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Abstract

The Boston mechanism has been criticized for its poor incentive and welfare performance compared

with the deferred-acceptance mechanism (DA). Using school choice data from Beijing where the Boston

mechanism without school priorities is adopted, I investigate parents’ behavior and allow for possible

mistakes. Evidence shows that parents are overcautious because they play “safe” strategies too often.

There is no evidence that wealthier/more-educated parents are more adept at strategizing. If others be-

have as indicated in the data, an average naı̈ve parent who always reports her true preferences experiences

a utility loss in switching from the Boston to the DA mechanism (equivalent to random serial dictatorship

in this setting), corresponding to an 8% increase in the distance from home to school or substituting a

13% chance at the best school with an equal chance at the second-best school. She has a 27% (55%)

chance of being better (worse) off. If parents are instead either sophisticated (they always play a best

response against others) or naı̈ve, the results are mixed: under DA, naı̈ve parents enjoy a utility gain on

average when less than 80% of the population is naı̈ve, while still about 42% are worse off and only 39%

are better off. Sophisticated parents always lose more.
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1 Introduction

Because monetary transfers are usually precluded in the placement of students in public schools, a cen-

tralized mechanism for school assignment is often necessary. Despite the increasing popularity of school

choice programs, the question about which assignment mechanism should be used is still debated among

researchers and policy makers.

At the center of the debate is the Boston mechanism (a.k.a. the immediate-acceptance mechanism),

one of the most popular mechanisms in practice. It was used by the Boston Public Schools (BPS) from

1989 to 2005.1 The main criticism of the mechanism is that it encourages parents to “game the system.”

Namely, parents may have incentives to misreport their preferences when submitting rank-order lists of

schools (Abdulkadiroglu and Sonmez 2003). On the other side, schools employ a strict priority ordering

of students, usually using lotteries as tie-breakers. Each school begins with students who rank it first and

assigns seats in order of students’ priority at that school. Then, each school that still has available seats

considers unassigned students who rank it second. This process continues until the market is cleared. If a

student ranks a popular school first and gets rejected, her chance of obtaining her second choice is greatly

diminished, because she can only be accepted after everyone who lists that school as their first choice.2

Since the mechanism is not strategy-proof, the ability to strategize, or the level of sophistication, may

affect parents’/students’ welfare. Experimental and empirical evidence in the literature suggests that parents

strategize at heterogenous levels (e.g., Abdulkadiroglu, Pathak, Roth, and Sonmez (2006), Chen and Sonmez

(2006), and Lai, Sadoulet, and de Janvry (2009)). Moreover, Pathak and Sonmez (2008) consider two types:

sincere (or naı̈ve) parents, who always reveal their true preferences, and sophisticated ones always best

responding. They theoretically show that the mechanism may give an advantage to sophisticated parents.

These results were instrumental in the BPS’s decision (Abdulkadiroglu, Pathak, Roth, and Sonmez

2005). The Boston School Committee voted in 2005 to replace the Boston mechanism with the student-

proposing deferred-acceptance mechanism (henceforth, DA; Gale and Shapley (1962)), which is strategy-

proof: reporting true preferences is a weakly dominant strategy (Dubins and Freedman 1981, Roth 1982).

One of the key arguments for the reform is that the Boston mechanism might penalize less-sophisticated

parents, while DA offers them protection. For example, the BPS Strategic Planning Team claimed in 2005

that “a strategy-proof algorithm ‘levels the playing field’ by diminishing the harm done to parents who do not

1There are many school districts that still use the mechanism, e.g., Cambridge, MA; Charlotte-Mecklenburg, NC; St. Petersburg,
FL; Minneapolis, MN; and Providence, RI. It was the prevalent college admissions mechanism in China in the 1980s and 1990s
and remains in practice in some provinces (Chen and Kesten 2017).

2In real life, this is known to some parents. For instance, Boston’s West Zone Parents Group, recommended two types of
strategies in 2003: “One school choice strategy is to find a school you like that is undersubscribed and put it as a top choice, OR,
find a school that you like that is popular and put it as a first choice and find a school that is less popular for a ‘safe’ second choice.”
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strategize or do not strategize well.” More importantly, policy makers are worried that poorer and/or less-

educated parents are less sophisticated. Therefore, under the Boston mechanism, “the need to strategize

provides an advantage to families who have the time, resources and knowledge to conduct the necessary

research,” as stated by Thomas Payzant, then BPS Superintendent (Payzant 2005).

Researchers have not, however, reached a consensus on these arguments. There is no systematic evi-

dence relating parents’ sophistication level to family background,3 and there are mixed, mainly theoretical

and experimental, results on naı̈ve parents’ welfare. Additionally, a recent strand of literature provides

results in favor of the Boston mechanism (e.g., Featherstone and Niederle (2016), Miralles (2008)). In a

setting without priorities, Abdulkadiroglu, Che, and Yasuda (2011) show that some naı̈ve parents can even

be better off under the mechanism, although this result is not robust to the introduction of priority groups

(Troyan 2012). Using field data from Beijing, this paper fills the gap by answering two questions: (i)

whether poorer/less-educated parents are more likely to be naı̈ve and (ii) whether the Boston mecha-

nism harms naı̈ve parents relative to DA.

In the data, 914 students apply to four middle schools under a version of the Boston mechanism whereby

schools use a random lottery to rank students without pre-determined priorities. To evaluate parents’ welfare,

I use concepts of Bayesian Nash equilibrium and ex ante efficiency.4 At the time of application, the lottery

is unknown, and parents’ preferences are private information.Parents maximize expected utility by selecting

a rank-order list of schools under uncertainties from two sources: other parents’ behavior and the lottery.

The data contain parents’ submitted lists of schools and family backgrounds but not their true prefer-

ences. The challenge is to estimate true preferences when parents are not necessarily truth-telling.5 I assume

a random utility model for parents’ preferences over schools, with type I extreme value distributed errors

as in conditional logit models. More importantly, the paper explicitly considers potentially heterogeneous

sophistication beyond the dichotomy between naı̈ve and sophisticated parents in the literature, which unfor-

tunately implies that parents’ preferences and beliefs are not jointly identified. I therefore rely on identifying

conditions that are independent of parents’ sophistication level or beliefs.

Under the assumption that everyone understands the uncertainty from the lottery, a parent’s sophistica-

tion depends on her assessment of other parents’ behaviors, which are determined by the joint distribution
3The main difficulty is that researchers do not observe parents’ sophistication and true preferences. Taking an advantage of a

web-based school choice program, Dur, Hammond, and Morrill (Forthcoming) assume students who log in the application website
once as naı̈ve and those who log in more than once as sophisticated. They correlate student sophistication with student race/ethnicity,
gender, and English proficiency, although information on family background such as parental income and education is not available.

4In terms of ex ante efficiency, Zhou (1990) shows that it is impossible to have a strategy-proof and efficient mechanism that
treats the same type of parents equally. Therefore, DA is not ex ante efficient because it satisfies the other two properties.

5Hastings, Kane, and Staiger (2008) estimate the demand for schools under the assumption that students are truth-telling under
the Boston mechanism. They use data from Charlotte-Mecklenburg Public School District in 2002, where the mechanism had just
been implemented. The truth-telling assumption may be more likely to be valid in their setting than in others. I also estimate the
model under the truth-telling assumption, and this assumption is rejected when tested against the model with strategic behavior.
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of their preference and sophistication. A parent is sophisticated if she assesses correctly; her subjective

beliefs—the perceived admission probability at each school when submitting a given list—match what is

implied by the true distribution. This is rather demanding because it requires the parent to have perfect

information about how others make mistakes. It is therefore important to allow for less sophisticated parents

with inaccurate beliefs and even naı̈ve ones who disregard uncertainty and always report truthfully.

While being potentially incorrect, beliefs satisfy the properties imposed by the mechanism, e.g., moving

a school upward in a list (weakly) increases the probability of admission at that school. Such properties

lead to a set of dominated strategies, for instance, ranking an unacceptable school first. As a minimum

requirement of parents’ rationality, I assume that these dominated strategies are never played in equilibrium.

For estimation, one has to consider multiple equilibrium, in particular, multiple best responses for each

parent. This issue occurs because (i) there are unacceptable schools that are worse than an outside option and

(ii) some elements in parents’ beliefs might be zero or degenerate. One may arbitrarily rank unacceptable

schools after acceptable ones and obtain the same payoff; it is also payoff-irrelevant to rank or to exclude a

school with zero admission probability. I show that the multiplicity exists in the data and provide solutions.

Four cases, with sequential reductions in the number of assumptions, are considered and estimated: (i)

truth-telling (everyone is naı̈ve and always reports true preferences), (ii) Bayesian Nash equilibrium (ev-

eryone is sophisticated and plays a best response against others), (iii) heterogeneous sophistication with

non-degenerate beliefs (some may make mistakes, but all have non-degenerate beliefs), and (iv) heteroge-

neous sophistication with degenerate beliefs (some may make mistakes and have degenerate beliefs). The

last case is shown to fit the data significantly better than the other three.

The estimation relies on characterizing choice probabilities of rank-order lists of schools submitted by

parents. The first two cases, truth-telling and Bayesian Nash equilibrium, deliver choice probability of each

list as a function of data and unknown parameters. Since the model is both coherent and complete as in

Tamer (2003), maximum likelihood estimation can be applied. However, in the last two cases with hetero-

geneous sophistication, one can only characterize choice probabilities for some lists and derive probability

bounds for others. The model thus becomes incomplete (Tamer 2003). As a remedy, I group some lists

together as a single outcome similar to Bresnahan and Reiss (1990), Bresnahan and Reiss (1991), and Berry

(1992), resulting in a limited-information maximum likelihood estimator. To utilize the information in the

bounds, I also use a method of moment equalities and inequalities à la Andrews and Shi (2013). In Monte

Carlo simulations, the estimation approaches are shown to work as predicted.

The evidence from Beijing rejects the hypothesis that all parents are naı̈ve (or sophisticated). The results,

both model-based and reduced-form, imply that parents understand the rules well, but they are overcautious,
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as they avoid top-ranking the best school more often than their best responses would prescribe.6 A good

outside option, which is positively correlated with parents’ income and student achievements, offsets over-

cautiousness slightly because their true preference order is more likely to be a best response. There is no

evidence that high-income and more-educated parents are more sophisticated.

From linked survey data, I have information on how much attention parents pay to uncertainty in the

game. Poorer parents pay more attention, which implies that they try to find a best response. However,

paying more attention does not mitigate—and sometimes even worsens—their overcautiousness.

To evaluate the effects of replacing the Boston mechanism with the DA mechanism, I simulate outcomes

under both mechanisms while assuming that preferences do not change across mechanisms. When schools

rank all students in a single lottery, DA is equivalent to the random serial dictatorship under which students

sequentially choose among the remaining schools in the order determined by the lottery. Although parents

can have heterogeneous beliefs/sophistications in the estimation, I evaluate the welfare of two types, naı̈ve

and sophisticated, as a benchmark in the counterfactual. When other parents behave as in the data and

therefore may have heterogeneous sophistication, an average parent, either naı̈ve or sophisticated, suffers

a significant utility loss under DA. For the naı̈ve type, the average utility loss is 0.22, equivalent to an

8% increase in the distance from home to school (or substituting a 13% chance at the best school with an

equal chance at the second best); and only 27% of them would be better off, while 55% being worse off.

Sophisticated parents suffer more from such a reform: The average utility loss is -0.99, equivalent to a 40%

increase in the distance or substituting a 60% chance at the best school with an equal chance at the second

best school; 66% of them are worse off under DA, while only 15% are better off. Students from high-income

families, or with more-educated parents or higher grades are less likely to be worse off.

In the second counterfactual, every parent is either sophisticated or naı̈ve. Switching from the Boston to

the DA mechanism has mixed effects. When there are not as many naı̈ve parents (<80%), DA helps naı̈ve

ones while hurting sophisticated parents. However, when at least 80% of parents are naı̈ve, no type benefits

from DA. Furthermore, in terms of individual welfare change, 39% naı̈ve parents may be better off under

DA, while 42% are actually worse off. The effect of DA is more negative on sophisticated parents: Only

20% are better off, while 61% are worse off.

The different results from the two counterfactual exercises highlight the significance of parents’ over-

cautiousness, and more generally, the importance of allowing additional behavioral types of parents beyond

being naı̈ve or sophisticated, which is another justification for allowing parents to have heterogeneous so-
6This overcautiousness is related to but different from the “small school bias” found in experimental studies (Chen and Sonmez

2006, Calsamiglia, Haeringer, and Klijn 2010). Namely, schools with fewer slots are ranked at lower positions than those in the
true preference. Instead of focusing on the true preferences, overcautiousness compares observed behaviors with best responses.
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phistication and heterogeneous beliefs in the preference estimation.

Overcautiousness may imply that parents are maximin, i.e., they maximize their expected payoff in the

worst-case scenario. It is feasible to investigate this behavior hypothesis because the preference estimates

based on dominated strategies are still valid when parents are maximin. Indeed, maximin predictions fit the

data better on some dimensions, e.g., avoiding top-ranking the top two popular schools. However, maximin

parents would have been more overcautious in that 20% (or 183) parents should have top-ranked the third-

most popular school instead of ranking the two most-popular schools.

Recently, empirical studies with school choice data have surged. Several papers study the same or

similar questions on the Boston mechanism with a structural approach while restricting the behavioral types

of parents (Agarwal and Somaini 2016, Calsamiglia, Fu, and Güell 2016, Hwang 2016), with survey data

on student preferences (De Haan, Gautier, Oosterbeek, and Van der Klaauw 2015), with survey data on

individual beliefs (Kapor, Neilson, and Zimmerman 2016), or with data on student behavior in a dynamic

implementation of the mechanism (Dur, Hammond, and Morrill Forthcoming). The literature using school

choice data from DA is also growing, e.g., Abdulkadiroglu, Agarwal, and Pathak (2015), Abdulkadiroglu,

Angrist, Narita, and Pathak (2015), and Fack, Grenet, and He (2015).

Multiple Equilibria versus Multiple Best Responses. This paper encounters a special kind of multiple

equilibria—multiple best responses—which occurs when one has several best responses given others’ strate-

gies. In general, it implies multiple equilibria, but the reverse is not true. The literature on games focuses

on multiple equilibria, while a multiplicity of best responses is more relevant in school choice games.

School choice, or centralized student-school matching, differs from usual matching games in the litera-

ture because researchers observe only matching outcomes but not agent actions in the latter, largely because

those markets are often decentralized and agent actions are unobserved, and therefore, the empirical analysis

relies on outcomes. For example, in the marriage market, researchers observe who matches with whom but

never know to whom a husband or a wife has proposed (Choo and Siow 2006); the same is true in a range of

matching games (Fox 2009). Chiappori and Salanié (2016) provide a recent survey. Without data on agent

actions, it is difficult if not impossible to consider multiple best responses.

Common games in the literature usually have multiplicity in equilibrium but not necessarily in best

responses. For example, in an entry model with multiple equilibria (Bresnahan and Reiss 1991), in a market

profitable for only one firm to enter, entry by any of the firms is equilibrium. However, given other firms’

actions, each firm has a unique best response. In contrast, this uniqueness in best response disappears

in school choice: given others’ strategies/actions, it is payoff-irrelevant if one bottom-ranks or omits her

unacceptable schools and those with zero admission probability.
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The recent student-school matching literature usually assumes away this multiplicity. The papers on

the Boston mechanism exclude outside option and/or degenerate beliefs or impose a selection rule among

best responses (Agarwal and Somaini 2016, Calsamiglia, Fu, and Güell 2016, Hwang 2016).7 A similar

approach that assumes away the multiplicity of best responses is taken in Arcidiacono (2005).

Other Related Literature. There is a growing empirical literature on assignment problems, e.g., Budish

and Cantillon (2012) on course allocations, Braun, Dwenger, and Kubler (2010) on university admissions in

Germany, and Carvalho, Magnac, and Xiong (2014) on university admissions with exams in Brazil.

This study also relates to the literature on testing whether an equilibrium is played in real-life games. For

example, Chiappori, Levitt, and Groseclose (2002) and Kovash and Levitt (2009) study professional sports,

and Hortacsu and Puller (2008) examine the strategic bidding in an electricity spot market auction. Another

related strand of literature is an estimation of simultaneous games of incomplete information. Most studies

need consistent beliefs to derive moment conditions or choice probabilities, e.g., Seim (2006), Bajari, Hong,

Krainer, and Nekipelov (2010), Aradillas-Lopez (2010), and Aradillas-Lopez (2012).

For estimation and inference, I use the results from the recent development in moment inequalities, in

particular, Andrews and Shi (2013). There is a growing literature on moment inequalities and set identifica-

tion, on which Tamer (2010) provides a review. These approaches have also been increasingly adopted in

empirical studies, e.g., on strategic behavior in voting (Kawai and Watanabe 2013).

Organization of the Paper. Section 2 describes the two school choice mechanisms and the data from

Beijing. Section 3 models school choice under the Boston mechanism as a Bayesian game. Restrictions

on parents’ behavior are derived, and I characterize choice probabilities and propose estimation methods.

Section 4 presents reduced-form results and supporting evidence for the assumptions, and section 5 shows

the model estimation. In particular, I present the correlation between sophistication and family background

in both sections. Section 6 presents the counterfactual analyses for replacing the Boston with DA. The paper

concludes with section 7.

2 Two Mechanisms, Background, and Data

The DA mechanism, works as follows:

(i) Schools announce enrollment quotas, and students submit rank-ordered lists of schools.

(ii) Each school forms a strict priority ordering of students with rules that are determined by state or local

laws. In the Beijing data, it only depends on a lottery, while in the Boston public schools, it is determined
7This multiplicity in best responses may also occur in school choice under DA. Realizing this potential issue, Fack, Grenet, and

He (2015) propose a method focusing on matching outcomes instead of strategies.
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by sibling enrollment, distance to schools, and a lottery.

(iii) With priority orderings and submitted lists, the matching process has several rounds:

Round 1. Every student applies to her first choice. Each school rejects the lowest-priority students in

excess of its capacity and temporarily holds the other students.

Generally, in

Round k. Every student who is rejected in Round (k − 1) applies to the next choice on her list. Each

school pools new applicants and those who are held from Round (k − 1) together and rejects the lowest-

priority students in excess of its capacity. Those who are not rejected are temporarily held by the schools.

The process terminates after any Round k when no rejections are issued. Each school is then matched

with students it is currently holding.

If schools use the same factor, e.g., a single lottery, to rank all students, DA is equivalent to the serial

dictatorship (Abdulkadiroglu and Sonmez 1998); following their priority order determined by the lottery,

students sequentially choose their favorite among the schools that still have available seats.

Similarly, the Boston mechanism, also known as the Immediate-Acceptance mechanism, asks stu-

dents to submit rank-order lists, uses pre-defined rules to determine schools’ ranking over students, and has

multiple rounds:

Round 1. Each school considers all the students who rank it first and assigns seats in order of their

priority at that school until either there are no seats left or no such students left.

Generally, in

Round k. The kth choice of the students who have not yet been assigned is considered. Each school that

still has available seats assigns the remaining seats to students who rank it as their kth choice in order of

their priority at that school until either there are no seats left or no such students left.

The process terminates after any round k when every student is assigned a seat at a school or if the only

students who remain unassigned listed no more than k choices. Unassigned students are then matched with

available seats randomly. In each round, the assignment is final under the Boston mechanism but not under

the DA mechanism.

2.1 The Boston Mechanism in Beijing

I study school choice in a neighborhood of Beijing’s Eastern City District in 1999. The whole district,

as a county-level administrative region, is divided into multiple neighborhoods each of which has access

to a pre-determined set of middle schools with certain capacity quotas. The middle schools and quotas are
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designed to give every student access to schools of good and medium quality.8 The neighborhood in question

consists of 914 students who can apply to four middle schools with a total quota of 960, as determined by

the Education Bureau. To be included in this neighborhood, a student must be enrolled as a 6th grader in one

of seven given elementary schools in 1999. Although there are 28 public middle schools in the district in

total, due to the school choice design, the neighborhood has access to only four of them when going through

the mechanism, while some schools may enroll students from multiple neighborhoods (e.g., School 1 in the

data). A detailed description of the education system can be found in Lai, Sadoulet, and de Janvry (2009).

The neighborhood adopted a version of the Boston mechanism in which schools’ ranking over students

was determined solely by a random lottery (single tie-breaker). Students could submit a list ranking up

to four schools. Upon submission, a computer-generated 10-digit number was randomly assigned to each

student, and then, the admission proceeded as previously described.9

Students’ outside option was mainly to attend the 28 public schools without going through the mech-

anism, including the four to which they could apply through the mechanism. There are three ways to do

so: (i) Schools admit students directly if their parents are employed by the school, if they have received

at least a city-level prize in academic or special skill achievements, or if a considerable payment is made

to the school.10 (ii) Besides the quota announced, some best-performing schools admit additional students

by offering an admission exam. (iii) Schools admit some transfer students who are not satisfied with their

assignment and make a payment to the accepting school. It should be emphasized that a school seat that is

given to the mechanism cannot be rescinded, while there are a pre-determined number of seats to be allo-

cated outside the mechanism. Therefore, students who are admitted by a school in the mechanism are not

affected by students who get access to the same school outside the mechanism.

Other possible outside options were not very relevant at that time. Specifically, private schools were not

well developed in 1999. Besides, transferring out of the district were possible only when there was a formal

relocation of parents or an even higher payment made to the out-of-district accepting school.
8This is similar to the Home-Based plan used by the Boston Public Schools since 2014. Depending on a student’s home, she

has a choice of at least six schools. Among them, at least four must be of high or medium quality, as determined by standardized
test scores (Seelye 2013).

9The same mechanism was used in all of Beijing’s neighborhoods in 1999, including those in other districts.
10Such payments, or “ze xiao fei” (literally, “fees for choosing a school”), may depend on the student’s ability and parents’

connections. Unfortunately, information on these payments is not publicly available. Since 2008, the education authority of
Beijing has regulated that such fees for high schools cannot be more than 30,000 yuan (Source: http://www.bjesr.cn/
mbjy/2012-05-22/1131.html). This figure is slightly above the average annual disposable income among urban residents
of Beijing in 2008, 24,725 yuan. The out-of-pocket cost for parents may easily exceed this limit. For example, a blog post
claims that some people paid 250,000 yuan to gain acceptance into a high-quality elementary school in 2011 (Source: http:
//blog.sina.com.cn/s/blog_6ce3959f0102dr2x.html).

9

http://www.bjesr.cn/mbjy/2012-05-22/1131.html
http://www.bjesr.cn/mbjy/2012-05-22/1131.html
http://blog.sina.com.cn/s/blog_6ce3959f0102dr2x.html
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2.2 Data

The data in this study come from two sources: submitted lists, elementary school enrollment, grade six test

scores, and home addresses in 1999 are provided in administrative data, while all other information comes

from a district-level survey in early 2002. Unfortunately, there is no information on the lottery and students’

initial assignments in 1999. It is worth emphasizing that for the given neighborhood, the data include every

potential participant in the school choice game, although some of them choose not to participate.

Chinese middle schools offer three years of education – grades 7–9 – so the survey covered all students

in the district enrolled in the last year of middle school, as well as their parents. Dropping out or repeating

grades was negligible in these schools, and inter-district transfers were extremely rare, as discussed above.

Hence, the survey population is close to the population of students who entered middle schools in the district

in 1999. A questionnaire directed to parents collected information on educational attainment and income,

as well as retrospective information on the preparedness for making school choice decisions in 1999.

2.2.1 Heterogeneity among the Middle Schools

The four schools that the students could apply to are highly differentiated on two dimensions: enrollment

quota and quality. Table 1 shows that School 1 has the smallest quota, 63 seats, although this does not

imply that its size is small because it also enrolls students from other neighborhoods; School 4 has the

largest quota, 360 seats. School 1 also has the best quality measured by the performance of its graduating

class in the high school entrance exam in 1999. The exam is city-wide and high stakes and therefore is a

factor weighed heavily by parents in determining school quality. As column 3 shows, these schools span the

quality distribution of the 28 schools in the district, with better schools having smaller quotas.

Table 1: Middle Schools: Quota and Quality

Schools Quota School Scores: Average Test Scorea Ranking in the districtb

1 63 559.27 1
2 227 522.91 7
3 310 508.47 14
4 360 470.13 28

Total 960

Notes: a. Average test score of the graduating class in the high school entrance exam in 1999, out of 600. b. Ranking based on average test scores
among all 28 public schools in the district. Note that the 914 students are not allowed to apply to the other 24 schools through the mechanism,
although they may be admitted by any of the 28 schools through other channels.
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2.2.2 Student Characteristics and Behavior: A First Look

Using elementary school enrollment, I identify 914 qualified applicants in this neighborhood in 1999.11 The

distribution of their submitted lists in 1999 and middle school enrollment in 2002 are shown in Table 2;

181 (20%) of the students did not participate in the centralized mechanism and took their outside option

directly,12 while 110 of the them were still enrolled in one of the four schools in 2002. The majority

submitted a full list with three or four schools; merely 7% submitted a partial list that ranks one or two

schools. Overall, in 2002, only 92 (10%) of the students were enrolled in a school other than the four

schools. The best in the district, School 1, enrolled 147 of the 914 students, more than double its quota,

while enrollment at any other school was lower than its announced quota.

Table 2: Distribution of Submitted Lists in 1999 and Middle School Enrollment in 2002

Submitted Lists in 1999 Middle School Enrollment in 2002
Freq. Percent School 1 School 2 School 3 School 4 Othera

Not Participating 181 19.80% 58 20 25 7 71

Full Lists 665 72.76% 73 185 237 152 18
4 Schools 558 61.05% 57 155 203 126 17
3 Schools 107 11.71% 16 30 34 26 1

Partial Lists 68 7.44% 16 19 22 8 3
2 Schools 58 6.35% 10 18 20 7 3
1 School 10 1.09% 6 1 2 1 0

Total 914 100% 147 224 284 167 92

Notes: a. “Other” means one of the other 24 public middle schools in the district. Due to the design of the school choice program, these 24 schools
accept students from other neighborhoods through the same mechanism while being available to students in the data as outside options.

Since neither students’ initial placement nor the realized lottery is observed in the data, enrollment

information is not used in the estimation. Nonetheless, Table 2 indicates that not everyone enrolls in the

school prescribed by the mechanism, highlighting the importance of “outside option” – the ways outside the

centralized mechanism to enroll in a school. Such “non-compliance” is not unique to Beijing and is also

observed in places such as Denver (Abdulkadiroglu, Angrist, Narita, and Pathak 2015) and New York City

(Abdulkadiroglu, Agarwal, and Pathak 2015), although the exact channels may differ across the cities.

I then look at students’ family background (Parent Inci, Parent Edui), ability (Own Scorei,Awardsi),
11The 46 “missing” students, i.e., the difference between the total quota (960) and the number of observed students (914), may

have come from three sources: (i) total enrollment quota is usually set to be larger than the number of students intentionally; (ii)
some may have skipped the mechanism and gone to schools outside the district in 1999; and (iii) some may have transferred to
schools outside the district after 1999. Students in (ii) and (iii) may have made that decision because they were unsatisfied with the
expected or realized school assignment, and thus, sample selection may arise. However, as discussed above, this impact is plausibly
negligible. I therefore focus on the 914 observed students.

12This non-trivial fraction does not necessarily imply that the school choice in Beijing is fundamentally different from others
due its outside option because other studies usually do not observe non-participants in school choice. In the current paper, the
information on non-participants helps preference estimation, as shown later in section 3.
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gender (Girli), and distance to each school (Distancei,s). Table 3 presents their definitions and sources.

Table 3: Definitions of Main Variables

Variables Definition Source

Parent Inci Parents’ income yuan/month in 2002 Survey in 2002
Parent Edui Parents’ average years of education Survey in 2002

Girli =1 if student i is a girl Survey in 2002
Own Scorei Elementary Chinese + math, out of 200 Administrative data
Awardsi District-level awards in elementary school Survey in 2002
Distancei,s Walking distance to school s in 1999, km Administrative data

Table 4 further summarizes these variables. In the estimation, most of the variables are expressed in

logarithms and de-meaned. I present summary statistics of the raw data for the full sample and 3 subsamples

– non-participants, participants with partial lists, and those submitting full lists. Non-participants have

richer and more educated parents; they also have higher test scores and have earned more awards, which is

consistent with the earlier discussion that parents’ income and students’ ability increase the quality of their

outside option. The same pattern of parental income and education is observed for participants submitting

partial lists, although these students have lower test scores and have earned fewer awards than average.

