redefinition is

usually achieved by simple convexification, replacing the lotteries over {0, 1} by the interval

[0, 1] (with the interpretation of players choosing how to allocate a unit resource), but is not

always accomplished in this way: in Keller and Rady (2003), this redefinition involves players

choosing two actions at every instant–a mean price and a mean variance. In these papers,

this redefinition suffices to restore the existence of an equilibrium in pure (but not extremal)
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strategies.7,8 In fact, there are special games for which privately randomizing over stopping

times and using non-extremal pure strategies are equivalent. The question of whether to

describe equilibrium strategies with a hazard rate or with a pure strategy taking value in

a convexified set is then merely a matter of convenience.9 The following is a manifestation

of the difference between the equilibria of the games considered in these papers (whether

strategic experimentation or games of timing) and the approach in our study: in these

equilibria, a player is indifferent regarding all his strategies (over the relevant time interval).

In the unique equilibrium of our game, a player is indifferent over stopping times (over some

interval), but he strictly prefers any of these stopping times to a strategy that uses an interior

action over a set of times of positive measure: he is willing to mix, but not to play the pure

strategy that specifies the expected value of the mixture.

Of course, mixed strategies arise in many games of economic interest. In static games

with convex action sets, they either arise because the payoff function fails to be continuous,

or fails to be quasiconcave. Most well-known examples involve discontinuous payoffs.10 Here,

the problem is not continuity (payoffs are continuous in the weak topology), but quasicon-

cavity, as the analysis in Section 5 makes plain. In a dynamic, continuous-time setting, we

are not aware of another paper with a clear economic interpretation in which mixed strate-

gies must be considered to ensure existence, despite convex action sets.11 Our paper shows

that such phenomena are both relevant to economic applications and amenable to mathe-

matical analysis. (See Akcigit and Liu, 2015, Board and Meyer-ter-Vehn, 2014, for models

in which mixed-strategy equilibria might exist.) Note that such equilibria might also arise

7Pure but non-extremal optimal policies contrast with the solution of decision-theoretic versions of bandit

problems, which admit optimal solutions within the class of extremal policies. See Yushkevich (1988) or

Presman and Sonin (1990).
8One should not confuse such a convexification with some clever application of Kuhn’s theorem that would

obviate mathematical difficulties. Kuhn’s theorem also applies to continuous-time games (see Weizsäcker,

1974, or Shmaya and Solan, 2014), but the set of behavioral strategies (properly defined) is much larger than

the set of pure strategies, even when action sets are convex.
9Examples include wars of attrition (e.g., Milgrom and Weber, 1985) or more recent versions of timing

games allowing for additional learning (Murto and Välimäki, 2011; Rosenberg, Salomon and Vieille, 2013).
10See Dasgupta and Maskin (1986), who argue, however, that lack of quasiconcavity is more fundamental,

as it arises in simple variations of those games that satisfy payoff continuity. See Blume (2003) for an explicit

mixed-strategy equilibrium in a class of Bertrand games. The problem also arises in zero-sum games, see

Karlin (1959) and references therein.
11Of course, it is well known in optimization that sectional convexity is insufficient to guarantee the type

of convexity in the policy space that is required for the existence of solutions of optimal control problems. A

fortiori, the problem arises in games, and there are well-known examples of zero-sum games with sectionally

convex action spaces for which the optimal policies cannot be found within the class of pure policies (see

Karlin, 1959, and references therein).
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when outcomes rather than actions are private, as in Rosenberg, Solan and Vieille (2007).

Non-Markovian equilibria might also be required for games with incomplete (rather than

imperfect) information and payoff externalities, see Décamps and Mariotti (2004).

2 The Model

2.1 Setup

Time is continuous, and the horizon is infinite. Players i = 1, . . . , I (I ≥ 2) choose an action

ui ∈ [0, 1] at all times.12

There is a binary state of the world ω ∈ {B,G}. Players assign a common prior prob-

ability p0 ∈ (0, 1) to the event {ω = B}. Conditional on ω, player i’s action controls the

instantaneous intensity of a conditionally independent Poisson process {N i
t : t ≥ 0}. The

process N i
t is interpreted as the number of lump-sum payoffs observed up to time t. That is,

the action paths ui = (uit)
∞
t=0, alongside ω, define the instantaneous intensity of an inhomo-

geneous Poisson process with intensity λ(t) := λ1{ω=B}(1 − uit), where λ > 0 and 1A is the

indicator function of an event A. Note that this intensity is zero if ω = G, independent of

the actions chosen. We interpret the action uit as the amount of risk-reducing effort exerted

by the agent. Thus, when ui = 1, player i pulls the safe arm exclusively, which prevents

the occurrence of (costly) lump sums. Conversely, when ui = 0, player i pulls the risky arm

exclusively. Unless a player pulls the safe arm exclusively, he might learn about the state.13

Hence, we state that player i experiments when ui < 1.

The safe arm has a flow cost s > 0 and each lump sum entails a cost h > 0. That is,

given an integrable function ui = (uit) and the realization of the process {N i
t : t ≥ 0}, the

realized cost of player i is given by
∫ ∞

0

re−rt(hdN i
t + suitdt),

where r > 0 is the players’ common discount rate. Note that this is a game of informational

externalities only, as player j 6= i’s actions do not enter player i’s cost.

Throughout this setup, we assume that player i observes the realization of the process

{N j
t : t ≥ 0} for all j, i.e., he can condition his action on the breakdowns ; however, he

12Where possible, we adopt standard notation from optimization theory: controls are ut, optimal choices

of controls are policies, adoption times are stopping times (though experimentation starts then), etc.
13It might be desirable to allow for “background learning,” which corresponds to the agent being unable to

prevent a breakdown. Thus, learning is slowed when the safe arm is pulled but does not come to a halt. We

may then assume that λ(t) := λ1{ω=B}(ū/I − ui
t), where ū > I. Long-run beliefs are clearly very different

in that case, but there is no discontinuity in payoffs or equilibrium policies.
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observes nothing else. In particular, player i does not observe past values of ujt , j 6= i. That

is, players observe outcomes, but not actions.

We assume that g := λh > s. Therefore, conditional on {ω = B}, to minimize the

expected cost, it is optimal to allocate the resource exclusively to the safe arm, that is, to

set uit = 1 for all t. Conditional on {ω = G}, the risky arm is optimal, independent of other

players’ actions.

Hence, player i’s problem reduces to a course of action up to the first arrival of a

breakdown for any player, as it is strictly dominant to pull the safe arm thereafter. Let

τ ∈ R+ ∪ {+∞} be the time of this first arrival. (Note that τ = +∞ if ω = G.) Therefore,

we can and do assume that the game ends at time τ .

A terminal history hτ specifies the stopped action paths {(uit)
τ
t=0 : i = 1, . . . , I} up to

time τ . We can rewrite the cost for which we minimize the expectation as

Ci(ui) =

∫ τ

0

re−rt
(
hdN i

t + suitdt
)
+ e−rτs, (1)

where the last term is the “terminal” cost equal to the expected cost over an infinite horizon

conditional on {ω = B} under uit = 1 for all t.

Some of the parameters are relevant only in combination. In particular, we define the

following variables:

γ :=
g − s

s
, and µ :=

r

λ
.

Thus, up to normalization, g and s enter only through the cost-benefit ratio γ, and by a

standard change in the variable, the discount rate r and intensity parameter λ appear via

the ratio µ only.

2.2 Policies and Equilibrium

A deterministic (or “pure”) policy for player i is a measurable function πi : R+ → [0, 1] that

specifies player i’s action ui at time t conditional on the event {t < τ}.14 We interpret uit as

the share of i’s resources allocated to the safe arm. Let Πi denote the set of all deterministic

policies. Of special importance are stopping policies, which are defined as follows. Given

t ≥ 0, let πi
t be the policy that sets πi

t(s) = 1 for s < t and πi
t(s) = 0 for s ≥ t. The set of

stopping policies is denoted Πi
S.

Ultimately, it is not sufficient to consider deterministic policies. Mixed policies must be

introduced. We adopt the following definition of mixed policies based on Aumann (1964). A

14The policy does not define behavior after one’s own deviation, an unnecessary specification given the

information structure. In those rare instances in which we comment on behavior after such off-path histories,

we use the word “strategy” instead.
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mixed policy is a measurable map φi : [0, 1] → Πi such that for all βi ∈ [0, 1], φi(βi) ∈ Πi.15

This definition can be interpreted as follows: player i privately flips a “coin” at the beginning

of the game, and the realization βi of a random variable uniformly distributed on [0, 1]

determines the deterministic policy that he then follows. Let Φi denote the set of (mixed)

policies of player i.

Given φ−i ∈ Φ−i := ×j 6=iΦ
j , player i minimizes

Cφi

:= Eφi

p0

[
Ci(ui)

]

over φi ∈ Φi.

Of particular interest are stopping time policies–“random” stopping policies. According

to these policies, for some non-decreasing function ti : [0, 1] → R+, φ
i(βi) = πi

ti(βi) (a.s.).

Hence, in these policies, player i randomizes over the time that he stops pulling the safe

arm. Let Φi
S denote the set of stopping time policies of player i (including Πi

S). It is often

more convenient to represent such policies using the distribution function F i : R+ → [0, 1],

defined as F i(t) := sup{βi | ti(βi) ≤ t}; that is, ti is the quantile function of F i.

Given that players do not observe one another’s actions, there is no loss in considering

Nash equilibria, relative to refinements like perfection. Hence, an equilibrium is a vector

φ∗ ∈ Φ := ×iΦ
i such that for all i and for all βi ∈ [0, 1], φ∗i(βi) minimizes Cφi

over φi ∈ Φi,

given φ∗−i. Of particular interest are symmetric equilibria, which are equilibria in which

φj = φi for all i, j. However, our attention is not restricted to those equilibria.

3 Learning

Players face two sources of uncertainty. First, they do not know the state of the world. As

time passes without breakdowns occurring, they learn about the state. Second, players do

not know the specific deterministic policy selected by the other players–if indeed this policy

was chosen at random. In this regard, time is also informative: because breakdowns are

more likely if others pull the risky arm, the absence of breakdowns is indicative of safe play.

Both sources of uncertainty affect the choice of optimal action: if player i knew that others

were experimenting, then he might be tempted to “free-ride” on this experimentation and

pull the safe arm unless he is very optimistic about the risky arm.

