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We develop a conditional capital asset pricing model in continuous-time that allows for stochastic

beta exposure. When beta co-moves with market variance and the stochastic discount factor

(SDF), beta risk is priced, and the expected return on a stock deviates from the security market

line. The model predicts that low-beta stocks earn high returns because their beta co-moves

positively with market variance and the SDF. The opposite is true for high-beta stocks. Estimating

the model on equity and option data, we �nd that beta risk explains expected returns on low- and

high-beta stocks, resolving the "betting against beta" anomaly. (JEL G10, G12, G13)
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The exposure of a stock to market �uctuations is arguably its most important risk charac-

teristic. But after more than 50 years of research, the pricing of this market risk exposure remains

unclear. Black, Jensen, and Scholes (1972) show that the cross-sectional relationship between

estimates of beta and average stock return is too �at compared with the prediction of the classic

capital asset pricing model (CAPM; Sharpe, 1964; Lintner, 1965; Mossin, 1966). An extensive sub-

sequent literature documents pronounced time-variation in the market exposure of stock returns.1

However, the empirical performance of the conditional CAPM is still controversial.2

On top of the overall lack of consensus, various seemingly con�icting results exist in the

literature. Frazzini and Pedersen (2014) estimate betas using daily data and �nd that low-beta

stocks o¤er relatively high returns on average and vice versa generating a beta anomaly. Gilbert et

al. (2014) document that this conclusion depends on the frequency of data used in beta estimation.

Cederburg and O�Doherty (2016) model regression-based conditional betas using instrumental

variables. They �nd that time-variation in beta explains unconditional alphas of betting against

beta strategies. Lewellen and Nagel (2006) forcefully argue that the pricing errors of conditional

CAPM are too large to be explained by �uctuation in regression-betas. Buss and Vilkov (2012)

document that option-implied betas improve the performance of conditional CAPM by generating

a steeper security market line (SML). In view of the state of the literature, further evidence on the

impact of �uctuation in betas on expected stock returns is therefore of paramount importance.

In this paper, we formalize the notion of beta (instability) risk put forward by Jagannathan

1De Bondt and Thaler (1987) provide regression-based evidence of time-variation in market beta. Shanken
(1990) studies a model where market beta is a function of state variables. Jagannathan and Wang (1996) allow
innovations in market beta to depend on a market risk premium and a residual component. Bollerslev, Li and
Todorov (2016) study continuous and jump market betas. Another strand of the literature analyzes the dynamics
of consumption betas. For instance, see, Lettau and Ludvigson (2001), Santos and Veronesi (2006), and Lustig and
van Nieuwerburgh (2005).

2Among others, see, Ghysels (1998), Lewellen and Nagel (2006), Nagel and Singleton (2011), and the recent
surveys by Goyal (2012) and Nagel (2013).
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and Wang (1996). We develop a new asset pricing model in which individual equity and market

returns covary dynamically and where beta itself is stochastic. In the model, the expected return on

a stock deviates from the conditional SML when beta risk is priced, that is, when beta covaries with

the market variance and, more generally, with the stochastic discount factor (SDF). Our model

extends traditional frameworks by providing explicit dynamics for stochastic beta. This, in turn,

enables us to study the pricing implications of beta risk in the cross-section. Our main contribution

is to show that, when beta is stochastic, the covariance of beta with the SDF and market variance

results in economically large deviations of expected stock returns from the conditional SML which

helps resolve the beta anomaly.

The key research questions we pose are the following: Is beta risk priced in the cross-

section of stock returns? If so, can it help explain qualitatively and quantitatively the relatively

�at relation between expected equity returns and beta observed in practice? Is there any leftover

alpha to be explained? Finally, is the steeper SML generated by option-implied betas related to

the pricing of beta risk in the cross-section? The answer turns out to be �yes� to all of these

questions.

To address our research questions, we proceed by �rst specifying physical factor dynamics

for the equity market. Second, we assume a SDF allowing for market return and variance risks

to be priced. Third, we derive equity return premiums and derivative prices from the physical

dynamics and SDF. The pricing kernel we assume allows for a market variance risk premium

and can be interpreted as a reduced-form approximation of the equilibrium SDF implied by an

intertemporal CAPM with stochastic volatility in consumption. Our work therefore builds on the

literature on the market variance risk premium including the seminal contributions by Bollerslev,

Tauchen, and Zhou (2009), Carr and Wu (2009), and Driessen, Maenhout, and Vilkov (2009).
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To capture equity market dynamics, we develop a bivariate extension of Heston�s (1993)

stochastic volatility model in which the variance-covariance matrix of index and equity returns

follows a Wishart process. Our model allows individual equity and market returns to covary

stochastically and to price equity and index options in closed-form.3

Several studies document that the relation between expected equity returns and beta in

the US is �atter than predicted by the SML (Black, Jensen, and Scholes, 1972; Fama and French,

1992). In Frazzini and Pedersen (2014)�s model, leverage-constrained investors tilt their portfolios

toward high-beta assets bidding up their prices relative to the low-beta stocks that require �nancial

leverage. Our model provides an alternative channel based on systematic beta risk to explain the

weak empirical relationship between estimated average stock returns and beta.

We argue that the equity return premium consists partly of a premium for beta risk.

Our model predicts that when beta is low it co-moves more strongly with the SDF and market

variance than when it is high. Thus, low-betas tend to increase in bad times which results in

a form of �wrong-way�beta risk. To compensate low-beta �rms for this added risk, they earn

an additional premium in our model. The expected return of high-beta �rms is correspondingly

less than what the standard market model predicts because their betas covary negatively with

the SDF and the market variance. Empirically, we show that beta risk generates large upward

and downward deviations of expected stock returns from the conditional SML that explain the

abnormal performance of low- and high-beta stocks observed in practice.

We estimate the model by maximizing the joint return and option likelihood for a cross-

section of 344 stocks observed over 19 years. Our sample includes the tech bubble and the recent

3For one-factor model extensions of Heston (1993) with constant loadings on market innovations, see, Serban,
Lehoczky, and Seppi (2008), Christo¤ersen, Fournier and Jacobs (2018) and Bégin, Dorion, and Gauthier (2018),
among others.
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�nancial and sovereign debt crises. This allows us to study �uctuations in betas over pronounced

economic cycles. Overall, we �nd that the model �ts the return and option data well.

So far, the conditional CAPM literature has primarily focused on analyzing the impli-

cations of time-variation in regression-based betas on unconditional alphas (among others, see,

Jagannathan and Wang, 1996; Cederburg and O�Doherty, 2016). Our work extends prior studies

in one important way. By fully specifying the dynamics of beta and the SDF, our model delivers

a closed-form solution for conditional expected returns at any horizon (i.e., term structure of ex-

pected equity return). This allows us to analyze return deviations from the conditional SML over

time.
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Figure 1

Annualized return deviation induced by beta risk
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The �gure presents model-implied deviations of expected stock returns from the conditional SML induced

by beta risk. On each day, we sort stocks into decile portfolios based on the model one-month stochastic

beta forecast. We then calculate for each portfolio the daily value-weighted average of annualized return

deviation implied by our model and scatter plot the sample average of these deviations against beta. The

sample period is from January 8th, 1996 to December 30th, 2016.

We document substantial cross-sectional and temporal variation in return deviations from

the conditional SML. On average, the return deviations implied by our model for the high-minus-

low beta strategy is �4:79% during our sample period. We further validate the model predictions

using ordinary least squares (OLS) betas for portfolios of NYSE stocks. Variation in OLS be-

tas causes an average deviation of the high-minus-low beta strategy from the SML of �5:16%.

Our model thus explains about 90% of observed SML mispricing. To validate further the model

predictions, we compare ex-ante and ex-post OLS betas. We show that the ex-post beta of the

high-beta portfolio subsequently co-moves negatively with the SDF and market variance the year

following the sorting. We further show that the opposite is true for the low-beta portfolio.