Table 4: Summary Statistics

Full Sample Non-Participant Partial List Full List
Used in Estimation Raw Data Raw Data

Variables Transformation Mean Mean Mean Mean Mean

Girli None 0.52 0.52 0.51 0.49 0.53
(0.50) (0.50) (0.50) (0.50) (0.50)

Parent Inci Log(Parent Inci+1), de-mean 0.00 3664.01 4249.07 4191.12 3450.87
(0.82) (3468.85) (2457.23) (2069.04) (3782.76)

Parent Edui De-mean 0.00 13.44 14.28 14.19 13.14
(2.24) ( 2.24) (2.57) (2.13) (2.07)

Own Scorei Log, de-mean 0.00 183.56 187.09 178.41 183.12
(0.08) (11.66) (7.84) (15.55) (11.83)

Awardsi De-mean 0.00 0.73 1.12 0.51 0.65
(1.00) (1.00) (1.29) (0.82) (0.90)

Distancei,1 Log, de-meanb -0.02 2.31 2.64 1.94 2.27
(0.76) (2.27) (2.31) (1.25) (2.32)

Distancei,2 Log, de-meanb -0.12 2.22 2.55 1.89 2.16
(0.86) (2.29) (2.31) (1.41) (2.35)

Distancei,3 Log, de-meanb 0.13 2.51 2.95 2.21 2.42
(0.66) (2.21) (2.17) (1.34) (2.28)

Distancei,4 Log, de-meanb 0.02 2.41 2.84 1.84 2.35
(0.82) (2.20) (2.14) (1.43) (2.28)

# of Obs. 914 914 181 665 68

Notes: Standard deviations are in parentheses. a. The mean here is that of all 4 distances.

12



3 Model: School Choice as a Bayesian Game

In this section, school choice under the Boston mechanism is formalized as a Bayesian game. To simplify

presentation, the formulation below is specific to the empirical study with four schools, although the results

can be readily extended to more general settings with more schools, as in an earlier version (He 2012).

The game consists of

(i) a set of students/parents, {i}Ii=1;

(ii) a set of 4 schools, {s}4s=1, and an outside option denoted as School 0;

(iii) a capacity vector, {qs}4s=1;
∑4

s=1 qs ≥ I ,
∑4

s=1 qs − qs′ < I , and qs′ > 0, ∀s′;

(iv) students’ rank-order lists, {Ci}Ii=1, where Ci =
(
c1
i , ..., c

4
i

)
, cki ∈ {s}

4
s=0, ∀k = 1, ..., 4;

(v) schools’ priorities over students, determined solely by a random lottery.

At the start of the game, each school announces its capacity, qs. There are enough seats to accommodate all

the students, i.e.
∑4

s=1 qs ≥ I; no group of three schools has enough seats to accommodate all students,∑4
s=1 qs − qs′ < I , ∀s′. Parents or students submit their choice lists, Ci =

(
c1
i , ..., c

4
i

)
where cki (=

0, 1, ..., 4) is the kth choice. Ci is a full list if it ranks all 4 schools (i.e., cki 6= 0 for all k); otherwise,

it is a partial list. They may submit partial lists or submit (0, ..., 0). In the latter case, the student is a

non-participant and is not considered in the mechanism.

After collecting {Ci}Ii=1, the mechanism assigns each student a random number that determines her

priority at all schools. All students thus have the same ex ante priority, although pre-determined priorities

can be considered as well. With the lists and the random lottery, the admission proceeds as described

previously. Having learned their assignments, students can choose an outside option if they are not satisfied.

Below, I use “student” and “parent” interchangeably. After the model set-up, I present the benchmark

case where everyone is (equally) sophisticated with a common prior. The model is then extended to allow

parents to have heterogeneous sophistication. The definition of sophistication is formalized in due course.

3.1 Set-Up

The utility of student i attending school s is defined as

ui,s = αs +XiβX + Zi,sβZ + εi,s, s ∈ {1, ..., 4} ; and ui,0 = εi,0;

where αs is school s’s fixed effect; Xi ∈ RK1 are i’s characteristics, such as his or her test score, parents’

income, and parents’ education, etc.; Zi,s ∈ RK2 are students’ school-specific attributes, e.g., distance from

i ’s home to s, and Zi ≡ {Zi,s}Ss=1; εi,s ∈ R includes all other factors, and εi ≡ {εi,s}4s=0. The utility
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functions are normalized such that α0 = 0 andXiβX measures the effect ofXi on the differences between

the outside and all inside options. If a school is worse than the outside option, ui,s < ui,0, it is defined as

unacceptable; otherwise, it is acceptable. The following assumptions are maintained throughout the paper:

AM.1. Parents are expected-utility maximizers who have full information on their own preferences,

{ui,s}4s=0, as well as the functional form of ui,s and its parameters.

AM.2. (Xi,Zi) are i.i.d. over i with C.D.F. G (X,Z), which is common knowledge, while the realiza-

tion of (Xi,Zi) is private information of i.

AM.3. εi ⊥ (Xi,Zi), and εi,s is i.i.d. over i and s with type I extreme value (Gumbel) distribution,

with C.D.F. F (ε). εi is private information of i, and its distribution is common knowledge.

AM.4. A parent does not participate, i.e., submitting (0, ..., 0), if and only if no school is acceptable.

The assumption that (Xi,Zi) is private information is made to simplify notations. When I is large,

similar results hold if (Xi,Zi) is common knowledge or if i knows a fixed number of others’ (Xj ,Zj).

Appendix D discusses this possibility in detail. AM.3 rules out correlations between any εi,s and εi,s′

and imposes independence among εi,s and (Xi,Zi). While AM.3 can be relaxed (as in He 2012), it greatly

reduces computational burden.13 AM.4 requires that the outside option does not change after parents observe

the matching outcome, and it also rules out parents’ possible uncertainty aversion.

3.2 A Road Map for Theoretical Analysis

Before advancing to an equilibrium analysis of parents’ behavior, I provide a road map (Figure 1). In a

traditional game with incomplete information, Bayesian Nash equilibrium in which everyone has a common

prior is usually considered. The following analysis begins with this, as it serves as a benchmark and is used

in the counterfactual analysis. Equivalently, the assumption is that parents have the same information set

and the same ability to process information; therefore, everyone plays a best response against others.

However, the common-prior approach assumes away all possible mistakes, while there are concerns

about heterogeneous sophistication among parents, e.g., sophisticated and naı̈ve (Pathak and Sonmez 2008).

I further generalize the model to allow for all possible mistakes while imposing a minimal rationality re-

quirement that parents do not play dominated strategies. Parents’ information and sophistication can be

summarized by beliefs, i.e., parents’ perceived admission probabilities at school, given a list of schools.

An inevitable question then arises: should certain “extreme beliefs” be allowed, e.g., whether some parents

actually consider it impossible to be accepted by some schools under some circumstances?
13AM.3 rules out the omitted variables that are correlated with the observables, (Xi,Zi). This requires, for example, distance

from home to school to be independent of ε. If students have moved closer to their preferred schools before the school choice game,
distances are negatively correlated with the taste shocks.
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Assumptions on information & sophistication: Students have a common prior and are fully sophisticated?
(I.e., homogenous information set, homogenous ability to process information, & playing best response against others?)

Yes.

Students have homogeneous beliefs in equilibrium, i.e., same

perceived action-specific admission probability at each given school.

No.

Students have heterogeneous beliefs; in general,

beliefs and preferences are not jointly identified.

Observability of beliefs: Researchers observe equilibrium beliefs?

Or can beliefs be estimated independently of preferences?

Yes.

Case 1A (section 3.3): Beliefs are then
non-degenerate. It becomes a discrete
choice model where each rank-order list
is an option and students maximize ex-
pected utility while taking as given the
equilibrium beliefs. Precise belief data
or estimates are necessary.

No.

Case 1B (section 3.3): The same as Case
1A, except that equilibrium beliefs have
to be solved as a fixed point conditional
on preferences. There might be issues of
multiple equilibria.
Alternatively, given the non-degenerate
beliefs, undominated strategies can be de-
rived and serve as identifying conditions,
which does not require solving for equi-
librium.

Degenerate beliefs: Admission probability at any school degenerate,

equal to zero or one, for some submitted lists?

Yes.

Case 2B (section 3.4): Similar to Case
2A, undominated strategies can be de-
rived but there are fewer undominated
strategies and thus fewer identifying
conditions.

No.

Case 2A (Appendix E.3): Similar to
the second approach of Case 1B, given
the non-degenerate beliefs, undominated
strategies can be derived and provide
identifying conditions.

Figure 1: Modeling Assumptions and Estimation: A Road-map.

These considerations lead to four subcases considered in the paper (Figure 1):

Case 1: Parents have a common prior, and depending on researcher’s information, two subcases arise: (1A)

Researchers have data on beliefs or can independently estimate beliefs, and (1B) no information on

beliefs is available, or beliefs cannot be identified separately from preferences.

Case 2: Parents have heterogeneous beliefs, which may be due to heterogeneity in either information or

information-processing ability. There are again two subcases: (2A) Parents have non-degenerate

beliefs, discussed in Appendix E.3), and (2B) parents may have degenerate beliefs (in section 3.4).

In the following, I consider Case 1 and then Case 2B. Other cases are discussed in Appendix E.

3.3 Benchmark: Homogeneous Sophistication

Suppose that everyone is (equally) sophisticated and is endowed with a common prior. Therefore, they have

the same information and correctly use it in the same way. The purpose of these restrictions is to provide a

benchmark for analyzing parents’ behavior and a theoretical foundation for counterfactual analysis.

3.3.1 Strategy, Payoff, and Decision Making

A strategy σi (Xi,Zi, εi), possibly in mixed strategies, is a mapping from i’s “type” space to the set of all

probability distributions over possible lists: RK1+4K2+5 → ∆ (C). The total number of pure strategies or

possible lists in C is finite, L ≡ 41, including 24 full lists, 12 two-school lists, 4 one-school list, and non-
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participation (0, 0, 0, 0).14 Each element in C is a rank-order list of k distinct schools, for k ∈ {0, 1, 2, 4}.

The payoff to i can be characterized in two steps by sequentially assuming that (i) other parents’ actions,

C−i, are given; and (ii) instead of C−i, other parents’ strategies, σ−i, are given.

Given C−i, if σi = C, the expected payoff to i is

Vi (C,C−i) ≡
4∑
s=1

[as (C,C−i) max (ui,s, ui,0)] ,

where only max (ui,s, ui,0) matters because parents may take the outside option whenever the assignment

is unacceptable; and as (C,C−i) is the admission probability of student i at s given (C,C−i), which is

determined mechanically by the algorithm and the random lottery.

Lemma 1 Given any C and C−i, as (C,C−i) has the following properties:

(i) A seat is guaranteed if participating: ∀C 6= (0, ..., 0),
∑4

s=1 as (C,C−i) = 1;

(ii) Given two lists that agree on the top K choices, if school s is ranked as Kth choice, the probability

of being accepted by s is the same when submitting either of the two lists: as (C,C−i) = as
(
C̄, C−i

)
,

∀C, C̄ ∈ C, s.t., cK = c̄K = s, ck = c̄k, ∀k < K ≤ 4.

(iii) Moving a school up (or including an otherwise omitted one) in the list weakly increases the prob-

ability of being accepted by that school: as
(
C̄, C−i

)
≥ as (C,C−i), ∀C, C̄ ∈ C, s.t., cK = c̄K

′
= s,

K ′ < K ≤ 4, and ck = c̄k, ∀k < K ′.

(iv) If school s is top ranked, the probability of being accepted by that school is at least qs/I: as (C,C−i) ≥

qs/I, ∀C ∈ C, s.t., c1 = s.

Proofs are collected in Appendix A; these properties can be easily verified, given the mechanism.15

Similarly, since σi is a probability distribution over pure strategies, as (σi, C−i) shares the above prop-

erties and Vi (σi, C−i) can thus be defined in the same way as Vi (C,C−i). Now, instead, suppose that

14Here, I consider only lists that are not always payoff equivalent. For example, the lists with 3 schools are excluded, as one may
always find a payoff-equivalent full list for any three-school list. Lists in which one school appears multiple times are excluded
either because of the same reason or because they are strictly dominated. Other obviously dominated lists are not considered either,
e.g., 0 is ranked first and followed by other schools. This step is innocuous, as students never submit these lists when maximizing
expected utility. In other words, the choice probability of such a list is zero in equilibrium.

15In a more general school choice problem where schools have a few priority groups, e.g., in Boston (Abdulkadiroglu and
Sonmez 2003), parts (i)–(iii) of Lemma 1 are still satisfied. However, part (iv) should be modified to take into account that students
with higher priorities can be accepted by s before student i is considered, under the assumption that everyone knows the number of
students in each priority group at each school.
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(σi, σ−i) is given. i’s expected payoff is defined as

Vi (σi, σ−i) ≡
L(I−1)∑
n=1

{
Pr
(
Cn−i played under σ−i

)
Vi
(
σi, C

n
−i
)}

=
4∑
s=1

L(I−1)∑
n=1

[
Pr
(
Cn−i played under σ−i

)
as
(
σi, C

n
−i
)]

max (ui,s, ui,0) ,

where the probability that other parents choose Cn−i, Pr
(
Cn−i played under σ−i

)
, is

∫ ∫
Pr
(
Cn−i played under σ−i (X−i,Z−i, ε−i)

)
dG (X−i,Z−i) dF (ε−i) .

Given that others play σ−i, i’s probability of being accepted by s when playing σi can be written as

As (σi, σ−i) ≡
L(I−1)∑
n=1

Pr
(
Cn−i played under σ−i

)
as
(
σi, C

n
−i
)
.

The expected payoff is thus simplified as Vi (σi, σ−i) =
∑4

s=1As (σi, σ−i) max (ui,s, ui,0) .

Furthermore, denote B (σi, σ−i) ≡ (A1 (σi, σ−i) , ..., A4 (σi, σ−i)) : ∆ (C) → [0, 1]4 as i’s beliefs. By

definition, As (σi, σ−i) is a probability-weighted sum of as (C,C−i), for all C and C−i. Therefore, it can

be verified that the properties of as (C,C−i) in Lemma 1 still hold for As (σi, σ−i).

With the beliefs, a parent is sophisticated if her subjective beliefs are the same as objective ones.

Definition 1 With homogeneous sophistication, i is sophisticated if her beliefs areB (σi, σ−i) for all (σi, σ−i).

Given her beliefs, parent i chooses the best response to maximize her expected utility:

σi (Xi,Zi, εi) ∈ arg max
σ̂i∈∆(C)

4∑
s=1

As (σ̂i, σ−i) max (ui,s, ui,0) . (1)

It should be emphasized that i’s best response need not be unique: (i) the operator max (ui,s, ui,0) creates

multiple payoff-equivalent actions if some schools are unacceptable; and (ii) additional payoff-equivalent

actions arise if As (σi, σ−i) is degenerate, i.e., equal to zero, for some s. Multiplicity in best responses

implies multiple equilibria and thus creates challenges for empirical analysis because choice probabilities

of actions can no longer be characterized.
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3.3.2 Bayesian Nash Equilibrium

I consider a symmetric equilibrium in which all parents employ the same strategy, i.e., σi (Xi,Zi, εi) =

σj (Xj ,Zj , εj) ∀i 6= j, if ui,s = uj,s ∀s. Because everyone is an expected-utility maximizer, the symmetry

requires only that, when there are multiple solutions to their maximization problem, parents all use the same

rule to choose one strategy, whether pure or mixed.

Definition 2 A (mixed-strategy) symmetric Bayesian Nash equilibrium in the Boston school choice game

with homogeneous sophistication is a common strategy σ∗ ∈ ∆ (C), s.t.,

σ∗ (Xi,Zi, εi) ∈ arg max
σ∈∆(C)

4∑
s=1

As
(
σ, σ∗−i

)
max (ui,s, ui,0) , given (Xi,Zi, εi) , ∀i;

and there are common equilibrium beliefs, B∗ (C, σ∗) ≡ B
(
C, σ∗−i

)
, ∀i and C.

The existence and a characterization of such an equilibrium are presented in Proposition 1.

Proposition 1 There always exists a symmetric Bayesian Nash equilibrium in the Boston school choice

game. In any symmetric equilibrium,

(i) equilibrium beliefs are such that As
(
C, σ∗−i

)
∈ (0, 1) ∀s, ∀C 6= (0, ..., 0);

(ii) if at most one school is unacceptable, almost surely i plays a pure strategy, i.e., i has a unique best

response.

(iii) if i plays mixed strategies, almost surely she has at least two unacceptable schools; furthermore,

she plays with a positive probability only the lists in which the unacceptable schools are either excluded or

included after the acceptable ones.

(iv) given how everyone chooses mixed strategies, i.e., how to include unacceptables in the list, everyone

has a unique best response with a probability one.

The paper has data on one game play and therefore guarantees that there is only one equilibrium in

the data-generation process. Under the parametric assumption and with the identifying conditions to be

derived later, the parameters are shown to be identified. The multiplicity of equilibria nonetheless matters for

counterfactual analyses where a single equilibrium must be selected. I defer this discussion until Section 6.

Proposition 1 clarifies that the multiplicity of equilibrium is now due only to multiple best responses or

the presence of multiple unacceptable schools because in any equilibrium, it is payoff-equivalent for parents

to arbitrarily rank unacceptable schools when there are multiple schools, as long as all unacceptable schools

are ranked after the acceptable ones. To rule out some of this arbitrariness, following the result in part (iv)

above, I make the following assumption:
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Assumption UNACCEPTABLES If an expected-utility-maximizing parent includes some or all of her un-

acceptable schools in her list, they are ranked according to the true preference order among themselves

after the acceptable schools. Moreover, the excluded unacceptable schools are always less preferable

than those included.

It is not implausible that parents follow this strategy in real life for reasons such as “playing safe.”

Although the above assumption does not prescribe which unacceptable schools should be included in the

list, it implies restrictions on actions played in mixed strategies.

Lemma 2 (i) If i has two unacceptable schools, say ui,1 > ui,2 > ui,0 > ui,3 > ui,4, i only mixes over two

lists: (c1
i , c

2
i , 0, 0) and (c1

i , c
2
i , 3, 4), where c1

i , c
2
i ∈ {1, 2}, whenever both are best responses;

(ii) If i only has three unacceptable schools, say ui,1 > ui,0 > ui,2 > ui,3 > ui,4, i mixes over three

lists: (1, 0, 0, 0), (1, 2, 0, 0), and (1, 2, 3, 4).

Because this lemma is a straightforward implication of Assumption UNACCEPTABLES, its proof is

omitted. Note that for any three-school list, one may find a full list that is always payoff-equivalent, e.g.,

(1, 2, 3, 0) and (1, 2, 3, 4). I therefore always pool these schools together and use the latter to denote both.

The following assumption further clarifies how parents mix the actions in equilibrium mixed strategies:

Assumption MIXING Suppose i has k schools acceptable, k∈ {1, 2}, and let mk,l
i denote the probability

that an l-school list is submitted, where l∈ {1, 2, 4} if k = 1 and l∈ {2, 4} if k = 2. Furthermore,∑
lm

k,l
i = 1; mk,l

i = mk,l (Xi) + ηk,li , E
(
ηk,li

)
= 0 and ηk,li ⊥ (εi,Xi,Zi,B) for all l and k.

Later on, mk,l (Xi) is assumed to be a linear function of (a sub-vector of)Xi. The idiosyncratic mixing

probabilities, ηk,li , are independent of (εi,Xi,Zi, B), whereB should be interpreted as i’s beliefs, and there

is no further restriction on the distribution of ηk,li . Under this assumption, any two parents with the sameXi

may adopt different probability distributions over possible payoff-equivalent lists, as long as all those lists

are best responses, while on average, their mixing probabilities are mk,l (Xi).

An restriction of Assumption MIXING is that mk,l
i depends only on the number of acceptable schools

but not on their identities or their preference order. Although this can be relaxed, there would be too many

parameters to estimate. For example, allowing mk,l (Xi) to depend on identities of acceptable schools

would result in 14 functions of mixing probabilities, while under Assumption MIXING, there are only 3.

Remark 1 To simplify notations, in the following, I focus on a special case where ηk,li = 0, for all k

and l and therefore mk,l
i = mk,l (Xi) for all i. Allowing ηk,li 6= 0 makes two differences: (1) the choice
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probabilities that are to be characterized should be interpreted as expected choice probabilities; and (2) the

maximum likelihood estimation should be called pseudo- or quasi-maximum likelihood or replaced by the

generalized method of moments. A more detailed discussion is available in Appendix H.

(Approximate) Equilibrium under the Two Assumptions: Existence. One may be concerned with

the equilibrium existence under Assumptions UNACCEPTABLES and MIXING, especially counterfactual

analyses require solving such an equilibrium. Proposition 1 establishes the equilibrium existence without

the two assumptions, and not extending the proof, one may consider that the proposition shows the existence

of an “approximate” equilibrium under the two assumptions.

Suppose that equilibrium does not exist under the two assumptions and that B∗ is an equilibrium belief

system as in Proposition 1. One can argue that it is an approximate equilibrium when everyone best responds

to B∗ under the restrictions. First and foremost, the two assumptions do not require individuals to play sub-

optimal strategies, as they only restrict how they choose among payoff-equivalent strategies. Therefore, the

two assumptions only matter in the sense that they change the admission probabilities of others. Second,

the two assumptions do not affect the admission probability at the first choice given any strategy because

they are all about the unacceptable schools ranked after acceptable ones by participating parents. Given

the mechanism, the assumptions then only have a second-order effect on the admission probabilities at the

second or later choices. Third, given the high popularity of Schools 1 and 2 (re-confirmed later with estima-

tion results), both of them are filled in the first round, and thus, the two assumptions have no effect on the

admission probabilities of these two schools, no matter how they are ranked. Fourth, because there are more

seats in total than the number of applicants, there must be a school (School 4, as shown later) whose capac-

ity constraint is not binding after the four rounds. Therefore, admission probabilities at this school are not

affected by the two assumption, either. Lastly, the above argument left us with the admission probabilities

at School 3 to be affected by the two assumptions. However, this effect is bound to be small. According to

estimation results to be shown later, only 4.2% of students find School 3 unacceptable conditional on having

at least one acceptable school. Even if they all include School 3 on their lists, there is a high probability that

they are accepted by their earlier choices.

Estimation. With Proposition 1 and Assumptions UNACCEPTABLES and MIXING, one can fully char-

acterize the choice probability of each list being played in equilibrium if the equilibrium beliefs, B∗, are

observed. To estimate B∗, one possibility is to use the observed game play. That is, one can treat each

observed player as a random draw from the population, and the empirical action distribution approximates

the true distribution of equilibrium actions when the number of players is large. By bootstrapping from the
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observed individual strategies, one may approximate As
(
σ∗, σ∗−i

)
and thus B∗ (denoted as B̂∗).

The characterization of choice probabilities is provided in Appendix E based on which the simulated

maximum likelihood estimation can be applied. However, the approach crucially relies on the accuracy of

B̂∗. Additionally, simulation is necessary in the maximum likelihood estimation, introducing additional

errors. The results from Monte Carlo simulations with the true B∗ and the approximated equilibrium beliefs

in Appendix H confirm these concerns.

On the other hand, the structure of equilibrium and its properties in Proposition 1 contain rich identifying

information that is independent of B∗. I defer the exploration until the next subsection, where I discuss the

estimation with heterogeneous sophistication. The alternative approach is shown to perform even better

than the simulated maximum likelihood with the true equilibrium beliefs B∗ in Monte Carlo simulations

(Appendix H).

3.3.3 Assumptions and Flexible Heterogeneous Sophistication: An Evaluation

It is worth empirically evaluating the assumptions, UNACCEPTABLES and MIXING, which are introduced

due to multiple best responses but may seem ad hoc and restrictive. I also emphasize the need to allow for

flexible heterogeneous sophistication, which is considered in the next section.

Assumptions UNACCEPTABLES and MIXING. To formalize the discussion, let us supplement i’s

choice list Ci by inserting her outside option, School 0, before the highest-ranked unacceptable school in

Ci. That is, Ci = (c1
i , . . . , c

4
i , c

5
i ) such that ckii = 0 for ki = maxk=1,...,5{k s.t. ui,cti > ui,0 for all t < k},

cki = cki for all k < ki, and cki = c
(k−1)
i for all k > ki. For example, for a parent ranking (1, 2, 3, 4) with

Schools 3 and 4 as unacceptable, C is (1, 2, 0, 3, 4). When being rejected by earlier choices, i will “enroll”

in her outside option for sure, and therefore, every school ranked after an outside option is payoff-irrelevant.

Assumption UNACCEPTABLES entails two behavioral patterns for parents with multiple unacceptable

schools: (a) among the payoff-equivalent lists that differ in the inclusion of unacceptable schools, parents

sometimes include unacceptable schools. That is, in Ci with ki < 5, i ranks some schools after outside

option, cki 6= 0 for k > ki; (b) when ranking unacceptable schools, they rank unacceptable schools truthfully

after acceptable ones. In other words, in Ci, choices lower than ki are ranked truthfully among themselves.

The first pattern is consistent with the fact that parents sometimes do not enroll in the assigned school

in the data (Table 2) and in other places, e.g., Denver and New York City. The assumption is rejected if

(almost) everyone goes to the assigned school, e.g., in Paris (Fack, Grenet, and He 2015). This is exactly

the issue of multiple best responses: a parent may rank unacceptable schools because the marginal cost and

benefit of adding more choices are both zero.
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The second pattern includes two aspects. An unacceptable school, if ranked, is ranked below all accept-

ables, which is implied by the utility-maximization assumption. Besides, unacceptable schools are ranked

truthfully among themselves, which is a behavioral assumption for equilibrium selection. This phenomenon

is difficult to evaluate with observational data, although it is not unimaginable that parents do so in reality.

Therefore, I also use an external dataset to evaluate the assumptions. In the lab experiment of Cal-

samiglia, Haeringer, and Klijn (2010), students play a school choice game under three mechanisms. Every-

one has a “district school,” which approximates an outside option in list Ci: if it is ranked first under the

Boston, i is for sure accepted by district school; if rejected by earlier choices, she is accepted by her district

school whenever it is ranked under DA, which creates multiple payoff-equivalent lists.

More importantly, one can rank up to three choices, in contrast to other lab experiments, where students

are required to rank a given number of choices. The detailed analysis in Appendix B demonstrates that

(i) The majority (95%) of the students rank additional schools after “outside option” (district school) so

that they exhaust the three choices.

(ii) Among the students in part (i), the majority (82%) rank their second and third choices truthfully,

conditional on a district school being ranked first.

These results provide empirical justifications for Assumption UNACCEPTABLES and thus lead me to use

Assumption MIXING to model how parents rank unacceptable schools. As described earlier, it restricts

that the mixing probabilities do not depend on preferences or identities of acceptable schools. Indeed, this

phenomenon is also supported by the experimental data, as Appendix B shows that

(i) Preferences do not affect students’ probability of ranking additional schools after the “outside option”.

(ii) Students do not rank the next-preferred school after district school more often when the utility differ-

ence between the two is smaller.

These results provide empirical support to Assumptions UNACCEPTABLES and MIXING.

Necessity of Allowing Flexible Heterogeneous Sophistication. The above analysis focuses on parents

playing a Bayesian Nash equilibrium with a common prior and thus rules out all possible mistakes.

This assumption, however, is usually too strong. In particular, there is evidence suggesting that students

underestimate admission probabilities or are overcautious, when playing the game under the Boston mech-

anism. This evidence is consistent with the “small-school bias” in the experimental literature (Chen and

Sonmez 2006), wherein students avoid schools with small quotas. More directly, students in Amsterdam

under-predict admission probabilities, and 5.5% do not apply to their most-preferred schools, even though

they would have been admitted (De Haan, Gautier, Oosterbeek, and Van der Klaauw 2015). Besides, the

education literature documents abundant evidence showing that students, especially those with disadvan-
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taged backgrounds, do not apply to better schools or universities due to information frictions (Hoxby and

Turner 2013).

3.4 General Case: Heterogeneous Sophistication

I now relax the sophistication assumption and allow parents to make mistakes forming their beliefs. Mis-

takes, which are associated with heterogeneous beliefs, can be caused by heterogeneity in information and/or

in the ability to process information. I derive the structure on the beliefs and the set of dominated strategies.