15Let B[0,1] (resp., B) denote the σ-algebra of Borel sets of [0, 1] (resp., R+) with the Lebesgue measure.

We endow the set of measurable functions from (R+,B) to ([0, 1],B[0,1]) with the σ-algebra generated by

sets of the form {f : f(s) ∈ A} with s ∈ R+ and A ∈ B[0,1]. The notion that such a definition is equivalent

to the use of “behavioral decision rules” follows from Weizsäcker (1974). See also Shmaya and Solan (2014)

on the equivalence and Touzi and Vieille (2002) on mixed policies in timing games.
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In addition, players’ beliefs are private. A player who adopts a riskier policy becomes

optimistic at a faster pace than if he had adopted a safer policy; indeed, if he pulled the safe

arm exclusively, he would only learn from others. This statement implies that other players

do not know player i’s beliefs. Those players have a belief about his belief, as in equilibrium,

they know the distribution over deterministic policies that player i is using.16

However, given player i’s policy, all these beliefs (including higher-order beliefs) are

derived from a common source of information: time. Because the game ends with the first

breakdown, there is only one information set corresponding to a given time t (conditional on

i’s policy throughout). Player i faces no “uncertainty” regarding these conditional beliefs:

he can perfectly forecast at time t what his beliefs will be at any time t′ > t, conditional on

no breakdown occurring in the meantime. In particular, he can forecast the instantaneous

probability with which a breakdown will occur on that date. The hazard rate of a breakdown

is all that matters for determining best replies, but each player’s forecast reflects the two

sources of uncertainty that he faces.

Formally, fix a player i throughout. Define pit := Pφ
p0[ω = B | (uis)

t
s=0] for t < τ . As the

conditioning clearly indicates, it is player i’s belief and his only, although we occasionally

omit the superscript. Suppose for now that players j 6= i use pure policies πj . Given that

breakdowns follow an exponential distribution, the probability of a breakdown not occurring

by time t (denoted ∅t), conditional on {ω = B}, is given by

Ht := P[∅t | ω = B] = e−
∫ t

0
λ(I−

∑

j u
j
s)ds.

Under pure policies, Bayes’ rule reduces to the ordinary differential equation

ṗit = −λpit(1− pit)
(
I − Σju

j
t

)
, pi0 = p0, (2)

where λ
(
I − Σju

j
t

)
= −∂ lnHt/∂t is the hazard rate of a breakdown.

If instead players j 6= i use mixed policies φj, we must derive the law of motion of the

(deterministic) process pit taking into account the uncertainty regarding the realized policies

πj. The probability of no breakdown occurring by time t, conditional on {ω = B} and

(uis)
t
s=0, is given by

Ht := Pφ
p0[∅t | ω = B] =Eφ

p0

[

e−
∫ t

0
λ(I−

∑I
j=1 u

j
s)ds | (uis)

t
s=0

]

=e−
∫ t
0 λ(I−ui

s)dsΠj 6=iE
φ
p0

[

e
∫ t
0 λuj

sds
]

,

16However, this second-order belief is not common knowledge because player j’s posterior belief regarding

i’s adopted policy depends on j’s belief regarding the state of the world. In turn, this belief depends on his

own policy, which is not observed by others.

11



where the last equality follows from the independence of the players’ policies. Because the

first term on the right-hand side is only a function of player i’s own action, uncertainty

appears only via the second term.

Indeed, player i’s belief is private, but his private information appears separately, as

captured by the hazard rate

−
∂ lnHt

∂t
= λ(I − uit)−

∑

j 6=i

∂

∂t
lnEφ

p0[e
∫ t

0
λuj

sds]. (3)

Thus, the contribution to his belief attributable to all other players’ expected policies is

common knowledge. We then define

ν−i
t :=

∑

j 6=i

1

λ

∂

∂t
lnEφ

p0[e
∫ t

0
λuj

sds]. (4)

Note that ν−i
t ∈ [0, I − 1] because ujs ∈ [0, 1], all s ≤ t, j 6= i. In particular, ν−i

t = 0 means

player i is certain that all other players are playing risky at time t, and ν−i
t = I − 1 means

he is certain they are playing safe.

Because the function ν−i plays an important role in the analysis, it is important to develop

some intuition for it. Because breakdowns follow an exponential distribution, the function ν−i

is, in general, different from the expected action of the other players Eφ
p0[

∑

j 6=i u
j
t ]. Instead,

ν−i measures the expected contribution of the other players’ experimentation to the hazard

rate of the first breakdown.17

Therefore, the experimentation of player j 6= i affects player i’s belief revision at time t,

and it is not simply a matter of whether player j is playing safe at that time. The entire

path of player j’s actions affects player i’s belief regarding the state of the world at time t

and, hence, how much this belief must be revised if no breakdown occurs in the next instant.

It follows from (3) that pi is also differentiable and that it solves the differential equation

ṗit = −λpit(1− pit)(I − uit − ν−i
t ), pi0 = p0. (5)

Thus, if ν−i
t = I − 1 and uit = 1 then ṗit = 0. If, in addition, all players use stopping time

policies, this implies that pit = p0.

Now suppose that players use stopping time policies such that φ ∈ ΦS. Hence, players

switch from the safe arm to the risky arm at time t according to some distribution function

F j : R+ → [0, 1]. Write F̄ j = 1 − F j for the complementary distribution function. In that

17Given a mixed strategy profile φ, one can also construct agent i’s time-t posterior beliefs over Σj 6=iu
j
t .

However, the other players’ actions affect player i’s payoff through the hazard rate of a breakdown only.
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case, we obtain an alternative, perhaps more expressive, formula for ν−i. By definition,

ν−i
t =

1

λ

∑

j 6=i

∂

∂t
lnEφ

p0[e
∫ t

0
λ1

{s≤ti(βi)}
ds] =

1

λ

∑

j 6=i

∂

∂t
ln

[

eλt(1− F j
t ) +

∫ t

0

eλsdF j
s

]

,

such that, explicitly,

ν−i
t =

∑

j 6=i

eλtF̄ j
t

F̄ j
0 +

∫ t

0
λeλsF̄ j

s ds
≥

∑

j 6=i

eλtF̄ j
t

1 +
∫ t

0
λeλsds

=
∑

j 6=i

F̄ j
t . (6)

It follows that ν−i
t is a function that begins at I − 1, remains there as long as F j(t) = 0 for

all j 6= i, discontinuously decreases when F j discontinuously increases for some j 6= i, and

continuously increases when t /∈ ∪j 6=i suppF
j, strictly, unless it is equal to 0, which occurs

when F j(t) = 1 for all j 6= i.18 It always exceeds the total probability of others not having

switched to their risky arm, as the likelihood of a breakdown is lowest when they are still

pulling the safe arm. Finally, ν−i
t increases when t is not in the support of any F j because

in the absence of a breakdown player i assigns growing weight to subsequent realizations of

his opponent’s switching time.

Figure 1 illustrates this scenario for the case of two players from the perspective of player

i: in the case of some (arbitrary) pure policy (when player j selects a deterministic policy

uj), the hazard rate ν−i coincides with it; in the case of a mixed policy where player j

randomizes between switching to u = 0 at t = 0 and at t = 1, ν−i and F̄ j coincide (at least)

at the initial instant and once they reach 0.19 For t ∈ [0, 1], ν−i increases over time and is

given by ν−i
t = eλt/(1 + eλt).

4 Best Replies

This section elucidates the structure of the best-reply function of a fixed player i, taking the

behavior of others as given, as summarized by the hazard rate ν−i. From the definition of ν−i
t ,

it is clear that player j 6= i’s past actions (at dates s < t) impact future values of {ν−i
s }s>t.

Furthermore, the current value of ν−i
t (or of any finite-dimensional vector) cannot summarize

this impact in general: because ν−i
t involves the expectation of a nonlinear function, knowl-

edge of the interdependence between past and future actions becomes necessary to compute

future values of ν−i
t . We cannot get a recursive structure for the law of motion of ν−i, and

so must take this function as given. Therefore, we can find a certainty-equivalent problem

for the best-reply problem, but cannot find such a deterministic representation for the game

18Given a distribution G, we write suppG for the set of points of increases in G.
19To be clear, ν−i

t isn’t linear in the left panel, despite visual deception.
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Figure 1: Hazard rate ν−i compared with F̄ j and uj, for I = 2.

(unlike in the usual bandit problems with observable actions, which can be reformulated as

stochastic games with the belief as state variable).

Our approach is indirect: by analyzing the (deterministic) best-reply problem, we obtain

that any candidate equilibrium strategy can be summarized by a distribution function. Given

this structure, the game can be reduced to a deterministic one, and its equilibria can be

found. Our procedure involves five steps. First, we explain why this hazard rate is indeed

a summary statistic for the best-reply problem. Second, we show that any best reply is

necessarily a stopping time policy. Third, we derive the unique cooperative solution as an

immediate by-product, in which ν−i = I − 1. Fourth, in the case of two players, we solve

for the best-reply function and show how its structure–first increasing and then decreasing

to 0–eliminates the possibility of the existence of an equilibrium in pure policies. Fifth, we

explain why this non-existence extends to the case of more than two players.

4.1 The Certainty-Equivalent Problem

The optimization problem faced by player i satisfies certainty equivalence (in the sense of

filtering theory): the optimal action uit is exactly the same as it would be if all unknowns were

known and if their values equaled their best estimates (the conditional expectations), given by

(pi, ν−i). Furthermore, a separation principle (again, in the sense of filtering theory) holds:

optimal estimation and optimal control can be decoupled. That is, as is apparent from the

definition of (pi, ν−i), the choice of ui does not affect this estimate.

We may now rewrite the problem of minimizing Ci. First, we can express the probability
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of the event that no breakdown has occurred by time t in terms of pit; by the martingale

property of beliefs,

Pφ
p0[∅t] · p

i
t + (1−Pφ

p0[∅t]) · 1 = p0,

so that

Pφ
p0[∅t] =

1− p0

1− pit
.

We then obtain the following certainty-equivalent minimization problem

min

∫

t≥0

e−rt
(
rpitg

(
1− uit

)
+ ruits + λpit(I − uit − ν−i

t )s
) 1− p0

1− pit
dt (7)

over measurable policies πi : R+ → [0, 1], subject to (5), i.e.,

ṗit = −λpit(1− pit)(I − uit − ν−i
t ), pi0 = p0.