To capture variation in betas, the common practice is to adopt a rolling-window beta

estimation method using OLS.4 A key challenge faced by this approach is to �nd the right balance

between bias and e¢ ciency. On one hand, the longer the estimation window, the more potential

bias there is if beta is truly dynamic. On the other hand, the shorter the estimation window, the

greater the loss of e¢ ciency is in estimation. Our dynamic model o¤ers two advantages over the

standard approach. First, we can use the convenient particle �lter to extract latent conditional

stochastic betas from a single daily return observation once the model parameters are estimated.

4This is done in Petkova and Zhang (2005), Lewellen and Nagel (2006), and Ang, Chen, and Xing (2006), among
others.
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Second, we can forecast beta across horizons using the stock�s most recent �ltered beta and the

model-implied beta dynamics.

There is comprehensive evidence on variance and correlation risk premiums.5 In contrast,

the study of the beta risk premium and its implications for equity expected return is unexplored.

When market variance risk is priced, beta co-moves with the SDF in the model which generates a

wedge between physical and risk-neutral betas (i.e., a beta risk premium). Because the beta risk

premium of low-beta stocks is negative while it is positive for high-beta stocks, risk-neutral betas

shrink toward one resulting in a steeper SML. This prediction provides theoretical support to Buss

and Vilkov (2012) and Christo¤ersen, Jacobs, and Vainberg (2012), who empirically show that

option-implied betas generate a more pronounced SML than OLS betas. To validate our model

predictions, we �rst show that model-implied beta risk premiums quantitatively match model-free

premium measures for beta-sorted decile portfolios. This result proves that using option prices

in the estimation helps us pin down the dynamics of the beta risk premium and extract relevant

information about beta�s co-movement with the SDF.6 Using ex-post excess stock returns, we then

study the average slopes of the conditional SML implied by model�s physical and risk-neutral beta

forecasts. Consistent with our model, we �nd that model risk-neutral betas result in a steeper

SML than model physical betas. Impressively, both measures of beta obtain positive loadings

that are highly signi�cant when predicting the cross-section of ex-post equity returns up to three

months ahead.

Gouriéroux and Sufana (2006) apply Wishart processes for the pricing of credit risk and

5For example, see, Bollerslev, Tauchen, and Zhou (2009), Carr and Wu (2009), Driessen, Maenhout, and Vilkov
(2009), and Todorov (2010).

6This is related to various existing studies that show that option prices are highly informative about underlying
risk and premium dynamics. Among others, see, Pan (2002), Carr and Wu (2009), and Bollerslev, Todorov, and
Xu (2015).
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the modeling of interest rates. Buraschi, Porchia, and Trojani (2010) solve an intertemporal

portfolio allocation where the dependence across countries and asset classes is captured by a

Wishart dynamic. Gruber, Tebaldi, and Trojani (2015) develop an index model with time-varying

Wishart jump intensity. To our knowledge, our study is the �rst to use Wishart processes to

capture the joint dynamic of market index and individual equity returns.7

Our work is also related to the empirical literature that studies correlation dynamics. Engle

and Kelly (2012) study a time-varying equicorrelation model in which the correlation of various

pairs of stocks is equal in the cross-section. Engle (2016), Bali, Engle, and Tang (2017), and Bali

and Zhou (2016) develop GARCH-style beta models.8 Campbell, Giglio, Polk, and Turley (2018)

study the pricing of volatility risk in stock returns using an intertemporal CAPM with stochastic

volatility but constant correlation. Patton and Verardo (2012) investigate whether stock betas vary

with earning announcements using daily betas estimated from intraday prices. We complement

these papers by developing a new model that allows for stochastic beta exposure and, by showing

that, co-movements of beta with aggregate risks, have important pricing implications.

1 Building a Market Model with Stochastic Beta

First, we de�ne the modeling framework allowing for stochastic beta in a market index

model. We then provide details on the stochastic discount factor that allows us to pin down

risk-premiums and option prices.

7See Bru (1991), Gouriéroux (2006), Da Fonseca, Grasselli, and Tebaldi (2007), Da Fonseca and Grasselli (2011),
and Mayerhofer (2012) for other studies on Wishart processes.

8See also Engle (2002) and Bali (2008) for other studies on the modeling of assets�dynamic dependence within
GARCH-style models.
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1.1 The Modeling Framework

Consider a market index, It, and stock price, St, with physical dynamics of the form

2664 dIt
It

dSt
St

3775 =
2664 r + �I;t

r + �t�I;t

3775 dt+p�t
2664 dZI;t
dZS;t

3775 ; (1)

where we specify the stochastic instantaneous (spot) beta as �t � �SI;t=�2I;t, and where �SI;t is the

spot covariance between the stock and the index, and �2I;t is the market index spot variance. In

equation (1), dZI;t denotes market return risk and dZS;t is the idiosyncratic equity shock. We thus

assume that the continuous-time conditional CAPM holds and that the equity premium, �I;t; is

the slope of the instantaneous SML.

The matrix square root of the conditional variance of market and equity returns,
p
�t; is

speci�ed as

p
�t =

2664 �I;t 0

�SI;t=�I;t
q
�2S;t � �2SI;t=�2I;t

3775 =) �t �
p
�t
p
�t

0

=

2664 �2I;t �SI;t

�SI;t �2S;t

3775 ; (2)

where �2S;t is the spot variance of the stock.

We model the dynamics of �t as a bivariate Wishart process

d�t = (K (�� �t) + (�� �t)K 0) dt+
p
�tdWtQ+

�p
�tdWtQ

�0
; (3)

where all components are 2 � 2 matrices.9 K captures the mean-reversion speed of �t toward

9�t and � are two symmetric positive de�nite matrices. Q is a square matrix. Wt is square matrix of Brownian
motions. K is a positive semi-de�nite matrix with its upper o¤-diagonal element set to 0. We discuss the importance
of this restriction in Section 2.2 below.
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the long-run values �. Q is the matrix of volatilities and co-volatilities of �t. Whenever Q
0
Q

is invertible, the existence and uniqueness of the long-run variance matrix, �, is guaranteed and

� solves the system of equations given by Q
0
Q � K� � �K 0 = 0, where  is a scalar to be

estimated.10

Four independent Brownian motions in Wt drive the dynamics of the variance matrix, �t

in (3). We label them as follows

Wt �

2664 W 1
I;t W 2

I;t

W 1
S;t W 2

S;t

3775 ; (4)

whereW 1
I;t andW

2
I;t capture market variance risks andW

1
S;t andW

2
S;t denote �rm speci�c variance

risks, respectively.

We account for the leverage e¤ect (Black, 1976; Christie, 1982) by linking the Brownian

motions in returns and variances according to

dZI;t =
p
1� �2dBI;t + �dW 1

I;t and dZS;t =
p
1� �2dBS;t + �dW 1

S;t; (5)

where � is the leverage correlation parameter, and BI;t and BS;t are two independent Brownian

motions. Our bivariate model with variance and covariance dynamics thus has a total number of

6 independent shocks.

In summary, we are following a conditional CAPM approach but with a fully speci�ed

dynamic structure on the covariance matrix of the shocks.11

10The parameter restriction  > N + 1 in a N -dimensional set-up ensures that the Wishart process admits a
unique strong solution in the set of positive-de�nite matrices. In our bivariate setting it implies  > 3. For a
given mean-reversion matrix K and long-run matrix �,  de�nes the wedge between the level of volatilities and

co-volatilities and the level of long-run variances and covariance as  =
�
Q

0
Q
��1

(K�+�K 0).
11In our view, the Wishart covariance process provides a good balance between �exibility and parameter par-

simony. It enables us to build in mean-reversion in variances and covariance, a leverage e¤ect, and non-trivial
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1.2 Variance Drifts

The drift terms for the variances and covariances can be written

Et
�
d�2I;t

�
dt

= 2KI(�I � �2I;t); (6)

Et [d�SI;t]

dt
= (KI +KS) (�SI � �SI;t) +KSI(�I � �2I;t); (7)

Et
�
d�2S;t

�
dt

= 2KS(�S � �2S;t) + 2KSI(�SI � �SI;t); (8)

where Et [�] denotes the physical conditional expectations operator, and where we have de�ned

K �

2664 KI 0

KSI KS

3775 ; and � �
2664 �I �SI

�SI �S

3775 :

Note that we have set an o¤-diagonal element in K to zero to ensure that the stochastic market

index variance is independent of the individual stock covariance term.