3.4.1 Equilibrium, Sophistication, and Dominated Strategies

To highlight the heterogeneity in beliefs, denote i’s belief as Bi (C, σ−i) ≡ {Ai,s (C, σ−i)}4s=1 ∈ [0, 1]4,

∀C, where Ai,s (C, σ−i) ≡
∑L(I−1)

n=1 Pri
(
Cn−i played under σ−i

)
as
(
C,Cn−i

)
and the probability measure

Pri () is i’s subjective assessment of an event’s likelihood.

Given the above notation, the extent to which parents can make mistakes is not unrestricted. They may

be wrong when assessing others’ behavior and thus Pri () is individual specific; however, they have full

information on the rules of the game and thus correctly consider as
(
C,Cn−i

)
.

Since Ai,s (σi, σ−i) is a probability weighted average of as (C,C−i), the properties of as (C,C−i) still

hold for Ai,s (σi, σ−i), and the proof of the following lemma is omitted.

Lemma 3 Given σ−i, Ai,s (σi, σ−i) has the same properties as as (C,C−i) in Lemma 1.

i’s strategy can now be rewritten as an explicit correspondence of beliefs, σi [Xi,Zi, εi;Bi (·, σ−i)] and

again, I focus on symmetric equilibrium.

Definition 3 A (mixed-strategy) symmetric Bayesian Nash equilibrium in the Boston school choice game

with heterogeneous sophistication is a common strategy σ∗∗ ∈ ∆ (C) s.t.,

σ∗∗
[
Xi,Zi, εi;Bi

(
·, σ∗∗−i

)]
∈ arg max

σ∈∆(C)

4∑
s=1

Ai,s
(
σ, σ∗∗−i

)
max (ui,s, ui,0) ,∀i.

Here, the only requirement is that everyone is a subjective-expected-utility maximizer; there is no fixed-

point restriction on subjective beliefs; and therefore, the existence of such an equilibrium is guaranteed. This

definition also provides a measure of sophistication in terms of predicting the game play.

Definition 4 With heterogeneous sophistication, in equilibrium σ∗∗, i is sophisticated if

Ai,s
(
C, σ∗∗−i

)
=

L(I−1)∑
n=1

Pr
(
Cn−i played under σ∗∗−i given B−i

)
as
(
C,Cn−i

)
, for all s and C,
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where Pr
(
Cn−i played under σ∗∗−i given B−i

)
is the objective (correct) probability ofCn−i being played under

σ∗∗−i given B−i.

The above definition implies that if i is sophisticated, she plays a best response against others with the

knowledge of their beliefs in addition to that of the preference distribution. Being sophisticated demands

extremely rich information and thus may be difficult to achieve, and therefore, it is important to consider

other possible beliefs. Unfortunately, this phenomenon leads to a non-identification of beliefs.

Proposition 2 Given the choice lists submitted by parents with heterogeneous sophistication, the beliefs,

which are individual-specific, are not identified even when parents’ true cardinal preferences are observed.

The proof of the proposition is not provided because of its obviousness, but its basic intuition is as

follows. Since beliefs are individual specific, there is only one observation from a given parent to estimate

her beliefs. Moreover, beliefs are high-dimensional: there are 24 unique elements for each parent when

there are four schools. From Definition 3, one can derive 23 inequalities for a given parent because the

submitted list is optimal among all 24 full lists, which is far from sufficient to solve for the 24 elements. If

parents’ cardinal preferences are not observed, there is no hope to jointly identify preferences and beliefs.

It is therefore necessary to derive conditions that do not depend on beliefs. Given the properties of

Lemma 3, a set of dominated strategies, which are belief-independent, can be derived.

Proposition 3 Suppose i has at least one acceptable school. Given belief Bi
(
·, σ∗∗−i

)
,

(i) top-ranking an unacceptable or the least-preferred school is strictly dominated;

(ii) ranking an unacceptable or the least-preferred before an acceptable school is weakly dominated;

(iii) excluding an acceptable school from the list is weakly dominated;

(iv) if beliefs are non-degenerate, i.e., Ai,s′
(
C, σ∗−i

)
∈ (0, 1), for all s′ and C 6= (0, ..., 0), moving

school s upward in the list strictly increases the probability of being accepted by s, and the dominance in

(ii) and (iii) becomes strict.

Intuitively, ranking a school first always gives a strictly positive probability of being assigned to that

school, and a parent should thus list better schools first. Additionally, the worst outcome of participation is

being accepted by the worst school. By ranking better schools before the worst school, a parent increases

her child’s chance of being assigned to the better school. If a school is unacceptable, putting it at the bottom

or omitting it also increases the likelihood of getting into better schools. These results also apply to a more

general setting with pre-determined priorities (Abdulkadiroglu and Sonmez 2003).
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According to Proposition 3, the truth-telling strategy is not dominated, nor is any Bayesian Nash equi-

librium with homogeneous sophistication (σ∗). Moreover, as shown in Proposition 1, in any σ∗, beliefs

are non-degenerate, and therefore, strict dominance can thus be obtained (part iv). These results provide

identifying conditions that are formalized in Appendix E.

3.4.2 Degenerate Beliefs

Unfortunately, the weak-dominance results in parts (ii) and (iii) of Proposition 3 still lead to potential mul-

tiple best responses, creating issues for empirical study. Moreover, when parents are allowed to make

mistakes, one cannot rule out that parents have degenerate beliefs, i.e., some zero-admission probabilities.

Certainly, this possibility depends on the context in question, and I therefore tailor the modeling to what is

observed.

In the data, School 1 has the smallest quota, 63 seats, and is also the “best” school with the highest

average test score of graduating students (Table 1). Table 5 further presents how parents rank the four

schools. In total, 228 parents top-rank School 1, 360% of its capacity, and thus, the only possibility to be

accepted by it is ranking it first. Despite its high quality, 11% of the participating parents ranked School 1

fourth or omitted it. In contrast, only 3% and 9% did so with Schools 2 and 3, the two lower-quality schools.

A possible rationalization is that certain parents expect a zero-admission probability for School 1 when

ranking it low and therefore decide to omit it or rank it fourth. A later result from survey data, Table 8 in

section 4.2, also confirms this conjecture: Among 579 parents who claim School 1 as their best school, 61

(11%) of them rank it fourth or omit it, which can be explained only by degenerate beliefs. In contrast, for

Schools 2 and 3, such degenerate beliefs are less of a concern: they all have a larger quota; fewer parents

rank them fourth or omit it (Table 5); and only two parents rank the claimed best school fourth or omit it

(Table 8).

Table 5: How Each School is Ranked

School Quota
First Choice Second Choice Third Choice Fourth Choice Omitted by Participants
Freq. Pct. Freq. Pct. Freq. Pct. Freq. Pct. Freq. Pct.

1 63 228 25% 157 17% 242 26% 68 7% 38 4%
2 227 431 47% 206 23% 64 7% 11 1% 21 2%
3 310 66 7% 333 36% 252 28% 56 6% 26 3%
4 360 8 1% 27 3% 107 12% 530 58% 61 7%

Notes: The percentages represent the fraction of the total 914 students. There are 181 (20%) non-participants.

These patterns in the data lead to the following assumption:

Assumption ZERO-PROB Some parents may expect that the admission probabilities at School 1 are zero
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if the school is not top ranked, while other belief elements are always non-degenerate, (in (0, 1)) for

all parents.

As a consequence of Assumption ZERO-PROB, School 1 might be ranked as fourth choice or omitted

by some parents even when it is neither unacceptable nor the least preferred.

Lemma 4 Under Assumptions UNACCEPTABLES and ZERO-PROB, suppose i’s beliefs are degenerate,

i.e., some elements are equal to zero according to Assumption ZERO-PROB. If her preferences and beliefs

are such that the list
(
c1, c2, 1, c4

)
is a best response, ui,c4 = min {ui,s}4s=1, and ui,s > ui,0 for s 6= c4,

then the pure strategies that can be played with a positive probability in equilibrium are

(i)
(
c1, c2, 1, c4

)
,
(
c1, c2, c4, 1

)
, and

(
c1, c2, 0, 0

)
, if ui,c4 > ui,0; or

(ii)
(
c1, c2, 1, c4

)
and

(
c1, c2, 0, 0

)
but never

(
c1, c2, c4, 1

)
, if ui,c4 < ui,0.

The proof of the above lemma is straightforward and thus omitted, while a sketch is as follows. First,

note that
(
c1, c2, 1, c4

)
and

(
c1, 1, c2, c4

)
are not payoff-equivalent even if the probability of being accepted

by School 1 is zero because ranking School 1 second wastes a round in the mechanism and decreases

the chance of being accepted by c2. Second, if i’s beliefs are degenerate as in Assumption ZERO-PROB,(
c1, c2, c4, 1

)
,
(
c1, c2, 0, 0

)
, and

(
c1, c2, 1, c4

)
are always payoff-equivalent. However, Assumption UNAC-

CEPTABLES specifies that i never ranks an unacceptable school before an acceptable one, and therefore,(
c1, c2, c4, 1

)
is never played if ui,c4 < ui,0.

As evident in Lemma 4, the only consequence of having degenerate beliefs is that the school in ques-

tion is omitted or moved to fourth place, which justifies Assumption ZERO-PROB when it rules out zero-

admission probability at the second-most popular school, School 2. At most, the number of parents who

can be possibly affected by the zero probabilities at School 2 is 33 (3%) (those ranking it fourth or omit it,

Table 5). Besides, none of the 33 claims School 2 is the best school when responding to a survey question

(Table 8).

Lemma 4 does not describe how parents mix the payoff-equivalent strategies. It specifies i’s possible

actions when
(
c1, c2, 1, c4

)
is her best response, while whether

(
c1, c2, 1, c4

)
is a best response depends

on her preferences and subjective beliefs. Allowing heterogeneous sophistication, however, would make the

paper internally inconsistent if further assumptions on beliefs were introduced. Keeping these considerations

in mind, I characterize choice probabilities for estimation based on Proposition 3 and Lemma 4.

Grouping of Lists. Under the above assumptions, the model is incomplete because of its inability to

predict a unique distribution of lists conditional on preferences (Tamer 2003). I therefore categorize the lists

into 9 groups, gn, n = 1, ..., 9, which “restores” completeness.
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The criteria of grouping are the number and identities of schools included in the list, while the order

among the listed schools does not necessarily matter. The groups are of three types: (a) 5 groups in which

the lists include no more than one school; (b) 3 groups of two-school lists ranking School 1; and (c) all other

lists. These groups are shown in Table 6 and are mutually exclusive and collectively exhaustive.

Table 6: The 9 Groups of Lists When Beliefs are Degenerate

Groups of non-participation
Groups of two-school lists and other lists

or one-school lists

Group 1: g1 = {(0, 0, 0, 0)} Group 6: g6 =

{
(1, 2, 0, 0)
(2, 1, 0, 0)

}
Group 2: g2 = {(1, 0, 0, 0)} Group 7: g7 =

{
(1, 3, 0, 0)
(3, 1, 0, 0)

}
Group 3: g3 = {(2, 0, 0, 0)} Group 8: g8 =

{
(1, 4, 0, 0)
(4, 1, 0, 0)

}
Group 4: g4 = {(3, 0, 0, 0)}

Group 5: g5 = {(4, 0, 0, 0)} Group 9: g9 =

{
All lists that are not in any
of the other eight groups

}

For type-(a) groups, since they are independent of beliefs, the choice probabilities are similar to tradi-

tional discrete choice models, although the mixing probabilities have to be considered. For the 3 groups of

type (b), the grouping is based only on which school, together with School 1, is included in the list but not

on their ranking. For example, (s, 1, 0, 0) and (1, s, 0, 0) are in the same group, but not (s, s′, 0, 0), given

s 6= s′ 6= 1. The choice probabilities for these groups have two sources: either the two included schools

are the only acceptable schools or only one of them is acceptable while the other is unacceptable but better

than the two excluded schools. The contributions of both sources are weighted by mixing probabilities. The

type-(c) group is the residual group.

Characterization of Choice Probabilities The choice probability of a group, gn, should be interpreted

as choosing any list within that group, Ci ∈ gn. Recall that mk,l (Xi), l ≥ k, is the (expected) probability

that an l-school list is submitted while only k schools are acceptable, conditional on Xi. The conditional

probability of i choosing a list in group gn, Pr (Ci ∈ gn|Xi,Zi; θ), equals

(i) Pr (ui,s < ui,0, for all s|Xi,Zi; θ), if Ci ∈ g1 = {(0, 0, 0, 0)};

(ii) m1,1 (Xi) ∗ Pr
(
ui,c1 > ui,0 > ui,s, for s 6= c1|Xi,Zi; θ

)
, if Ci ∈ gn =

{(
c1, 0, 0, 0

)}
for n =

2, ..., 5, given the identity of c1;
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(iii) if Ci ∈ gn =
{(
c1, c2, 0, 0

)
,
(
c2, c1, 0, 0

)}
for n = 6, ..., 8, given c1 = 1 or c2 = 1,

m2,2 (Xi) ∗ Pr
(
ui,c1 , ui,c2 > ui,0 > ui,s, for s 6= c1, c2|Xi,Zi; θ

)
+m1,2 (Xi) ∗

 Pr
(
ui,c1 > ui,0 > ui,c2 > ui,s, for s 6= c1, c2|Xi,Zi; θ

)
+ Pr

(
ui,c2 > ui,0 > ui,c1 > ui,s, for s 6= c1, c2|Xi,Zi; θ

)
 ;

(iv) the residual probability, if Ci ∈ g9.

With the functional form assumptions on the utility shocks and the mixing probabilities (to be specified

in Section 5), all nine choice probabilities mentioned above can be re-written as functions of the observables

(Xi,Zi) and unknown parameters θ. Three points should be highlighted here: (i) none of the choice

probabilities depends on beliefs; (ii) after grouping, the model is “complete” in the sense that it implies

a unique distribution of groups given a distribution of preferences; and (iii) identification means that the

model implies a unique distribution of preferences given a distribution of groups.

Identification and Maximum Likelihood Estimation The model is now equivalent to a discrete choice

with 9 options. The choice probabilities imply the likelihood:

LDB (θ) ≡
I∑
i=1

9∑
n=1

[
1(Ci∈gn) log [Pr (Ci ∈ gn|Xi,Zi; θ)]

]
,

where the subscriptDB stands for Degenerate Beliefs. Intuitively, identification is similar to discrete choice

models and requires that Pr (·|·, ·; θ) 6= Pr (·|·, ·; θ0) if θ is not equal to the true value θ0. In the current

context, this amounts to the identification in a conditional logit model even with the mixing probabilities,

while parameters in the utility function are normalized. Additional discussion is available in Appendix E.3.

As stated previously, this modeling and estimation approach can be applied to data from a Bayesian Nash

equilibrium with a common prior. Moreover, the non-degenerate beliefs in a Bayesian Nash equilibrium

provide more identifying conditions, as does an equilibrium with non-degenerate heterogeneous beliefs. The

detailed characterization of choice probability of list groups are provided in Appendix E.3, and Appendix H

presents Monte Carlo results showing that this approach performs even better than a maximum likelihood

approach, even when the true equilibrium beliefs are observed.

When lists are grouped together, some identifying information is necessarily dropped, which may cause

an efficiency loss in the estimation. I therefore derive bounds on certain choice probabilities and include

them in the estimation, even though the model cannot point-predict them.

28



Bounds on Choice Probabilities. The details are provided in Appendix F, while a brief summary is as

follows. I start with the 41 individual lists and then discuss various groupings of lists. Among the individual

lists, the model predicts the choice probabilities of five lists (Table 6) and implies bounds on the other 36.

For example, for a two-school list,
(
c1, c2, 0, 0

)
, the lower bound of its choice probability is

Pr
(
Ci =

(
c1, c2, 0, 0

)
|Xi,Zi; θ

)
≡ m1,2 (Xi) ∗Pr

(
ui,c1 > ui,0 > ui,c2 > ui,s, s 6= c1, c2|Xi,Zi; θ

)
.

The model accommodates that some parents submit a two-school list even though only c1 is acceptable.

Moreover, in this case, the preference ranking of all four schools and the outside option is partially deter-

mined, which constitutes a lower bound because these parents must submit
(
c1, c2, 0, 0

)
with probability

m1,2 (Xi) and there can be other parents, with multiple acceptable schools, submitting
(
c1, c2, 0, 0

)
.

If c1 or c2 = 1, i.e., the most popular school is included in the two-school list, the upper bound of the

choice probability, denoted by Pr
(
Ci =

(
c1, c2, 0, 0

)
|Xi,Zi; θ

)
, equals:

Pr
(
Ci =

(
c1, c2, 0, 0

)
|Xi,Zi; θ

)
+m2,2 (Xi) ∗ Pr

(
ui,c1 , ui,c2 > ui,0 > ui,s, s 6= c1, c2|Xi,Zi; θ

)
.

The extra term is from the parents who only have c1 and c2 acceptable. As some such parents may submit(
c2, c1, 0, 0

)
instead of

(
c1, c2, 0, 0

)
and no one else submits this list, it becomes an upper bound.

If c1, c2 6= 1, the upper bound probability of choosing
(
c1, c2, 0, 0

)
is even bigger because of the

degenerate beliefs (Assumption ZERO-PROB). The additional term is

Pr
[
ui,c1 , ui,c2 , ui,1 > max

(
ui,0, min

s
(ui,s)

)
|Xi,Zi; θ

]
,

because one may omit Schools 1 and c4 when
(
c1, c2, 1, c4

)
is her best response (Lemma 4).

For a full list,
(
c1, c2, c3, c4

)
, the lower bound is

Pr
(
Ci =

(
c1, c2, c3, c4

)
|Xi,Zi; θ

)
≡ m1,4 (Xi) ∗Pr

(
ui,c1 > ui,0 > ui,c2 > ui,c3 > ui,c4 |Xi,Zi; θ

)
,

which is similar to the lower bound for two-school lists. If c4 6= 1, the upper bound is

Pr
(
Ci =

(
c1, c2, c3, c4

)
|Xi,Zi; θ

)
+ m2,4 (Xi) ∗Pr

(
ui,c1 , ui,c2 > ui,0 > ui,c3 > ui,c4 |Xi,Zi; θ

)
+ Pr

(
ui,c1 , ui,c2 , ui,c3 > ui,0;ui,c4 = min {ui,s}4s=1 |Xi,Zi; θ

)
Intuitively, one may submit

(
c1, c2, c3, c4

)
when c4 is the worst and others are acceptable (the last term);
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some parents may also submit a full list even if they only have two schools acceptable (the second term).

When c4 = 1, the upper bound is larger and has an extra term:

Pr
(
ui,c3 = min {ui,s}4s=1 > ui,0|Xi,Zi; θ

)
.

Namely, due to Assumption ZERO-PROB and Lemma 4, one may play
(
c1, c2, c3, 1

)
when

(
c1, c2, 1, c3

)
is

also a best response.

Grouping lists together results in more bounds of choice probabilities. More precisely, there are 3 groups

whose choice probabilities can be exactly characterized (Table 6) and 19 groups with bounds only.

For example, grouping
(
c1, c2, 0, 0

)
and

(
c2, c1, 0, 0

)
together when c1 or c2 = 1 leads to the choice

probabilities characterized above. However, if c1, c2 6= 1, only non-binding bounds can be derived based on

Proposition 3 and Lemma 4. In this case, the lower bound is

Pr
(
Ci ∈

{(
c1, c2, 0, 0

)
,
(
c2, c1, 0, 0

)}∣∣Xi,Zi; θ
)

≡ m1,2 (Xi) ∗

 Pr
(
ui,c1 > ui,0 > ui,c2 > ui,s, s 6= c1, c2|Xi,Zi; θ

)
+ Pr

(
ui,c2 > ui,0 > ui,c1 > ui,s, s 6= c1, c2|Xi,Zi; θ

)


+ m2,2 (Xi) ∗Pr
(
ui,c1 , ui,c2 > ui,0 > ui,s, s 6= c1, c2|Xi,Zi; θ

)
;

and the upper bound is

Pr

Ci ∈

(
c1, c2, 0, 0

)
,(

c2, c1, 0, 0
)

∣∣∣∣∣∣Xi,Zi; θ

+ Pr

 ui,c1 , ui,c2 , ui,1 > ui,0,

ui,c1 , ui,c2 , ui,1 > mins (ui,s)

∣∣∣∣∣∣Xi,Zi; θ

 ,

where the last term exists because parents may omit School 1 when the beliefs are degenerate. For brevity,

I discuss the construction of other bounds in Appendix F.

Moment Conditions: Equalities and Inequalities. The exact choice probabilities and the bounds on

them lead to moment conditions. In total, there are 9 (conditional) moment equalities and 110 (conditional)

moment inequalities, and equalities and inequalities are collectively denoted as (in)equalities:

E [hj (Ci,Xi,Zi; θ) |Xi,Zi; θ] ≡ E
[
1(Ci∈g′j)

− Pr
(
Ci ∈ g′j |Xi,Zi; θ

)
|Xi,Zi; θ

]
= 0, j = 1, ..., 9;

E
[
h(9+j) (Ci,Xi,Zi; θ) |Xi,Zi; θ

]
≡ E

[
1(Ci∈g′′j ) − Pr

(
Ci ∈ g′′j |Xi,Zi; θ

)
|Xi,Zi; θ

]
≥ 0, j = 1, ..., 55;

E
[
h(64+j) (Ci,Xi,Zi; θ) |Xi,Zi; θ

]
≡ E

[
Pr
(
Ci ∈ g′′j |Xi,Zi; θ

)
− 1(Ci∈g′′j )|Xi,Zi; θ

]
≥ 0, j = 1, ..., 55;
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where g′ and g′′ correspond to the groupings for the equalities and inequalities, respectively.

Binding Moment Inequalities. In the data, several lists are not played by anyone, and most are in Group 9,

the residual group.16 Thus, there are 6 binding lower bounds on choice probability and 6 moment equalities;

therefore, a version of the semiparametric maximum likelihood in Tamer (2003) can be adopted. Namely,

given a list in Group 9 that is not played by anyone, the (semiparametric) estimate of the choice probability

of this list is its theoretical lower bound, as it has to be the maximum of the lower bound and zero. Therefore,

the choice probability of the rest of the lists in Group 9 can be re-characterized by subtracting this estimated

probability. Tamer (2003) (Theorem 3) shows that the maximum likelihood estimator using these refined

choice probabilities gains efficiency.

Estimation with Moment (In)equalities. The over-identifying information in the moment inequalities

can lead to a reduction of the asymptotic mean-squared estimation error (Moon and Schorfheide 2009). To

obtain consistent point estimates with moment (in)equalities, I follow the approach of Andrews and Shi

(2013), which is valid for both point and partial identifications. The objective function is a test statistic,

TI (θ), of the Cramer-von Mises type with the modified method of moments (or sum function).

A few extra notations are needed to derive TI (θ). First, each conditional moment condition, hj , is

transformed into a vector of unconditional moments, (mj,1, ...,mj,K), such that for each k

E [mj,k (θ)] = E (hjfk,j (Xi,Zi))

 = 0, for j = 1, ..., 9;

≥ 0, for j = 10, ..., 119.

where fk,j (Xi,Zi) is the kth instrument for the moment condition hj constructed from exogenous variables

(Xi,Zi); and for j = 10, ..., 119, fk,j (Xi,Zi) ≥ 0, so that the moment inequalities still hold. Among the

numerous ways to construct the instruments, I use the “crude” ones. That is,

fk,j (Xi,Zi) =

 (Xi,Zi)k , j = 1, ..., 9;

[(Xi,Zi)k]
2 , j = 10, ..., 119.

where (Xi,Zi)k denotes the kth element in the vector (Xi,Zi). With the unconditional moments, the test

statistic is constructed as follows:

TI (θ) =

9∑
j=1

K∑
k=1

[
m̄j,k (θ)

σ̂j,k (θ)

]2

+

119∑
j=10

K∑
k=1

[
m̄j,k (θ)

σ̂j,k (θ)

]2

−
(2)

16In contrast, in the Monte Carlo simulations, each of the 41 individual lists is observed being chosen.
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where m̄j,k (θ) and σ̂j,k (θ) are the sample mean and standard deviation of mj,k (θ), respectively; and the

operator [ ]− is such that [a]− = min {0, a}. The point estimate is a solution to the following problem:

θ̂IneqDB = arg min
θ
TI (θ) .

Moreover, as the model is point identified with the moment equalities (of the choice probabilities), one can

use maximum likelihood estimation, which results in the point estimation denoted by θ̂EqDB .

There is a large and growing body of literature on moment (in)equalities, e.g., Chernozhukov, Hong,

and Tamer (2007) (and an application in Ciliberto and Tamer (2009)), Andrews and Soares (2010), and

Andrews and Shi (2013), and a survey is available in Tamer (2010). This paper follows the approach in

Bugni, Canay, and Shi (2016) to construct the marginal confidence intervals for each coordinate of θ. For

a given coordinate θk, the authors provide a test for the null hypothesis H0 : θk = γ, for any given γ ∈ R.

The confidence interval for the true value of θk is the convex hull of all γ’s for which H0 is not rejected.17.

3.5 Other Cases and Relationship among Them

To reiterate, I also consider the cases with homogeneous sophistication (or common prior) and heteroge-

neous sophistication with non-degenerate beliefs. The relationship among all the cases is such that(
Bayesian Nash Equ.

w/ common prior

)
⊂

(
Non-degenerate

heterogeneous beliefs

)
⊂

(
Degenerate heterogeneous

beliefs w/ equalities only

)
(

Bayesian Nash Equ.

w/ common prior

)
⊂

(
Degenerate heterogeneous

beliefs w/ (in)equalities

)
⊂

(
Degenerate heterogeneous

beliefs w/ equalities only

)

The Bayesian Nash equilibrium under homogeneous sophistication is the most restrictive one and thus is

nested in all other cases, where sophistication may be heterogeneous. The case where all elements in every-

one’s belief are non-degenerate is nested in the case where some elements are allowed to be zero/degenerate

but only equalities are considered. It is certainly more restrictive when both equalities and inequalities are

considered. However, the case with (in)equalities still nests the Bayesian Nash equilibrium because all the

bounds on choice probabilities are satisfied in Bayesian Nash equilibrium. On the other hand, there is no

nesting relationship between non-degenerate beliefs and degenerate Beliefs with (in)equalities.

The literature has also focused on naı̈ve parents who always report true preferences under the Boston

mechanism. I therefore consider that everyone reports truthfully and follows the aforementioned mixing

probabilities to include unacceptable schools in choice list. Appendix E provides the characterization of
17Discussion is also available in an application of the approach, Fack, Grenet, and He (2015).
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choice probabilities and discuss estimation approach. The truth-telling case is nested in the two cases with

heterogeneous sophistication:

Truth-telling⊂

(
Non-degenerate

heterogeneous beliefs

)
⊂

(
Degenerate heterogeneous

beliefs w/ equalities only

)

Truth-telling⊂

(
Degenerate heterogeneous

beliefs w/ (in)equalities

)
⊂

(
Degenerate heterogeneous

beliefs w/ equalities only

)

There is, however, no clear nesting structure between truth-telling and Bayesian Nash equilibrium.

The nesting structures imply that the two approaches with degenerate beliefs always result in consistent

estimates. In contrast, estimates from truth-telling or non-degenerating beliefs are only consistent when the

identifying assumptions are satisfied. Monte Carlo simulations in Appendix H confirm these predictions.

3.6 Post-Estimation Analysis: Sophistication and Incentives

Ideally, we would like to measure which parents are more strategic and sophisticated in the game at an

individual level; however, since the preference estimates can indicate only the distribution of preferences

conditional on (Xi,Zi), sophistication can only be measured conditional on (Xi,Zi).

With either heterogeneous or homogeneous sophistication, a parent is defined as sophisticated if her

beliefs coincide with the objective equilibrium beliefs. Therefore, the distance between one’s beliefs and

the equilibrium ones and that between one’s strategy and her best response provide a measure of sophistica-

tion. Given the large number of players, the empirical beliefs, B̂, as discussed in Section 3.3.2, provide an

approximation of the equilibrium beliefs. In particular, with heterogeneity in sophistication, it is impossible

to solve for the equilibrium because the joint distribution of preference and sophistication is unknown and

not estimated. The measures will be calculated by replacing equilibrium beliefs B∗ with B̂, and θ with θ̂.