This is the program P.20 Here, the function ν−i : R+ → [0, I− 1] is treated as an exogenous

(measurable) function. Yet, we omit it as an explicit argument of P. By the Filippov-Cesari

theorem (see Cesari, 1983), a solution exists, that is to say, the infimum is achieved. We will

examine the necessary conditions given by Pontryagin’s maximum principle.

The interpretation of the objective is as follows. As explained above, (1− p0)/(1− pit) is

the probability of reaching time t without a breakdown. At that time, if player i invests uit in

the safe arm, then the rate at which he suffers a breakdown is (1−uit)λp
i
t, with the expected

cost rh. If any of the players has a breakdown (which occurs at rate λpit(I −uit− ν−i
t )), then

player i switches to the safe arm, yielding the net present cost s. As was the case for learning

dynamics, the pair (pi, ν−i) also summarizes all the information that matters for computing

payoffs.

4.2 Stopping Time Policies

Here, we show that any best reply must be within the class of stopping time policies.

Lemma 1 If πi ∈ Πi solves P, then πi ∈ Πi
S.

Informally, Lemma 1 states that if a player begins experimenting, he should do so indefinitely

(i.e., until a breakdown occurs), and conversely, if he plays safe, he must have played safe

at all earlier times.

To gain further intuition, we examine the optimal timing of a fixed amount of experi-

mentation from player i’s perspective. Thus, we consider the arbitrage equation of player

20With a slight abuse: the program P examined in the appendix is a minor modification of it.
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i, which describes the trade-off between backloading and frontloading experimentation, i.e.,

between shifting an amount of experimentation du across the time intervals [t, t + dt) and

[t + dt, t + 2dt). (See the proof of Lemma 1 for the formal argument.) We will show that

player i prefers to backload experimentation over the relevant range of beliefs. The marginal

value of backloading experimentation is given by

r ·
(
pitg − s

)

︸ ︷︷ ︸

flow cost

+ λpit
(
I − uit − ν−i

t

)

︸ ︷︷ ︸

breakdown rate

· (g − s)− λpit ·
(
1− uit

)

︸ ︷︷ ︸
· (g − s)

change in action

. (8)

The first term is the time-preference effect of delaying the expected flow cost ptg and

anticipating the cost s. The second term pertains to the event of a breakdown (at rate

λpit
(
I − uit − ν−i

t

)
): if so, safe play would occur at t + dt regardless of the player’s earlier

action; in that event, pulling the safe arm more at t yields marginal savings of g−s. Finally,

the third term considers the effect of the player’s action on the likelihood of a breakdown:

by frontloading safe play, the player reduces (at a rate λpit) the arrival of a breakdown, in

which case he would switch from the current action uit to u
i = 1; because this scenario can

occur only in the bad state, this action yields a loss g − s.

Note that the sum of the last two terms is non-negative. Hence, equation (8) implies

that backloading is profitable when p is sufficiently large. Conversely, if a player were certain

that the state is good, discounting would suggest frontloading the risky action. Lemma 1

then establishes that over the relevant range of beliefs (i.e., for pi ≥ p∗; see Lemma 2), the

marginal value of backloading experimentation is positive.

The stopping-time property of best replies is not only a feature of bad-news learning.

In a good-news model with no payoff externalities and unobservable actions, every best

reply involves frontloading the risky action.21 In other words, the pure interior action paths

described by Keller, Rady and Cripps (2005), Keller and Rady (2015), and Bonatti and

Hörner (2011) rely on either observable actions (the former two) or payoff externalities (the

latter). Instead, the welfare comparisons drawn in these papers do not rely on the presence

of payoff externalities.

Finally, note that Lemma 1 does not imply that the solution to P is unique; rather,

it implies that all deterministic solutions are in Πi
S. Furthermore, one can determine the

bounds on how early or late a player is willing to switch to the risky arm. Next, we provide

such bounds in terms of player i’s beliefs. We define

p∗

1− p∗
:=

µ+ I

µ+ I − 1

1

γ
,

21This result can be obtained by adapting Theorem 1 in Bonatti and Hörner (2011) to the case of pure

informational externalities.
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as well as
p∗∗

1− p∗∗
:=

µ+ 1

µ

1

γ
,

where we recall that γ = (g − s)/s and µ = r/λ.

As follows from these definitions, p∗∗ > p∗ for I ≥ 2. The next result establishes that

once a player becomes sufficiently optimistic (specifically, when pit < p∗), he allocates his

entire resource to the risky arm.

Lemma 2 If πi solves P, then uit = 0 for all t such that pit < p∗. Conversely, if pit > p∗,

then uit = 0 implies ν−i
t > 0.

Lemma 2 establishes a lower bound on experimentation: the belief p∗ is the threshold

value at which a player is willing to experiment even if all other players are pulling the risky

arm thereafter. The lower bound p∗ depends on the number of players because of the amount

of information generated when I − 1 players pull the risky arm exclusively.

Note that, if p0 < p∗, Lemma 2 implies there exists a unique equilibrium: all players

choose uit = 0 at all times. In what follows, we assume that p0 ≥ p∗. The next result

establishes a tight upper bound on the amount of experimentation.

Lemma 3 If πi solves P, then uit = 1 for all t such that pit > p∗∗. Conversely, if p0 ≤ p∗∗,

then uj0 = 0 for some j, that is, some player starts experimenting immediately.

The upper bound p∗∗ coincides with the threshold belief for the single-agent problem. This

result is familiar in exponential-bandit models with good news (Keller, Rady and Cripps,

2005, and Bonatti and Hörner, 2011) in which players are not willing to experiment more

than in the single-player case. However, it contrasts with the result of Keller and Rady (2015)

for a bad news model with observable actions (see Section 6 below). Lemma 3 immediately

implies that there exists a unique equilibrium for p0 > p∗∗: all players choose uit = 1 at all

times, and beliefs are “frozen” at their initial level.

4.3 Cooperative Solution

We briefly mention the cooperative solution, which is implied by Lemma 3. Assume that

players perfectly observe one another’s actions (an innocuous assumption because the opti-

mum involves pure policies) and choose them so as to minimize the sum of their costs. We

define
pFB

1− pFB
:=

µ+ I

µ

1

γ
.
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Note that pFB is larger than p∗∗, given I ≥ 2. In fact, it coincides with p∗∗ and also p∗ when

I = 1 is inserted into the formulas.

Given a pair (p, u) such that p is the belief path generated by u :=
∑I

i=1 u
i, given p0,

along the history with no breakdown, the action path (ut)t is measurable with respect to the

belief path (pt)t if pt = pt′ ⇒ ut = ut′ for all t, t
′. We write u(p) for the value of u at belief

p ≤ p0, which is then well defined. The cooperative solution given in the next lemma is

measurable with respect to its belief path.

Unsurprisingly, the optimal policy involves all players employing the risky arm if beliefs

are below a threshold pFB and the safe arm otherwise. Thus, if p0 ≥ pFB, then all the players

play the safe action forever, and if p0 < pFB, all the players immediately use the risky action

from the start and keep doing until the first breakdown. This is formally stated below (see

also Keller and Rady, 2015, Proposition 1). In addition, Lemma 4 establishes that total

costs decrease in the intensity with which the risky arm is pulled, as long as the ranking of

the total amount of experimentation holds pointwise in the beliefs.

Lemma 4 The cooperative solution uFB is given by uFB
t = I for all t such that pt ≥ pFB

and uFB
t = 0 otherwise. Furthermore, let p′, p′′ : R+ → R be two feasible paths such that

the corresponding action paths u′, u′′ are measurable with respect to their belief path, with

uFB(p) ≤ u′(p) ≤ u′′(p) for all p ≤ p0. The cost is then weakly lower under p′ than under p′′

and strictly lower when u′(p′t) < u′′(p′t) for a set of times t of positive measure.

4.4 Best Replies with Two Players

To understand why equilibrium is necessarily in mixed policies (unless p0 /∈ (p∗, p∗∗)), it is

useful to derive the best-reply correspondence in the special case of two players. Suppose

that player j 6= i switches (with probability one) to the risky arm at time tj . We may

distinguish player i’s cost according to whether he switches to the risky arm first or second.

If player i decides to go second, he must do so when his private belief reaches the threshold

p∗ (or immediately if this belief has been reached by the time j switches). Hence, if going

second is best, then player i’s best reply must be

ti = tj + λ−1 ln

(
p0

1− p0

/
p∗

1− p∗

)

=: tj + t∗.

The fixed delay t∗ defined above is equal to the time required for beliefs to reach the threshold

p∗ based on player j’s experimentation alone.

If i decides to go first and preempt player j, he begins experimenting immediately. In

other words, if moving first is the preferred course of action, then moving immediately is

18



t1

t2

0 1 2 3 4 5

1

2

3

4

Best-reply curve of 1

Best-reply curve of 2

Figure 2: Best-reply curves with two players for (r, λ, γ, p0) = (1/10, 1, 4, 1/2).

best. Intuitively, player i will not learn before time tj unless he experiments. If player

i is not willing to wait until then, he should begin immediately. Conversely, if delaying

experimentation is not too costly, then player i will choose to “freeze” beliefs until tj .

What remains to be determined is when player i prefers to go first or second. This

preference depends on when player j switches. Unsurprisingly, the larger tj is, the more

tempting it is to go first. Intuitively, if tj is very high, then the cost of waiting until player

j’s actions take beliefs to the threshold causes an overly costly delay in learning. Conversely,

when player j is expected to switch to the risky arm soon, the benefits of free-riding on his

experimentation when beliefs are most pessimistic outweigh the cost of delay. This behavior

is summarized in the following lemma.

Lemma 5 The best-reply correspondence ti : R+ ⇒ R+ is given by, for some t̂ ∈ R+,

ti(tj) =







tj + t∗ if tj < t̂,
{
0, t̂+ t∗

}
if tj = t̂,

0 if tj > t̂.

Consequently, player i’s best-reply curve jumps downward at t̂. Figure 2 provides an illus-

tration. Plainly, the two best-reply curves do not cross. Thus, no pure-policy equilibrium

19



exists.

To obtain some intuition, suppose there exists an asymmetric equilibrium in which player

i switches immediately to the risky arm and player j waits. Then player j must optimally

wait until time t∗ when his belief is pjt∗ = p∗. However, one can show that waiting, say,

until 2t∗ is a profitable deviation for player i. At time t∗, player j switches, and at time 2t∗,

player i’s belief reaches p∗. This is true for all parameter values. For example, consider the

discount rate r. Intuitively, for low r, waiting is not very costly; and for high r, the risk of

a quick breakdown looms large on player i.