From equations (6), (7), and (8), we see that 2KI , 2KS, and KI +KS capture the mean

reversion speed of market variance, covariance and stock variance, respectively. The second term in

equations (7) and (8) reveal an interesting property of our model. Whenever KSI 6= 0, �uctuations

in market variance in�uence the covariance dynamic which in turn impacts the stock variance drift.

This allows the model to generate important co-movements in equity variances and covariances.

1.3 Variance Di¤usions and Leverage E¤ects

The model�s implied market variance dynamics is closely related to the square-root model in

Heston (1993). This is apparent from (6) and from the di¤usion coe¢ cient of the market index

covariance dynamics which, in turn, generates non-trivial dynamics for �t.
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variance

d�2I;t � Et
�
d�2I;t

�
= �I;t � 2

�
Q1IdW

1
I;t +Q

2
IdW

2
I;t

�
; (9)

where we have used the square root of the variance matrix in (2) as well as the de�nition

Q =

2664 Q1I Q1S

Q2I Q2S

3775 : (10)

The key di¤erence with Heston (1993) is that d�2I;t in our model in (9) is driven by two

shocks instead of one which provides additional �exibility that is important empirically.

Despite its parsimony, the model produces important contemporaneous co-movements. The

di¤usion of the total stock variance is

d�2S;t � Et
�
d�2S;t

�
= �t�I;t � 2

�
Q1SdW

1
I;t +Q

2
SdW

2
I;t

�
+
q
�2S;t � �2t�2I;t � 2

�
Q1SdW

1
S;t +Q

2
SdW

2
S;t

�
;

(11)

where we have used the de�nition of spot beta, �t � �SI;t=�2I;t.

The di¤usion term in the stock�s total variance in (11) follows a factor structure. On one

hand, the stock�s systematic volatility, �SI;t = �t�I;t, de�nes the loading of d�
2
S;t on market level

risks. On the other hand, the stock�s idiosyncratic volatility,
q
�2S;t � �2t�2I;t, de�nes the way d�2S;t

loads on �rm-speci�c innovations. Similar conclusions can be drawn from the dependence of the

covariance di¤usion on aggregate and �rm-speci�c shocks (see Appendix A).

From equations (3), (5), (10), and the dynamics of �2I;t and �
2
S;t, we can show that the
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market and equity leverage e¤ects are given by � and the Q matrix as follows

�I � Corrt(dItIt ; d�
2
I;t) = �

Q1Iq
(Q1I)

2
+(Q2I)

2 ;

�S � Corrt(dStSt ; d�
2
S;t) = �

Q1Sq
(Q1S)

2
+(Q2S)

2 :

(12)

So, while the speci�cation in (5) relies on a single correlation parameter, �, the model generates

di¤erent leverage e¤ects for the market index, �I , and individual equity, �S, via the parameters

in the Q matrix. Finally, note that including �, our model has a total of 9 parameters under the

physical measure. We next discuss the dynamics of the SDF, which leads to the introduction of

three additional price-of-risk parameters.

1.4 A Stochastic Discount Factor

The stochastic discount factor (SDF) in the model depends linearly on market index return and

variance risks. More precisely, the SDF follows the dynamics

d�t
�t
= �rdt� �I;t

�
�RIdBI;t + �

�I
1 dW

1
I;t + �

�I
2 dW

2
I;t

�
; (13)

where �I;t�
RI is the price of market return-speci�c risk, BI;t, and �I;t�

�I
1 and �I;t�

�I
2 are the prices

of the market variance risks W 1
I;t and W

2
I;t, respectively. The stock-speci�c innovations ZS;t, W

1
S;t,

and W 2
S;t are deliberately assumed not to be priced in the model. Unlike standard factor models

(Jagannathan and Wang, 1996; Lewellen and Nagel, 2006), our SDF allows for market and equity

systematic variance risk premiums. As shown in the Online Appendix, the speci�cation (13) is

a reduced-form approximation of the equilibrium SDF implied by an intertemporal CAPM with
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long-run risk and stochastic volatility in consumption. Among other things, we show that W 1
I;t

andW 2
I;t in (13) can be interpreted as the shocks driving consumption variance while BI;t captures

both consumption-speci�c innovation and the shock to consumption growth. The dynamics of the

SDF in the model is thus consistent with the long-run risk and variance risk premium literatures

which provide theoretical and empirical support for priced variance risks (for example, see, Bansal

and Yaron, 2004; Bollerslev, Tauchen, and Zhou, 2009; Koijen, Lustig, Van Nieuwerburgh, and

Verdelhan, 2010).12

The SDF will enable us to pin down the equity risk premium, �I;t, and to derive the risk-

neutral dynamics which in turn enables us to price index and equity options. The linear form of

the SDF in equation (13) ensures that the risk-neutral dynamics of the model will be similar to

the physical dynamics in equation (1) above.

2 Model Properties

We now explore some key properties of the model. First, we present the model�s risk-neutral dy-

namics and derive instantaneous return premiums. Then, we investigate the model�s implications

for variation in beta. Finally, we derive expressions for the term structure of return risk premiums

and present model-implied expected future betas.

12For empirical evidence on the variance risk premium, see, Bollerslev, Tauchen, and Zhou (2009), Carr and Wu
(2009), and Driessen, Maenhout, and Vilkov (2009).
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2.1 The Risk-Neutral Dynamics

The physical return dynamics in (1) and the stochastic discount factor in (13) imply that the

risk-neutral dynamics (see Appendix B) used in option valuation is given by

2664 dIt
It

dSt
St

3775 =
2664 r
r

3775 dt+p�t
2664 d ~ZI;t
d ~ZS;t

3775 : (14)

In our setup, the spot variance-covariance matrix �t is the same under the two measures, which

implies that the instantaneous spot beta, �t � �SI;t=�
2
I;t, is identical under the two measures

as well.13 However, the dynamics of �t will di¤er under the two measures which, in turn, has

interesting implication for the term-structure of risk premiums as investigated below. The risk-

neutral returns shocks are de�ned by d ~ZI;t = dZI;t + �I;t(
p
1� �2�RI + ���I1 ) and d ~ZS;t = dZS;t.

The dynamics for �t under the risk-neutral measure is as in equation (3) only with the

matrix of mean-reversion parameters, K, replaced by

~K = K +

2664 ��I1 Q
1
I + �

�I
2 Q

2
I 0

��I1 Q
1
S + �

�I
2 Q

2
S 0

3775 ; (15)

and the matrix of long-term mean � replaced by ~� which solves ~K ~� + ~� ~K 0 = Q
0
Q. The

risk-neutral variance shocks, d ~Wt, are provided in Appendix B.

13This, again, resembles the Heston (1993) model where the instantaneous variance is the same under the two
measures.
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2.2 Instantaneous Return Premiums

Comparing (1) and (14) we see that the instantaneous return risk premium for the market index

is

Et

�
dIt
It

�
� EQt

�
dIt
It

�
� �I;tdt = �I�2I;tdt; (16)

where EQt [�] is the risk-neutral expectation operator and where �I �
�p

1� �2
�
�RI + ���I1 ; as

shown in Appendix B. For the empirically relevant case � < 0 (i.e., negative leverage e¤ect),

�RI > 0 (i.e., positive price of return risk), and ��I1 < 0 (i.e., negative price of variance risk), we

have �I > 0.