3.6.1 Probability of Observing a Given Action

Under the assumption that everyone with (Xi,Zi) plays a best response, the model can predict the choice

probability for each list, PBRi,k ≡ Pr
(
Ci = Ck|Xi,Zi, B

∗; θ
)
, k = 1, ..., 41. Given that i choosesCi, define

di,k such that di,k = 1 if Ci = Ck, and 0 otherwise. If i always plays a best response,

E [di,k|Xi,Zi, B
∗; θ]− PBRi,k = 0, ∀k.
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One may test the hypothesis that everyone plays a best response by running a regression for each k:

di,k − PBRi,k = δ0 +XiδX + ZiδZ + Wi,kδW + νi,k,∀k, (3)

where Wi,k is a vector of variables other thanXi and Zi. Under the null, (δ0, δX , δZ , δW ) = 0.

Under the assumption that i is always truth-telling, Ck’s choice probability is independent of the belief:

P TTi,k ≡ Pr
(
Ck is chosen under truth-telling |Xi,Zi; θ

)
.

Similarly, one can regress
(
di,k − P TTi,k

)
on (Xi,Zi,Wi,k) and test the truth-telling hypothesis under which

no coefficient should be significantly different from zero.

3.6.2 Incentives to Be Strategic

In real life, it is not implausible that finding a best response is costly. The incentive to be strategic or to play

a best response would thus affect parents’ behavior.

The first incentive measure is the probability that truth-telling is a best response:

P TT=BR
i ≡ Pr (truth-telling is a best response|Xi,Zi, B

∗; θ) .

Under the assumption that the cost of finding a best response is lower if truth-telling itself is a best response,

a high P TT=BR
i means a lower decision cost for i to play a best response.

The second measure is the expected utility gain if i changes from truth-telling to best responding:

Gaini ≡ (V BR
i − V TT

i )/V BR
i ,

where V BR
i is the expected utility if i always plays a best response, and V TT

i is the one when she is always

truth-telling.18 If Gaini is higher, i has a greater incentive to find her best response. P TT=BR
i and Gaini

are later included in regression (3) to test if parents’ behavior is affected by incentives.

4 Reduced-Form Results and Supporting Evidence for the Assumptions

Before reporting the model estimates, I present reduced-form results from the data. The results, which are

independent of the model, are shown to be consistent with the model assumptions and predictions.
18V BRi is defined as follows. Given any realization of εi, i plays a best response. I calculate the expected utility given εi and

then integrate it over all possible εi: V BRi =
∫
εi
maxσ∈∆(C)

∑S
s=1 As (σ, σ

∗
−i)max (ui,s, 0) dF (εi); V TTi is similarly defined.

34



4.1 Understanding the Rules of the Game

An important assumption is that parents understand the rules of the game, and therefore, their beliefs follow

the structure specified in Lemma 3. I examine parents’ responses to two questions in the 2002 survey: “On a

scale of 0-10, what is the probability that your child is admitted into your 1st (2nd) choice?” Table 7 shows

the summary statistics, although the self-reported beliefs are not used anywhere in estimation.19 The

empirical beliefs, calculated from the submitted lists, and the self-reported beliefs share the same pattern,

although they do not exactly match. Also consistent with Lemma 3, parents on average expect that moving

a school up in the list increases the probability of being accepted by that school.

Table 7: Empirical Beliefs and Parents’ Self-Reported Beliefs

Ranked as 1st Choice Ranked as 2nd Choice
Empirical Survey Responsesb Empirical Survey Responsesb

School Beliefsa Mean Std. Dev # Obsc Beliefsa Mean Std. Dev # Obs.c

1 26.7% 4.35 2.93 249 0% 3.00 2.24 112
2 50.7% 6.72 2.39 290 0% 5.13 2.52 189
3 100% 8.11 2.05 82 100% 6.53 2.23 206
4 100% 8.32 2.06 22 100% 7.63 2.52 40

Notes: a. Calculated from the actual submitted lists. Each entry shows the probability of being accepted by the school when that school is ranked
1st or 2nd, given all other students’ submitted lists. b. Responses to the survey question: “On a scale of 0-10, what is the probability that your child
is admitted into your 1st (2nd) choice?” These responses are not used in any estimation. c. The 1st and 2nd choices are self-reported and thus are
not necessarily the submitted ones.

4.2 Undominated Strategies, Truth-Telling, and Degenerate Beliefs

Lemma 3 leads to the dominated strategies in Proposition 3, and parents should not play these strategies in

equilibrium. Table 8 shows the distribution of parents’ first choice: 24.9% top rank School 1, while 47.0%

top rank School 2. Another survey question asks, “Among those to which you could apply, which school

was the best?” It is not necessarily about the most-preferred school, but the correlation between the “best”

and the most-preferred schools is probably positive. Among the 699 valid responses, 82.8% claim School

1 as the best. Comparing the submitted first choices with the most recognized school, the difference is

significant, which is inconsistent with the truth-telling hypothesis.

If everyone understands the rules, the first-choice school should never be the least-preferred school

(Proposition 3), which is consistent with the data in Table 8: Only 8 parents top-rank School 4, while even

fewer people claim it as the best school.

Proposition 3 also predicts that the last-choice school (or the omitted school, conditional on participat-

ing) should either be an unacceptable/the least-preferred or a school with zero admission probability. The
19Since the questions are asked after the assignment, the results may be affected by the fact that the student is accepted or rejected

by that school. For this reason, I use their self-reported top two choices, which are not necessarily their submitted top two choices.
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Table 8: Parents’ First Choices and Claimed Best Schools

# Parents # Parents Claim Rank the Claimed Bestb

School Quota Rank It #1 It as the Besta #1 #2 #3 #4 Omitted

1 63 228 (24.9%) 579 (82.8%) 186 107 163 36 25
2 227 431 (47.0%) 58 (8.3%) 49 5 0 0 0
3 310 66 ( 7.2%) 26 (4.3%) 11 9 4 1 0
4 360 8 ( 0.9%) 3 (0.4%) 0 1 0 1 0

Non-Participant 181 (19.8%)
Otherc 33 (4.7%)

Total 960 914 (100%) 699 (100%)

Notes: a. Responses to a survey question: “Among those to which you could apply, which school was the best?” These responses are not used in
any estimation. b. Among all the parents who claim a given school as the best school, these five columns show how they rank it in the application,
conditional on participating. c. “Other” means schools other than the four schools, which may be due to misreporting.

last five columns in Table 8 confirm this prediction by showing how parents rank the claimed best school.

For Schools 2-4, only two parents rank the claimed best school fourth or omit it. Therefore, as discussed in

section 3.4.2, degenerate beliefs are less of a concern for these schools.

Although 579 parents claim School 1 as the best, 36 (6.2%) parents rank it fourth, while another 25

(4.3%) participants exclude School 1 altogether. Since this school has the smallest quota, only those who

top-rank it have a chance of getting in, and even then, the admission probability is merely 26.7%. It is thus

highly plausible that a parent might expect that there is no chance of getting into School 1 when ranking it

low, in line with the discussion in section 3.4.2.

4.3 Attention to Uncertainty

Additionally, there are several survey questions on parents’ perceptions of the importance of 12 different

factors of school choice. Parents rate these factors on a scale of 1-5, with 5 being very important. Three of

the factors are related to the game’s uncertainty: (i) admission quota and the possibility of being accepted;

(ii) the probability of being assigned to a bad school; and (iii) consideration of other parents’ applications.

Since the third factor may also be correlated with school quality because other parents’ applications reveal

their school preferences, I create Attn Ui (attention to uncertainty) as the average of responses to the first

two factors and use the third for Attn Othersi (attention to others’ applications). The nine other factors

deal with school quality: teachers’ quality, peer quality, etc. I define Attn Qi (attention to quality) as the

average of the responses to these questions.

A sophisticated parent cares about uncertainty, which implies a positive correlation between sophis-

tication and Attn Ui. While the correlation between Attn Ui and parents’ performance in the game is

investigated in section 5.2, I first explore how family background is correlated with Attn Ui.

Table 9 presents the regression results of Attn Ui on family background and student characteristics.

36



Table 9: Attention to Factors Related to Uncertainty: Regression Analyses

Dependent Variable: Attention on Uncertainty
Full Samplea Participanta ≥2 Schoolsa Full Lista Non-Participanta

(1) (2) (3) (4) (5)

Mean(Dep V) 4.34 4.36 4.36 4.35 4.19
Std Dev(Dep V) 0.74 0.72 0.71 0.70 0.90

Parent Edui 0.01 0.01 0.01 0.01 -0.02
(0.01) (0.01) (0.01) (0.02) (0.05)

Parent Inci -0.04 -0.05 -0.06* -0.07* 0.55**
(0.04) (0.03) (0.03) (0.04) (0.23)

Own Scorei 0.23 0.29 0.31 0.94* 1.74
(0.41) (0.40) (0.40) (0.51) (3.57)

Awardsi 0.02 0.04 0.04 0.06* 0.05
(0.03) (0.03) (0.03) (0.03) (0.08)

Girli -0.05 -0.04 -0.03 -0.02 -0.25
(0.05) (0.05) (0.05) (0.06) (0.21)

Attn Othersi -0.00 -0.01 -0.01 -0.02 0.07
(0.02) (0.02) (0.02) (0.02) (0.09)

Attn Qi 0.82*** 0.82*** 0.80*** 0.75*** 0.76***
(0.06) (0.06) (0.06) (0.06) (0.24)

Constant -0.01 -0.17 -0.14 -3.23 -12.60
(2.14) (2.09) (2.08) (2.65) (18.43)

Observations 676 605 597 457 71
R-squared 0.27 0.29 0.28 0.28 0.36

Notes: a. The full sample includes every parent for whom relevant variables are not missing. The participants include those who submit a list that
is not (0,0,0,0). The subsample (>= 2 schools) includes participants whose submitted lists have at least 2 schools. The subsample with a full list
includes those who submit a full list. Elementary school fixed effects are included. Standard errors are in parentheses. *** p<0.01, ** p<0.05, *
p<0.1.

Column (1) shows that family background has no significant correlation with Attn Ui in the full sample.

I exclude non-participants (column 2) and those submitting partial lists (columns 3 and 4). The negative

coefficient on income becomes significant at the 10% level and larger in magnitude, particularly in the

subsample of those submitting full lists. As a comparison, this coefficient is significantly positive (at the 5%

level) for non-participants (column 5). This negative correlation between Attn Ui and parents’ income is

robust ifAttn Ui is broken down into attention to admission quota and attention to the probability of getting

into bad schools (Table J15 in Appendix J).20

5 Model Estimation and Test Results

This section presents the estimates from four cases: (i) degenerate beliefs with moment equalities allowing

heterogeneous sophistication; (ii) degenerate beliefs with (in)equalities; (iii) non-degenerate and possibly

heterogeneous beliefs, which include Bayesian Nash equilibrium and truth-telling as special cases; and (iv)
20In Table J15, the same regression is run for Attn Othersi: The coefficient on parents’ education is significantly negative,

although the one on parents’ income is insignificant. I also regress Attn Qi on the same set of variables. Contrary to those from
the Attn Ui regressions, parents’ income is significantly positively correlated with Attn Qi.
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truth-telling. Throughout, the utility function is specified as

ui,s =αs + βX,1Own Scorei + βX,2Parent Inci + βX,3Parent Edui + βX,4Awardsi + βX,5Girli

+ βZ,1Distancei,s + βZ,2Own Scorei×School Scores + βZ,3Parent Inci×School Scores

+ βZ,4Parent Edui×School Scores + βZ,5Awardsi×School Scores + εi,s, (4)

where αs is middle school fixed effects; School Scores is the (log) average test score of graduating students

from school s; and other variables are defined in Table 3. The part βX,1Own Scorei+βX,2Parent Inci+

βX,3Parent Edui + βX,4Awardsi + βX,5Girli, which is constant for all schools, captures the observed

heterogeneity of the outside option. Finally, (εi,1, ..., εi,4) are i.i.d. type I extreme values.

To guarantee them in [0, 1], the average mixing probabilities (Assumption MIXING) are as follows:21

m1,2 (Xi) =
1

π

(π
2

+ arctan
[
γ1,2

1 + γ1,2
2 Parent Inci + γ1,2

3 Parent Edui

])
, (5)

m1,4 (Xi) =
1

π

(π
2

+ arctan
[
γ1,4

1 + γ1,4
2 Parent Inci + γ1,4

3 Parent Edui

]) (
1−m1,2 (Xi)

)
,

m2,4 (Xi) =
1

π

(π
2

+ arctan
[
γ2,4

1 + γ2,4
2 Parent Inci + γ2,4

3 Parent Edui

])
.

where arctan is the inverse trigonometric function, inverse tangent.

5.1 Estimation Results

Table 10 presents the coefficients of the main variables in the utility function. Standard errors for maximum

likelihood estimates are from the outer product of gradients; the 95% marginal confidence intervals in the

case with (in)equalities (column 2) are based on Bugni, Canay, and Shi (2016).22

The results show that parents dislike distance, while the way in which parents value the School Scores

varies. The mixing probabilities evaluated at three combinations of parents’ income and education (10th,

50th, and 90th percentiles of both variables) are also reported. In all estimations except one, wealthier and

more-educated parents are less likely to include unacceptable schools in their lists, while the majority tend

to submit full lists.

One may be interested in the marginal effects of variables in the interaction terms. For example, as used

later in the main analyses, Table 11 shows these results for the case of degenerate beliefs with (in)equalities.

BothOwn Scorei and Parent Inci decrease the utility of every school, because they lead to better outside

options, while Parent Edui, Awardsi, and Girli have a positive effect. Each variable has impacts of a
21Note that m1,1 (Xi) = 1−m1,2 (Xi)−m1,4 (Xi) and m2,2 (Xi) = 1−m2,4 (Xi).
22The confidence intervals are wide, partly because the method tends to construct conservative intervals.
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Table 10: Preferences for Schools: Model Estimation Results from Different Cases

Degenerate Beliefs
Equalities Equalities & Non-Degenerate Truth-Telling

Only Inequalitiesa Beliefs
(1) (2) (3) (4)

Distancei,s -0.27*** -2.95 -0.24*** -0.26***
(0.06) [-8.64, 0.05] (0.07) (0.06)

Own Scorei×School Scores -1.46 79.59 49.91*** 52.00***
(14.53) [-6.87, 160.98] (6.90) (6.39)

Parent Inci×School Scores 28.86*** 0.62 1.03 1.40
(0.02) [-1.27, 32.51] (1.06) (0.90)

Parent Edui×School Scores -2.20*** 2.08 0.39 0.44
(0.02) [-3.46, 13.70] (0.37) (0.29)

Awardsi×School Scores -1.15*** -2.21 2.22** 3.02***
(0.17) [-7.14, 4.33] (1.00) (0.71)

Girli×School Scores 6.01*** 3.55 0.15 -0.56
(0.02) [-1.24, 15.86] (1.24) (1.01)

Own Scorei 4.04 -1259.00 -314.12*** -326.15***
(91.25) [-1992.14, 83.30] (43.53) (40.11)

Parent Inci -181.85*** -10.41 -6.87 -9.22
(0.14) [-192.14, -3.30] (6.64) (5.64)

Parent Edui 13.72*** -12.60 -2.53 -2.91
(0.09) [-21.90, 15.82] (2.34) (1.81)

Awardsi 6.91*** 17.32 -14.21** -19.23***
(1.06) [-10.90, 23.55] (6.25) (4.43)

Girli -37.62*** -17.34 -0.76 3.67
(0.13) [-40.07, -4.51] (7.80) (6.35)

Mixing Probabilities
m1,2 : at p10 of income & education 0.19 0.23 0.05 21.08
m1,2 : at median income & education 0.13 0.17 0.05 25.09
m1,2 : at p90 of income & education 0.11 0.09 0.05 30.62

m1,4 : at p10 of income & education 93.40 99.57 95.18 74.75
m1,4 : at median income & education 94.87 1.84 94.91 70.36
m1,4 : at p90 of income & education 95.51 0.27 94.51 64.33

m2,4 : at p10 of income & education 93.37 99.99 85.37 99.88
m2,4 : at median income & education 88.58 0.06 74.45 99.82
m2,4 : at p90 of income & education 63.70 0.01 47.36 99.51

Notes: Middle school fixed effects are included in all cases, as specified in equation (4). mk,l and l ≥ k denote the average mixing probability
that an l-school list is submitted when only k schools are acceptable. The function is parameterized in equation (5). The table reports the function
evaluated at the 10th, 50th, and 90th percentiles of income and education. Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
a. Estimation with both equalities and inequalities are based on Andrews and Shi (2013); the 95% marginal confidence intervals in brackets are
calculated following the approach in Bugni, Canay, and Shi (2016).

similar size on each school. However, a higher own score, higher parental income and education, and being

a girl make the student value school scores slightly more and thus prefer School 1 more.

Goodness of Fit Comparison It is not obvious how the four cases differ in Table 10, so I compare them in

terms of the goodness of fit. Details are collected in Appendix I, where I also discuss the sources of biases.

For each school, I calculate the predicted average utility and the probability of being most preferred. These

predictions are then compared with claimed best school in the survey and actual enrollment in 2002; the
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Table 11: Marginal Effects of Individual Characteristics

School Own Scorei Parent Inci Parent Edui Awardsi Girli

1 -7.55 -0.06 0.59 3.32 5.11
2 -7.61 -0.07 0.45 3.47 4.87
3 -7.63 -0.07 0.39 3.53 4.77
4 -7.69 -0.07 0.23 3.71 4.49

Notes: The calculation is based on the estimates from degenerate beliefs with (in)equalities. For Parent Inci andOwn Scorei, the table reports
the change in each school’s utility as a result of a 1% increase in the variable. For Parent Edui, Awardsi and Girli, it reports the change in
utility when the variable increases by one unit or from 0 to 1.

results are in favor of the degenerate beliefs with (in)equalities. Moreover, the estimates for this case fit the

moment equalities well. Therefore, this set of estimates is used for the following analysis.

5.2 Sophistication and Incentives to Be Strategic

This section investigates who strategizes better and how parents respond to incentives. Measures of so-

phistication and incentives are constructed using estimated preferences and empirical equilibrium beliefs.

Equivalently, the observed individual actions are assumed to be random draws from the distribution of

equilibrium actions, and therefore, the empirical beliefs, constructed by bootstrapping from the empirical

distribution of actions, provide an approximation.23

5.2.1 Deviations from Best Response and Truth-Telling: Overcautiousness

As section 3.6.1 shows, deviations from playing the best response on average should be zero if everyone

plays best responses, so are deviations from truth-telling if everyone is truth-telling. For the 24 full lists,

Table 12 presents summary statistics for how the observed behaviors deviate from best responses and truth-

telling. For each list, I run a t-test for the null hypothesis that the mean of each deviation equals zero

independently, and only in 1 case (out of 48) is the null not rejected at the 5% level.

Table 12 highlights the importance of distinguishing between best response and truth telling, as they

lead to contrasting predictions. For example, (1, 2, 3, 4) is the most common true preference order and

played by 13.89% of the parents. The truth-telling assumption predicts that 24.86% should choose that list,

whereas only 9.66% do so under the best response hypothesis. A large discrepancy is also found for the

23To calculate the empirical beliefs, B̂∗, the distribution of equilibrium strategies is approximated by the 914 observations
augmented by the 9 lists that are not played by anyone. Additionally, 5,000 samples of random draws from the distribution are
created. Each sample consists of 914 random draws from the 923 data points, with replacement. Fixing other parents’ submitted
lists in each sample, I then calculate B̂n for parent 1. Namely, parent 1 experiments with the 24 full lists. The probability of being
accepted by each school given any list are calculated by drawing 1,000 independent sets of lotteries and running the mechanism
1,000 times. It is sufficient to consider the full lists only because either the beliefs associated with partial lists can be derived from
those associated with the full lists or the partial lists are dominated. After repeating this process for the 5,000 samples, I calculate
B̂∗ =

∑5000
n=1 B̂

n/5000.
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Table 12: Deviation from Best Response and Truth-Telling Predictions: Full Lists

List
Observed Fractiona Deviation (in Percentage Points) from the Prediction of

(In Percentage Points) Best Respondingb Truth-Tellingb Maximin Preferencesb,d

(1) (2) (3) (4)

(1,3,2,4) 5.14 −11.40 −8.09 0.20
(1,3,4,2) 0.77 −0.21 −2.22 −0.06
(1,2,3,4) 13.89 4.24 −10.96 10.86
(1,2,4,3) 2.41 2.02 −0.25 0.29
(1,4,2,3) 0.22 0.19 −0.93 −0.32
(1,4,3,2) 0.00 −6.03 −1.83 −1.84

(1,?,?,?)c 22.43 −11.20 −24.29 9.13

(2,3,4,1) 4.70 4.69 4.53 4.50
(2,3,1,4) 21.33 12.18 19.62 −5.32
(2,4,3,1) 1.09 0.40 0.97 0.97
(2,4,1,3) 0.77 0.76 0.56 −0.67
(2,1,4,3) 2.74 2.29 1.74 2.24
(2,1,3,4) 12.58 −7.46 1.96 9.22

(2,?,?,?)c 43.22 12.86 29.38 10.94

(3,4,2,1) 0.22 −0.31 −0.30 −0.43
(3,4,1,2) 0.22 −0.32 −1.54 −2.69
(3,2,4,1) 0.88 0.79 0.59 0.61
(3,2,1,4) 4.16 3.01 2.31 3.97
(3,1,2,4) 0.88 −3.69 −4.81 −19.27
(3,1,4,2) 0.22 −1.31 −2.37 −3.07

(3,?,?,?)c 6.56 −1.83 −6.12 −20.88

(4,3,2,1) 0.55 0.55 −0.02 0.14
(4,3,1,2) 0.00 0.00 −2.26 −2.84
(4,2,3,1) 0.00 −1.43 −0.20 −0.21
(4,2,1,3) 0.00 0.01 −0.22 −1.06
(4,1,2,3) 0.00 −0.02 −0.48 −0.14
(4,1,3,2) 0.00 −5.51 −1.69 −1.45

(4,?,?,?)c 0.55 −6.42 −4.87 −5.56
Notes: a. This reports the percentage out of the total of 914 students who submit the given list. b. This is the average individual deviation. A
positive number implies the observed fraction is higher than the model prediction. All deviations are different from zero at 5% level except the list
(2, 4, 1, 3) under the assumption of best responses. c. (c1, ?, ?, ?) denotes all the full lists that rank c1 as first choice. d. Maximin preferences are
introduced and discussed later in section 6.4

most under-used list, (2, 3, 1, 4).

These results provide additional evidence that parents are neither all-best-responding nor all-truth-telling

in the game. Instead, parents are overcautious in that they low-rank School 1 and top-rank School 2 too

often. In the data, 22.43% top-rank School 1 in a full list, while the model predicts that 33.62% should have

optimally done so given other parents’ behavior. For School 2, 43.22% rank it first in a full list, whereas

the model predicts only 30.35% should have done so had they best responded. Top ranking School 2 and

avoiding School 1 is certainly ex ante rational because School 1 is the best and only has 63 slots, while

School 2 is still a very good school and has 227 slots. However, as too many parents choose the “safe”

strategy, the overcautiousness leads to a coordination failure.
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I repeat this exercise for the partial lists, including (0, ..., 0), and details are in appendix Table J16.

5.2.2 Incentives to Be Strategic

Table 13 shows summary statistics of the incentive measures and how they are correlated with individual

characteristics. The main result is that wealthier and more educated parents and students with better achieve-

ments have a lower cost of finding best responses (higher P TT=BR
i ) but also have a slightly greater incentive

to move away from always truth-telling (higher Gaini). The correlation between the two measures is -0.42.

The probability that truth-telling is a best response, P TT=BR
i , is relatively high at 0.54 (standard devi-

ation 0.30). In both regressions, Parent Inci, Parent Edui, and Own Scorei are positively correlated

with P TT=BR
i , whether controlling for Gaini or not.

Gaini is the utility gain when changing from always truth-telling to always best responding, measured

as a fraction of the latter. The mean gain is 0.03 with a standard deviation of 0.05. Whether controlling

P TT=BR
i or not, Gaini is positively correlated with Parent Edui and Own Scorei.

Table 13: Determinants of Incentive to Be Strategic: Regression Analysis

PTT=BR
i Gaini

Mean(Dep V) 0.54 0.03
Std Dev(Dep V) (0.30) (0.05)

Gaini -2.88***
(0.13)

PTT=BR
i -0.13***

(0.01)
Parent Inci 0.03** 0.02** -0.00 0.00

(0.01) (0.01) (0.00) (0.00)
Parent Edui 0.01* 0.01*** 0.00** 0.00***

(0.00) (0.00) (0.00) (0.00)
Own Scorei 2.26*** 2.49*** 0.08*** 0.38***

(0.18) (0.20) (0.02) (0.05)
Awardsi -0.00 0.00 0.00 0.00

(0.01) (0.01) (0.00) (0.00)
Girli -0.01 -0.00 0.00 0.00

(0.02) (0.01) (0.00) (0.00)
Obs. 914 914 914 914
R2 0.36 0.60 0.05 0.41

Notes: Elementary school fixed effects are included. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Gaini: utility gain
if switching from always truth-telling to best responding. PTT=BR

i : probability that truth-telling is a best response.

5.2.3 Who Strategizes Better?

To investigate which parents strategize better, Table 14 reports how family background affects deviations

from best responses. I focus on two lists, the most under-used list (1, 3, 2, 4) and the most over-used

(2, 3, 1, 4), relative to the best response prediction. Neither of them is dominated ex ante since they both
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rank a popular school first and a safe one second. Parents are overcautious, however; they choose (2, 3, 1, 4)

too often – 12 percentage points more often than best-responding parents would, and the list, (1, 3, 2, 4), is

under-used by 11 percentage points.

Table 14: Who Strategizes Better: Regression Analysis of Deviations from Best Responding

Most Under-Used List: (1,3,2,4) Most Over-Used List: (2,3,1,4)
Depend. V: Deviation from Best Responding Depend. V: Deviation from Best Responding

Mean: -0.11; Std Dev: 0.32 Mean: 0.12; Std Dev: 0.42

(1) (2) (3) (4) (5) (6) (7) (8)

Parent Inci 0.02 0.00 -0.00 -0.00 -0.01 -0.01 -0.01 -0.01
(0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02)

Parent Edui -0.01 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00
(0.01) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01)

Own Scorei -0.42*** -0.52*** -0.68*** -0.64*** -0.84*** -0.73*** -0.86*** -0.90**
(0.11) (0.12) (0.17) (0.18) (0.25) (0.25) (0.33) (0.37)

Awardsi 0.02* 0.00 0.00 0.01 -0.04** -0.04*** -0.04*** -0.04***
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Girli -0.05** -0.01 -0.01 -0.01 0.02 0.02 0.02 0.04
(0.02) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03) (0.03)

PTT=BR
i 0.12** 0.12** 0.10 0.12

(0.05) (0.05) (0.07) (0.08)
Gaini -1.27*** -1.33*** -1.34*** -1.30***

(0.18) (0.20) (0.33) (0.38)
Attn U i -0.00 0.04**

(0.01) (0.02)
Attn Qi -0.02 -0.02

(0.02) (0.04)
Attn Othersi -0.00 0.01

(0.01) (0.01)
PTTi,k -1.32*** -1.22*** -1.24*** 0.87 0.79 0.53

(0.07) (0.06) (0.07) (0.72) (0.71) (0.77)

Obs. 914 914 914 810 914 914 914 810
R-Squared 0.06 0.33 0.40 0.41 0.04 0.05 0.09 0.09

Notes: The regressions follow equation 3 with the outcome variable, di,k −PBRi,k , defined for the list in question. The probability that truth-telling
is the best response, PTT=BR

i , and the gain of switching from truth-telling to playing the best response, Gaini, are defined in Table 13. PTTi,k is
the probability that the list (in the dependent variable) is in the true preference order. Elementary school fixed effects are included. Robust standard
errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

In the left half of Table 14, following equation 3, I regress the deviations on 4 sets of regressors, with or

without controlling incentive measures and/or attention measures (columns 1-4). For the most under-used

list, higher Own Scorei robustly leads to more under-utilization of the strategy (1, 3, 2, 4). When including

incentive measures (columns 2-4), the effects of Parent Inci, Parent Edui,Own Scorei,Awardsi, and

Girlsi are close to zero. Additionally, P TT=BR
i reduces the deviation, and Gaini increases the deviation;

the attention measures have no significant effect.

The above results imply that family background does not offset underutilization of the strategy. However,

the lower cost of finding a best response (higher P TT=BR
i ) reduces this deviation, and parents’ income and

education are positively correlated with P TT=BR
i (Table 13). Moreover, the potential gain of switching

43



from always truth-telling to always playing the best responds, Gaini, increases the deviation, which implies

the difficulty of finding a best response. It is unlikely that wealthier and more-educated parents are more

sophisticated: they do not respond to incentives more optimally.24

The last 4 columns in Table 14 show the results for the most over-used list (2, 3, 1, 4). In all regressions,

only Own Scorei and Awardsi among the individual characteristics have a significant (negative) effect.