More generally, for the case of two players, let C(t1, t2) denote the cost of player i if he

switches at time t1 and player j switches at t2. It is not hard to show that the cost function

C is subadditive, i.e.,

C(t1, t2) + C(t2, t1) ≥ C(t1, t1) + C(t2, t2),

with strict inequality whenever t1 and t2 are distinct. This observation rules out asymmetric

pure equilibria since, if 1 does not want to mimic 2, C(t1, t2) < C(t2, t2), and similarly, if 2

does not want to mimic 1, C(t2, t1) < C(t1, t1). Subadditivity of the cost function indicates

the potential cost savings (at the aggregate level) associated with coordinating stopping times

between agents. We revisit this property when studying correlated equilibria in Section 6.

Finally, note that if player j uses precisely t̂, then player i has two best replies. However,

consider Figure 2: for each of his choices, player j’s best reply would be much smaller than

t̂ (indeed, it would be 0 if i used the larger best reply and t∗ if he uses 0). Unsurprisingly,

regardless of how player i randomizes between these two choices, player j’s best reply is

strictly lower than t̂. We immediately obtain the following result.

Lemma 6 Suppose that I = 2 and p0 ∈ (p∗, p∗∗). There exists no equilibrium in which either

player uses a pure policy.

As discussed after Lemma 2, all players choose the risky arm when pit ≤ p∗. Thus, for

p0 ≤ p∗, there exists a unique equilibrium, which is pure. Conversely, suppose p0 ≥ p∗∗.

Because p∗∗ is the threshold belief for a single agent, there exists a pure strategy symmetric

equilibrium in which all players choose the safe arm forever. Theorem 1 below shows this is

the unique symmetric equilibrium of the game for those parameters.

4.5 More Than Two Players

Can an equilibrium in pure policies exist when I > 2? Deriving best-reply curves is no longer

an easy task. However, a pure-policy equilibrium cannot exist based on the following simple

argument. Suppose that such an equilibrium exists, and let ti denote the time at which player
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i switches to the risky arm. Without loss of generality, suppose that t1 ≥ t2 ≥ · · · . Suppose

first that p(t3) > p∗. Consider the game starting at time t3 and the corresponding initial

belief p(t3). This game involves only two players, players 1 and 2 (assuming indeed that t3

is optimal for player 3). A necessary condition for the policy profile to be an equilibrium is

that players 1 and 2 play mutual best replies in this game. Yet, the two-player game admits

no pure-policy equilibrium. If instead p(t3) = p∗, then given Lemma 3, because p(tI) ≥ p∗∗,

there exists j such that p(tj) > p∗ = p(tj−1) = · · · = p(t1). As in the two-player case, past

time tj , any player i = 1, . . . , j−1 would gain from deviating to the risky arm immediately.22

5 Main Results

5.1 Symmetric Equilibrium

We now turn to the equilibrium analysis. Recall that we assume throughout that p0 > p∗.

Given F−i and, hence, given ν−i, each time t ∈ suppF i is such that the stopping policy

πi
t is a solution to P. Furthermore, it holds that, given any t ∈ suppF i, pt ≥ p∗. We let

t̄i := max{t ∈ R+ : t ∈ suppF i}.

First, we focus on symmetric equilibria and accordingly write F , t̄ for F i, t̄i, unless

we emphasize a given player’s perspective. The next result derives the unique symmetric

equilibrium of the game.

Theorem 1 There exists a unique symmetric equilibrium. If p0 ≥ p∗∗, then the equilibrium

is pure and involves F i(t) = 0 at all times.

If p0 ∈ (p∗, p∗∗), the equilibrium involves mixed policies. Specifically, player i chooses a

stopping policy πt among the set [0, t̄], with t̄ > 0 and pt̄ = p∗; this distribution is positive

and continuous over (0, t̄) and has an atom at times t = 0, t̄.

The equilibrium distribution function can be solved in closed form as

F̄ (t) =

(
A− eµt

A− 1

) 1
I−1

(

1−
µ

(I − 1)(Ae−µt − 1)

)

,

22For any number of players I, the proof of Lemma 5 establishes that if players −i switch at some time

t = T , then player i wants to switch at a different time.
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Figure 3: Equilibrium distributions F i
t (left), F̄ i

t and hazard rate ν−i
t (right) for

(r, λ, γ, I, p0) = (1/10, 1, 4, 3, 1/2).

where we normalized λ to 1 and

A :=

(

1− γ
µ

1 + µ

p0

1− p0

)−1

,

t̄ =
1

µ
ln




I − 1

(I + µ− 1)
(

1 + µ− γµ p0

1−p0

)



 .

The initial atom is given by F i
0 = 1−ν−i

0 /(I−1). In equilibrium, this is a decreasing function

of p0 that vanishes as p0 → p∗∗ and converges to (I +µ)−1 as p0 → p∗. The final atom is also

a decreasing function of p0, which is bounded away from 1 even as p0 → p∗∗, and converges

to 1− (I + µ)−1 as p0 → p∗, consistent with our earlier result that players choose uit = 0 at

all times when p0 ≤ p∗.

Figure 3 illustrates the equilibrium distribution (left panel) and compares the comple-

mentary distribution function F̄ i
t with the hazard rate ν−i

t (right panel). Over time, players

learn from their own experience and from that of others. In particular, as time passes, a

player assigns growing weight to the event in which his opponent has already switched to

the risky arm, conditional on which, learning occurs faster. Moreover, the contribution of

any other player’s experimentation to player i’s learning (1− ν−i/(I − 1)) is always smaller

than that player’s distribution function F i
t because, as time passes and no breakdown occurs,

player i also assigns growing weight to subsequent realizations of his opponent’s switching

time, which slows this learning process.

The maximum range of stopping times in the symmetric equilibrium has a natural inter-

pretation: the “earliest” that a player may switch to the risky arm is when his belief is p∗∗:

this is the belief for which he would switch if he were on his own (cf. Section 4.3). The latest

he might switch is when his belief reaches p∗: this would be his uniquely optimal belief if all

others were always experimenting. Because his opponents’ behavior lies somewhere between
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these two extremes, so does his set of best replies. Indeed, the second atom occurs at the

time t when the belief of a player who has not yet switched reaches p∗.

In contrast to typical mixed-strategy equilibria of normal-form games, player j does not

need to randomize over stopping policies to make his opponents indifferent over all stopping

times in the relevant time interval. Player j could achieve this through the deterministic

policy uj = ν−i/(I − 1). However, player j is not willing to play such a deterministic but

interior policy. Indeed, randomizing over stopping policies is the unique cost-minimizing way

to make the other players indifferent over their own stopping times.

Randomized stopping times have rich implications for the dispersion of equilibrium be-

liefs. The shaded area in Figure 4 indicates (time, belief) pairs for which an agent pulls

the risky arm. Figure 4 also illustrates belief paths as a function of time and behavior. For

instance, pc is the belief path of player i who chooses the latest possible equilibrium stop-

ping time, t̄. The solid line indicates when he pulls the safe arm; the dashed line indicates

when he has already switched to the risky arm. Trajectories pa and pb correspond to earlier

switching times. Once the player begins pulling the risky arm, his belief decreases faster,

reinforcing his preference for the risky arm (absent any breakdown). This elucidates the

“off-path” behavior of player i. After an arbitrary history (uis)
t
s=0 (along which he might

have deviated from the prescribed behavior), Lemmas 1–2 remain valid: player i’s optimal

policy is a stopping policy (from time t onward) that prescribes stopping no later than the

first time his belief reaches p∗.

As discussed, an agent’s decision whether to start experimentation depends on his higher-

order beliefs. Depending on his own stopping time, he entertains different beliefs about the

state of the world, whether his opponent has started experimented himself, etc. Fortunately,

alongside his own stopping time, the function ν−i, which is common knowledge, summarizes

all relevant information for this hierarchy, so that the optimal policy can be described as a

function of this pair only.

Finally, the necessity to randomize is a robust phenomenon: as Figure 2 clearly indi-

cates, given that best-reply curves vary continuously with the parameters, the non-existence

of pure-policy equilibrium is robust to perturbations in parameters, regardless of whether

symmetry is preserved. Furthermore, it is not necessary to consider that when the safe arm

is pulled, no learning occurs. Our results generalize to the case containing background learn-

ing. In that case, even if the initial belief is above p∗∗, players use stopping time policies

in the unique symmetric equilibrium, which is mixed. However, the earliest stopping time

within the support of the equilibrium policy corresponds to the time when the players’ beliefs

reach p∗∗.
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Figure 4: Belief trajectories for (γ, p0, I, µ) = (3, 13/20, 2, 1/8).

Derivation of the equilibrium distribution. Fix the other players’ behavior in terms

of ν−i
t , and consider player i’s stopping time ti = T . The first-order effect of playing safe

longer (differentiating (7)) is given by

e−µT

1− pT
(µs− pT (µg + s)) +

∫ ∞

T

e−µt
(
µg + (I − ν−i

t )s
) pt
1− pt

dt.

The first term (which is negative) captures the myopic benefit (cost reduction) of playing

safe longer. The second term is instead the added cost of slower learning, which is captured

by a higher hazard rate of a breakdown at all future times.

Pointwise indifference requires the marginal cost of playing safe longer to be nil over the

entire support. Thus, we turn to the second-order effect of playing safe, which is given by

the sum of the following four terms,

−
e−µTµ

1− pT
(µs− pT (µg + s))− (I − ν−i

T − 1)
e−µTpT
1− pT

(µs− (µg + s))

−
e−µT pT
1− pT

(
µg + (I − ν−i

T )s
)
+

∫ ∞

T

e−µtpt
1− pt

(
µg + (I − ν−i

t )s
)
dt.

The second-order effect is given by (a) the delayed myopic benefit, (b) the lower myopic

benefit (note that (I − ν−i
T − 1)pT/(1 − pT ) is the derivative of the hazard rate), (c) the
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postponed cost of diminished learning, and (d) the higher marginal cost of diminished learn-

ing (because the hazard rate is exponential in ui). Because the first-order condition must

hold pointwise on the support, the last term is equal to the myopic (first-order) benefit of

delaying switching.

These four terms can be combined into an expression characterizing the equilibrium ν−i

as a function of the belief p,

p

1− p
(g − s)

(
I + µ− ν−i − 1

)
− s(µ+ 1). (9)

Note that these beliefs are those of the most pessimistic type of player i, i.e., the player who

has not yet switched to the risky arm.