For the stock we have the instantaneous risk premium

Et

�
dSt
St

�
� EQt

�
dSt
St

�
� �t�I;tdt = �t

�
�I�2I;t

�
dt = �I�SI;tdt: (17)

As long as the leverage correlation, �, is non-zero, the market variance price of risk, ��I1 ,

impacts the instantaneous market equity price of risk, �I , and thus the instantaneous risk-premium

on the stock.

2.3 Beta Risk

We next present some implications for the dynamics of beta that are intended to provide further

intuition for the model.

Proposition 1 Given (3), the physical (P ) dynamics of market beta, �t � �SI;t=�2I;t, is such that

d�t = �t

 
(d�SI;t � �SIdt)

�SI;t
�
�
d�2I;t � �Idt

�
�2I;t

!
; (18)

17



where �SI � 2 (Q1IQ
1
S +Q

2
IQ

2
S) and �I � 2

�
(Q1I)

2
+ (Q2I)

2
�
. The risk-neutral (Q) dynamics of

market beta satis�es

d�t = �t

 
(d�SI;t � �SIdt)

�SI;t
�
�
d�2I;t � �Idt

�
�2I;t

!
+ covt

�
d�t;

d�t
�t

�
; (19)

where covt
�
d�t;

d�t
�t

�
is the instantaneous conditional covariance (i.e., quadratic covariation) of

changes in market beta with the returns on the SDF.

Proof. See Appendix C.

We see from Proposition 1 that �t follows a two-factor dynamics under P . By de�n-

ition, the market beta is proportional to equity covariance with the market index and is in-

versely proportional to the market index variance. Accordingly, the �rst factor in equation (18),

(d�SI;t � �ISdt) =�SI;t, corresponds to the relative change in covariance which positively impacts

the change in beta. The second factor,
�
d�2I;t � �Idt

�
=�2I;t, captures the relative change in the

market index variance and is negatively related to d�t.

Proposition 1 has important implications for the dynamics of equity risk under the risk-

neutral measure. Comparing equation (18) with (19), we see that the covariance between beta

and the SDF generates the wedge between physical and risk-neutral beta dynamics. A positive

covariance implies that the level of beta under the risk-neutral measure is higher than the level of

beta under the objective measure. Reciprocally, the more negative the covariance, the lower the

level of risk neutral beta is compared to physical beta. As shown in Appendix C, beta covaries

with the SDF in our model whenever market variance risks are priced (i.e., ��I1 ; �
�I
2 6= 0). We

now discuss the implications of beta�s co-movement with the SDF for the integrated beta risk

premium. We discuss the impact of the integrated beta risk premium on the term structure of
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expected stock returns in the next section.

In the spirit of return and variance risk premia, the h-day expected integrated beta risk

premium, BRPt;h, captures the di¤erence between expected integrated physical and risk-neutral

stochastic betas. It satis�es

BRPt;h � Et

"Z t+h=252

t

�udu

#
� EQt

"Z t+h=252

t

�udu

#
= �t;h � �

Q
t;h; (20)

where we have assumed 252 trading days in a year, and where �t;h and �
Q
t;h are the h-day expected

integrated physical and risk-neutral betas, respectively. When beta co-moves positively with the

SDF, we have covt (d�t; d�t=�t) > 0 in (19) and the level of risk-neutral beta will be relatively higher

than the level of physical beta. All things being equal, this will result in a negative integrated

beta risk premium (i.e., �t;h < �
Q
t;h , BRPt;h < 0). In contrast, the beta risk premium will be

positive on average when beta covaries negatively with the SDF.

Appendix C shows the way the sign of the instantaneous covariance of beta with the SDF

(i.e., covt (d�t; d�t=�t)) is related to the level of �t. A byproduct of this result is that the sign of the

instantaneous beta risk premium (i.e., Et [d�t]�E
Q
t [d�t]) is also impacted by the level of beta in

our framework as Et [d�t]�E
Q
t [d�t] � �covt (d�t; d�t=�t). Unfortunately, while �t;h��

Q
t;h factors

in the integrated instantaneous covariance of beta with the SDF, it is also in�uenced by additional

terms that cannot be solved analytically (See Appendix C).14 Empirically, we �nd that BRPt;h > 0

on average for stocks with average conditional beta above 0:83 which is broadly consistent with

the idea that the beta of these stocks co-moves negatively with the SDF. In contrast, stocks with

an average conditional beta below 0:83 have a negative integrated beta risk premium because their

14As shown in Appendix C, BRPt;h is also impacted by the di¤erence of the physical and risk-neutral expectations
of the integrals of �t

�
d�2I;t � �Idt

�
=�2I;t and �t

�
d�2I;t � �Idt

�
=�2I;t.
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beta co-moves positively with the SDF.

Equation (18) shows the way changes in beta depend on d�2I;t under the P -measure. Because

changes in beta depend on market variance innovations, beta co-moves with market variance in

the model. Empirically, we �nd that the betas of low-beta stocks co-move positively with the

market variance while the betas of high-beta stocks tend to co-move negatively with �2I;t. As we

discuss next, this has important implications for the term structure of expected stock returns.

2.4 The Term Structure of Return Premiums

While our theoretical model is written in continuous time, when evaluating it, we need to decide on

a return frequency of interest, say monthly, and we therefore now explore the model�s implications

for the return premium at di¤erent horizons.

To this end, the following proposition provides the expressions of the conditional risk pre-

mium for market index and individual equity returns for horizon h. For ease of notation, we de�ne

by Xt;h �
R t+h=252
t

Et [Xs] ds and X
Q
t;h �

R t+h=252
t

EQt [Xs] ds the h-day physical and risk-neutral

integrated expectations of variable X at time t, respectively. Armed with this notation, we now

present the main theoretical result.

Proposition 2 Given (1), (3), and (13), the h-day integrated market return premium at time t,

RP It;h, is given by

RP It;h � Et

"Z t+h=252

t

dIu
Iu

#
� EQt

"Z t+h=252

t

dIu
Iu

#
= �I�2I;t;h; (21)

where �I =
�p

1� �2
�
�RI+���I1 and �2I;t;h is the h-day expected integrated market variance under
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the physical measure. The stock�s h-day expected integrated return premium, RP St;h, is given by

RP St;h � Et

"Z t+h=252

t

dSu
Su

#
� EQt

"Z t+h=252

t

dSu
Su

#
= �I�2SI;t;h (22)

= RP SML
t;h +RPBRPt;h ; (23)

where RP SML
t;h is the return premium predicted by the conditional security market line

RP SML
t;h �

Z t+h=252

t

�
Et [�u]Et

�
dIu
Iu

�
� EQt [�u]E

Q
t

�
dIu
Iu

��
; (24)

and where RPBRPt;h is the beta return premium

RPBRPt;h �
Z t+h=252

t

covt
�
�u; �I;u

�
du� r

�
�t;h � �

Q
t;h

�

= �I
Z t+h=252

t

covt
�
�u; �

2
I;u

�
du� r (BRPt;h) ; (25)

where �SI;t;h, �t;h, and �
Q
t;h are the h-day expected integrated physical covariance, and physical and

risk-neutral betas, respectively.

Proof. See Appendix D.

The market premium is thus the product of the integrated market variance and �I which

re�ects the representative investor�s aversion to return and variance risks. Similarly, we see from

(22) that the individual equity premium is �I times the integrated covariance of the stock and the

market.