For the two incentive measures, only Gaini is significant. Surprisingly, attention to uncertainty, Attn Ui,

increases the deviation (significant at 5%).

The same regressions are run for all other lists as well. The coefficients on family background and incen-

tive and attention measures are mostly insignificant. For the most likely true preference order, (1, 2, 3, 4),

the results are presented in appendix Table J18.

To summarize, these results show that, on average, parents are overcautious because they avoid top-

ranking School 1 more often than they should. There is no evidence that wealthier and more-educated

parents are more sophisticated, but the game is easier for them to play because their true preference ranking

is more likely to coincide with their best response. Poorer parents pay more attention to uncertainty, but it

does not mitigate–and sometimes exacerbates—the overcautiousness.

6 Counterfactual Analyses

When analyzing the welfare effects of replacing the Boston mechanism by DA, I follow the literature and

focus on two types of parents: naı̈ve and sophisticated. Although evidence shows that more types exist

in the data, these two focal types provide a benchmark. Given the equilibrium beliefs, the welfare of a

sophisticated type is the upper bound of achievable payoffs, while that of a naı̈ve parent is likely to be a

reasonable lower bound because one may choose to be truth-telling when failing to find a best response.

I consider two experiments: (i) all other parents behave as in the data, and (ii) parents are either naı̈ve

or sophisticated. The assumption for the first experiment is the same as the above analyses on strategic

behavior, and I use the bootstrapped empirical equilibrium beliefs as an approximation of the equilibrium.

6.1 Simulating Outcomes under the Two Mechanisms

In simulations, everyone reports truthfully under DA. The equilibrium admission probabilities are obtained

by drawing a large number of profiles of preferences rankings, simulating the outcomes, and weighting them

by the probability of observing each profile.
24When Gaini is interacted with family background and included in regression (3), the coefficients of the interaction terms are

Gaini ∗ Parent Inci: 0.06, s.e. = 0.31; Gaini ∗ Parent Edui: -0.18, s.e. = 0.08; which imply that more educated parents are
more cautious such that they under-play the list more when Gaini is higher.
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Under the Boston mechanism in the second experiment, equilibrium beliefs are solved as a fixed point.

Eleven cases, each with 0, 10%, ..., or 100% naı̈ve parents, are considered. Naı̈ve parents in each case are

randomly chosen, and the remaining are sophisticated. A naı̈ve parent always reports her true preferences,

while a sophisticated parent plays a best response as if she knows the joint distribution of others’ preferences

and beliefs. In the first ten cases, the equilibrium beliefs are solved as described in Appendix G. When all

parents are naı̈ve, the equilibrium probabilities of being assigned to each school are calculated similar to

that in DA. Throughout, the mixing probabilities are held constant, as estimated from the data. Therefore,

due to part (iv) of Proposition 1, each parent has a unique best response conditional on equilibrium beliefs.

After solving an equilibrium, I simulate parents’ actions and calculate welfare. For each parent, 1,000

profiles of preferences are constructed using random draws of utility shocks, and each of them (with each

draw) plays two types of games – DA and the Boston; in the latter, parents play it as sophisticated and then

as naı̈ve. Each parent’s average welfare (averaged over the 1000 draws/plays) is studied.

6.2 Other Parents Behaving as in the Data

The first experiment considers the equilibrium in the data, so the empirical beliefs, which are constructed as

in footnote 23, are taken as the equilibrium beliefs. Table 15 reports the effects of changing from the Boston

mechanism to the DA mechanism in Beijing, while other parents behave as they do in the data under the

Boston mechanism.

Switching to DA hurts both naı̈ve and sophisticated parents on average (columns 1 and 2). For naı̈ve

parents, the average utility loss is 0.22, equivalent to an 8% increase in the distance from home to school

(or replacing a 13% chance at the best school with that at the second best). Sophisticated parents suffer

more from such a reform: The average utility loss is -0.99, equivalent to a 40% increase in the distance or

substituting a 60% chance at the best school with an equal chance at the second best.

Inter-personal welfare comparison is implicitly assumed when calculating average welfare, so in columns

(3)-(7), I consider individual welfare change. On average, 19% of the parents, whether naı̈ve or sophisti-

cated, achieve the same welfare in either case, as they do not participate (column 5). Among naı̈ve parents,

27% are better off, and surprisingly, 55% are worse off. Based on regressions (columns 3 and 6), naı̈ve

students from high-income families are more likely to be unaffected by the reform because of better outside

options. Moreover, students with better grades are much less likely to be worse off.

Among sophisticated parents, 66% are worse off under DA, while 15% are better off (columns 4 and 7).

Students from high-income families or those with more-educated parents or higher grades are less likely to

be worse off. The main reason is again their better outside options.
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Table 15: Welfare Effects of Replacing the Boston Mechanism with DA: Regression Analyses Given the
Observed Equilibrium

Mean Utility Diffa Prob(Better off) Prob(Indiff.)b Prob(Worse off)
Naı̈ve Sophist. Naı̈ve Sophist. Naı̈ve/Sophist. Naı̈ve Sophist.

(1) (2) (3) (4) (5) (6) (7)

mean(Dep V) -0.22 -0.99 0.27 0.15 0.19 0.55 0.66
S.D(Dep V) 1.06 1.92 0.30 0.23 0.37 0.36 0.38

Parent Inci 0.02 0.19*** -0.03** -0.01 0.05** -0.02 -0.04**
(0.03) (0.04) (0.01) (0.01) (0.02) (0.01) (0.02)

Parent Edui 0.02 -0.03** 0.00 0.00 0.01** -0.02*** -0.02***
(0.01) (0.01) (0.01) (0.00) (0.01) (0.01) (0.01)

Own Scorei 10.95*** 27.32*** 0.53*** 0.80*** 2.14*** -2.68*** -2.94***
(1.05) (0.66) (0.16) (0.10) (0.26) (0.32) (0.29)

Awardsi -0.06** -0.21*** -0.00 -0.00 0.01 -0.01 -0.01
(0.03) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01)

Girli 0.01 -0.13*** 0.02 0.01 -0.04* 0.02 0.03
(0.05) (0.04) (0.02) (0.01) (0.02) (0.02) (0.02)

Observations 914 914 914 914 914 914 914
R-squared 0.55 0.91 0.10 0.17 0.24 0.38 0.40

Notes: Each column regresses the dependent variable on the listed explanatory variables and the fixed effects of elementary schools. Robust
standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Under DA, everyone is truth-telling. Under the Boston mechanism, naı̈ve
parents are truth-telling, and sophisticated ones play a best response, given the empirical equilibrium beliefs. a. The mean utility difference is
defined as the average expected utility obtained under the DA minus that obtained from the Boston mechanism. b. The probability of being
indifferent between the Boston and DA mechanisms is the same for both naı̈ve and sophisticated parents because these are parents who do not
participate at all under either mechanism.

6.3 Equilibrium with Naı̈ve and Sophisticated Parents Only

In the second experiment, there are only two types of parents – naı̈ve and sophisticated – with the percentage

of naı̈ve parents ranging from 0%, 10%, to 100%. Given the equilibrium belief in the Boston mechanism in

each case, every parent plays the Boston school choice game two times: truth-telling and best-responding.

Figure 2 reports the welfare effects when the Boston mechanism is replaced by the DA mechanism.25

The first sub-figure reports the average expected utility normalized under the DA mechanism.26 When the

fraction of naı̈ve parents is low (< 80%), DA benefits naı̈ve parents and hurts sophisticated ones on average:

the average loss for sophisticated parents is small, 0.1 (equivalent to 3% increase in the distance to school or

substituting a 6% chance at the best school with an equal chance at the second best), while the average gain

for naı̈ve parents is rather big, 0.46 (equivalent to 17% decrease in the distance or substituting a 28% chance

at the second best school with an equal chance at the best). However, when the fraction of naı̈ve parents is

80% or larger, naı̈ve parents are also hurt by DA, while the loss for sophisticated parents is three times as
25In all three subfigures, there is a big discontinuity when the fraction of naı̈ve parents is 40%. Because this discontinuity may

be due to simulation errors, I do not single it out when discussing the results, while not omitting the result, either.
26Given that schools do not rank students ex ante, the school choice problem is equivalent to the assignment problem to which

Bogomolnaia and Moulin (2001) propose a mechanism called the Probabilistic Serial. The results of the DA presented here are an
approximation of the Probabilistic Serial, as Che and Kojima (2010) show the two mechanisms are asymptotically equivalent. I
thank a referee for bringing this point to my attention.
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large as before.

The overall average welfare is a weighted sum of the two groups’ welfare. The DA mechanism performs

better when there are 20-70% naı̈ve parents; otherwise, the Boston mechanism achieves higher overall

average welfare.
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Effects of the DA on Sophisticated Parents

     Faction of naive parents who are always truth-telling under the Bosotn mechanism

Figure 2: Welfare Effects of Replacing the Boston with DA: Naı̈ve and Sophisticated Parents

Notes: In all simulations, parents play the DA and the Boston mechanisms. Everyone is truth-telling under DA; under the Boston mechanism, naı̈ve
parents are always truth-telling, and sophisticated parents always play the best response. Equilibrium is solved, with fractions of naı̈ve parents
ranging from 0% to 100%. Given each equilibrium, all parents behave sophisticatedly and then naı̈vely under the Boston mechanism. Welfare
effects in each case are calculated for everyone. The average expected utility under DA is normalized to zero. The dashed lines depict the 95%
confidence intervals for the corresponding measures; they are the 2.5th and 97.5th percentiles among the welfare measures evaluated at the point
estimates across the 1000 simulation samples.

Furthermore, the middle and right subfigures show the probabilities of welfare changes for naı̈ve and

sophisticated parents, respectively. Approximately 19% of the parents are always indifferent between the

mechanisms because they do not participate. Among naı̈ve parents, approximately 39% of them are better

off under DA when averaging over all possible fractions of naı̈ve parents, while 42% are worse off. The

reason that so many naı̈ve parents are hurt by DA is that the Boston mechanism provides a coordination

opportunity; thus, sophisticated parents avoid popular schools and leave a greater opportunity for naı̈ve

ones. For sophisticated parents, DA is more harmful: on average, only 20% are better off, while 61% are

worse off. Both types of parents are more likely to be worse off when there are more naı̈ve parents.

The different results from the two counterfactual exercises highlight the significance of parents’ over-
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cautiousness, and, more generally, the importance of allowing flexible behavioral types of parents besides

being naı̈ve or sophisticated. Because DA delivers the same outcome in both experiments, one can compare

the welfare between the two counterfactuals. Given overcautiousness, the Boston mechanism helps 55% of

naı̈ve parents (Table 15): Others’ overcautiousness gives a naı̈ve parent greater odds at the best school. In

contrast, in the case with two types of parents, the fraction of naı̈ve parents who are better off under the

Boston mechanism is between 28-51% and 42% on average (Figure 2).

6.4 Overcautiousness and Maximin Preferences

Overcautiousness can be an indicator of maximin preferences (Gilboa and Schmeidler 1989). When a

maximin parent i has little information about others’ behaviors, i considers a set of beliefs to be possible.

Being uncertainty averse, i takes into account the minimal expected utility over all possible beliefs and

chooses a strategy to maximize that. One possible belief system can be that the majority of parents are

truth-telling and thus top-rank School 1, which leads to a low expected utility for i had i top-ranked School

1. With maximin preferences, i tends to top rank a different school, e.g., School 2.

Below, I first compare the observed actions to those predicted by maximin preferences and show that it

is unlikely that all parents are as uncertainty averse as maximin, although it fits the data better than the best-

responding and truth-telling assumptions in some aspects. I then measure the welfare effects of replacing

the Boston mechanism by the DA mechanism when everyone has maximin preferences, which shows DA

harms more than half of them.

More formally, the maximin strategy of i, σmm, maximizes her lowest possible payoff:

σmm (Xi,Zi, εi) ∈ arg max
σ∈∆(C)

{
min

C−i∈CI−1

4∑
s=1

[as (σ,C−i) max (ui,s, ui,0)]

}
,

where the minimization over C−i amounts to choosing the worst-case scenario for i, given her own strategy

σ. Moreover, truth-telling is still a dominant strategy under DA for maximin parents.

It is straightforward to simulate σmm, but CI−1 contains too many possible profiles. The simulation

draws 68, 000 profiles, based on which the “maximin” operation is performed. Combining σmm with the

1000 simulated preference profiles, I calculate the outcomes by running the Boston with lotteries.

The outcomes lead to column (4) of Table 12, which reports the difference between observed actions

and maximin predictions. Several interesting patterns emerge: for the lists top-ranking School 1 or 2, i.e.,

(1, ?, ?, ?) or (2, ?, ?, ?) , parents choose it more often than the maximin prediction, although the predictions

are more similar than those from best-responding or truth-telling. Moreover, the maximin prediction top-
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ranks School 3 significantly more often than observed (by 21 percentage points). Indeed, with maximin

preferences, School 3, which is the third most popular school with a large capacity (310 seats), seems to be

an even safer choice. These results, however, imply that not all parents have maximin preferences.

Table 16: Welfare Effects of Replacing the Boston Mechanism with DA on Maximin Students

Panel A: Summary Statistics

All Parents
Under DA, parents who are

Better off Indifferent Worse off

Fraction (Percentage Points) 100 18.93 23.59 57.48
Average Difference in Utility −0.22 0.19 0.00 −0.44

Panel B: Regression Analysis
Outcome Variable: Average Utility Difference Pr(Better Off) Pr(Indifferent) Pr(Worse Off)

Parent Inci 0.01 −0.01 0.04 ** −0.03 **
(0.01) (0.01) (0.02) (0.01)

Parent Edui 0.00 0.00 0.01 * −0.01 **
(0.00) (0.00) (0.01) (0.01)

Own Scorei 0.01 −0.45 *** 1.69 *** −1.24 ***
(0.10) (0.08) (0.27) (0.21)

Awardsi 0.02 ** −0.01 ** 0.02 −0.01
(0.01) (0.00) (0.01) (0.01)

Girli −0.01 0.02 ** −0.03 0.02
(0.01) (0.01) (0.02) (0.02)

Observations 914 914 914 914
R-squared 0.13 0.17 0.19 0.16

Notes: Each column reports a regression of the outcome variable on the listed explanatory variables and the fixed effects of elementary schools.
The welfare measures are are calculated from 1000 simulated samples.

I then investigate the welfare effects of switching from the Boston mechanism to the DA mechanism

when everyone is maximin. Parents under DA report true ordinal preferences and play σmm under the

Boston mechanism. Panel A of Table 16 shows that DA decreases average welfare by 0.22, equivalent

to increasing distance by 8% or moving a student’s 13% chance at the best school to the second best.

Furthermore, the majority, 57%, are substantially worse off, while only 19% of them are slightly better off.

Panel B of Table 16 studies who is more likely to be worse off: those who have less-educated or less-

affluent parents (the last regression). Similar to the previous results, given that they have better outside

options for their children, more educated and/or wealthier parents tend to have only one acceptable school

and thus rank them truthfully, even when they have maximin preferences. They have a better chance at the

top school, when others are maximin and thus avoid the school.

7 Discussion and Concluding Remarks

This paper uses data from Beijing on school choice under the Boston (Immediate-Acceptance) mechanism

to answer two questions: (i) whether poorer and/or less-educated parents are more likely to be naı̈ve, and
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(ii) whether the Boston mechanism harms naı̈ve parents more than DA does.

Assuming that students’ preferences are private information, I model school choice under the Boston

mechanism as a simultaneous game of incomplete information. Due to the lack of strategy-proofness, sub-

mitted choice lists are not necessarily true preferences, and parents may make mistakes when strategizing.

I then derive a set of dominated strategies as identifying conditions and obtain obtain preference estimates

that are robust to a wide range of parents’ strategic mistakes.

Based on the estimated preferences, the analysis of observed parent behavior rejects the hypotheses

that everyone is of the same type: naı̈ve or sophisticated. Parents are revealed to be overcautious in the

sense that they avoid top-ranking the most popular school more often than prescribed by best responding.

A better outside option offsets the overcautiousness to some degree because it makes the true preference

order more likely to be a best response. Although wealthier and more-educated parents tend to have a better

outside option, there is no evidence that they are more sophisticated. On the contrary, poorer parents pay

more attention to uncertainty in the game, which indicates that they strive to find a best response. However,

paying more attention to uncertainty does not help and sometimes even worsens their overcautiousness.

Given parents’ observed behavior, especially their overcautiousness, when replacing the Boston mecha-

nism by DA, both naı̈ve and sophisticated parents suffer a utility loss. For naı̈ve parents, the loss is equivalent

to an 8% increase in the distance to the school or substituting a 13% chance at the best school with an equal

chance at the second best. The magnitude of this effect is more than 4 times as large for sophisticated par-

ents. Additionally, only 27% of the naı̈ve parents are better off under DA, while 55% are actually worse off.

The negative effects decrease with parents’ income and education because of outside options.

If every parent is either sophisticated or naı̈ve and no one is overcautious, switching from the Boston

mechanism to DA has mixed effects. In terms of average expected utility, when there are not as many naı̈ve

parents (<80%), DA helps naı̈ve parens while hurting sophisticated parents slightly; but when at least 80%

of parents are naı̈ve, the naı̈ve ones do not benefit from DA, either. Furthermore, in terms of individual

welfare change, 39% of naı̈ve parents are better off under DA, while 42% are actually worse off. The effect

of DA is more negative for sophisticated parents: only 20% are better off, while 61% are worse off.

The difference between the above two counterfactual analyses highlights the heterogeneity of parents’

sophistication in the data. When one considers a two-type model, the overcautiousness is assumed away,

while the data suggest that there are more types other than being naı̈ve or sophisticated.

50



7.1 The Boston Mechanism in Practice?

A few caveats are in order regarding the paper’s external validity. Schools in Beijing have no pre-determined

priorities for students; Abdulkadiroglu, Che, and Yasuda (2011) show that Bayesian Nash equilibrium under

the Boston mechanism can dominate that under DA with single tie-breaker (or, equivalently, Random Serial

Dictatorship). However, this result is not robust to the introduction of priority groups (Troyan 2012).27

The game in Beijing looks “simpler” relative to the usual applications (Abdulkadiroglu and Sonmez

2003) because it only has four schools. On the other hand, the conflict of interests among parents is high

because most prefer the same schools, which may encourage more “gaming”. Because the most popular

school has the smallest capacity, naı̈ve parents may have an unusual advantage in this setting: By top-ranking

the most popular school, naı̈ve parents can effectively “deter” sophisticated parens from applying to that

school. Additionally, the importance of an outside option is also pronounced in Beijing, as it significantly

reduces the difficulty of playing the game for some parents but not others – when a parent has only one

acceptable school in the system, the strategy is to top-rank that school regardless of uncertainties.

More importantly, the above welfare evaluation does not consider the “cost of strategizing,” which can

be substantial under a non-strategy-proof mechanism. The cost may include many aspects, but Chen and

He (2017) capture it partially through information acquisition cost. Under the Boston mechanism, students

often find it beneficial to learn others’ preferences and strategies and are thus willing to acquire this costly

information, whereas under DA, this incentive is absent. Results from a lab experiment show that the

potential welfare gain of the Boston mechanism decreases and sometimes disappears due to this costly

information acquisition. In other words, the cost of strategizing offsets the potential gain from improved

match quality.

These results and concerns can be a hint of considering alternative cardinal mechanisms, e.g., the

pseudo-market mechanism (Hylland and Zeckhauser 1979, He, Miralles, Pycia, and Yan 2015). On one

hand, it further improves upon the efficiency of the Boston mechanism by explicitly using cardinal prefer-

ences to optimally assign students to schools. On the other hand, it has better incentive properties: students

have no incentives to misreport under the pseudo-market mechanism when the market is large. The various

practical issues associated with such mechanisms, however, call for future research efforts.

27Troyan (2012) partially restores the dominance results by introducing a new welfare criterion.
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A Proofs

Proof of Lemma 1.
(i) Suppose a participating student submits a full list, and she is rejected by all her choices but the last

choice (s∗). Then in Round S, school s∗ must have more available seats than students unassigned. If the
total seats left at s∗ is qs∗ , then the number of students unassigned is I−

∑
s qs + qs∗ . Since I ≤

∑
s qs,

I −
∑

s qs + qs∗ < qs∗ . Thus, the student must be assigned to her last choice.
Suppose a participating student submits a partial list and is rejected by all the schools in her list. After

at most S rounds, she is still unassigned. Since I ≤
∑

s qs, at that point, the number of available seats is at
least the number of remaining students, and thus she will be assigned to some leftover school.

(ii) Suppose C and C̄ have the same top K choices. In any realization of the game (any lottery number),
if the student is assigned to one of the first K choices when submitting C, she must be assigned to that
school when submitting C̄. If she is not assigned to a school in the first K schools when submitting C, she
will not be assigned to that school if submitting C̄. This means she has the same probability to be assigned
to any given school among the first K choices when she submits C or C̄.

(iii) Suppose C and C̄ have the same first K ′ − 1 choices. School s is listed as Kth choice in C, but
as K ′th choice in C̄ and K ′ < K. In any realization of the game (any lottery number), if the student is
rejected by s when submitting C̄, she will not be accepted by s if submitting C. If she is accepted by s when
submitting C, in the same realization of the game, school s has more available seats than applying students
in Round K ′. Thus, she will be assigned to s for sure if submitting C̄. Moreover, there are cases that s
is available in Round K ′ but not in Round K. This implies the probability of being assigned to s weakly
increases when moving it toward the top of the list. In the same manner, including an otherwise omitted
school in the list has the same effect.

(iv) The number of students listing s as first choice is at most I . Since a lottery number is used to
determine who will be accepted, among those who have the same first choice, everyone have the same
probability being accepted by that school. The probability of being accepted by s is at least qs/I if a student
list s as first choice.

Proof of Proposition 1. To show the existence of a symmetric equilibrium, I make use of the results
in Schmeidler (1973) by reconstructing the Bayesian game into a game of complete information with a
nonatomic continuum of players. Theorem 1 in Schmeidler (1973) establishes the existence.

Within the current incomplete information setting, each player i is facing (I − 1) players without know-
ing their types. Given the distribution of {u−i,s}Ss=1 being common knowledge, it is equivalent to say that i
is playing against a continuum of players each of whom is of type {uj,s}Ss=1, j 6= i.

More formally, the game of school choice can be re-written into a game of complete information where
the set of players T is RS endowed with a measure µ such that for any measurable set T̂ ⊂ T ,

µ
(
T̂
)
≡ (I − 1)

∫
1
(
{us}Ss=1 ∈ T̂

)
dG (X,Z) dF (ε) ,

where each player is indexed by {us}Ss=1 ∈ RS .
With some abuse of notation, now define a strategy σ as a measurable function from T to ∆ (C). The

payoff to player {us}Ss=1 is

V
[
σ
(
{us}Ss=1

)
, σ
]

=

S∑
s=1

As

[
σ
(
{us}Ss=1

)
, σ
]

max (us, 0) ,
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where, with Cn =
(
Cn1 , ..., C

n
m, ..., C

n
(I−1)

)
,

As

[
σ
(
{us}Ss=1

)
, σ
]

=
L(I−1)∑
n=1

{∫
{ûs}Ss=1∈T

Pr
[
Cnm is played under σ

(
{ûs}Ss=1

)]
dµ

}
as

(
σ
(
{us}Ss=1

)
, Cn

)
.

It can be verified that the above notations are equivalent to the original ones given the independent types
across parents, and V

[
σ
(
{us}Ss=1

)
, σ
]

is continuous in σ.

To apply Schmeidler’s theorem, one need to show that ∀C,C ′ ∈ C the following set is measurable,{
{us}Ss=1 ∈ R

S |V [C, σ] > V
[
C ′, σ

]}
,

where V [C, σ] > V [C ′, σ] is equivalent to

S∑
s=1

{
As [C, σ]−As

[
C ′, σ

]}
max (us, 0)

=
L(I−1)∑
n=1

{ ∫
{ûs}Ss=1∈T

Pr
[
Cnm is played under σ

(
{ûs}Ss=1

)]
dµ

× [as (C,Cn)− as (C ′, Cn)] max (us, 0)

}
> 0,

which is linear in {us}Ss=1. The above set is therefore measurable. By Schmeidler’s Theorem 1, an equilib-
rium always exist.

(i) From i’s perspective, for any j 6= i, Pr
(
uj,s > 0 > uj,s′ , given s & ∀s′ 6= s

)
> 0 given the con-

tinuous distribution assumption on εj . In this case, since j only has one acceptable school (s), given any
equilibrium beliefs, the best response for j is rank s at top. Therefore, Pr (s is top ranked by all j 6= i) > 0
which implies that As (C, σ−i) < 1 for all C such that s is top ranked.

Now suppose thatAs
(
C, σ∗−i

)
= 1 for someC such that s is not top ranked, there must beAs

(
C ′, σ∗−i

)
=

1 such that s is top ranked in C ′ (from Lemma 1). Therefore, As
(
C, σ∗−i

)
< 1 for all s and for all

C 6= (0, ..., 0).
Similarly, conditional on being rejected by previous choices, the probability of being accepted by s is

less than one, unless s is the Sth (the last) choice. Suppose that C =
(
c1, ..., cK , s, cK+2, ..., cS

)
, where

1 ≤ K ≤ (S − 2) and ck 6= 0, ∀k = 1, ...,K. Then there is a strictly positive probability that (i) (qc1 + 1)
students’ preferences are such that c1 is the only acceptable school and (ii) qck students’ preferences are
such that ck is the only acceptable school, for k ∈ {2, ...,K, s}. This is true because

∑K
k=1 qck + qs+ 1 ≤ I

which is implied by
∑S

s=1 qs ≥ I and
∑S

s=1 qs − qs′ < I , for any s′.
For those students, their best response is to rank their only acceptable school first, and therefore, there

is a positive probability that a student who submits C is rejected by s conditional on she is rejected by
c1, ..., cK as well.

Since
∑S

s=1As
(
C, σ∗−i

)
= 1, the above two results implies that As

(
C, σ∗−i

)
> 0 for all s and C 6=

(0, 0, 0, 0).
(ii) Note that in equilibrium i’s value function is Vi

(
σ∗i , σ

∗
−i
)

=
∑S

s=1As
(
σ∗i , σ

∗
−i
)

max (ui,s, ui,0).
From above, As

(
C, σ∗−i

)
∈ (0, 1) for all s and for all C 6= (0, ..., 0). If C∗i 6= C∗∗i 6= (0, ..., 0) are played

A.3



with positive probability in σ∗i given {ui,s}Ss=1 or (Xi,Zi, εi), then Vi
(
C∗i , σ

∗
−i
)

= Vi
(
C∗∗i , σ

∗
−i
)
, or,

S∑
s=1

[
As
(
C∗i , σ

∗
−i
)
−As

(
C∗∗i , σ

∗
−i
)]

max (ui,s, ui,0) = 0. (6)

Since C∗i 6= C∗∗i , there is at least 2 schools such that As
(
C∗i , σ

∗
−i
)
6= As

(
C∗∗i , σ

∗
−i
)
, as a result of part (iv)

in Proposition 3.
Since i has at most one unacceptable school and ui,s 6= ui,s′ for all s 6= s′ with probability one, equation

(6) holds ex ante with probability zero. This proves that i plays pure strategies with probability zero.
(iii) The argument in (ii) implies that if i plays a mixed strategy, i has at least two unacceptable schools

with probability one.
Suppose that C∗i =

(
c1
i , ..., c

S
i

)
is played with positive probability in σ∗i , and that ∃k ∈ {1, ..., (S − 2)},

ui,cki
< 0 and ui,ck+1

i
> 0. By applying results in Lemma 1 and (i), one may show that C∗i must be

strictly dominated by excluding the unacceptable school from the list. Therefore, any C∗i must exclude the
unacceptable schools or include them at the bottom.

(iv) From (ii) and (iii), i has multiple best responses in equilibrium only when she has multiple un-
acceptable schools. Therefore, when one fixes how everyone chooses a mixed strategy, there is a unique
equilibrium strategy for everyone with probability one.