Next, we use the law of motion of beliefs to derive ν−i
t as a function of time alone. We

then derive the equilibrium distribution from the definition of ν−i as

ν−i
t

I − 1
=

(1− Ft)e
λt

(1− Ft)eλt +
∫ t

0
eλsdFs

,

which yields a differential equation for Ft, resulting in

Ft = 1−
ν−i
t

I − 1
e

∫ t

0

(

ν
−i
s

I−1
−1

)

ds
,

and we then plug the formula for ν−i
t from equation (19) in the Appendix.

5.2 Uniqueness

Lemma 6 above rules out asymmetric equilibria in pure (deterministic) policies, but is silent

about asymmetric equilibria in mixed policies. As Figure 2 clarifies, our game is not su-

permodular: in particular, best-reply curves are not monotone, which makes it difficult to

establish uniqueness. This implies the failure of standard methods to prove uniqueness.23

Moreover, the different methods and tricks described in Karlin (1959) do not appear to be

effective. In the case of two players, it can be shown that no other equilibrium exists.24

Our proof carries no philosophical charm and is based on particular features of the payoff

function.

23See Vives (1999) for an excellent discussion. As mentioned, existing arguments based on supermodular

games are ineffective; the best-reply function is not a contraction either (otherwise, the equilibrium would

be pure), and the fact that the equilibrium is mixed implies that the Gale-Nikaido theorem or the Poincaré-

Hopf theorem cannot work either; or rather, that one should work with the mixed-strategy space directly

and possibly use an infinite-dimensional extension of those.
24For more than two players, uniqueness is an open problem.
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Theorem 2 Assume that I = 2. The equilibrium is then unique (and thus equal to the

mixed equilibrium of Theorem 1).

Uniqueness contrasts with the multiplicity that is prevalent in games with strategic ex-

perimentation, not only when actions are observable (Keller, Rady and Cripps, 2005; Keller

and Rady, 2015) but also when they are not (Bonatti and Hörner, 2011). Because of the

pervasive free-riding incentives, asymmetric equilibria typically exist when players alternate

(finitely or infinitely often) between experimenting and taking advantage of the opponent’s

experimentation–leading to the existence of additional asymmetric equilibria. By contrast,

in our game, free-riding finds its expression in how early a player is willing to begin experi-

menting; the earlier the opponent begins experimenting, the later the player finds it optimal

to do so. However, the ordering of actions is unambiguous: for a given total amount of ex-

perimentation, it is always optimal to use a stopping policy, pulling the safe arm if and only

if a threshold time has not yet been reached.25 In other words, no player can ever have an

incentive to use a policy that involves pulling the risky arm before the safe arm, precluding

any type of alternation in the experimentation that players conduct.

5.3 Comparative Statics

As the number of players increases, the free-rider problem worsens in terms of both the

timing and the amount of experimentation.

In computing beliefs, we encounter a difficulty: the belief that player i holds at a given

time is not uniquely determined in the mixed equilibrium; the earlier a player stops, the lower

is his belief at a given time t, provided that no breakdown has occurred. We are thus led to

adopt the perspective of an outside observer who observes no actions at all: conditional on

a given time t being reached without a breakdown under either informational assumption,

what probability does he attach to the event {ω = B}? In the observable case, this belief

coincides with that of any player, at least on path. In the unobservable case, it is some

weighted average of a player’s belief where the weight reflects the probability attached by

this observer to a player switching to risky play at a given time, suitably updated given that

time t is reached without a breakdown. Formally, we compute

pt = Pφ
p0[ω = B | ∅t],

25This is also the key reason why the equilibrium must be in mixed policies instead of pure policies

with interior actions: for a given amount of experimentation, players have strict incentives to backload

experimentation, eliminating the possibility of pulling arms with interior intensity over any interval of time.
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where, unlike in Section 3, we do not condition on any particular player’s action path. It

follows that the outside observer’s belief satisfies

ṗt = −pt(1− pt)(I − νIt ), p0 = p0,

where νIt captures the expected hazard rate of a breakdown from his perspective.26 For the

purpose of the next proposition, we index distributions and stopping times, among others,

by the number of players I ≥ 1.

Proposition 1

1. The distributions F I are ranked by stochastic dominance: F I
t decreases in I, for all t.

2. For an outside observer, νI
′

t ≥ νIt for all I ′ > I, with strict inequality for all t < t̄I′.

3. For I ′ > I, the belief path pI
′

t crosses pIt exactly once (from above).

4. For all I > 1, total individual costs in the symmetric equilibrium are given by

p0(gµ+ s)− µs. (10)

In summary, as the number of players increases, the “mixing phase” lasts longer (until

t̄I) and drives beliefs to a lower threshold p∗I . Free-riding incentives are sufficiently strong

that adding more players leads to slower learning, and no improvement in each player’s

welfare. Moreover, adding one player does not modify the upper bound on experimentation

p∗∗. Thus, although the social planner would like to experiment even under more pessimistic

prior beliefs, there can be no experimentation in equilibrium if the prior is above a constant

threshold.

The distributions of stopping times F I are ranked by first-order stochastic dominance: a

larger number of players increases the likelihood of later stopping times. Furthermore, the

expected hazard rate from the outside observer’s perspective I−νIt is decreasing in I as long

as p∗ has not been reached. The outside observer’s belief facing I ′ > I players eventually

overtake the belief that he would hold with I players. In Figure 5, we illustrate the hazard

rate I − νIt and the belief paths for I = 2, 4.

6 The Role of Information

We begin by recalling Keller and Rady’s result regarding symmetric Markov equilibria in the

game with observable actions. Players are restricted to Markov policies ui : [0, 1] → [0, 1]

26Adjusting equation (4), we define νIt :=
∑I

j=1
1
λ

∂
∂t

lnEφ

p0 [e
∫

t

0
λuj

sds].
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Figure 5: Hazard rate and belief paths for (µ, γ, p0) = (1/4, 1, 3/4).

with the left limit pt− of the common posterior belief as the state variable. Policies are

required to be left-continuous and piecewise Lipschitz. We define uo : [0, 1] → [0, 1] as

uo(p) =







1 if p ≥ p̄,

I+µ−1
I−1

− µ(ln(p/(1−p))−ln(p∗/(1−p∗)))+1
(I−1)(γp/(1−p)−1)

if p ∈ [p∗, p̄),

0 if p < p∗,

where p̄ > p∗ is an “upper threshold” belief.27

Theorem 3 (Keller and Rady, 2015) In the game with observable actions, the unique

symmetric Markov equilibrium is given by uo.

It is worth emphasizing that this is not the unique Markov equilibrium: asymmetric Markov

equilibria exist, and the ranking in terms of welfare can go either way. (See Section 3.3

of Keller and Rady, 2015.) Theorem 3 is established by Keller and Rady (2015), but the

closed-form expression for the policy is a contribution of this paper.

Under observable actions, players benefit from a larger group, although not at the same

rate as the social planner. Furthermore, as the number of players (and hence the value of

information) grows, the first-best policy eventually involves immediate full experimentation.

Each player’s cost then converges to its level under complete information: the arrival rate of

27Specifically, we define p̄ as (the unique solution of)

p̄

1− p̄
:=

p∗

1− p∗
exp

(

−
1 + µ

µ
−W−1

(

−γ
p∗

1− p∗
e−

1+µ

µ

))

,

where W−1 is the (negative branch of the) Lambert function.
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a breakdown grows, conditional on the bad state, and the probability of suffering a break-

down is inversely proportional to I. This relationship cannot be found when actions are

not observable because experimentation does not even begin unless p0 < p∗∗. Even under

observable actions, the threshold belief p̄ for experimentation to begin is increasing in I

but converges to a finite value. Furthermore, the duration of the mixing phase does not

decline as the number of players grows. Therefore, the cost under complete information is

not attainable if p0 > p∗.

Next, we compare the total amount of experimentation up to some t under both ob-

servable and unobservable actions. We write pot , p
n
t and pFB

t for these beliefs, depending on

whether we consider the observable, unobservable or cooperative case, respectively. We can

show stronger results than the ranking of the belief paths. For the unobservable case, let

ν(p) := νIt(p), where t(p) denotes the time at which the outside observer’s belief reaches a

value of p. We may rank ν(p)across the three cases.

Proposition 2 The following inequalities hold for all p:

νn(p) ≥ νo(p) ≥ νFB(p).

The second inequality is strict when p < pFB, and the first is strict when po < p̄. In

particular, p̄ > p∗∗.

An immediate consequence of Proposition 2 is that, for all t,

pnt ≥ pot ≥ pFB
t ,

with strict inequalities as described in the previous proposition. Furthermore, Lemma 4

implies the ranking of the symmetric equilibrium costs C(p0), given prior belief p0.

Corollary 1 The following inequalities hold for all p:

Cn(p) ≥ Co(p) ≥ CFB(p).

Both inequalities are strict when p > p∗.

Hence, monitoring is helpful in our context, although it is not helpful with good news.

The basic intuition is easy to grasp: when actions are observable, a player’s incentive to

deviate is related not only to the direct cost or benefit from this deviation but also to the

indirect cost or benefit in terms of the change in actions by other players. By deviating to

the risky arm, a player accelerates the common learning that, in the absence of news, leads to

greater optimism and more experimentation by others; this outcome is good because players
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do not experiment enough. By contrast, with good news, experimentation by a player leads

to greater pessimism in the absence of news and hence depresses experimentation provision.28

Coordination. Forcing players to disclose their actions might not be easy to achieve in

practice. A less drastic intervention might involve introducing a disinterested intermedi-

ary who makes private but correlated recommendations to each player regarding when they

should begin experimenting. Mediation is a particularly weak form of intervention; it is

self-enforcing and costless. Its formal implementation requires no more than a private cor-

relation device, but in practice, this mediation is undertaken by trade associations, political

representatives, or any institution commonly involved in the social dialogue.

Clearly, the optimal correlation scheme should be in the extensive form: there is no

benefit in telling a player when to switch before the mediator intends for him to do so,

as telling him the specific stopping time in advance only makes it more difficult to induce

compliance with the recommendation, giving him more information than needed. However,

as we explain, even in the normal form (by telling each player privately at the beginning of

the game when he should stop playing safe), such correlation is helpful.29

Specifically, consider the case of two players. With slight abuse of notation, we de-

note the joint distribution over switching times in our symmetric equilibrium as F (t1, t2) =

F (t1)F (t2). We construct a new distribution by slightly perturbing the independent ran-

domization according to a bivariate FGM copula.30 Let ρ denote the correlation parameter

of the joint distribution F .