Proposition 2 provides a decomposition of the equity return premium. From (23), we see
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that the equity�s total return premium is composed of two parts. The �rst component (RP SML
t;h )

corresponds to the di¤erence between expected beta times expected market return under the

physical and risk-neutral measures. It is the return premium predicted for the stock by the

conditional security market line. The second component (RPBRPt;h ) is the covariance of beta with

the market risk premium along with a term capturing the beta risk premium multiplied by the

risk-free rate. We refer to RPBRPt;h as the beta return premium as it captures the component of

the return premium induced by beta�s co-movements with market variance and the SDF.

Because the beta of high-beta �rms co-moves negatively with market variance and vice

versa, �I
�R t+h=252

t
covt

�
�u; �

2
I;u

�
du
�
is negative for high-beta �rms and positive for low-beta

�rms given �I > 0. The second term in RPBRPt;h captures the di¤erence between physical and risk-

neutral expected integrated betas. As noted in Section 2.3, the sign of BRPt;h is driven by the way

beta co-moves with the SDF. It is positive on average for high-beta �rms because their beta co-

moves negatively with the SDF while it is negative for low-beta �rms. As a result, �r
�
�t;h � �

Q
t;h

�
and �I

�R t+h=252
t

covt
�
�u; �

2
I;u

�
du
�
do not cancel out each other and take on negative values on

average for high-beta stocks and positive values for low-beta stocks. Overall, RP St;h > RP
SML
t;h on

average for low-beta �rms while RP St;h < RP
SML
t;h on average for high-beta �rms.

In the limit when h �! 0, RP SML
t;0 = Et [�t]Et

h
dIt
It

i
� EQt [�t]E

Q
t

h
dIt
It

i
, which further

simpli�es to

�t

�
Et

�
dIt
It

�
� EQt

�
dIt
It

��
= �t

�
�I�2I;t

�
dt = �I�SI;tdt;

where we have used the de�nition of instantaneous market return premium in equation (16) com-

bined with the fact that Et [�t] = EQt [�t] = �t by absolute continuity of the two probability
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measures. Moreover, when h �! 0 then we have

RPBRPt;0 = �I
Z t+0

t

covt
�
�u; �

2
I;u

�
du� r

�
Et

�Z t+0

t

�udu

�
� EQt

�Z t+0

t

�udu

��
= �Icovt

�
�t; �

2
I;t

�
dt� r

�
Et [�t]� E

Q
t [�t]

�
dt = 0;

where we have used that, conditional on time t, �t and �
2
I;t are known and do not covary and

that Et [�t] = E
Q
t [�t] = �t. In other words, even if beta co-moves with market variance and the

SDF, it has no impact on instantaneous expected returns and RPBRPt;0 = 0 always holds. This is

because the instantaneous co-movements of beta with market variance and the SDF only impact

RPBRPt;h when the forecast horizon is greater than an instant (i.e., h > 0). This result is related

to the solution of optimal portfolio allocation problems. When the investment horizon is equal to

the discretization step, intertemporal hedging demands are zero and the representative investor

holds her mean-variance allocation. As the horizon increases, intertemporal hedging demands of

the non-myopic agent kick in and the agent�s holdings deviate from her mean-variance allocation.

A similar mechanism is at play in our set-up. Instantaneously, the SML holds perfectly (i.e.,

RPBRPt;0 = 0). As the horizon increases, expected co-movements of betas with the market variance

and the SDF generate deviations from the conditional SML (i.e., RPBRPt;h 6= 0 for h > 0).

The results in Proposition 2 complement an extensive literature that studies the way vari-

ation in conditional betas impacts unconditional CAPM alphas. Lewellen and Nagel (2006) show

that unconditional alphas are function of the way beta co-moves with market return premium

and market volatility. Frazzini and Pedersen (2014) show that high-beta stocks earn negative

unconditional alphas. In their model, constrained investors tilt their portfolios toward high-beta

assets bidding up their prices. Consequently, high-beta stocks require relatively low risk-adjusted
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returns compared with low-beta stocks, which require leverage. Our model provides an alterna-

tive explanation to this stylized fact. High-beta stocks have lower expected returns than what

the SML predicts because of the way their betas co-move with market variance and the SDF.

More recently, Cederburg and O�Doherty (2016) provide evidence that the beta of high-minus-

low beta trading strategies tends to co-move negatively with the market premium which impacts

unconditional CAPM alphas.15 This result is broadly consistent with our model which predicts

that
R t+h=252
t

covt
�
�u; �I;u

�
du = �I

�R t+h=252
t

covt
�
�u; �

2
I;u

�
du
�
is negative for high-beta stocks

and positive for low-beta stocks on average.

Other evidence in the literature suggests that beta�s co-movement with market returns

helps explain the cross-section of stock conditional expected returns. Petkova and Zhang (2005)

show that variation in betas helps explain the value-premium puzzle. Ang, Chen, and Xing

(2006) document that stocks which co-move positively with the market index when market index

returns are low (i.e., high downside betas) have a positive risk-adjusted alpha while stocks with

low downside betas have a negative risk-adjusted alpha. Our model complements this result by

identifying the type of �rms prone to high or low downside betas. Because the beta of low-

beta stocks co-moves positively with the SDF and negatively with market returns (i.e., market

returns are low when the SDF is high), low-beta stocks are thus inclined to high downside betas

in the model. In contrast, high-beta stocks have low downside betas because their betas co-move

positively with market returns (i.e., negatively with the SDF). This prediction combined with the

fact that RPBRPt;h is positive for low-beta stocks and negative for high-beta stocks is consistent

with Ang, Chen, and Xing (2006)�s �nding.

15See, also, Liu, Stambaugh and Yuan (2018) for discussions on the impact of idiosyncratic volatility on the
unconditional abnormal return of beta strategies.
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2.5 Risk-Neutral Betas and the Slope of the Conditional SML

The pricing implications of option-implied betas is a subject of recent interest. For example,

Buss and Vilkov (2012) and Chang, Christo¤ersen, Jacobs, and Vainberg (2012) estimate betas

from risk-neutral market index and individual stock moments and show that option-implied betas

generate a more pronounced SML than OLS betas.

The pricing of beta risk has implications for the slope of the conditional SML estimated

using risk-neutral betas. To see why, let us consider two hypothetical stocks. The �rst stock has

a high (h-day expected integrated) physical beta which we denote �Ht;h. The second has a low

(physical) beta, �Lt;h, so that �
H
t;h > �Lt;h. Furthermore, let us assume that the h-day expected

excess return of the high and low-beta stocks satisfy RPHt;h > RP
L
t;h.

16

Recall that the beta risk premium of low-beta �rms is negative on average which implies

that �Lt;h��
Q;L
t;h < 0, �Lt;h < �

Q;L
t;h . Reciprocally, BRP is positive for high-beta stocks on average

and thus �Ht;h > �
Q;H
t;h . Now, suppose that we want to estimate the slope of the conditional SML

at time t for horizon h. Using physical betas, the slope of the conditional SML is approximated

by
�
RPHt;h �RPLt;h

�
=
�
�Ht;h � �Lt;h

�
. We can now compare this estimate to the one that would be

obtained when using risk-neutral betas. Given that �Lt;h < �
Q;L
t;h , ��Lt;h > ��

Q;L
t;h and �Ht;h > �

Q;H
t;h ,

we have �Ht;h � �Lt;h > �
Q;H
t;h � �Q;Lt;h which, in turn, implies that

RPHt;h �RPLt;h
�Ht;h � �Lt;h

<
RPHt;h �RPLt;h
�Q;Ht;h � �Q;Lt;h

:

When beta risk is priced, the slope of the conditional SML estimated using risk-neutral betas

16The joint assumption that �Ht;h > �
L
t;h and RP

H
t;h > RP

L
t;h hold rules out the case of inverted conditional SML

(i.e., negative relationship between expected excess return and beta).
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will be steeper than the one obtained using physical betas. This prediction is consistent with the

empirical �ndings in Buss and Vilkov (2012) and Chang, Christo¤ersen, Jacobs, and Vainberg

(2012).17

2.6 The Term Structure of Beta

Below, we want to empirically validate the model partly based on its ability to forecast ex-post

realized beta. To this end we need to derive model-based expected future betas.