Proof of Proposition 3.
(i) Suppose the first choice in list C is unacceptable, or worse than the outside option. Construct a new

list, C ′, such that the first school is the most preferred school and all other choices in C ′ are the same as
C. Then given any realization of the game (any lottery number and any profile of other players lists), if
the student is accepted by an acceptable school when submitting C, she will be either accepted by the most
preferred school or that school. She is weakly better off in any realization. And there must exist cases such
that she is matched with the first choice in C when submitting C, while she will be matched with the most
preferred school when submitted C ′ instead. Thus, C is strictly dominated by C ′.

In the same manner, if the first choice in C is the worst school, C is dominated by C ′ which is the same
as C except the first choice in C ′ is replaced by the most preferred school.

(ii) Since including an otherwise omitted school always weakly increases the probability of being ac-
cepted by that school (Lemma 3), adding the acceptable school after the last choice of a partial list, always
weakly improves the expected utility. If there are multiple acceptable schools are omitted, adding them to
the list from the best to the worse will also weakly improves the expected utility.

(iii) Suppose the submitted list of i is C =
{
c1, ..., cS

}
such that cK = ŝ which is worst school,

1 ≤ K < S, such that ui,ŝ = mint=1,...,S {ui,t} and ∃t ∈ {K + 1, ..., S} s.t., ui,ct > ui,0. Consider an
alternative list, C ′ =

{
c1, ...cK−1, š, cK+1, ..., cS

}
, where ui,š = maxt=1,...,S {ui,t} > ui,0, i.e., replace the

worst school with the best one.
Given any realization of the game, if the student is accepted by any school of c1, ...cK−1 when submitting

C, she will be still accepted by that school when submitting C ′ instead. By Lemma 3, Ai,ŝ
(
C, σ∗−i

)
≥

Ai,ŝ
(
C ′, σ∗−i

)
, and the decrease in the probability is distributed to š, cK+1, ..., cS and ŝ as well. Since

ui,ŝ = mint=1,...,S {ui,t} and ui,cti > ui,0, C ′ weakly improves i’s expected utility. Similar arguments can
be made if ui,ŝ < ui,0.

(iv) The strict increase can be seen easily in terms of conditional probabilities. Ai,s
(
C, σ∗−i

)
equals:

Pr(i is rejected by schools ranked above s in C|σ∗−i)
∗Pr(i is accepted by s given C|σ∗−i; i is rejected by schools ranked above s)

If Ai,s
(
C, σ∗−i

)
∈ (0, 1), ∀s and ∀C 6= (0, ..., 0), then the above two terms are both in (0, 1) unless s is
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ranked as Sth after all other schools.
Suppose that s is ranked as kth choice in C and ranked as k′th in C ′, where 1 ≤ k′ < k ≤ S and the 1st

to (k′ − 1)th choices are the same in both lists. We want to show that Ai,s
(
C ′, σ∗−i

)
> Ai,s

(
C, σ∗−i

)
.

From Lemma 3, Ai,s
(
C ′, σ∗−i

)
≥ Ai,s

(
C, σ∗−i

)
, if Ai,s

(
C ′, σ∗−i

)
= Ai,s

(
C, σ∗−i

)
, then:

Pr(i is rejected by schools ranked above s in C|σ∗−i)
∗Pr(i is accepted by s given C|σ∗−i; i is rejected by schools ranked above s)

= Pr(i is rejected by schools ranked above s in C ′|σ∗−i)
∗Pr(i is accepted by s given C ′|σ∗−i; i is rejected by schools ranked above s).

We would also have:

Pr(i is rejected by schools ranked above s in C|σ∗−i)
< Pr(i is rejected by schools ranked above s in C ′|σ∗−i),

because the probability of being rejected by schools ranked between (k′ + 1)th to (k− 1)th in C is positive.
Otherwise, it would imply Ai,ŝ

(
Ĉ, σ−i

)
= 0 for some Ĉ and ŝ.

Together, the above equality and inequality imply that,

Pr(i is accepted by s given C|σ∗−i; i is rejected by schools ranked above s)

> Pr(i is accepted by s given C ′|σ∗−i; i is rejected by schools ranked above s)

which is impossible because s ranked higher in C ′ than it is in C.
This proves that Ai,s

(
C ′, σ∗−i

)
> Ai,s

(
C, σ∗−i

)
. Similarly, the same is true if s is otherwise omitted

from the list.
Since now the increase is always strict, it is straightforward to construct the strict dominance for (ii) and

(iii).
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B Evaluation of the Assumptions: Evidence from Experimental Data

This appendix uses data from the lab experiment in Calsamiglia, Haeringer, and Klijn (2010) to evaluate the
key assumptions.

Specifically, I use the data of the school choice experiment in which every student can only rank up to
three choices. Under each of the three mechanisms (the Boston mechanism, DA and the Top-Trading-Cycles
mechanism (TTC)),28 students are explicitly instructed that:

“Please write down a ranking of up to 3 schools.”

That is, students are allowed to rank fewer than 3 choices, which is in contrast to other lab experiments that
require students to rank a given number of schools. Both DA and TTC are strategy-proof when students
are allowed to rank all schools. In the experiment, however, students can only rank three out of the total of
seven schools, which may lead to strategic behaviors.

In each session, there are 36 students competing for 36 seats across seven schools. Moreover, each stu-
dent has a “district school” at which she always has the highest priority. Among all out-of-district students,
schools use a single lottery to rank them. When submitting the rank-order list, students play a one-shot game
of incomplete information: Everyone knows her own preferences and district status at each school but does
not know others’ preferences or the lottery determining schools’ priority ranking over students.

Each student is guaranteed admission at her district school in any of the following three scenarios:
(i) Under the Boston mechanism, the district school is top ranked.29

(ii) Under DA, the district school is ranked anywhere, and the student is not admitted by any school ranked
above the district school.

(iii) Under TTC, the district school is ranked anywhere, and the student is not admitted by any school
ranked above the district school.

Therefore, in any of the scenarios, the admission probability is degenerate, and the student will not be
accepted by any school that is ranked below the district school, if there is any. This leads to a set of payoff-
equivalent lists for the student. In this sense, district school amounts to outside option in the extended choice
list Ci, as defined in Section 3.3.3.

The sample of students who are in any of the above three scenarios is defined as the MIXING sample,
as they are the ones who can mix over multiple payoff-equivalent strategies.30 In the following, I focus on
the MIXING sample and provide evidence showing that:

(i) The majority of students in the MIXING Sample tend to rank up to three schools, even when it does
not matter for their payoffs (Section B.1);

(ii) When they rank more schools, the choices ranked after the district school are very often ranked ac-
cording to their true preference order (Section B.2);

28Under TTC, each student is asked to submit a choice list, i.e., a rank-order list of schools. Given how schools rank students
and the submitted lists, the final assignment is determined in the following procedure:

Round k, k ≥ 1: Every student that has not been assigned a school in the previous round applies to the highest ranked available
school in her choice list that has not rejected her yet (if there is no such school then the student “applies” to herself). Each school
with vacant seats “points” to the student with highest priority among the students that have not been assigned a seat yet. Together
with the above described procedure for the students, it creates a cycle or cycles of students and schools. If a student is in a cycle
she is assigned a seat at the school she applies to (or to herself if she is in a self-cycle). If a school is in a cycle then its number of
vacant seats is decreased by one. If a school has no longer vacant seats, then it is no longer available and students that applied to it
are rejected.

TTC terminates when every student has been assigned to a school or to herself.
29Under the Boston, admission to the district school is not guaranteed if it is ranked second or third even when the student is

rejected by higher choices. It is because the district school may have enough students ranking it as first choice.
30In the data, there are some students ranking the same school twice. I delete the lower ranked one and consider that these

students do not rank up to three schools.
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(iii) The mixing probability, or the probability of ranking more schools after the district school, is not
significantly correlated with student preferences (Section B.3).

B.1 Choice among Payoff-Equivalent Strategies

Focusing on the students in the MIXING sample, Table B1 shows how many schools students rank after dis-
trict school. Panel A presents the distribution of students rank zero, one, or two schools after district school,
conditional on how district school is ranked (first or second choice); Panel B shows the same distribution
among all students in the MIXING sample. Under any of the three mechanisms, students tend to rank three
choices: Only 3.41% of the students choose not to rank any school after district school and 1.14% leaves
blank one place in their list, while the majority (95.45%) rank three choices. Across mechanisms, students
under the Boston mechanism tend to rank fewer choices after district school, although 92.54% still rank
three choices.

Table B1: Ranking Behavior with Degenerate Beliefs among Students in the MIXING Sample

Mechanism
All 3 Mechanisms

Boston DA TTC

Panel A: By the Rank of District School
District school ranked first

No school ranked after district school 3 2 0 5
(column percentage) 4.48 3.33 0 2.84

One school ranked after district school 2 0 0 2
(column percentage) 2.99 0.00 0.00 1.14

Two schools ranked after district school 62 31 29 122
(column percentage) 92.54 51.67 59.18 69.32

District school ranked second
No schools ranked after district school -- 1 0 1

(column percentage) -- 1.67 0 0.57

One school ranked after district school -- 26 20 46
(column percentage) -- 43.33 40.82 26.14

Panel B: All Students in the MIXING Sample
District school ranked first or second
No school ranked after district school 3 3 0 6

(column percentage) 4.48 5 0 3.41

≥ one school ranked after district school 64 57 49 170
(column percentage) 95.54 95 100 96.59

Total 67 60 49 176

Notes: Data source: Calsamiglia, Haeringer, and Klijn (2010).
Each student has a “district school” at which the student is guaranteed admission under either of the following three scenarios:

(i) Under the Boston mechanism, the district school is top ranked.
(ii) Under DA, the district school is ranked anywhere, and the student is not admitted by any school above the district school.

(iii) Under TTC, the district school is ranked anywhere, and the student is not admitted by any school above the district school.
In any of the scenarios, the admission probability is degenerate. The percentages are out of the total number of students under each mechanism.

Table B1 highlights the importance of the multiple best response and thus multiple equilibria. Moreover,
it shows that empirically students tend to rank more schools, even though it does not affect their payoff. In
this setting, this is probably because the cost of ranking more schools is zero.

B.2 Assumption UNACCEPTABLE

In the context of the experiment, Assumption UNACCEPTABLE translates into that students rank them
truthfully among the choices after district school. To test this, I look at the second and third choices of the
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students who rank district school as their first choice. I then further compare this with the second and third
choices of those who do not rank district school as first choice.

Table B2: Truth-telling among the second and third choices: Conditional on the first choice

First Choice = District Schoola First Choice 6= District Schoolb

Truth-Telling Mechanism
All 3 Mechanisms

Mechanism
All 3 Mechanisms

Boston DA TTC Boston DA TTC

No 9 8 5 22 28 0 3 31
(column percentage) 14.52 25.81 17.24 18.03 51.85 0 25 41.33

Yes 53 23 24 100 26 9 9 44
(column percentage) 85.48 74.19 82.76 81.97 48.15 100 75 58.67

Total 62 31 29 122 54 9 12 75

Notes: This table reports whether students rank their second and third choices truthfully. The sample only includes students who have ranked three
choices and whose second and third choices are not district school.
aThis part of the analysis only focuses on students whose first choice is a district school. Therefore, it does not affect their payoffs no matter how
they rank the second and third choices.
bThis part of the analysis only focuses on students whose first choice is not district school, which implies that district school is not included in the
list at all.

When district school is ranked first under any of the three mechanisms, 82% of the students rank their
second and third choice according to their preferences; in contrast, only 59% do so when the first choice is
not district school. Under the Boston, the comparison is 85% versus 48%.

Table B2 therefore shows that Assumption UNACCEPTABLE is plausible: When ranking schools that
do not affect their payoffs, students tend to rank them truthfully.

B.3 Assumption MIXING

Assumption MIXING in the main text requires that the mixing probabilities are independent of preferences.
Table B3 investigates who rank more schools after district school. With the MIXING sample, Columns

(1) and (2) report results from a linear probability model in which the binary outcome variable equals to
one if the student ranks three choices with district school as the first or second choice. It shows that the
probability of ranking more schools are not affected by the student’s preference of her district school nor
how district school is ranked. Column (2) shows the same results.

As a robustness check, Columns (3) and (4) use a probit model to take into account the discrete nature
of the outcome variable, although similar results are obtained.

In the main text, the mixing probability, or the decision to rank an unacceptable school is independent
of the cardinal utility associated with that school. To see if the data from the experiment is consistent with
this assumption, I investigate what affects students’ decision to rank the next preferred school after district
school. For example, for a student in the MIXING sample whose district school is her kth preferred school
(k < 7), the analysis is on whether she ranks her (k + 1)th preferred school after her district school (= 1
if yes; = 0 otherwise). In particular, I am interested in the utility difference between the district school and
the (k + 1)th school.

The results from a linear probability model and a probit model are presented in Table B4, where the
sample excludes those who only rank more preferred schools than the district school after the district school.
Overall, there is no evidence showing that a student would rank the next preferred school more often when
it is more preferable in term of cardinal preferences. In fact, columns (4) and (8) show that students do the
opposite: When the next preferred school is much worse relative to the district school, the student ranks it
after the district school more often.

Additional results are presented in Table B5, where I use the full MIXING sample, including those who
only rank more preferred schools than the district school after the district school. Again, there is no evidence
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Table B3: Regression Analysis: Who Rank Three Choice while District School is 1st or 2nd Choice

Linear Probability Probit Modela

(1) (2) (3) (4)

District school ranked as first choice -0.03 0.01 -0.41 0.14
(0.04) (0.04) (0.47) (0.66)

In true preferences, district school ranked as:
2nd 0.03 0.00 0.18 -0.16

(0.07) (0.07) (0.58) (0.73)
3rd 0.05 0.04 0.47 0.60

(0.07) (0.07) (0.68) (0.84)
4th 0.02 0.01 0.11 0.08

(0.07) (0.07) (0.63) (0.80)
5th 0.08 0.04

(0.12) (0.12)
6th 0.07 0.06

(0.11) (0.11)
7th 0.08 0.19

(0.22) (0.22)

Mechanism
DA 0.05 0.26

(0.04) (0.50)
TTC 0.10**

(0.04)

Other Controls
Experiment at Universitat Pompeu Fabra 0.11*** 1.29**

(0.03) (0.54)
Preferences randomly generated 0.09** 1.03*

(0.04) (0.54)
Constant 0.95*** 0.80*** 1.79** 0.52

(0.07) (0.09) (0.70) (1.03)

N 176 176 166 119
R2 0.01 0.10

Notes: Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
This table reports estimates from a linear probability model (columns (1) and (2)) and a probit model (columns (3) and (4)), in which the outcome
variable is whether the student rank three choices (= 1 if yes; = 0 otherwise). Only students in the MIXING sample is included. That is, everyone
in the sample ranks her district school as first or second choice under DA or TTC or rank it as first choice under the Boston.
aSome observations are omitted because some variables (District school ranked 5th, 6th, or 7th, and TTC) perfectly predict the outcome variable.
bDefinitions of variables:
“DA” = 1 if the mechanism is DA; = 0 otherwise (i.e., it is either TTC or the Boston mechanism).
“TTC” = 1 if the mechanism is TTC; = 0 otherwise (i.e., it is either DA or the Boston mechanism).
“Experiment at Universitat Pompeu Fabra” = 1 if the experiment is conducted at that university; = 0 if it is at Universitat Autònoma de Barcelona.
“Preferences Randomly Generated” = 1 if the students preferences are randomly generated (i.e., independent of district-school status); = 0 if the
preferences are created in the following way: the ordinal preference is determined by three factors: a schools quality, its proximity, and a random
factor; based on the ordinal preferences, the payoff to be received by each participant when assigned to a given school are determined.

showing that a student would rank the next preferred school more often when it is more preferable in term
of cardinal preferences.
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Table B4: Ranking the Next-Preferred School after District School

Linear Probability Model Probit Modela

(1) (2) (3) (4) (5) (6) (7) (8)

Utility diff. b/t school district school 0.02 0.02 0.08 0.11* 0.10 0.11 0.34 0.90*
& the next preferred school (0.05) (0.05) (0.05) (0.06) (0.19) (0.19) (0.26) (0.50)

District school ranked as first choice -0.02 0.02 0.07 -0.08 0.12 0.41
(0.08) (0.08) (0.09) (0.32) (0.35) (0.41)

In true preferences, district school ranked asb

2nd 0.17 0.18 0.75 1.24
(0.14) (0.14) (0.63) (0.81)

3rd -0.26 -0.24 -0.61 -0.10
(0.16) (0.16) (0.65) (0.82)

4th -0.24 -0.23 -0.57 -0.26
(0.19) (0.20) (0.73) (0.88)

6th 0.19 0.23
(0.39) (0.40)

Mechanism
DA 0.02 0.12

(0.10) (0.42)
TTC 0.11 0.53

(0.09) (0.43)
Other Controls

Experiment at Universitat Pompeu Fabra 0.17** 0.82**
(0.08) (0.37)

Random Preferences 0.12 0.85
(0.09) (0.53)

Constant 0.77*** 0.79*** 0.56*** 0.31 0.72** 0.77* -0.16 -2.60
(0.09) (0.11) (0.21) (0.25) (0.35) (0.41) (0.97) (1.80)

N 114 114 114 114 114 114 113 113
R2 0.00 0.00 0.15 0.20

Notes: This table reports estimates from a linear probability model (columns (1)-(4)) and a probit model (columns (5)-(8)), in which the outcome
variable is whether the next preferred school after district school is ranked as second or third choice (= 1 if yes; = 0 otherwise). The sample
includes students in the MIXING sample whose second and third choices are not their district schools, excludes those who rank more preferred
schools than district school after their district school, and further deletes those whose district school is the least preferred school.
a. Some observations are omitted because some variables (District school ranked 5th and 6th) perfectly predict the outcome variable.
b. “District school ranked 5th in true preferences” is omitted due to collinearity.
Definitions of the variables:
“Utility diff. b/t school district school & the next preferred school” = “utility of district school” − “utility of the next preferred school after district
school”.
Other definitions are available in the notes of Table B3.
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Table B5: Ranking the next preferred school after district school

Linear Probability Model Probit Modela

(1) (2) (3) (4) (5) (6) (7) (8)

Utility diff. b/t school district school -0.06 -0.06* 0.01 0.01 -0.15 -0.16* 0.06 0.06
& the next preferred school (0.03) (0.04) (0.03) (0.03) (0.09) (0.09) (0.12) (0.12)

District school ranked as first choice 0.05 0.02 0.03 0.13 0.12 0.17
(0.09) (0.06) (0.07) (0.22) (0.29) (0.34)

In true preferences, district school ranked as
2nd 0.07 0.07 0.33 0.28

(0.11) (0.11) (0.50) (0.53)
3rd -0.66*** -0.65*** -1.89*** -1.97***

(0.11) (0.12) (0.50) (0.53)
4th -0.72*** -0.72*** -2.22*** -2.30***

(0.12) (0.12) (0.55) (0.59)
5th -0.82*** -0.82***

(0.20) (0.20)
6th -0.63*** -0.61*** -1.76** -1.72**

(0.18) (0.19) (0.78) (0.81)
Mechanism

DA -0.03 -0.18
(0.07) (0.34)

TTC 0.08 0.38
(0.07) (0.36)

Other Controls
Experiment at Universitat Pompeu Fabra 0.07 0.32

(0.06) (0.27)
Random Preferences 0.03 0.11

(0.06) (0.29)
Constant 0.64*** 0.61*** 0.77*** 0.70*** 0.37* 0.29 0.68 0.46

(0.08) (0.09) (0.13) (0.16) (0.20) (0.24) (0.60) (0.72)

N 175 175 175 175 175 175 171 171
R2 0.02 0.02 0.56 0.58

Notes: This table reports estimates from a linear probability model (columns (1)-(4)) and a probit model (columns (5)-(8)), in which the outcome
variable is whether the next preferred school after district school is ranked as second or third choice (= 1 if yes; = 0 otherwise). The sample
includes students in the MIXING sample whose second and third choices are not their district schools and whose district school is not the least-
preferred school.
a. Some observations are omitted because some variables (District school ranked 5th) perfectly predict the outcome variable.
Definitions of the variables can be found in Tables B3 and B4.
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C Data Cleaning and Imputation

The data set that I use in this paper is a subsample of the data set that has been used in Lai, Sadoulet, and
de Janvry (2009), Lai (2010), and Lai, Sadoulet, and de Janvry (2011).

Students’ submitted lists are the most important variable. There are two types of “technical errors”
among the lists as defined in Lai, Sadoulet, and de Janvry (2009): (i) repeated choice of a school and
(ii) applying to schools not accessible to the neighborhood with the assignment system. Among the 914
students, there are 6 cases of type (i) error and 3 of type (ii) error.

The first 6 students submitted lists as follows: (2, 3, 3, 3), (2, 3, 1, 2), (2, 1, 3, 2), (1, 1, 0, 0)–two cases,
and (1, 2, 2, 3). I replace these lists by (2, 3, 0, 0), (2, 3, 1, 4), (2, 1, 3, 4), (1, 0, 0, 0), and (1, 2, 3, 4) respec-
tively. The replacement for the first 4 lists is straightforward, as they are payoff-equivalent in any realization
of the game. Replacing (1, 2, 2, 3) by (1, 2, 3, 4) is because this student shows a preference of School 3 over
School 4. The results do not change in a few cases that I have experimented when (1, 2, 2, 3) is replaced by
(1, 2, 0, 0).

The second 3 cases are those who have submitted (2, 3, 1, s′)–2 cases and (2, 1, s′′, 4), where s′ 6= s′′

/∈ {0, 1, 2, 3, 4}. I replace the first list by (2, 3, 1, 4), as they are always payoff equivalent. (2, 1, s′′, 4) is
either replaced by (2, 1, 0, 0) or (2, 1, 3, 4). (2, 1, 0, 0) is payoff equivalent in the observed play of the game.
I also consider (2, 1, 3, 4) as an alternative because the code for School 3 in the application is 15, while the
code for s′′ is 25. Therefore, it is likely that (2, 1, s′′, 4) is submitted or recorded as a typo. I present the
results when (2, 1, s′′, 4) is replaced by (2, 1, 3, 4).

The main explanatory variables areDistancei,s,Own Scorei, Parent Inci, Parent Edui, andAwardsi.
Distancei,s measures the walking distance between i’s home address and school s, and both addresses

are from 1999. I use the Chinese version of Google Maps, http://ditu.google.cn/, to get the walking distance.
Students’ home addresses are from the administrative data, and there are 4 students missing home address.
Their distances are assigned at the medians.

Own Scorei is the sum of student i’s scores of Chinese and math in grade 6 which is the final year of
elementary school. They scores are from administrative data, but there are 125 missing values. To impute,
I follow the 3 steps: (i) I regress these test scores on their test scores from the two semesters of grade 7
controlling middle school and elementary school fixed effects, then I do the out-of-sample prediction. (ii)
I run similar regressions but with Parent Edui as main regressor and then do out-of sample predictions.
(iii) The remaining missing values are replaced by the median.

Parent Inci is the sum of father’s and mother’s income. There are 108 missing values in father’s
income and 100 in mother’s. Some of the missing values in Parent Inci are replaced by the households
disposable income plus the average difference between Parent Inci and the disposable income. I regress
their own income on different combinations of their own and their spouse’s education, political affiliations,
and ages, the disability status (of either of them), and their spouse’s income, and then do out-of-sample
prediction to further impute Parent Inci.

Parent Edui is the average years of schools of parents. There are 49 missing values. I regress
Parent Edui on different subsets of the variables, Parent Inci, father’s and mother’s political affiliations,
father’s and mother’s job stabilities, and the disability status (of either of them). Then I do out-of-sample
predictions to impute Parent Edui.

Awardsi are calculated from 6 questions in the 2002 survey. These questions ask students if they have
received any awards at district level or above in 6 different categories during the six years of elementary
study – all-round excellence, excellence in specific subjects, in science and technology contests, in arts and
sports, in student leadership, and others. For the responses to each question, it takes one of the values of 0,
1, or missing (which is treated as 0).
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D Heterogeneous Information on Students’ Characteristics

This appendix considers that the case when some parents know more than others about other students/parents’
characteristics. Therefore, (Xi,Zi) is no longer private information.

Proposition 4 Consider the following scenario:
(i) Every parent has the same ability to process information;
(ii) Parent i also knows the realization of X i ≡

{
X̄i1 , ..., X̄iF

}
, where X̄i ≡ (Xi,Zi), F is fixed and

X i may be different across parents.
Given the number of schools, as the number of parents becomes larger and the quotas grow at the same

rate, the beliefs converge to a common belief, Bi (C)→ B (C), ∀i, ∀C ∈ C.

Proof of Proposition 4. A student’s decision is to choose one of the L possible lists. Fix the order of all the
lists, and let di = (di,1, ..., di,L)′, and di,l = 1 if the lth list is chosen by student i and di,l = 0 otherwise.
Thus,

∑L
l=1 di,l = 1.

Without loss of generality, consider student 1’s decision and suppose X 1 =
{
X̄2, ..., X̄F+1

}
. Her

perceived probability of other students’ choices is a function of her information set – X1, X 1 and the
distributions ofXi and εi, i > 1.

Let (πi,1, ..., πi,L) be student 1’s belief about the probability that each list is being chosen by student i.
Given the continuous distribution of ε, E (di,l) = πi,l ∈ (0, 1) and

∑L
l=1 πi,l = 1 for all l and i.

For i = 2, ..., F + 1, the beliefs are a function of the realization of X 1,

(πi,1, ..., πi,L) = (πi,1 (X1) , ..., πi,L (X1)) .

Given that
{
Xi

}I
i=1

are i.i.d. across students, then ∀i = F + 2, ..., I,

(πi,1, ..., πi,L) ≡ (π1, ..., πL) ,

which is not a function of X 1.
Consider a vector of random variables, N I ≡

∑I
i=2 di =

(
N I

1 , N
I
2 , ..., N

I
L

)′ ∈ NL, which are the
numbers of students submitting each list, i.e.,

N I
l =

I∑
i=2

di,l,

L∑
l=1

N I
l = I − 1, N I

l ≥ 0 and N I
l ≤ I − 1.

In any realization of the game, N I is a sufficient statistics to calculate the probability of being accepted by
each school for Student 1, given the anonymity of the mechanism. Therefore, in the following I focus on the
distribution ofN I . Two definitions are also introduced:

µI ≡ 1

I − 1

(
F+1∑
i=2

πi,1 + (I − F − 1)π1, ...,

F+1∑
i=2

πi,L + (I − F − 1)πL

)
,

QI ≡ 1

I − 1



∑F+1
i=2 πi,1 (1− πi,1)

+ (I − F − 1)π1 (1− π1)
...

∑F+1
i=2 πi,1πi,L

+ (I − F − 1)π1πL∑F+1
i=2 πi,1πi,2

+ (I − F − 1)π1π2
..

∑F+1
i=2 πi,2πi,L

+ (I − F − 1)π2πL
... ... ...∑F+1

i=2 πi,1πi,L
+ (I − F − 1)π1πL

...

∑F+1
i=2 πi,L (1− πi,L)

+ (I − F − 1)πL (1− πL)


,

A.13



Supplementary Material for Online Publication

Consider the number of parents grows, i.e., I →∞,

lim
I→∞

µI = (π1, ..., πL) ≡ µ,

lim
I→∞

QI =


π1 (1− π1) ... π1πL

π1π2 .. π2πL
... ... ...

π1πL ... πL (1− πL)

 ≡ Q,
where Q is a finite, positive definite matrix, since it is the covariance matrix for di, for i > (F + 1).

To use the Multivariate Lindeberg–Feller Central Limit Theorem (see for example, Greene (1999), page
117), the following conditions are checked and are satisfied:

lim
I→∞

[
(I − 1)QI

]−1
V ar (di) = lim

I→∞

 I∑
j=2

V ar (dj)

−1

V ar (di) = 0, ∀i = 2, ..., I.

Therefore,
√
I − 1

(
N I

I − 1
− µI

)
d→ N (0, Q) , as I →∞.