We modify our equilibrium marginal distribution to introduce a small amount of corre-

lation and preserve incentives. At an abstract level, the incentive-compatibility constraint

28Observable actions discourage experimentation with good news regardless of whether payoff externalities

or pure informational externalities are present. For the case of payoff externalities, see Theorem 2 in Bonatti

and Hörner (2011). For the case of pure informational externalities and unobservable actions, all best replies

are stopping-time policies as in Lemma 1 (see the earlier discussion in Section 4.2). Thus, the model of Keller,

Rady, and Cripps (2005) with unobservable actions admits a unique symmetric equilibrium, in which players

pull the risky arm until their beliefs reach the single-agent threshold. In contrast, the unique symmetric

Markov equilibrium under observable actions features the same amount of experimentation but unbounded

delay.
29We are unable to solve for the optimal correlation scheme in the extensive form. In fact, even in the

normal form, we are able to solve for it only in the special case of a particular parametrized family of

correlation schemes, as described below. But this case suffices to show that independence is not optimal.
30For a marginal distribution G(t), the Farlie-Gumbel-Morgenstern (FGM) copula is given by G(t1, t2) =

G(t1)G(t2)(1+ρ(1−G(t1))(1−G(t2))), with parameter ρ ∈ [−1, 1]. See Nelsen (2006). Throughout this case,

we assume symmetry of this distribution, and we introduce an (arbitrarily small amount of) background

learning, i.e., ṗit = −pit(1− pit)(ū − ui
t − νjt ), with ū > 2.
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for obeying the recommendation to switch at time t is a functional equation that is linear

in the distribution F . We can then write this constraint as the combination of two linear

operators K0 and K1. In particular, we have

K0(F ) + ρK1(F ) = 0.

We can use this constraint to capture the restriction that incentives (under a small amount

of correlation) impose on the marginal distribution. In particular, we identify a distribution

that we use to (locally) modify our equilibrium distribution while preserving incentives. We

denote this distribution by F1(t; ρ).

Clearly, regardless of the degree of correlation ρ, no player can begin experimenting before

p∗∗ or after p∗. The design variable is the degree of correlation but requires adjusting the

support of the marginal distribution to match p∗ of the most pessimistic type. In particular,

the mass point at time t̄ is now a function of ρ. We then differentiate total costs under the

distribution F1(t; ρ) in a neighborhood of ρ = 0.

For any value of the parameters, the derivative of the cost is negative, i.e., positive cor-

relation is beneficial. We conclude that some (possibly small) amount of positive correlation

of switching times (subject to incentive compatibility) improves upon independence.31

However, the role of positive correlation (across switching times) must not be confused

with that of pure vs. mixed policies. Recall that only stopping time policies are optimal for

any player. It is then important and immediately clear that the symmetric (“coordinated”)

pure-policy profile {uit}
I
i=1, where u

i
t = ν−i

t /(I−1), yields strictly higher costs than our mixed

equilibrium. Again, from each player’s perspective, it is irrelevant whether others randomize

(holding ν−i fixed). However, the best-reply problem admits only switching-policy solutions–

it is costlier for a player to use the pure (non-extremal) policy uit defined above than to use

the distribution F i over stopping times that is equivalent to νit , from the perspective of the

other players.

7 Conclusions

Our results rely on a number of assumptions. Here, we briefly discuss how we expect them

to extend in two important dimensions.

Inconclusive bad news. A complete analysis under a scenario of inconclusive bad news

(that is, when a breakdown does not reveal the state) seems out of reach. However, we believe

31The details of the calculations leading to this comparative statics result are in the annotated Mathematica

file correlated.nb on the authors’ websites.
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that the belief-disagreement result would become more pronounced. First, if all agents stop

experimenting upon observing a breakdown, then learning stops and beliefs freeze at different

levels depending on the agents’ prior actions. Such endogenous belief heterogeneity has an

effect on policy effectiveness, e.g., if an external agent (the government) were to attempt

to subsidize the risky arm to resume experimentation. Second, behavior after the first

breakdown can potentially differ across players. In particular, some players may revert to

the risky arm for some time, whereas others may not. Conditional on the true state, this

exacerbates performance differences, as the agents who were experimenting earlier are those

who continue to do so.

Monitoring and payoff externalities in games of strategic experimentation. More

radical policy interventions that modify the payoffs of the game can be further helpful. In

the working paper (Bonatti and Hörner, 2015) we show that risk-sharing has several ad-

vantages over other types of interventions. By risk-sharing, we refer to a well-calibrated

group-insurance scheme whereby a player who suffers a breakdown obtains partial com-

pensation from the other players. First, such a scheme restores the first-best outcome in

contrast to, for instance, externally funded subsidies that improve the amount of experimen-

tation without solving the coordination problem. Second, the optimal scheme is robust to

the specific monitoring structure: whether players observe one another’s actions is irrelevant

to the calibration of this scheme.

We have already remarked on the different welfare implications of observable actions in

the models of strategic experimentation with good and bad news. Observability improves

welfare under bad news, whereas it is detrimental under good news. This result has dif-

fering implications for outcomes and provides a clear, if stylized, criterion to guide policy

interventions depending on the nature of the technology. In particular, in the good-news

case, unobservable actions eliminate inefficient delay but preserve the suboptimal amount of

experimentation. Thus, subsidies can be used to augment the amount of experimentation.

Under bad-news learning, we highlighted three sources of inefficiency: players experiment

too little, with excessive dispersion in both actions and beliefs. Subsidies are able to address

the first source only, and group insurance may be more appropriate.
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Appendix

Throughout the appendix, proofs are facilitated by working with log-likelihood ratios.

We define ℓt := ln(pt/(1− pt)), as well as ℓ
∗ := ln(p∗/(1− p∗)), ℓ∗∗ := ln(p∗∗/(1− p∗∗)).

A Reformulation of the Objective

Here we reformulate each player’s objective, and we keep track of additional cost terms that

will be necessary for comparative statics. Each player minimizes
∫

t≥0

e−rt
(
rptg

(
1− uit

)
+ ruits+ λpt(I − uit − ν−i

t )s
) 1− p0

1− pt
dt, (11)

subject to

ṗ = −λpt(1− pt)(I − uit − ν−i
t ), p0 = p0.

Let us do the transformations one by one, first rewriting the objective in terms of the log-

likelihood ratio. The objective becomes
∫

t≥0

e−rt
(
reℓtg(1− uit) + ruits(1 + eℓt) + λeℓt(I − uit − ν−i

t )s
)
(1 + eℓ

0

)−1dt.

Next, we make the change of variable t 7→ t/λ, and we define γ := (g − s)/s and µ := r/λ.

Finally, we factor out (1 + eℓ
0
)−1 to get

∫

t≥0

e−µt
(

µeℓtg + µ(s(1 + eℓt)− geℓt)(ℓ̇t + I − ν−i
t )− ℓ̇te

ℓts
)

dt.

Integrating the last term yields

eℓ
0

s+

∫

t≥0

e−µt
(

eℓt(µg + µ(s− g)(ℓ̇t + I − ν−i
t )) + µs(ℓ̇t + I − ν−i

t )− µseℓt
)

dt.

Integrating the first two terms by parts, and factoring out s, we obtain the following expres-

sion for the expected cost:

W (ℓ0) :=
s(1 + µγ)

1 + e−ℓ0
+

µs

1 + eℓ0

∫

t≥0

e−µt
(
µ(ℓt − ℓ0)− γ(I − ν−i

t − 1 + µ)eℓt + I − ν−i
t

)
dt.

(12)

Therefore, ignoring constant terms, player i minimizes
∫

t≥0

e−µt
(
µℓt − γ(I − ν−i

t − 1 + µ)eℓt
)
dt,

subject to

ℓ̇t = uit + ν−i
t − I.
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B Proofs for Section 4

Proof of Lemma 1. The proof of this lemma relies on the proof of Lemma 2, proved next

and independently (except for the last sentence of that next proof, which is not used here).

We apply the maximum principle to P. It is easy to see that the program P is not

abnormal (see Seierstad and Sydsæter 1987, Ch.2.4, Note 5).32 The maximum principle

implies that there exists an absolutely continuous ψ : R+ → R such that (i) ψt > 0 ⇒ uit = 0,

(ii) ψt < 0 ⇒ uit = 1, and (iii) almost everywhere

ψ̇te
µt = γ(I − ν−i

t − 1 + µ)eℓt − µ.

Because ν−i
t ≤ I − 1, a sufficient condition for ψ̇t > 0 at any time t such that ℓt ≥ ℓ∗ is that

γµeℓ
∗

> µ.

Using the definition of ℓ∗, this is equivalent to

(µ+ I)µ ≥ µ(µ+ I − 1),

which is true.

It follows that ψ is strictly increasing at all times t such that ℓt ∈ [ℓ∗, ℓ0]; hence, given

(i), there exists t̄ ≥ 0 such that any solution must specify uit = 1 for all t < t̄ and uit = 0 for

t ≥ t̄ (recall that uit = 0 when ℓt < ℓ∗).

Proof of Lemma 2. Consider the continuation cost corresponding to the objective (12),

defined as the value from setting ui = 0 (identically), given ℓ and t,

C(ℓ, t) :=

∫

s≥t

e−µs
(
µ(ℓ+ χs) + γ(ν−i

s − I − µ+ 1)eℓ+χs
)
ds, (13)

where χs :=
∫ s

τ=t
(ν−i

τ − I)dτ . Note that, integrating by parts,

C(ℓ, t) = e−µt(ℓ− γeℓ) +

∫

s≥t

e−µs
(
µχs + γeℓ+χs

)
ds,

which is differentiable with respect to ℓ, with

∂C(ℓ, t)

∂ℓ
= e−µt

(

1− γeℓ + γeℓ
∫

s≥t

eχs−µ(s−t)ds

)

.