Proposition 3 Conditional on time t, the h-day ahead expected integrated variance-covariance

matrix under the physical measure is

�t;h = Et

"Z t+h=252

t

�udu

#
=

Z t+h=252

t

�
e�K(u�t)�te

�K0(u�t) + �t;u

�
du; (26)

where the expression for �t;u, which is a function of ; Q; and K, is given in Appendix E. The

h-day ahead expected integrated beta under the physical measure is at �rst-order equal to

�t;h = Et

"Z t+h=252

t

�udu

#
� �SI;t;h

�I
�
�
�2I;t;h � �I h

252

�
�SI

(�I)
2 ; (27)

where �2I;t;h and �SI;t;h denote the h-day ahead expected integrated market variance and covariance

under the physical measure, respectively. They are given by �2I;t;h = �
(1;1)
t;h and �SI;t;h = �

(2;1)
t;h where

�
(i;j)
t;h corresponds to the element on the ith row, jth column of �t;h.

Proof. See Appendix E.
17These studies show that option-implied betas are practically unbiased relative to the future realized betas which

also contributes to generate a more pronounced SML.
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Based on these results, the annualized h-day ahead integrated stochastic variance-covariance

matrix and beta can be de�ned by

�SBt;h �
252

h
�t;h and �SBt;h �

252

h
�t;h, (28)

respectively. Using (27) and (28), we can obtain the model�s forecast of future realized beta. By

construction, beta is a non-linear function of the state variables, and an exact analytical expression

for its conditional expectation does not exist. Equation (27) approximates expected integrated

future beta based on a �rst-order Taylor expansion around the long-term variance-covariance

means. While this expression is not exact, we have veri�ed using Monte Carlo simulations that it

closely approximates the true expected integrated beta.

In summary, our contribution is threefold. First, the results in Sections 2.3 and 2.4 pro-

vide new insights on the impact of beta�s co-movements with market variance and the SDF on

conditional expected returns on low- and high-beta stocks. Second, we provide in Section 2.5

new theoretical support for explaining the better �t of the SML by risk-neutral betas through a

beta risk premium channel. Combined, these results suggest that the betting-against-beta return

anomaly and the better SML �t generated by option-implied betas documented in the literature

are two tales of the same story, in the sense that, both are related to the pricing of beta risk.

Third, by fully-specifying the dynamics of the variance and covariance matrix, our model o¤ers

an innovative way to estimate latent betas jointly from return and option data. We discuss model

estimation and provide an extensive empirical investigation of model�s predictions in the next

section.
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3 Empirical Results

We �rst present the data, the model estimation strategy, and parameter estimates. We then

analyze the ability of stochastic betas to predict future realized OLS betas. Subsequently, we

analyze conditional beta risk premiums and study the slope of the SML implied by model betas.

Finally, we analyze the impact of beta risk on the cross-section of expected stock returns and

compare it to the security market line.

3.1 Data and Model Estimation

Our empirical analysis relies on two main datasets. We obtain daily return data from CRSP and

end-of-day implied-volatility surfaces from OptionMetrics. We consider two sample periods. The

�rst sample starts on January 8, 1996 and ends on December 30, 2014 and is used to estimate

the structural parameters of our model. The second starts on January 8, 1996 and ends on

December 30, 2016. We use this extended sample, which includes two additional years relative

to the estimation sample, to analyze the empirical performance of our model. To assess model

performance in the cross-section, it is important to have a su¢ ciently large number of stocks. To

this end, we obtain all the constituents of the S&P 500 index at the end of the estimation sample.

We retain all stocks with complete return data and with quoted options for the 1996-2014 sample

period. In total, 344 stocks meet these criteria. We use the S&P 500 index to proxy for the market

factor.

Table 1 presents summary statistics of excess returns for various value-weighted stock port-

folios for the 1996-2016 sample period. We consider the value-weighted portfolio composed of all

stocks and decile portfolios of stocks sorted unconditionally on their sample OLS betas with re-

28



spect to S&P 500 returns. We use sample OLS betas to measure unconditional OLS betas. The

�rst two columns report the sample mean and volatility of excess returns annualized. Columns

three to �ve report the OLS R-squared, correlation, and beta of each portfolio estimated by re-

gressing daily excess portfolio returns on daily excess S&P 500 returns over the entire sample. In

column six, we report an alternative measure of beta for each portfolio estimated by OLS using

the value-weighted portfolio as a factor. This allows us to assess the representativeness of our

sample with respect to the S&P 500 index. Column 7 presents the t-statistics of the di¤erence in

betas. We report the average market capitalization of the constituents of each portfolio in billion

dollars in the last column. Comparing the betas in column 5 with those reported in column 6, we

see that the estimates are close and not statistically signi�cantly di¤erent one from another. We

conclude that our cross-section of 344 stocks is fairly representative of the S&P 500 index for beta

analysis.

When estimating the model it is important to combine returns with option data in order to

obtain the best possible estimates of risk premiums and physical and risk-neutral beta dynamics.

Precisely estimating physical and risk-neutral dynamics is critically important when analyzing the

properties of physical and risk-neutral betas as we do. Appendix F contains the closed-form option

pricing formula implied by our model.18

Recall that we need to estimate the paths of the unobserved market variance f�2I;tg, equity

variance f�2S;tg, and covariance f�SI;tg and two sets of structural parameters f	I , 	Sg, where

	I � f;KI ; Q
1
I ; Q

2
I ; �; �

�I
1 ; �

�I
2 g and 	S � fKS; KSI ; Q

1
S; Q

2
Sg. To reduce the dimensionality of

the market estimation, we impose ��I1 = ��I2 = ��I . With this restriction, the set of market

parameters 	I becomes f;KI ; Q
1
I ; Q

2
I ; �; �

�Ig.
18Firm-level statistics for return and option data are available from the authors upon request.
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Our methodology to estimate the model is based on a two-step procedure and a daily

discretization of the model dynamics. In both steps, we �lter the paths of the unobserved latent

variables from returns only. In the �rst step, we estimate the market index dynamics
�
	I ;

�
�2I;t
		

by maximizing the sum of S&P 500 returns and options log-likelihoods

	̂I ;
�
�̂2I;t
	
= argmax(LRI (	I) + LOI (	I)); (29)

where LRI (�) and LOI (�) denote the index returns and options log-likelihoods, respectively. In the

second step, we use S&P 500 returns, and equity returns and options, to estimate stock-speci�c

dynamics
�
	S;

�
�2S;t; �SI;t

		
taking market parameters from the �rst step as given. Similarly to

the market estimation, we estimate stock-speci�c dynamics by maximizing the sum of returns and

options log-likelihoods such that

	̂S;
�
�̂2S;t; �̂SI;t

	
= argmax(LRS;I(	̂I ;	S) + LOS (	̂I ;	S)); (30)

where LRS;I(�) denotes the index-equity returns joint log-likelihood, and LOS (�) is the equity options

log-likelihood.19

This estimation procedure enables us to ensure that the same dynamics is imposed for

the market index for each �rm. Our estimation strategy uses particle �lter because it provides

a convenient method for obtaining real-time estimates of the daily latent variables and betas,

�t � �SI;t=�2I;t, for each stock. Using this estimation procedure we estimate our model for the 344

equities over 19 years between 1996 and 2014. Using the structural parameters obtained, we then

19For alternative estimation approaches, see, Renault and Touzi (1996), Gouriéroux, Monfort, and Renault
(1993), Pan (2002), Gagliardini, Gouriéroux, and Renault (2011), Eraker (2004), and Christo¤ersen, Jacobs, and
Mimouni (2010).
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�lter daily latent variables and betas for the 1996-2016 extended sample period. Speci�c details

on the estimation strategy including the construction of the likelihoods, the particle �lter, and on

the way options enter into the estimation can be found in the Online Appendix.20

3.2 Unconditional Model Fit and Risk Premiums

We �rst discuss parameter estimates. We then assess whether the unconditional betas and variance

risk premiums implied by the model are reasonable. Finally, we discuss model unconditional �t.