Moreover, limI→∞
√
I − 1

(
µI − µ

)
= 0, and thus,

√
I − 1

(
N I

I − 1
− µ

)
d→ N (0, Q) , as I →∞. (7)

Similarly, when X̄i is private information, with Ñ
I

as the counterpart of N I , by the Multivariate
Lindberg–Levy Central Limit Theorem, one can show that

√
I − 1

(
Ñ

I

I − 1
− µ

)
d→ N (0, Q) , as I →∞. (8)

One need to prove that the sequences of random variables,
√
I − 1

(
NI

I−1 − µ
)

and
√
I − 1

(
Ñ
I

I−1 − µ
)

,

would lead to Student 1 having the same beliefs when I grows. Namely, given nI as an any realization of

N I and Ñ
I
,

lim
I→∞

[
Pr
(
N I = nI

)
− Pr

(
Ñ

I
= nI

)]
= 0, (9)
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which is true because of the convergence in (7) and (8), and because

lim
I→∞

Pr
(
N I = nI

)
= lim

I→∞
Pr

[√
I − 1

(
N I

I − 1
− µ

)
=
√
I − 1

(
nI

I − 1
− µ

)]
= lim

I→∞
Pr

[√
I − 1

(
N I

I − 1
− µ

)
∈ Ball

(√
I − 1

(
nI

I − 1
− µ

)
,

1

2
√
I − 1

)]
= ΦQ

[√
I − 1

(
N I

I − 1
− µ

)
∈ Ball

(√
I − 1

(
nI

I − 1
− µ

)
,

1

2
√
I − 1

)]
= lim

I→∞
Pr
(
Ñ

I
= nI

)
,

where Ball
(√

I − 1
(

nI

I−1 − µ
)
, 1

2
√
I−1

)
is an open ball centered at

√
I − 1

(
nI

I−1 − µ
)

with a radius of
1

2
√
I−1

, and ΦQ is the distribution function for N (0, Q). The second-to-last equation comes from the defi-
nition of convergence in distribution (see for example Bhattacharya (1977) in a multidimensional setting).

By definition, given the information X 1, the beliefs of Student 1 are, ∀s,

A1,s

(
C, σ−i,X 1

)
=

L(I−1)∑
n=1

Pr
(
Cn−iplayed under σ−i|X 1

)
as
(
C,Cn−i

)
,

which can be re-written as:

A1,s

(
C, σ−i,X 1

)
=
∑
∀nI

Pr
(
N I = nI under σ−i|X 1

)
ās
(
C,nI

)
,

where ās
(
C,nI

)
is the probability that Student 1 is accepted by s while others’ submitted lists are such that

nI is realized. By the result in (9), as I →∞,[
A1,s

(
C, σ−i,X 1

)
−A1,s (C, σ−i)

]
→ 0,

where A1,s (C, σ−i) is the one when X̄i is private information.
Since this can be proved this for any other student, the beliefs converge: Bi (C)→ B (C), ∀i, ∀C ∈ C.

Corollary Under the same conditions at in Proposition 4, and that X̄i is now common knowledge, the
beliefs converge to a common belief, Bi (C)→ B (C), ∀i, ∀C ∈ C.

In this corollary, the difference between any two students, i and j, is their information about their
opponents, the realizations of X̄−i and X̄−j . However, the difference between X̄−i and X̄−j is very
limited, since X̄−i =

(
X̄−i,j , X̄j

)
and X̄−j =

(
X̄−i,j , X̄i

)
where (−i, j) denotes the students other than

i and j. By the same argument in Proposition 4, the beliefs converge.
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E Choice Probabilities and Estimation: Additional Cases

As outlined in Figure 1, this appendix presents the characterization of choice probabilities under the Bayesian
Nash equilibrium and then the truth-telling assumption and discuss the estimation approach. Besides, I also
discuss the case with heterogeneous but non-degenerate beliefs.

E.1 Bayesian Nash Equilibrium

To characterize choice probabilities of each list, assume first the equilibrium beliefs B∗ are known.
Characterization of Choice Probabilities Given (Xi,Zi, B

∗; θ) where θ are the unknown parameters,
the conditional probability of i choosing C, Pr (C|Xi,Zi, B

∗; θ), is:
(i) if C = (0, 0, 0, 0), Pr (ui,s < ui,0, for all s|Xi,Zi, B

∗; θ);
(ii) if C =

(
c1, 0, 0, 0

)
, m1,1 (Xi) ∗ Pr

(
ui,c1 > ui,0 > ui,s, for s 6= c1|Xi,Zi, B

∗; θ
)

;
(iii) if C =

(
c1, c2, 0, 0

)
,

m2,2 (Xi) ∗ Pr
(
Ci is a best response; ui,c1 , ui,c2 > ui,0 > ui,s, for s 6= c1, c2|Xi,Zi, B

∗; θ
)

+m1,2 (Xi) ∗ Pr
(
ui,c1 > ui,0 > ui,c2 > ui,s, for s 6= c1 6= c2|Xi,Zi, B

∗; θ
)

;

(iv) if C =
(
c1, c2, c3, c4

)
,

Pr
(
C is a best response; ui,c1 , ui,c2 , ui,c3 > ui,0|Xi,Zi, B

∗; θ
)

+m1,4 (Xi) ∗ Pr
(
ui,c1 > ui,0 > ui,c2 > ui,c3 > ui,c4 |Xi,Zi, B

∗; θ
)

+m2,4 (Xi) ∗ Pr
(
C is a best response; ui,c1 , ui,c2 > ui,0 > ui,c3 > ui,c4 |Xi,Zi, B

∗; θ
)
.

Part (i) says that the probability of not participating equals the probability that all schools are unac-
ceptable. The probability of submitting a one-school list, by part (ii), is the mixing probability m1,1 (Xi)
times the probability that only one school is acceptable, because parents may submit a two-school or a
full list (m1,2 (Xi) ,m

1,4 (Xi) ≥ 0). Note that Assumption MIXING is used here. Namely mK,l
i ≡

mK,l (Xi) + ηK,li , E
(
ηK,li

)
= 0, and ηK,li ⊥ (εi,Xi,Zi, B).

Part (iii) shows that the likelihood of submitting a two-school list comes from two scenarios: (a) there
are two acceptable schools, and (b) there is only one acceptable school. In (a), students may submit either a
two-school or a full list,31 and thus the probability of optimally ranking two acceptable schools is weighted
by the mixing probability, m2,2 (Xi). In (b), the first choice must be acceptable and the second choice
unacceptable. The omitted schools are unacceptable and worse than the second choice.

Similarly, in part (iv), parents submit a full list in three cases: (a) there are at least three acceptable
schools, (b) there are two acceptable schools, and (c) there is only one acceptable schools. Again, the
last two cases contribute to the likelihood because of the mixing assumption, while in case (a) there is no
possibility of mixing.

Parts (iii) and (iv) require the probability of the given list being a best response to be calculated. Since the
payoff from a given list involves a weighted sum of five i.i.d. type I extreme values, the choice probability
does not follow a logistic form any more. They are therefore simulated by the smoothed logit-smoothed
accept-reject simulator (Chapter 5, Train (2009)) which is described in Appendix G.

Estimation Since the equilibrium beliefs, B∗, are unknown, one possibility is to use the with empiri-
cal beliefs, B̂, which is bootstrapped from the observed actions, as an approximation. The model is then
estimated by the method of simulated maximum likelihood.

It is also tempting to consider an alternative approach, a method of simulated maximum likelihood with
equilibrium constraints as follows:

max
θ,B

L (θ) , s.t., B (·, σ−i|B; θ) = B, (10)

31It is also possible to submit a three-school list, but it is equivalent to submitting a four-school/full list.
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where L (θ) is the likelihood function, and the constraint restricts the beliefs to be a fixed point in equilib-
rium. B is defined as the “beliefs” implied by B, i.e.,

B (C, σ−i|B; θ) = [A1 (C, σ−i|B; θ) , ..., AS (C, σ−i|B; θ)],

and

As (C, σ−i|B; θ) =
L(I−1)∑
n=1

Pr
(
Cn−i played under σ−i given B and θ

)
as
(
C,Cn−i

)
.

B is also formulated by simulation which is described in Appendix G.
The main issue with this approach is the computational burden. For any given θ, one has to solve for

the equilibrium, which may not be unique. Due to this computational difficulty, I do not consider this
approach in the paper. Instead, the fixed point, B (·, σ−i|B; θ) = B, is only used to solve the Bayesian Nash
equilibrium in counterfactual analyses.

Monte Carlo Results The simulated maximum likelihood estimation is tested in Monte Carlo. Ap-
pendix H shows that the approach with empirical beliefs B̂ does not work well, although it works fine with
the true equilibrium beliefs. As discussed in the main text, the case with non-degenerate beliefs is an alter-
native way to estimate the model under the Bayesian Nash equilibrium, and the simulation results show that
it even dominates the approach with the true equilibrium beliefs.

E.2 Everyone Is Truth-Telling

Suppose that everyone reports her true preference ranking and also follows Assumptions UNACCEPTA-
BLES and MIXING when there are unacceptable schools.

Characterization of Choice Probabilities Given that researchers observe (Xi,Zi) and with θ denoting
the unknown parameters, the conditional probability of i choosing Ci in equilibrium, Pr (Ci|Xi,Zi; θ), is:

(i) if Ci = (0, 0, 0, 0), Pr (ui,s < ui,0, for all s|Xi,Zi; θ);
(ii) if Ci =

(
c1, 0, 0, 0

)
, m1,1 (Xi) ∗ Pr

(
ui,c1 > ui,0 > ui,s, for s 6= c1|Xi,Zi; θ

)
;

(iii) if Ci =
(
c1, c2, 0, 0

)
,

m2,2 (Xi) ∗ Pr
(
ui,c1 > ui,c2 > ui,0 > ui,s, for s 6= c1 6= c2|Xi,Zi; θ

)
+m1,2 (Xi) ∗ Pr

(
ui,c1 > ui,0 > ui,c2 > ui,s, for s 6= c1 6= c2 |Xi,Zi; θ

)
(iv) if Ci =

(
c1, c2, c3, c4

)
,

Pr
(
ui,c1 > ui,c2 > ui,c3 > ui,0, ui,c4 = min (ui,s) |Xi,Zi; θ

)
+m2,4 (Xi) ∗ Pr

(
ui,c1 > ui,c2 > ui,0 > ui,c3 > ui,c4 |Xi,Zi; θ

)
+m1,4 (Xi) ∗ Pr

(
ui,c1 > ui,0 > ui,c2 > ui,c3 > ui,c4 |Xi,Zi; θ

)
Estimation Given the assumptions on the mixing probabilities and the utility shocks, the choice proba-

bilities can be fully parameterized as functions of unknown parameters θ. Therefore the maximum likelihood
estimation can be applied.

E.3 General Case: Heterogeneous Sophistication

I now relax the sophistication assumption and allow parents to make mistakes when forming their beliefs.
This appendix supplements section 3.4 by considering non-degenerate beliefs.

The key result is Proposition 3 on the dominated strategies. With non-degenerate beliefs, the dominance
becomes strict (part iv of Proposition 3), which is in contrast to degenerate beliefs. Moreover, as shown in
Proposition 1, in homogenous-sophistication Bayesian Nash equilibrium (σ∗), beliefs are non-degenerate,
and strict dominance can also be obtained in σ∗.
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E.3.1 Estimation with Non-Degenerate Beliefs

In the following, let us assume that beliefs are non-degenerate and that parents are rational in the sense
that they do not play dominated strategies. Notice that under these assumptions, the model cannot predict a
unique distribution of rank-order lists given preferences and thus is incomplete (Tamer (2003)). However,
this will no longer be the case after grouping certain lists together.

Given S = 4, I assign the lists into 15 groups, gn, n = 1, ..., 15. The criteria of grouping are the number
and identities of schools included in the list while the order among the listed schools does not necessarily
matter. The groups are of three types: (a) 5 groups in which the lists include no more than one school; (b)
6 groups of two-school lists; and (c) 4 groups of full lists. They are shown in Table E6, and the groups are
both mutually exclusive and exhaustive.

Table E6: The 15 Groups of Lists When Beliefs are Non-Degenerate

Groups of non-participation
Groups of two-school lists Groups of four-school lists

or one-school lists

Group 1: {(0, 0, 0, 0)} Group 6:
{

(1, 2, 0, 0)
(2, 1, 0, 0)

}
Group 12:

{
6 full lists

s.t.
(
c1, c2, c3, 1

) }
Group 2: {(1, 0, 0, 0)} Group 7:

{
(1, 3, 0, 0)
(3, 1, 0, 0)

}
Group 13:

{
6 full lists

s.t.
(
c1, c2, c3, 2

) }
Group 3: {(2, 0, 0, 0)} Group 8:

{
(1, 4, 0, 0)
(4, 1, 0, 0)

}
Group 14:

{
6 full lists

s.t.
(
c1, c2, c3, 3

) }
Group 4: {(3, 0, 0, 0)} Group 9:

{
(1, 4, 0, 0)
(4, 1, 0, 0)

}
Group 15:

{
6 full lists

s.t.
(
c1, c2, c3, 4

) }
Group 5: {(4, 0, 0, 0)} Group 10:

{
(2, 3, 0, 0)
(3, 2, 0, 0)

}
Group 11:

{
(2, 4, 0, 0)
(4, 2, 0, 0)

}

For type-(a) groups, since they are independent of beliefs, the choice probabilities are similar to tradi-
tional discrete choice models, although the mixing probabilities have to be considered. For the 6 groups of
type (b), the grouping is only based on which two schools are included in the list but not on their ranking.
For example, (s, s′, 0, 0) and (s′, s, 0, 0) are in the same group, but not (s, s′′, 0, 0), given s 6= s′ 6= s′′.
The choice probabilities for these groups have two sources: Either the two included schools are the only
acceptable schools; or only one of them is acceptable, and the other is unacceptable but better than the two
excluded schools. The contributions of both sources to the choice probabilities are weighted by mixing
probabilities.

The remaining 4 groups of type (c) are differentiated by their last school. Namely, (s, s′, s′′, s′′′) and
(s′, s, s′′, s′′′) are in the same group, while (s, s′, s′′′, s′′) is in a different one, given that s, s′, s′′, and s′′′

are distinct. The choice probabilities for these groups come from three sources: (i) the top three schools are
all acceptable; (ii) only two of the top three are acceptable; and (iii) only one of the top three is acceptable.
Again, the contributions of last two sources are weighted by the mixing probabilities.

The choice probabilities now should be interpreted as the probabilities of choosing a group, gn, or
choosing any list within that group, Ci ∈ gn. Also recall that mk,l (Xi), l ≥ k, is the (expected) probability
that an l-school list is submitted while only k schools are acceptable, conditional onXi.

Characterization of Choice Probabilities When there are four schools, the conditional probability of i
choosing some list Ci in group gn, Pr (Ci ∈ gn|Xi,Zi; θ), is

(i) if Ci ∈ g1 = {(0, 0, 0, 0)}, Pr (ui,s < ui,0, for all s|Xi,Zi; θ);

(ii) if Ci ∈ gn =
{(
c1, 0, 0, 0

)}
(n = 2, ..., 5 given the identity of c1),
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m1,1 (Xi) ∗ Pr
(
ui,c1 > ui,0 > ui,s, for s 6= c1|Xi,Zi; θ

)
(iii) if Ci ∈ gn =

{(
c1, c2, 0, 0

)
,
(
c2, c1, 0, 0

)}
(n = 6, ..., 11 given the identities of c1 and c2),

m2,2 (Xi) ∗ Pr
(
ui,c1 , ui,c2 > ui,0 > ui,s, for s 6= c1, c2|Xi,Zi; θ

)
+m1,2 (Xi) ∗

[
Pr
(
ui,c1 > ui,0 > ui,c2 > ui,s, for s 6= c1, c2|Xi,Zi; θ

)
+ Pr

(
ui,c2 > ui,0 > ui,c1 > ui,s, for s 6= c1, c2|Xi,Zi; θ

) ]
(iv) if Ci ∈ gn =

{
full lists s.t. the 4th is always c4

}
, (n = 12, ..., 15 given the identity of c4),

Pr
(
ui,c1 , ui,c2 , ui,c3 > ui,0;ui,c4 = min {ui,s}4s=1 |Xi,Zi; θ

)
+m1,4 (Xi) ∗

 Pr
(
ui,c1 > ui,0 > max

(
ui,c2 , ui,c3

)
> min

(
ui,c2 , ui,c3

)
> ui,c4 |Xi,Zi; θ

)
+ Pr

(
ui,c2 > ui,0 > max

(
ui,c1 , ui,c3

)
> min

(
ui,c1 , ui,c3

)
> ui,c4 |Xi,Zi; θ

)
+ Pr

(
ui,c3 > ui,0 > max

(
ui,c1 , ui,c2

)
> min

(
ui,c1 , ui,c2

)
> ui,c4 |Xi,Zi; θ

)


+m2,4 (Xi) ∗

 Pr
(
ui,c1 , ui,c2 > ui,0 > ui,c3 > ui,c4 |Xi,Zi; θ

)
+ Pr

(
ui,c1 , ui,c3 > ui,0 > ui,c2 > ui,c4 |Xi,Zi; θ

)
+ Pr

(
ui,c2 , ui,c3 > ui,0 > ui,c1 > ui,c4 |Xi,Zi; θ

)


With the functional-form assumptions on the utility shocks and on the mixing probabilities (to be spec-
ified in Section 5), all the above 15 choice probabilities can be re-written as functions of the observables
(Xi,Zi) and unknown parameters θ. Three points should be highlighted here: (i) none of the choice prob-
abilities depends on beliefs; (ii) after grouping, the model is complete, as it implies a unique distribution of
groups given a distribution of preferences; and (iii) identification amounts to that the model implies a unique
distribution of preferences given a distribution of groups.

Identification and Estimation After the grouping, the model is essentially a discrete choice with 15
options. With the choice probabilities, the likelihood function can be written as:

LNDB (θ) ≡
I∑
i=1

15∑
n=1

[
1(Ci∈gn) log [Pr (Ci ∈ gn|Xi,Zi; θ)]

]
,

where the subscript NDB stands for Non-Degenerate Beliefs. I denote the estimator as θ̂NDB .
Intuitively, identification is similar to discrete choice models with five options. It requires that Pr (·|·, ·; θ) 6=

Pr (·|·, ·; θ0) if θ is not equal to the true value θ0. In the current context, this is essentially the same as the
identification assumption for a conditional logit model even with the mixing probabilities, while parame-
ters in the utility function are already normalized. It can be best illustrated by the full-list groups (without
considering the mixing probability for the moment): Observing a group being chosen, researchers learn
which school is the least preferred by the student, whereas in a conditional logit model the most preferred
is revealed. In either case, the choice probability can be readily specified. Distinct from traditional discrete
models are the mixing probabilities, which may present a complication. The probability of choosing a full
list also has to take into the ranking of the outside option. That is, one can submit a full list when she has one,
two, or three acceptable schools. Moreover, the empirical probability of choose a one-school list identifies
the probability that the listed school being the only acceptable one (weighted by the mixing probability),
and the two-school lists play a similar role. To separately identify preferences and mixing probabilities, an
“exclusion” condition is crucial: The choice probability of the group/list (0, 0, 0, 0) is independent of the
mixing probabilities.

As previously discussed, this modeling and estimation approach can be applied to data that are generated
either from a Bayesian Nash equilibrium or an equilibrium with heterogeneous but non-degenerate beliefs.
In the case of Bayesian Nash equilibrium, Appendix H presents Monte Carlo results showing that this
approach performs even better than a maximum likelihood approach where the true equilibrium beliefs are
observed.
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F Degenerate Beliefs: Moment Equalities and Inequalities

Now heterogeneous sophistication is allowed, and some of the elements in beliefs may be zero for some
parents. Putting together Proposition 3, Assumptions UNACCEPTABLES, MIXING, and ZERO-PROB, I
derive bounds of the choice probabilities of individual lists and of groups of lists.

With the 41 individual lists, choice probability bounds lead to 5 moment equalities and 72 (=36*2)
moment inequalities. Grouping lists together results in more probability bounds and therefore more moment
conditions: 3 moment equalities and 38 (=19*2) moment inequalities. The characterization of the upper and
lower bounds is detailed in the following three tables, Tables F7, F8, and F9.
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G The Logit-Smoothed Reject-Accept Simulator and Equilibrium Solver

This appendix describes the logit-smoothed reject-accept simulator, how to simulate the choice probabilities,
and how to find equilibrium beliefs when the parameters in the utility function and parents’ strategies are
given. The simulator is implemented in the following steps, similar to the steps in Chapter 5 of Train (2009).

(i) Calculate the choice probabilities for (0, 0, 0, 0) and one-school lists, which are independent of beliefs.
For example, the choice probability for (c, 0, 0, 0), c 6= 0, is:

m1,1 (Xi)
exp (vi,c)

1 +
∑4

s=1 exp (vi,s)

1

1 +
∑

s 6=c exp (vi,s)
,

where vi,s is the deterministic part of the utility of i at school s andm1,1 (Xi) is the average probability
of submitting a one-school list when i has one school acceptable.

(ii) Draw a value of the 5-dimensional vector of errors, ηr, which is i.i.d. uniform U (0, 1), and calculate
εri = − ln (− ln (ηr)).

(iii) Calculate ûri,s = vi,s + εri,s − εri,0 = uri,s − uri,0 given (Xi,Zi) and parameters.

(iv) Given the beliefs and thus the admission probabilities, calculate the expected utility of submitting a
two-school or full list, V r

i,(c1,c2,0,0) and V r
i,(c1,c2,c3,c4) for all c1, c2, c3 and c4.

(v) To calculate the choice probabilities of full or two-school lists, for example, full list
(
c1, c2, c3, c4

)
, the

probability of choosing
(
c1, c2, c3, c4

)
when only c1 is acceptable is defined as follows (independent

of the simulated errors):

P ri,1 = m1,4 (Xi)
exp

(
vi,c1

)
1 +

∑4
s=1 exp (vi,s)

1

1 +
∑

s 6=c1 exp (vi,s)

exp
(
vi,c2

)∑
s6=c1 exp (vi,s)

exp
(
vi,c3

)∑
s 6=c1,c2 exp (vi,s)

;

the probability of choosing it when only c1 and c2 are acceptable:

P ri,2 = m2,4 (Xi)


1

1+exp
(
−ûr

i,c1
/λ
) 1

1+exp
(
−ûr

i,c2
/λ
) 1

1+exp
(
ûr
i,c3

/λ
) 1

1+exp
(
−ûr

i,c4
/λ
)

∗ 1

1+exp
[(
ûr
i,c4
−ûr

i,c3

)
/λ
] 1

1+exp

[(
V r
i,(c2,c1,0,0)

−V r
i,(c1,c2,0,0)

)
/λ

]
 ;

and the probability when at least c1, c2, and c3 are acceptable:

P ri,3 =


1

1+exp
(
−ûr

i,c1
/λ
) 1

1+exp
(
−ûr

i,c2
/λ
) 1

1+exp
(
−ûr

i,c3
/λ
)

∗ 1

1+exp
[(
ûr
i,c4
−ûr

i,c1

)
/λ
] 1

1+exp
[(
ûr
i,c4
−ûr

i,c2

)
/λ
] 1

1+exp
[(
ûr
i,c4
−ûr

i,c3

)
/λ
]

∗
∏

∀(c1′,c2′,c3′,c4)6=(c1,c2,c3,c4)

1

1+exp

[(
V r
i,(c1′,c2′,c3′,c4)

−V r
i,(c1,c2,c3,c4)

)
/λ

]

 ,

where the last term is the probability that
(
c1, c2, c3, c4

)
delivers the highest expected utility among

those ranking c4 at the bottom. In all expressions, λ > 0 is a scale factor and I experiment it with
λ = 0.01, 0.005, 0.001. Results presented in the paper are from λ = 0.001. Then for this simulation,
r, the choice probability of choosing

(
c1, c2, c3, c4

)
is:

P ri = P ri,1 + P ri,2 + P ri,3.
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(vi) Repeat steps 2 to 5 for r = 1, ..., 300, and the simulated probability of the corresponding event is then
P̃ri = 1

300

∑300
r=1 P

r
i .

It is easy to verify that P̃r is strictly positive and twice differentiable with respect to beliefs and param-
eters in utility function.

With the help of this simulator, the following procedure can be used to solve the Bayesian Nash equi-
librium in the Monte Carlo experiment and counterfactual analyses. The basic idea is illustrated in the
following mapping:

Given the common strategy σ (Xi,Zi, εi;B) , start with beliefs B (C) , ∀C ∈ C
⇓

Possible Profiles:
[
C,Cn−1

]
(independent of beliefs)[

C,C1
−1

][
C,C2

−1

]
...[

C,CL
(I−1)

−1

]





Prob(accepted by each school|Cn−1)
(independent of beliefs)

as
(
C,C1

−1

)
as
(
C,C2

−1

)
...

as

(
C,CL

(I−1)

−1

)





Prob(Cn−1 Chosen|B)
(dependent on beliefs)

p
(
C1
−1|B

)
p
(
C2
−1|B

)
...

p
(
CL

(I−1)

−1 |B
)


⇓

As (C,B) =
∑L(I−1)

n=1 p
(
Cn−1|B

)
as
(
C,Cn−1

)
,∀C ∈ C,∀s = 1, ..., 4

⇓
Implied Probabilities: B (C,B) = (A1 (C,B) , ..., AS (C,B))

Figure H1. Mapping from Beliefs to the Implied Probabilities for Student 1

Since everyone has the same beliefs, it is suffice to just look at student 1’s probabilities of being admitted
by the schools in her list. The simulation of the implied probabilities has seven steps as following:

(i) Draw NC (≥10,000) profiles of choice lists,
{
Ci =

(
c1
i , ..., c

S
i

)}I
i=2

, Given each profile, {Ci}Ii=2,
student 1 tries all (S! = 24) full choice lists. Combine them together, I create S! × NC profiles of
{Ci}Ii=1. For the profiles, there are various ways to draw them to make the belief non-degenerate, for
example,

• a quarter of them are random draws from students’ true preference orders.

• another quarter are random draws from the 24 possible full lists;

• the third quarter are such that at least qs choosing a list ranking s (= 1, 2, 3, 4) as top choice,
and others randomly choose a possible list;

• the last quarter of profiles are such that at least qs choosing a full list ranking s (= 1, 2, 3, 4)
as top choice, at least qs′ choose full lists ranking s′ 6= s as first choice, and others randomly
choose a possible list.

After solving the equilibrium beliefs, one can draw another set of profiles under the assumption
that everyone chooses a best response against the solved “equilibrium.” This two-stage approach
is adopted in the Monte Carlo simulation. All profiles from the two steps are pooled together to solve
the equilibrium.

(ii) Given each profile of lists,
{
C1, {Ci}Ii=2

}
, create a set of random lottery numbers, rs = 1, and then

run the admission process to see which school admits student 1, i.e., get the values for the following
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indicator functions:

1rs
(

Student 1 assigned to s|C1, {Ci}Ii=2

)
, s = 1, ..., S;

(iii) Repeat Step 2 with different lottery number draws, rs = 2, ..., 1000, and calculate the probabilities of
Student 1 being admitted by every s respectively.

P̃r
(

Student 1 assigned to s|C1, {Ci}Ii=2

)
=

1

1000

1000∑
rs=1

1rs
(

Student 1 assigned to s|C1, {Ci}Ii=2

)
, s = 1, ...S.

(iv) Repeat Steps 2 and 3 for all S! = 24 profiles lists with {Ci}Ii=2 fixed and Student 1 selecting each of
all S! choice lists.

The above four steps are independent of the belief system and the error terms in the utility functions,
and thus it is run only simulated once.

(v) Simulate the choice probability of each list by the logit-smoothed accept-reject simulator. First, sim-
ulate r = 1, ..., 300 draws of {ηri }

I
i=2. Given the candidate belief, B, the simulated probability of

student i choosing a list Ck is:

P̃ri

(
Ck|Xi, {zs}Ss=1 ;θ

)
=

1

300

300∑
r=1

P ri (Ci|Xi,Zi;θ;B) , k = 1, ..., L,

where P ri (Ci|Xi,Zi;θ;B) is probability of Ci being choosing as a best response given B that is
from the logit-smoothed accept-reject simulator described above.

(vi) Calculate the average choice probability for the L (41) choice lists:

P̃k =
1

914

914∑
i=1

P̃ri

(
Ck|Xi, {zs}Ss=1 ;θ

)
, k = 1, ..., L.

(vii) Calculate the probability of the profiles
{{

C
(t)
i

}I
i=2

}NC
t=1

simulated in Step 1 being realized, i.e., if{
C

(t)
i

}I
i=2

=
(
C

(t)
2 , C

(t)
3 , ..., C

(t)
I

)
, then

P̃r

({
C

(t)
i

}I
i=2

realized
)

=
1

K

I∏
i=2

[
L∏
k=1

(
P̃k

)1(C(t)
i =Ck

)]
,

where K is a normalization term,

K =

NC∑
t=1

P̃r

({
C

(t)
i

}I
i=2

realized
)
.
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(viii) Calculate the implied probability of Student 1 being admitted by school s as follows, ∀s = 1, ..., S:

P̃r (Student 1 assigned to s when submitting C)

=
1

NC

NC∑
t=1

P̃r

(
Student 1 assigned to s|C,

{
C

(t)
i

}I
i=2

)
× P̃r

({
C

(t)
i

}I
i=2

realized
)
.