32The argument given Seierstad and Sydsæter (1987) must be slightly modified, as it applies to a fixed

horizon. The adjustment is straightforward.
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This derivative is minimized by setting ν−i
τ = 0 for all τ ≥ t. In that case, the right-hand

side is equal to

e−µt

(

1− γeℓ +
γeℓ

I + µ

)

,

which is positive if and only if ℓ < ℓ∗. Hence, independently of ν−i, C(ℓ, t) is strictly

increasing in ℓ whenever ℓ < ℓ∗. It follows that, for ℓ < ℓ∗, C solves the Hamilton-Jacobi-

Bellman (“HJB”) equation

∂C(ℓ, t)

∂t
+min

ui

{
∂C(ℓ, t)

∂ℓ
(uit + ν−i

t − I) + e−µt
(
µℓt − γ(I − ν−i

t − 1 + µ)eℓt
)
}

= 0,

so that setting uit = 0 is optimal. Because of the “if and only if” above, if ν−i
s = 0 for all

s ≥ t (for which it suffices that ν−i
t = 0), yet ℓt = ℓ > ℓ∗, it cannot be that uis = 0 for all

s ≥ t (and so it must be that uit > 0).

Proof of Lemma 3. Ignoring some irrelevant constants, the continuation cost (13) can

be rewritten as (abusing notation for C)

Ci
t :=

e−µt

µ

(

µγeℓ
i
t

∫ ∞

t

e
∫ s
t
(ν−i

τ −(µ+I))dτds− 1

)

. (14)

We first establish the upper bound ℓ∗∗ on the amount of experimentation. Differentiating

(14) with respect to t we obtain

Ci′

t e
µt = 1− γeℓ

i
t + γeℓ

i
t

∫ ∞

t

e
∫ s
t
(ν−i

τ −(µ+I))dτds,

This expression is increasing in
∫ s

t
ν−i
τ dτ and equal to

1− γeℓ
i
t +

γeℓ
i
t

1 + µ
,

for ν−i ≡ I − 1. By the definition of ℓ∗∗ then, Ci
t is strictly decreasing in t whenever ℓit > ℓ∗∗.

We now show that in any equilibrium, at least one player must switch immediately if

ℓ0 < ℓ∗∗. Toward a contradiction, suppose that the first player i to switch to the risky arm

does so at t > 0. Player i’s cost must therefore have a local minimum at t. Because the time

derivative Ci′

t = 0, and all other players are setting uj = 1, we have ν−i
t = I − 1 and hence

Ci′′

t e
µt = γµeℓ

i
t − (µ+ 1) < 0,

by definition of ℓ∗∗. It follows that for small enough ε > 0, Ci
t−ε < Ci

t , a contradiction.
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Proof of Lemma 4. See Keller and Rady (2015, Proposition 1) for the cooperative solution

uFB. Note that if ℓ > ℓFB, uFB(ℓ) ≤ u′(ℓ) ≤ u′′(ℓ) implies that uFB(ℓ) = u′(ℓ) = u′′(ℓ) = I

and costs are the same under all three policies. Hence, without loss, we assume ℓ0 < ℓFB.

Given some measurable U, Ū : (−∞, ℓ0] → [0, I), with 0 ≤ U(ℓ) < Ū(ℓ) and Ū bounded

away from I, consider the program PFB(u):

min

∫

t

e−µt
(
µℓt − γ(I − 1 + µ)eℓt

)
dt

over all π : R+ → [0, I], measurable, subject to

ℓ̇t = ut − I, ℓ0 = ℓ0,

with, for all t ≥ 0 and ℓt ≤ ℓ0, ut ∈ [U(ℓt), Ū(ℓt)]. By standard arguments, the optimal u is

measurable with respect to the belief ℓ, and is the solution to the program

min

∫

ℓ

e−µt(ℓ)
(
µℓ− γ(I − 1 + µ)eℓ

)
dℓ,

over all measurable u : (−∞, ℓ0] → [0, I] such that u(ℓ) ∈ [U(ℓ), Ū(ℓ)], where t(ℓ) solves

t(ℓ0) = 0 and

t′(ℓ) = (u(ℓ)− I)−1,

which is well defined because u(ℓ) < Ū(ℓ) < I. A routine application of the maximum

principle (Theorem 4.2, Cesari, 1983) yields that the optimal policy solves u(ℓ) = U(ℓ) a.e.

Given u′, u′′ as stated in the lemma, the result follows if u′′ < I by setting U = u′, Ū = u′′

and noting that u′′ does not satisfy the necessary conditions. The same argument applies

with trivial modifications if Ū = I.

Proof of Lemma 5. Suppose that players j 6= i stop at some fixed time T ∈ R+. For

clarity, we use I rather 2 for the number of players, as the arguments do not depend on it

(though the statement of Lemma 5 is specialized to that case). Throughout, we assume that

ℓ0 ∈ [ℓ∗, ℓ∗∗], as the result is trivial otherwise. Then, inserting into the objective of player i,

he chooses τ to minimize
∫

t≤T

e−rt
(

µ(ℓ0 + λ(t ∧ τ − t))− γµeℓ
0+l(t∧τ−t)

)

dt

+

∫

t≥T

e−rt
(

µ(ℓ0 + λ(t ∧ τ + (I − 1)T − It))− γ(I − 1 + µ)eℓ
0+λ(t∧τ+(I−1)T−It)

)

dt.

This gives two expressions for the cost depending on τ ≷ T . Let us write C1 for the cost

when τ ≤ T , and C2 for τ ≥ T (the costs coincide when τ = T ). It is useful to use x = λτ
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and y = λT , instead of (τ, T ). We explicitly compute both costs, which gives

C1(x) = −
γ(I − 1)eℓ

0+x−(µ+1)y

(µ+ 1)(I + µ)
−

(I − 1)e−µy

µ
− γeℓ

0

+
γeℓ

0−µx

µ+ 1
+ l −

e−µx

µ
,

and

C2(x) =

e−(I+µ)x−(µ+1)y
(

γµeℓ
0+µy

(
eIy+x − (I + µ)ex(I+µ)+y

)
− (I + µ)eIx+y

(
(I − 1)eµx − µℓ0eµ(x+y) + eµy

))

µ(I + µ)
.

It is readily checked that C1 is concave, and so minimized either at x = 0 or x = y, while C2

is convex, and minimized at

x∗ := y +
ℓ0 − ℓ∗

I − 1
.

Hence, we have only two candidates as global minimizer of the total cost, namely 0 and x∗.

Note that (as shown in Figure 2) the candidate minimizer x∗ (resp., τ) is affine in y (resp.,

T ). We compute the difference ∆ := C2(x∗)− C1(0). Computing,

∆(y) := γeℓ
0

(
(I − 1)e−(µ+1)y

(µ+ 1)(I + µ)
− 1

)

+
1−

(I−1)( γ(I+µ−1)
I+µ )

µ
1−I e

µ

(

− ℓ0

I−1
−y

)

I+µ−1

µ
+
γµeℓ

0

µ+ 1
.

We claim that ∆(y) < 0 if and only if y ≤ ŷ, for some ŷ ≥ 0, and this will establish the

result. First,

lim
y→∞

∆(y) =
1

µ
− γ

eℓ
0

1 + µ
> 0,

as ℓ0 < ℓ∗∗. Second, ∆(0), viewed as a function of eℓ
0
, is concave, zero at ℓ∗, with zero

derivative at ℓ∗. Hence, ∆(0) ≤ 0 for all ℓ0 ∈ [ℓ∗, ℓ∗∗] (the inequality being strict for ℓ0 > ℓ∗).

Finally, with the change of variable Y = e−(1+µ)y , we get that ∆ is convex in Y , and hence

admits at most one root Y , hence y.

Proof of Lemma 6. If any player j uses a pure policy in equilibrium, it must be tj = t̂

so that, by the best-reply analysis in Lemma 5, player i is indifferent between ti = 0 and

ti = t̂+ T , where T := (ℓ0 − ℓ∗).

Lemma 5 further establishes that the best reply to ti = t̂+ T is tj = 0 and that the best

reply to ti = 0 is tj = T . We shall show that T < t̂, so that tj = t̂ cannot be a best reply to

any randomization over ti ∈ {0, t̂+ T}.
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It suffices to establish that the best reply to t = T is, in fact, τ = 2T . To do so,

consider player i’s marginal cost ∂Ci/∂ti evaluated ti = 0 when player j uses tj = T . This is

proportional to

(
µ+ 2

γµ+ γ

)µ (

−e−µℓ0
)

+ µ
(

µ− γ(µ+ 1)eℓ
0

+ 2
)

+ 1. (15)

We want to show this expression is negative, so that switching to the risky arm later than

t = 0 yields strict cost savings (hence that the best reply must be 2T ). Consider the

derivative of the marginal cost with respect to ℓ0. This is given by

µ

(
µ+ 2

γµ+ γ

)µ

− γµ(µ+ 1)eℓ
0(1+µ).

This expression is strictly decreasing in ℓ0 and negative (it is equal to −µ(1 + µ)) when

evaluated at ℓ0 = ℓ∗. Therefore ∂2Ci/∂ti∂ℓ0 < 0 for all ℓ0. To sign the marginal cost ∂Ci/∂ti

evaluated at ti = 0, it is sufficient to show that it is non-positive when ℓ0 = ℓ∗. This is

indeed the case, as the expression in (15) can be easily verified to be nil for ℓ0 = ℓ∗.

C Proofs for Section 5

Proof of Theorem 1. We first argue that in every symmetric equilibrium the support of

the distribution is an interval: for all i, suppF i = [t, t̄], for some t ≤ t̄, with ℓt̄ = ℓ∗.

Using the same notation as in the proof of Lemma 2, let χt =
∫ t

s=0
(ν−i

s − I)ds. By

stopping at time t, starting at time 0 with a “belief” ℓ, player i’s cost is equal to (integrating

(14) by parts)

ℓ− γeℓ +

∫ ∞

0

e−µsµχsds+
1− e−µt

µ
+ γ

∫ ∞

t

eℓ+χs−µs+tds, (16)

which is differentiable in t. If t ∈ suppF i, it must be that the derivative with respect to t

be zero, that is,

e−µt
(
1− γeℓ+χt+t

)
+ γ

∫ ∞

t

eℓ+χs−µs+tds = 0. (17)

Furthermore, this expression being itself differentiable in t, the second derivative must be

non-negative, which is equivalent to (differentiating and using the first-order condition)

γ(I − 1− ν−i
t + µ)− (1 + µ)e−ℓt ≥ 0. (18)

Note that the left-hand side of (18) is decreasing in t if t /∈ ∪j 6=i suppF
j . Hence, if t1, t2 ∈

suppF i, with t1 < t2, it must be that (t1, t2)∩ suppF j 6= ∅ for at least one j 6= i. Otherwise,
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(16) must admit a local maximum at some t ∈ (t1, t2), at which value the inequality of (18) is

reversed. This is inconsistent with the monotonicity of the left-hand side of (18) over (t1, t2),

and the fact that it is positive as either t ↓ t1 or t ↑ t2. Because we focus on symmetric

equilibria, this implies that, for any t1, t2 ∈ suppF i, t1 < t2, there exists t ∈ (t1, t2) such

that t ∈ suppF i. Hence, the support of F i (a closed set by definition) must be an interval,

and by Lemma 2, we must have ℓt̄ = ℓ∗.