In Panel A of Table 2 we report the estimated model parameters. The top of the panel

presents the market parameters and below we report the value-weighted average of stock-speci�c

parameters for decile portfolios of stocks sorted unconditionally on sample OLS betas (i.e., as in

Table 1). We relegate stock level results to Table A.1 in the Online Appendix.

For the market index, the estimated �I corresponds to a 20:21% average volatility which is

close to the 19:34% volatility of S&P 500 daily returns during the 1996-2016 sample. For equities,

the long term volatility
p
�S ranges from 26:26% for the low-beta portfolio to 40:08% for the

high-beta portfolio.21 The equity leverage e¤ect, �S, is �0:40 on average across portfolios and

much lower (in absolute value) than the market index leverage e¤ect (�I) of �0:61. Because the

leverage e¤ects drives the skewness of the return distribution, this result is consistent with Bakshi,

Kapadia, and Madan (2003) who document empirically that the market index skewness is more

negative than individual equity skewness on average. The estimated price of variance risk ��I is

large and negative which is important to allow the model to generate a negative market variance

risk premium. Comparing the estimated unconditional stochastic betas, �̂ = �̂SI=�̂I , in Panel A
20A simulation-based assessment of the performance of the particle �lter in the context of our model is also

discussed in the Online Appendix.
21Unlike the portfolio return risk measures reported in Table 1, the variance measures reported in Table 2 are

value-weighted averages of stock-level variances which do not account for diversi�cation bene�ts.
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of Table 2 with the unconditional OLS betas in column 5 of Table 1, we see that model and OLS

betas are close to each other. The divergence of model and OLS betas is, however, slightly larger

for stocks with high-betas, which are also the most volatile as suggested by Tables 1 and 2.

To further investigate this, we scatter plot unconditional OLS beta against unconditional

stochastic betas. Figure 2 shows the result. The solid line corresponds to the regression �t

obtained from regressing OLS betas against our stochastic model betas. The �gure uncovers the

close relationship between unconditional OLS and unconditional stochastic betas. The coe¢ cient

obtained when regressing OLS betas on stochastic betas is 1:07 and the regression R-squared is

65%. No particular outliers are apparent.

Panel A of Table 2 also reports unconditional risk-premiums. For a given risk measure (i.e.,

variance, covariance, or beta), the risk premium is de�ned as the di¤erence between physical and

risk-neutral expectations of the integrated risk measure. For each �rm and the market index, we

apply the results (26), (27), and (28) in Proposition 3 and compute annual expected integrated

risk measures given the �ltered stochastic variance-covariance matrices on each day. The physical

expectations are calculated based on parameter K and �, while risk-neutral model forecasts are

obtained using the risk-neutral parameters, ~K and ~�. Armed with the daily expectations of each

measure, we then take the di¤erence for each stock and the market index. For equities, the values

reported in the table correspond to the sample average of the daily value-weighted stock-level

premiums.

Unconditionally, the market variance risk premium, V RPI , is �1:8% which compares well

to what has been documented in the literature (see Carr and Wu, 2009). For equities, the un-

conditional variance risk premiums are all negative but their magnitudes vary widely. The equity

variance risk premiums, V RPS, are particularly small (in absolute value) for the �rst �ve decile
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portfolios compared to the top deciles. As beta increases, the dependence of equity variance on

market variance risks increases. Thus, the variance risk premium of stocks with high-beta is larger

in absolute value as these stocks load more on the market variance risk premium.22 Little is known

about unconditional covariance and beta risk premiums. In that regard, Table 2 is informative

about the size of these premiums and their distribution across beta-sorted portfolios. For low

to medium beta portfolios, covariance risk premiums, CRP , are larger (in absolute value) than

equity variance risk premiums. Unconditionally, the beta risk premium, BRP , can be positive or

negative, but its magnitude is small.

Panel B of Table 2 reports various measures of �t for the return and option data. For

each �rm, the model R-squared corresponds to �̂2�̂I=�̂S. Not surprisingly, the �t obtained for the

market index is better than for equities. The sample log-likelihood for the index return is 17; 004

and the model IVRMSE for index options is 3:50%. For equities, the model �t is generally good

with conditional log-likelihoods of equity returns (i.e., di¤erence between index-equity joint log-

likelihood and index log-likelihood) ranging from 14; 893 to 16; 817. The equity options IVRMSE

ranges from 5:25% to 9:22% which is noteworthy given that our sample includes the �nancial

crisis. The model �ts the return and option data of low-beta stocks better than that of high-beta

stocks. This is to be expected as the returns of high-beta stocks are more volatile than the returns

of low-beta stocks.
22Accounting for a separate price of idiosyncratic variance risk would allow the model to generate both positive

and negative equity total variance risk premiums. For recent empirical evidence on equity variance risk premium,
we refer to Buss, Schoenleber, and Vilkov (2016).
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3.3 A Comparison of Stochastic, Option-Implied, and OLS Betas

We now assess the information content of model stochastic beta forecasts relative to alternative

measures of beta. We assume 21 trading days per month in all calculations. We �rst construct

annualized one-month model forecasts of future stochastic betas, �SBt;21 = �t;21� 252
21
, for each �rm.

We also construct daily estimates of OLS beta. To obtain OLS beta predictions for the h days

horizon of future betas on day t, we regress daily excess equity returns against excess S&P 500

returns over the last h days

RSu = �
OLS
t;h + �OLSt;h �RIu + "u; for u 2 ft� h+ 1; :::; tg : (31)

Accordingly, we de�ne the OLS beta forecast for the h-day future realized beta on day t by the

loading �OLSt;h of the above regression. We take the h-day ex-post realized beta on day t to be

the OLS beta for the period starting on day t+ 1 and ending on day t+ h+ 1, and we denote it

�OLSt+h+1;h. Setting h = 21, we run the regression above on every day and for each �rm to obtain

the time-series of one-month OLS betas over the sample period.

In Figure 3, we plot the time-series of daily value-weighted average of one-month OLS

betas (grey) and stochastic betas (black) for decile portfolios of stocks sorted on �SBt;21 each day

(i.e., conditional sorting). Note that the results we document are robust to the use of one-month

OLS betas for the sorting. Overall, the patterns in the two beta time-series are similar across

portfolios. For instance, note the way OLS and stochastic betas substantially increases during the

Tech bubble and the �nancial crisis for the top decile portfolio. This is encouraging because it

demonstrates the ability of our model to adequately capture large variation in equity risks during

periods of high uncertainty.
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Buss and Vilkov (2012) and Chang, Christo¤ersen, Jacobs, and Vainberg (2012) among oth-

ers �nd that option-implied betas have good predictive properties for future stock betas. Following

Chang, Christo¤ersen, Jacobs, and Vainberg (2012), we construct measures of option-implied beta

on each day for each �rm. We use options with one-month to maturity to construct 21-day option-

implied betas. We denote them �OIt;21.

To investigate the information content of our stochastic betas, we regress one-month ex-post

realized betas against one-month expected integrated stochastic betas controlling for one-month

option-implied and OLS betas. We take the 21-day ex-post realized beta on day t to be the OLS

beta for the period starting on day t+1 and ending on day t+22, and we denote it �OLSt+22;21. Table

3 presents the regression coe¢ cient estimates, t-statistics, and adjusted R-squared by �SBt;21-sorted

portfolios. The stochastic beta forecasts are statistically signi�cant for predicting future OLS betas

for all portfolios. Note the way the magnitude of the loadings on the stochastic beta increases for

more extreme portfolios. It is the largest for the top and bottom decile portfolios, respectively.