This is calculated for all S! possible full lists. All the probabilities together are the simulated implied
probabilities, B̄ (·, B).

(ix) The equilibrium belief is a fixed point: B̄ (·, B) = B.

Note that the above Steps (vi) and (vii) can be replaced by the following one step:

(vi’) Calculate the probability of the profiles
{{

C
(t)
i

}I
i=2

}NC
t=1

simulated in Step 1 being realized, i.e., if{
C

(t)
i

}I
i=2

=
(
C

(t)
2 , C

(t)
3 , ..., C

(t)
I

)
, then

P̃r

({
C

(t)
i

}I
i=2

realized
)

=
1

K

I∏
i=2

P̃
(
C

(t)
i |Xi,Zi;θ

)
,

where K is a normalization term,

K =
NC∑
t=1

P̃r

({
C

(t)
i

}I
i=2

realized
)
.

The issue with this step in practice is that many P̃r

({
C

(t)
i

}I
i=2

realized

)
are very likely to be zero

or very close to it, since each individual might have a very low probability choosing a given list. Replacing
Step (vi’) with Steps (vi) and (vii) solves this problem. To be more precise, Step (vi’) assumes observed
characteristics (Xi,Zi) are common knowledge, while Steps (vi) and (vii) assumes they are private infor-
mation while the joint distribution is common knowledge. These two approaches converge when the number
of students grows (by using similar arguments as in Appendix D).
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H Monte Carlo Simulations

This section presents Monte Carlo results that show how the estimation approaches perform under various
data generating processes.

H.1 Model

In the following Monte Carlo exercises, students have access to four schools and play the game under the
Boston mechanism as specified in the main text. Student i’s utility function at school s ∈ {1, 2, 3, 4} is
simplified as:

ui,s = α+ αs + βDistancei,s + εi,s,

where αs is the middle school fixed effect in addition to the common effect α; and Distancei,s is the
distance from i’s home to school s (in natural logarithm). The utility of the outside option is normalized:
ui,0 = εi,0. (εi,0, εi,1, ..., εi,4) are i.i.d. type I extreme value across students.

Recall that Assumption MIXING specifies i’s mixing probabilities as mk,l
i ≡ mk,l (Xi) +ηk,li , where

mk,l
i denotes the probability that an l-school list is submitted by iwhile only k schools are acceptable, l∈ {k,

k + 1, ..., (S − 2), S}. Besides,E
(
ηk,li

)
= 0, ηk,li ⊥ (εi,Xi,Zi, B), for all k, l; and

∑S−2
l=k m

k,l
i +mk,S

i = 1.

The conditional expectations of mixing probabilities, m1,2 (Xi), m1,4 (Xi), and m2,4 (Xi) are assumed to
have the following functional form:

m1,2 (Xi) =
1

π

(π
2

+ arctan
[
γ1,2

1 + γ1,2
2 Parent Inci

])
,

m1,4 (Xi) =
1

π

(π
2

+ arctan
[
γ1,4

1 + γ1,4
2 Parent Inci

]) (
1−m1,2 (Xi)

)
,

m2,4 (Xi) =
1

π

(π
2

+ arctan
[
γ2,4

1 + γ2,4
2 Parent Inci

])
.

where Parent Inci is annual income of i’s parents (in natural logarithm); arctan is the inverse trigonomet-
ric function arctangent, which guarantees that all the above terms lie in (0, 1).

In order to simplify notations, in the main text I focus on a special case where ηk,li = 0, for all k and
l and therefore mK,l

i = mK,l (Xi) for all i. In the simulation, I re-introduce ηk,li 6= 0. There are several
ways to introduce ηk,li , and experiments show that the results are not sensitive to the distribution of ηk,li . One
example is as follows:

η1,1
i = min

(
η̂1,1
i ,m1,1,

m1,4

2

)
, where η̂1,1

i ∼ N

(
0,

(
1

2
min

(
m1,1,

m1,4

2

))2
)

;

η1,2
i = min

(
η̂1,2
i ,m1,2,

m1,4

2

)
, where η̂1,2

i ∼ N

(
0,

(
1

2
min

(
m1,2,

m1,4

2

))2
)

;

η2,2
i = min

(
η̂2,2
i ,m2,2,m2,4

)
, where η̂2,2

i ∼ N

(
0,

(
1

2
min

(
m2,2,m2,4

))2
)

;

where mk,l = minim
k,l (Xi). Because

∑S−2
l=k m

k,l
i +mk,S

i = 1, the above three expressions also determine
η1,4
i and η2,4

i .
One may have noticed that the choice probabilities characterized in the paper should be interpreted as

expected choice probabilities. Besides, the maximum likelihood estimation should be called pseudo- or
quasi-maximum likelihood, as the true likelihood function contains some error terms related to ηk,li . For the
estimations based on maximum likelihood, one may use the generalized method of moments (GMM) given
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the presence of ηk,li , but the performance of the maximum likelihood is shown to be good enough. More
importantly, the estimation used for most of the analyses, the case of degenerate beliefs with (in)equalities,
is robust to the presence of ηk,li .

As estimation codes are inevitably “local” in the sense that their performance varies with primitives,
I try to make the Monte Carlo exercises as close as possible to the real data. Each school has the same
quota as in the main text. Both Distancei,s and Parent Inci are constructed with real data plus some
random noise, while parameters are selected such that there are about 20% students who has no acceptable
school as in the real data. In the end, the mean utilities of the four school are (0.89, 0.11,−0.74,−1.12).
To reduce computational burden, in all the estimations with simulated data, I only focus on four parameters,(
α, β, γ2,4

1 , γ2,4
2

)
, whereas all others are assumed to be known constants.

H.2 Data Generating Processes

Corresponding to the cases discussed in the main text, data are simulated under three data generating pro-
cesses (DGP’s):

(i) Truth-Telling: Each student reports her true preferences.

(ii) Bayesian Nash Equilibrium: Facing the equilibrium beliefs, which are necessarily non-degenerate,
each student submits a rank-order list that maximizing her expected utility.

(iii) Degenerated Beliefs: Each student is endowed with individual-specific (subjective) beliefs with re-
spect to which she maximizes expected utility by choosing a rank-order list. Besides, some elements
in the belief system are degenerate. Specifically, for some students and any list

(
c1, c2, c3, c4

)
such

that c3 = 1 or c4 = 1 (i.e. the most popular school being ranked 3rd or 4th), the (subjective) proba-
bility of being accepted by school 1 is zero. In the simulation, there are 817 such students. All other
elements in the belief system are in (0, 1) for everyone.

In all cases, students may include unacceptable schools in their lists following Assumptions UNAC-
CEPTABLES and MIXING with mixing probabilities specified above.

To simulate choice data in the first scenario (truth-telling) is straightforward. Every student first truth-
fully rank the schools up to the least-preferred acceptable school, and then according to the mixing proba-
bilities, she draws a lottery to decide if she includes unacceptable schools or not. If unacceptable schools
are included, they are ranked after all acceptable schools and are ranked truthfully among all unacceptables
(Assumption UNACCEPTABLES).

In the case of Bayesian Nash equilibrium, I first solve the equilibrium beliefs following the steps in
Appendix G. Given the equilibrium beliefs, each student chooses a rank-order list, which only includes
acceptable schools, to maximize her expected utility, and then she follows the same rules to decide if she
includes unacceptable schools.

In the last scenario (degenerate beliefs), for every student, I generate a belief system that satisfies the
structure specified in the main text, and some of them have degenerate beliefs. Students then choose a rank-
order list to maximize expected utility with respect to their individual beliefs. The decision of including
unacceptable schools is the same as in other cases. However, for students whose beliefs are degenerate,
another mixing decision is made according to Lemma 4 but with an equal probability choosing any of the
pure strategies. Note that these mixing probabilities are not estimated.

H.3 Estimation Approaches

After the data are simulated, there are four different estimation approaches to be taken, as discussed in the
main text. Recall that the key to estimation is to specify the choice probabilities, which leads to either
maximum likelihood estimation (MLE) or the Andrews-Shi approach to moment equalities and inequalities.
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(i) Truth-Telling: The choice probabilities for individual lists can be fully specified (see Appendix E for
detailed derivations) and thus an MLE approach can be taken.

(ii) Bayesian Nash Equilibrium: The leading approach under this assumption is to use MLE with choice
probabilities for grouped lists that are derived under non-degenerate beliefs as in subsection E.3.1. I
also present results showing that the MLE approach using either true equilibrium beliefs or approxi-
mated ones.

(iii) Degenerated Beliefs with Equalities Only: I present results from an MLE approach that only uses
moment equalities.

(iv) Degenerated Beliefs with Both Equalities and Inequalities: The Andrews-Shi approach is used to
obtain point estimates.

Clearly some approaches deliver consistent estimates under specific DGP’s, while others always do.
Table H10 summarizes the consistency of each estimation approach. Note that both estimation approaches
with degenerate beliefs are consistent under all DPG’s, while the other two approaches, Truth-Telling and
Bayesian Nash equilibrium (non-degenerate beliefs), are only consistent under their corresponding DGP’s
respectively. In the Monte Carlo exercises below, data sets are generated from the three DGP’s, and the four
estimation approaches are applied to each data set.

Table H10: Monte Carlo Simulations: (In)Consistency of Performed Estimation Approaches

True Data Estimation Approach
Generating Process Degenerate Beliefs:

(DGP) Truth-Telling Non-Degenerate Beliefs Equalities Only Inequalities

Truth-Telling Yes Yes Yes Yes
Bayesian Nash No Yes Yes Yes
Degenerated Beliefs No No Yes Yes

H.4 Results

Results from 150 Monte Carlo samples are shown in Table H11, and they confirm the predictions. The
truth-telling approach only delivers consistent results when the assumption is the same as the DGP; the non-
degenerate-belief estimates are consistent when the DGP is either truth-telling or Bayesian Nash equilib-
rium; and the other two non-degenerate cases are always consistent. Besides, preference parameters (α, β)
are more precisely estimated than the mixing probabilities, but for welfare analyses, the mixing probabilities
only have second-order effects as discussed in section 3.3.2.

One may have also noticed that between the two cases with degenerate beliefs, the estimates from
(in)equalities are less precise (high root-mean-square error, or RMSE), despite the theoretical advantages.
One of the major reasons is the choice of instrumental variables. In the simulations, they are the “crude”
ones, (Distancei,1, Distancei,2, Distancei,3, Parent Inci) for moment equalities and their squared terms
for the inequalities. This certainly creates some inefficiency, whereas the MLE of the case with equalities
utilizes information efficiently. One may also wonder if an alternative choice of instruments, such as the
hypercubes as proposed by Andrews and Shi. Results show no improvement while the computational burden
is greatly increased.

Another reason for the inferior performance of the Andrews-Shi approach is the choice of tuning param-
eters. Specifically, the objective function, equation (2), may encounter close-to-zero denominators, σ̂j,k (θ),
for some values of θ, and thus they are replaced by max (σ̂j,k (θ) , σ), where σ is a small number.
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Based on the method in Andrews and Shi, one can also test if a given vector of parameters is in the 95%
confidence set. Results cannot reject the hypothesis that each set of the estimates, consistent or inconsistent,
is in the confidence set. This indicates the confidence set may not be as informative as one would like.

H.5 Bayesian Nash Equilibrium

Estimation under Bayesian Nash equilibrium is discussed in subsection 3.3.2 where several approaches are
proposed. Below, I compare the performance of each approach in the Monte Carlo simulations (Table H12).

A good benchmark is the maximum likelihood estimation assuming that the true equilibrium beliefs B∗

are observed. With the characterization of choice probabilities of each list detailed in Appendix E, I use
simulation to form the likelihood function. This is necessary as the choice probabilities depend on a mixture
of 5 type I extreme values. The results show that it performs well with (α, β) – the preference parameters,
but not very well with mixing probabilities. More importantly, its performance is not better than those from
the MLE with non-degenerate beliefs which is also much easier computationally. This justifies that it is
preferable to apply the latter when the data is generated from a Bayesian Nash equilibrium with unknown
beliefs.

The other candidate approach is to approximate the equilibrium beliefs by bootstrapping from a single
realization of the game. This approach treats each observed player as a random draw from the population,
and the empirical action distribution is an approximate of the true distribution of equilibrium actions when
there are a large number of players. By bootstrapping from the observed individual strategies, one may
approximate B∗ by B̂∗. Unfortunately, this approximate does not work well in the simulation. Sometimes
the estimated B̂∗ is not quite close to B∗ (the biggest root-mean-squared error relative to B∗ that elements
in B̂∗ can have is about 0.49). Certainly, this error is partly due to the computational error in solving the
equilibrium. This leads to inconsistent estimates as shown in the bottom lines of Table H12.

Table H12: Monte Carlo Simulations for Approaches to Estimation of Bayesian Nash Equilibrium

α β m2,4: Parent Inci= 0 m2,4: p75 Parent Inci
true value: 0 true value: -1 true value: 0.25 true value: 0.05

mean median RMSE mean median RMSE mean median RMSE mean median RMSE

Estimation: Non-Degenerate Beliefs
0.00 0.00 0.13 -1.01 -1.01 0.05 0.23 0.22 0.09 0.05 0.04 0.02

Estimation: True Equilibrium Beliefs
-0.03 -0.08 0.32 -0.96 -0.95 0.09 0.40 0.37 0.24 0.06 0.05 0.05

Estimation: Bootstrapped Empirical Equilibrium Beliefs
-0.14 -0.18 0.70 -0.73 -0.73 0.31 0.46 0.44 0.29 0.15 0.07 0.23

Notes: Data are generated by a Bayesian Nash equilibrium. RMSE = root-mean-square error; for consistent estimates, RMSE is close to standard
deviation. Mixing probabilities are calculated based on the estimates at zero (or mean/median) income and its 75th percentile (p75).
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I Goodness of Fit and Comparison across Cases

This section provide discussion on goodness of fit of the four cases in Table 10.
I start with the predicted preferences. The left half of Table I13 reports each school’s average utility level

from four cases relative to School 4. The average utility of School 4 is normalized to zero and considered as
a benchmark because it is the same school for everyone, while the outside option may be different schools.
To calculate these numbers, the deterministic part of the utility is calculated for each student, and the table
shows the average over all students. Two cases with degenerate beliefs predict an order (1, 2, 3, 4) in terms
of average utility, while the other two predict School 2 as the most valued school on average.

The right half of the table further shows the predicted probability of each school being the most preferred,
again calculated for each student and averaged over all of them. The pattern is similar to the left half of the
table. Also notice that all cases predict a similar probability of outside option being the most preferred,
despite that the average utility of outside option varies substantially across cases.

I then compare these results with the claimed best school in the survey. The distribution of responses
is available in a previous table (Table 8), and School 1 is considered as the best school by 83% of students.
Furthermore, it confirms the most likely preference ranking as (1, 2, 3, 4). These results are closer to the
predictions from the degenerate-belief case with (in)equalities.

One may be suspicious about the quality of data from the survey. Indeed, if parents answer this question
with the objectively best school instead of their most preferred ones, the survey would over-estimate the
popularity of School 1. I then look at students’ actual enrollment recorded in 2002, three years after school
choice. The numbers are available in Table 2, and the ratio of the actual enrollment to the quota announced
in 1999 is 233% for School 1, and 99%, 92%, and 46% for Schools 2, 3, and 4, respectively. These actual
enrollment numbers clearly show the popularity of School 1 and a ranking of popularity as (1, 2, 3, 4).

Table I13: Goodness of Fit across Cases: Predicted Preferences

Average Utilityb Prob(Being Most Preferred)c

School 1 2 3 4 outside 1 2 3 4 outside

Degenerate Belief: (In)equalitiesa 4.32 2.67 2.34 0 -33.57 49% 14% 13% 5% 19%
Degenerate Belief: Equalitiesa 4.90 4.67 4.49 0 4.38 33% 23% 23% 1% 20%

Non-Degenerate Beliefsa 2.10 2.77 2.11 0 2.04 19% 37% 20% 3% 20%
Truth-Telling 2.28 3.25 2.11 0 2.33 17% 45% 15% 2% 20%

Claimed Best School in surveyd 83% 8% 4% 0% 5%

Notes: a. Degenerate beliefs are such that some parents may have zero/degenerate elements in the belief system as in Assumption ZERO-PROB.
b. Average utility is the deterministic part of the utility of each school averaged over all students. The average utility of School 4 is normalized to
zero. c. This takes into account the probability that the outside option is the most preferred. d. Claimed best school is from the responses to a survey
question, “Among those to which you could apply, which school was the best?” Each probability is the fraction of parents claiming that school as
the best among all respondents. The distribution of responses is available in Table 8.

I.1 Sources of Biases

The above results show that the degenerate-belief case with (in)equalities dominates others in terms of model
fit. The following analyses will be based on this set of estimates. Before moving on, it might be useful to
discuss where the differences in model fit come from.

The over-estimation of School 2’s value in the truth-telling case is obvious. There are 431 (47%) stu-
dents ranking it top and only 8 (1%) ranking it fourth, and the truth-telling assumption takes this ranking
information literally. Another bias, the under-estimation of School 1’s value, is due to the same reason:
There are only 228 (25%) students ranking it top and more importantly 41 ranking it bottom.

In the case with non-degenerate beliefs, the model do not take each ranking as literal as the truth-telling
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assumption. However, it assumes that a bottom-ranked school is the least preferred. The 41 students who
rank School 1 as fourth choice lead to a low estimate of School 1’s value, while the mere 8 students ranking
School 2 as bottom choice result in a high valuation of School 2. As a comparison, there are 45 (5%) and
464 (51%) ranking Schools 3 and 4 as fourth choice, respectively.

This under-estimation of School 1’s value is gone in the degenerate-belief cases, as it is assumed that
ranking School 1 at bottom does not mean it is the least preferred (Lemma 4) as a consequence of the
degenerate beliefs (Assumption ZERO-PROB).

It is intriguing that the difference between the two degenerate-belief cases are non-negligible, although
Monte Carlo simulations show the opposite (Appendix H). Certainly it implies that the over-identifying
information in the moment inequalities is rich. The deeper reason is the mixing probabilities that make par-
ents often submit full lists even when they only have one or two acceptable schools. When only the moment
equalities are considered, all the full lists are grouped together (Table 6), and thus most of the identifying
information is from partial lists. However, there are only 7% choosing partial lists and 20% not participat-
ing, which implies that 73% of parents are considered as choosing the same option while they certainly do
not. The “outcome variable,” their choice among the 9 groups (Table 6), does not provide much variation,
and the estimates become imprecise. In contrast, the case with (in)equalities uses information within each
group in addition to the choice among the 9 options, which constitutes (over-)identifying conditions.

In the Monte Carlo simulations, both approaches work well, as the probability of submitting full lists
is reasonable – m1,4 on average is 47% and m2,4 is 45% (Appendix H). There are a significant number of
students choosing each of the 9 options, and thus the data provides enough variation in the outcome variable.

I.2 Estimates from the Degenerate Beliefs with (in)equalities

I now focus on the estimates from the inequalities and start with additional evidence on the goodness of fit.
Although the model cannot predict the choice probability of each individual list, it can still predict choice
probabilities of a subset of rank-order lists. Panel A in Table I14 includes the ratio of correct predictions
for the lists in the moment equalities. If the predicted probability for a given list or a given group of lists
is above 0.5, the student is predicted to choose that list/group. Because the groups of lists are mutually
exclusive, although not exhaustive, a predicted probability greater than 0.5 means that the group in question
is the most likely one. The fractions of correct prediction are at least 68%, and all others are above 90%.

Table I14: Goodness of Fit of Degenerate Beliefs with (In)equalities: Fraction of Correct Predictions

Panel A: Moment Equalitiesa

Groups of Two-School Lists One-School Lists Non-Participating
(4, 1, 0, 0) (3, 1, 0, 0) (2, 1, 0, 0)

(4, 0, 0, 0) (3, 0, 0, 0) (2, 0, 0, 0) (1, 0, 0, 0) (0, 0, 0, 0)
(1, 4, 0, 0) (1, 3, 0, 0) (1, 2, 0, 0)

98% 92% 91% 100% 98% 98% 94% 68%

Panel B: Binding Lower Boundsb

Groups of Four-School Lists Single Lists
(4, 1, 3, 2) (1, 4, 3, 2) (4, 2, 0, 0) (4, 3, 1, 2) (4, 2, 1, 3) (4, 1, 2, 3) (4, 2, 3, 1)

93% 99% 100% 99% 100% 94%

Notes: For every student, the predicted probability of choosing a given list or a given group of lists is calculated by using the estimates from the
degenerate beliefs with (in)equalities. a. For the lists that are in the moment equalities, if the predicted probability is above 0.5, it is predicted that
the student chooses that list or that group of lists. b. For the lists that are in the binding lower bounds (no one chooses these lists in the data), it is
predicted that the student chooses that list or that group of lists, if the predicted probability is above 1/41.

Moreover, there are six binding lower bounds of choice probability, because no one chooses these lists
and thus the lower bounds have to be as close to zero as possible. For these groups, a student is predicted
to choose a given list/group if the predicted probability is above 1/41 (i.e., when it cannot be the least likely
option). Panel B of Table I14 shows that the prediction is again highly accurate.
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J Additional Tables

Table J15: Attention on Different Aspects of Uncertainties and School Quality

Quota Prob(Bad School) Others’ App. School Quality
Full Lista Full Lista Full Lista Full Samplea Full Lista

(1) (2) (3) (4) (5)

Mean(Dep V) 4.23 4.47 2.81 4.15 4.14
Std Dev(Dep V) 0.86 0.74 1.21 0.46 0.47

Parent Edui 0.02 -0.00 -0.06* -0.00 -0.00
(0.02) (0.02) (0.03) (0.01) (0.01)

Parent Inci -0.08** -0.00 -0.05 0.04** 0.05**
(0.04) (0.04) (0.07) (0.02) (0.02)

Own Scorei 0.05 1.04** -1.00 0.22 -0.26
(0.61) (0.52) (1.01) (0.25) (0.34)

Awardsi 0.03 0.05 0.02 0.01 0.00
(0.04) (0.03) (0.06) (0.02) (0.02)

Girli -0.02 -0.00 0.08 0.03 0.03
(0.07) (0.06) (0.11) (0.03) (0.04)

Attn Othersi -0.03 0.01 0.06*** 0.07***
(0.03) (0.02) (0.01) (0.02)

Attn Qi 0.53*** 0.38*** 0.61***
(0.08) (0.07) (0.14)

Attn on Quota 0.34*** -0.08 0.15*** 0.16***
(0.04) (0.08) (0.02) (0.03)

Prob(Bad School) 0.47*** 0.03 0.16*** 0.16***
(0.05) (0.09) (0.02) (0.03)

Constant 0.26 -3.95 6.82 1.20 3.54**
(3.15) (2.68) (5.22) (1.30) (1.75)

Observations 457 457 457 676 457
R-squared 0.34 0.34 0.08 0.30 0.30

Notes: Results are from OLS regressions, and other variables include fixed effects for elementary schools. Standard errors in parentheses. ***
p<0.01, ** p<0.05, * p<0.1.
a. The full sample includes every parent whose relevant variables are not missing, and the subsample with full lists are those who submit a full list.
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Table J16: Deviation from Best-Responding and Truth-Telling Prediction: Partial Lists

List
Observed Fractiona Deviation (in percentage points) from the Prediction of

(in percentage points) Best Respondingb Truth-Tellingb Maximin Preferencesb

(4,3,0,0) 0.22 0.21 0.21 0.20
(4,2,0,0) 0.00 0.00 0.00 0.00
(4,1,0,0) 0.00 −0.01 −0.02 −0.02
(3,4,0,0) 0.22 0.21 0.21 0.20
(3,2,0,0) 0.11 0.10 0.09 0.09
(3,1,0,0) 0.11 −0.01 −0.08 −0.14
(2,3,0,0) 2.95 2.95 2.95 2.94
(2,4,0,0) 0.22 0.22 0.22 0.22
(2,1,0,0) 0.66 0.41 0.43 0.26
(1,3,0,0) 0.77 0.53 0.40 0.43
(1,2,0,0) 1.09 0.68 0.21 0.28
(1,4,0,0) 0.00 −0.02 −0.03 −0.03

(4,0,0,0) 0.11 0.08 0.08 0.11
(3,0,0,0) 0.22 0.17 0.17 0.20
(2,0,0,0) 0.11 0.06 0.06 0.11
(1,0,0,0) 0.66 0.04 0.04 0.52

(0,0,0,0) 19.80 0.98 0.98 0.99

Notes: a. This reports the percentage out of the total of 914 students who submit the given list.
b. This is the average individual deviation. A positive number implies the observed fraction is higher than the model prediction.

Table J17: Who Is Truth-Telling More Often: Regression Analysis of Deviations from Truth-Telling

Most Under-Used List: (1,3,2,4) Most Over-Used List: (2,3,1,4) Most Likely True Preference: (1,2,3,4)
Deviation from Truth Telling Deviation from Truth Telling Deviation from Truth Telling
Mean: -0.08; Std Dev: 0.27 Mean: 0.20; Std Dev: 0.41 Mean: -0.11; Std Dev: 0.44

Parent Inci 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 0.04* 0.02 0.02
(0.01) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Parent Edui -0.00 0.01 0.01 -0.00 -0.00 -0.00 -0.01 -0.01* -0.02**
(0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Own Scorei 0.41*** 0.84*** 0.95*** -0.25 0.04 0.14 0.58*** -0.99*** -0.90***
(0.12) (0.19) (0.22) (0.22) (0.30) (0.34) (0.19) (0.19) (0.21)

Awardsi 0.02** 0.01 0.01 -0.04*** -0.04*** -0.04*** 0.03* 0.03* 0.02
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.02)

Girli -0.03* -0.01 -0.01 0.03 0.02 0.04 -0.02 -0.02 -0.03
(0.02) (0.02) (0.02) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

PTT=BR
i -0.00 -0.01 -0.15** -0.15* 0.59*** 0.60***

(0.05) (0.05) (0.07) (0.08) (0.07) (0.08)
Gaini 0.54*** 0.60*** -0.56 -0.53 -0.47 -0.55

(0.16) (0.18) (0.34) (0.37) (0.31) (0.36)
Attn U i -0.01 0.04** -0.01

(0.01) (0.02) (0.02)
Attn Qi 0.01 -0.03 0.05

(0.02) (0.03) (0.03)
Attn Othersi -0.01* 0.02 -0.02

(0.01) (0.01) (0.01)
PBRi,k -0.62*** -0.66*** -0.15** -0.15* -0.47*** -0.50***

(0.04) (0.04) (0.07) (0.08) (0.13) (0.14)
Obs. 914 914 810 914 914 810 914 914 810

R-Squared 0.07 0.25 0.27 0.05 0.06 0.07 0.12 0.28 0.29

Notes: Definitions of PTT=BR
i and Gaini are in Table 13. PTTi,k is the probability of the list (in the dependent variable) being a best response.

Elementary school fixed effects are included. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table J18: Who Strategizes Better: Regression Analysis of Sophistication Measures

Most Likely True Preference Order: (1,2,3,4)
Dependent V.: Deviation from Best-Responding Prediction

Mean: 0.04; Std Dev.: 0.38

Parent Inci 0.02 0.02 0.02 0.01
(0.02) (0.02) (0.02) (0.02)

Parent Edui 0.00 0.01 0.00 0.00
(0.01) (0.01) (0.01) (0.01)

Own Scorei 1.11*** 1.10*** 0.86*** 1.02***
(0.18) (0.17) (0.23) (0.25)

Awardsi 0.02 0.01 0.01 -0.00
(0.01) (0.01) (0.02) (0.02)

Girli 0.00 0.01 0.01 0.00
(0.02) (0.02) (0.02) (0.03)

pTT=BR
i 0.08 0.08

(0.08) (0.09)
Gaini 0.70*** 0.75**

(0.26) (0.30)
Attn U i -0.01

(0.02)
Attn Qi 0.06*

(0.03)
Attn Othersi -0.02*

(0.01)
PTTi,k -0.26*** -0.28*** -0.31***

(0.06) (0.08) (0.08)

Obs. 914 914 914 810
R2 0.10 0.12 0.13 0.15

Notes: Definitions of pTT=BR
i and Gaini can be found in Table 13. PTTi,k is the probability that the list (in the dependent variable) is the true

preference ranking. All regressions include elementary school fixed effects.
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