Because no pure-policy equilibrium exists, we know t̄ > t. Assume for the time being

that t = 0 (we show later that t > 0 cannot occur). Because the cost from stopping must be

constant over [0, t̄], the second derivative given by (18) must be identically zero over (0, t̄).

Inequality (18) immediately gives ν−i
t as a function of ℓt. Because ℓ is differentiable, so must

ν−i be. Hence, defining ξ−i
t = (I − 1 − ν−i

t )/µ and differentiating (18) (eliminating eℓt by

using (18)) gives that ξ−i obeys the differential equation

ξ̇−i
t = µξ−i

t (1 + ξ−i
t ),

and so ξ−i
t = (A1e

−µt − 1)−1 for some A1 > 0 (because ξ−i
t > 0), yielding

ν−i
t = I − 1 +

µ

1− A1e−µt
, (19)

for all t ∈ (0, t̄). Hence,

lnEtj [e
∫ t

0
uj
sds] =

1

I − 1

∫ (

I − 1 +
µ

1− A1e−µs

)

ds =
ln(A1 − eµt)

I − 1
+ t+ A2,

for some A2 ∈ R. That is,

∫ t

s=0

esdF (s) + (1− F (t))et = eA2e
1

I−1(ln(A1−eµt)+(I−1)t)

= eA2(A1 − eµt)
1

I−1 et.

Differentiating both sides gives finally

1− F (t) =
eA2

I − 1
(A1 − eµt)

1
I−1 et

(

I − 1−
µ

A1e−µt − 1

)

. (20)

It remains to determine the constants A1, A2.

If ℓ0 < ℓ∗∗, combine (18) (with equality) at t = 0 with (19) to get

A1 =

(

1−
µ

1 + µ
γeℓ

0

)−1

.
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Moreover, note from (6) that 1− F (0) = ν−i
0 /(I − 1). Plugging in (20) for t = 0 using (19)

gives A2 = (A1 − 1)−
1

I−1 . The resulting distribution is given by

F̄ (t) =

(
A1 − eµt

A1 − 1

) 1
I−1

(

1−
µ

(I − 1)(A1e−µt − 1)

)

. (21)

Let us make a few final remarks. First, note that the complementary distribution function

is equal to 1 at ℓ0 = ℓ∗∗. That is, if the game starts with this belief, it never changes and

the safe arm is pulled throughout. We must now rule out that t > 0 for this special case. If

ℓ0 = ℓ∗∗, there is nothing to show (as the safe arm is pulled forever anyhow). If ℓ0 > ℓ∗∗, the

safe arm must be pulled throughout (the support of the distribution of stopping beliefs must

be convex, yet the cost is strictly quasi-convex in t for ℓ0 > ℓ∗∗, yielding a contradiction if

this region included a stopping time). Now suppose ℓ0 < ℓ∗∗ and t > 0. Given Lemma 1, the

only potentially profitable deviations are stopping policies πi
t with t < t. Note that, given

that players j 6= i use the stopping policy F j , it holds that ν−i
t = I − 1 for all t < t. Hence,

a necessary condition for player i to follow the equilibrium policy is that his cost be convex

at t = t̄. Note that the value of (18) at t = t is

γ(I − 1 + µ− ν−i
t )− (1 + µ)e−ℓt = γµ− (1 + µ)e−ℓ0 , (22)

which, using the definition of ℓ∗∗, is negative. Because player i’s cost is constant over (t, t̄),

we conclude that deviating to pulling the risky arm at time t − ε would be a profitable

deviation for ε > 0 small enough.

Proof of Theorem 2. As mentioned, the proof of this theorem is rather tedious, and

the interested reader might want to consult both the supplementary materials file and a

Mathematica file with some of the omitted algebraic operations, available on the authors’

websites (entitled supplementary.pdf and theorem2proof.nb).

The logic of the argument is as follows. Suppose another equilibrium exists. Because

on any interval over which a player’s opponent does not switch with positive probability,

a player’s cost is convex, there is at most one time during such an interval at which he is

willing to switch. Because of Lemma 6, we know that each player’s equilibrium policy must

include in its support at least two switching times. If the support of a player’s policy is

a dense subset of some interval, then so must be his opponent’s (because of convexity, as

explained), and continuity of the cost function then implies that this support is precisely

[0, τ̄ ], as defined in Theorem 1, and the equilibrium is the one described there. Hence, we

might assume that there exists at least two times t1, t3, with 0 < t1 < t3, such that, say,

player 1’s policy assigns positive probability of switching at times t1 and t3, and at no time
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in between. This however implies (convexity again) that there is some time t2 ∈ (t1, t3)

and some time t0 < t1 such that player 2 is willing to switch at time t0 and t2, but at no

time in between (and 1 does not switch at any time in (t0, t1) either).33 We then derive

a contradiction, showing that independently of how players behave at times not in [t0, t4],

the necessary (first- and second-order) conditions cannot hold simultaneously at those four

dates. See supplementary.pdf for the details.

Proof of Proposition 1. (1.) Fix the number of players I and use equation (6) to write

the stopping-time distribution in terms of the function ν−i. The symmetric equilibrium

stopping-time distribution F I
t is then given by

F I
t = 1−

ν−i
t

I − 1
e
∫ t

0
ν
−i
s

I−1
ds−t,

where ν−i
t solves equation (19). Note that, for a given t, the term ν−i

t /(I − 1) is increasing

in I. The exponential term is equal to




e−ℓ0

(

1 + µ+ eµt
(

µ
(

γeℓ
0
− 1

)

− 1
))

γµ





1
I−1

,

hence it is smaller than one and increasing in I. Therefore, the partial derivative of F I
t with

respect to I is positive for all t < τ̄ . In addition, 1 − F I
0 = ν−i

0 /(I − 1) which is increasing

in I. Therefore the distributions F I
t are ranked by first-order dominance.

(2.) From the outside observer’s perspective,

νIt =
I

I − 1

(

µ−
µ(µ+ 1)

µ+ eµt (µ (γeℓ0 − 1)− 1) + 1

)

+ I.

Notice that the first term is negative (as νIt ≤ I). This implies νIt is increasing in I.

(3.) The speed of learning of the outside observer is

−ℓ̇It = I − νIt ,

which is decreasing by inspection of νIt . Therefore, during the mixing phase, beliefs decrease

faster with a lower number of players. Furthermore, as I increases, the length of the mixing

phase increases. However, for t > t̄, beliefs decrease at rate I, which implies faster learning

for a higher number of players. Therefore, the outside observer’s belief trajectories for I ′ > I

cross once at a time t > t̄I′.

33More precisely, either there is such a t0 < t1, or a t4 > t3 in the support of 2’s policy, but relabeling the

players if necessary, we may as well assume it is t0 < t1.
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(4.) Straightforward computations of the total cost yield expression (10) in the text. This

cost is constant for any I ≥ 2 and (because of positive informational externalities) strictly

lower than the single-agent cost.

D Proofs for Section 6

Proof of Proposition 2. The second inequality of the proposition (νo(p) ≥ νfb(p)) being

immediate given that p̄ < pFB, it is the first inequality that must be established. Given ℓ0

and ℓ < ℓ0, we let t(ℓ) denote the time at which the belief of the outside observer reaches

belief ℓ. The outsider’s belief at time t satisfies

ℓ̇t = −(I − νIt ), ℓ0 = ℓ0.

Now suppose towards a contradiction that there exists a “belief” ℓ̂ such that the outside

observer’s hazard rate in the unobservable case νn(ℓ̂) is equal to the hazard rate in the

observable case νo(ℓ̂). We derive an ordinary differential equation for ν−i(ℓ) := (I−1)νIt(ℓ)/I

in both cases.

In the unobservable case, we know from the proof of Theorem 1 that

ν−i
t = −1 + I +

µ

1 + e−µt(1+µ)

eℓ0γµ−1−µ

.

Differentiating ν−i
t with respect to t, we obtain

dν−i
t

dt
=
µ2(µ+ 1)eµt

(

µ
(

γeℓ
0
− 1

)

− 1
)

(eµt (µ (γeℓ0 − 1)− 1) + µ+ 1)
2 .

Solving for eµt from the definition of ν−i
t and plugging back into the derivative, we obtain

dν−i(ℓ)

dℓ
= −(−1 + I − ν−i(ℓ))(−1 + µ+ I − ν−i(ℓ))t′(ℓ),

where

t′(ℓ) =
1

I
I−1

ν−i(ℓ)− I
.

Finally, we obtain the derivative

dν−i(ℓ)

dℓ
= (µ+ I − ν−i(ℓ)− 1)

I − ν−i(ℓ)− 1

I − ν−i(ℓ)− ν−i(ℓ)
I−1

. (23)

Note that ν−i(ℓ) is increasing in ℓ, as expected. Also notice that the second term in (23) is

smaller than one, because ν−i ≤ I − 1.
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In the observable case, we already have the expression for the hazard rate

ν−i(ℓ) = µ+ I − 1−
1 + (ℓ− ℓ∗)µ

eℓγ − 1
.

Differentiating with respect to ℓ and replacing eℓ with the solution to the previous equation,

we obtain the following differential equation

dν−i(ℓ)

dℓ
= (µ+ I − ν−i(ℓ)− 1)

I − ν−i(ℓ) + µ(ℓ− ℓ∗)

1 + µ(ℓ− ℓ∗)
. (24)

Notice that I − ν−i > 1, and therefore the ratio in (24) is larger than one. Furthermore,

the first term (µ + I − ν−i − 1) is identical in the two expressions (23) and (24). Thus,

if the two paths νo(ℓ) and νn(ℓ) cross, the observable path must be steeper. This yields a

contradiction, because

νo(ℓ∗∗) < νn(ℓ∗∗) = I − 1,

and therefore if the paths ν(ℓ) cross, the unobservable path must be steeper at the crossing

point closest to ℓ∗∗.
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