Overall, this evidence suggests that model stochastic beta forecasts are highly informative about

future realized betas, and especially for the high- and low-beta portfolios.

3.4 Conditional Beta Risk Premiums

An extensive literature document pronounced variation in betas but the question of whether

a premium compensates unexpected innovations in betas is mainly open. Unconditionally, the

magnitude of the beta risk premium is small as discussed in Section 3.2. We now investigate

whether this is also the case when stocks are dynamically sorted on conditional betas and the

forecast horizon is shorter than a year.
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We construct daily estimates of annualized model-implied 21-day beta risk premiums for

each stock. The model conditional premium is calculated as the di¤erence between the annualized

21-day integrated physical and risk-neutral expectations of stochastic beta. More precisely, it

corresponds to �SBt;21��
SB;Q
t;21 where �SB;Qt;21 = �Qt;21� 252

21
and �Qt;21 is obtained by applying the results

in Proposition 3 using the risk-neutral parameters, ~K and ~�. For comparison, we also construct

daily �model-free�measures of beta risk premium de�ned as the di¤erence between OLS (physical)

and option-implied (risk-neutral) betas. We argue that option-implied betas are valid measures

of risk-neutral beta because they are constructed from market and equity risk-neutral moments.

We use options with maturity of one-month to construct 21-day option-implied betas.

Table 4 presents the results for portfolios of stock sorted each day on �SBt;21. The model-

implied measures of one-month risk premium compare well to the model-free ones both from a

sign and a magnitude perspective. For both model-based and model-free measures, it is negative

for the low-beta portfolio and increases as beta increases to become positive for the top decile

portfolio. The di¤erence between the top and bottom decile portfolios of model-free conditional

beta risk premiums is 0:65. This is close to the model-implied di¤erence of 0:43. This provides

further support that our model adequately captures equity risk physical and risk-neutral dynamics.

Recall that the sign and magnitude of the beta risk premium re�ect the way beta co-moves with

the SDF. We see that low-beta �rms have a negative conditional beta risk premium on average

while it is positive for high-beta �rms. For low-beta �rms, the fact that �SBt;21 � �
SB;Q
t;21 < 0 implies

that the betas of these �rms co-move positively with the SDF. In contrast, �SBt;21 � �
SB;Q
t;21 > 0 for

high-beta �rms is consistent with the idea that the beta of these stocks co-moves negatively with

the SDF. It is worth noting that the beta risk premium (i.e., �t;21� �
Q
t;21) is negative for portfolio

6 but positive for portfolio 7. Because portfolio 6 has an average stochastic beta of 0:77 while
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portfolio 7 has an average stochastic beta of 0:88, it implies a beta threshold of about 0:83 above or

below which the beta risk premium changes sign. Overall, we conclude that the conditional beta

risk premiums implied by our model match qualitatively and quantitatively model-free measures

of premium.

3.5 Beta Risk and the Slope of the Conditional SML

Recall that our model predicts that the slope of the conditional SML estimated using risk-neutral

betas will be steeper than the one obtained using physical betas when beta risk is priced. To

investigate whether this is the case, we construct daily measures of one-week, and one- and three-

month compounded ex-post realized returns. We denote by RSt;h the h-day ahead compounded

excess return of a given equity on day t. Using these measures, we run cross-sectional Fama-

MacBeth regressions. On each day, we regress the cross-section of future realized excess equity

returns on betas. The �rst speci�cation we consider uses expected physical stochastic betas. The

second uses expected risk-neutral stochastic betas. Each day, we estimate

RSt+1;h = b
0
t;h + b

SB
t;h � �Model

t;h + bOLSt;h � �OLSt;h + bOIt;h � �OIt;h + "t+1;h (32)

for all equities where �Model
t;h is either set to �SBt;h or to �

SB;Q
t;h . We do not consider a speci�cation

with model physical and risk-neutral betas together because of collinearity issues. We present

robustness results for alternative regression speci�cations in Table A.3 in the Online Appendix.

Table 5 presents the average of the coe¢ cients, their t-statistics computed using the Newey-

West approach, and the average of the daily regressions R-squared. We set the Newey-West au-

tocorrelation lags to the number of trading days considered for each horizon (i.e., 5, 21, and 63
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lags, respectively). Because of data limitations, we use one-month option implied betas to predict

one-week ahead excess stock returns. The R-squared obtained across horizons are high. Compar-

ing the coe¢ cients obtained for stochastic physical and risk-neutral betas with the ones of OLS

and option-implied betas reveal an interesting pattern. Relative to the coe¢ cients estimated for

stochastic betas, the coe¢ cients obtained for OLS and option-implied betas are small in magni-

tude, and are less signi�cant. These results are robust across forecast horizons and sample periods.

The weak relation between OLS betas and stock expected returns we document is consistent with

previous studies (e.g., Fama and French, 1992).

Comparing the coe¢ cients obtained for the model physical and risk-neutral betas uncovers

an important insight. We see that the average loading obtained for risk-neutral betas is larger than

the average loading estimated for physical beta forecasts for all forecast horizons. For any given

stock, model physical and risk-neutral beta forecasts are constructed based on the same �ltered

latent variables and the same dynamics (i.e., the dynamics of the variance-covariance matrix used

to forecast beta over time is a¢ ne under P and Q). This implies that model beta forecasts are

identically impacted by any model misspeci�cation and estimation errors. In other words, the

only channel that could explain that the di¤erence in the average loadings obtained for �SB;Qt;h and

�SBt;h is the fact that �
SB;Q
t;h incorporates a beta risk premium while �SBt;h does not. We conclude

that the higher average loading estimated for model risk-neutral betas is consistent with the idea

that beta risk is priced in the cross-section.

Finally, we see that the intercept estimates are all statistically signi�cant except for the

three-month horizon in Panel B. This result is consistent with Proposition 2 which shows that,

when beta risk is priced, it generates deviation of expected stock returns from the conditional

SML. Quantifying the impact of beta risk on expected stock returns is the subject of the next
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sections.

3.6 Beta Risk and Deviation from the Conditional SML

While it is commonly acknowledged that beta varies over time, little is known about the impact

of beta risk on expected stock returns. Equation (23) in Proposition 2 shows the way beta risk

in�uences expected stock returns in our model.

To test Proposition 2, we construct model-based estimates of one-month beta return pre-

miums, RPBRPt;21 , for each �rm as follows

RPBRPt;21 = �I

 Z t+ 21
252

t

�
Et [�SI;u]� Et [�u]Et

�
�2I;u

��
du

!
� r

�
�t;21 � �

Q
t;21

�
:

We set the risk-free rate, r; to its 1996-2016 sample average of 2:34% and �I to 1:77 to match the

sample average of S&P 500 excess returns. For a given �rm, we construct daily measures of �t;21

and �Qt;21. For the �rst term in RPBRP , we use the results in Proposition 3 to obtain estimates

of the physical Et [�SI;u] ; Et [�u], and Et
�
�2I;u

�
which we integrate over u. We then calculate the

daily value-weighted average of the stock-level one-month beta return premiums. We then take

the value-weighted average for each decile portfolio of stocks sorted on one-month stochastic beta

each day.

Figure 4 presents the time-series of the conditional beta return premium for the low- and

the high-decile portfolios, and a high-minus-low beta strategy that buys the high-beta portfolio

and shorts the low-beta portfolio. We report the sample average of the daily one-month beta return

premium and its components for each portfolio in Table 6. Table 6 provides further insights into

the decomposition of beta return premium by portfolio. First, the higher the conditional beta, the
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lower the co-movement of beta with the market variance is as indicated by the results in column

1 of Table 6 given �I > 0. Second, the higher the conditional beta the lower the co-movement

of beta with the SDF and the higher the beta risk premium is. As a result, �r
�
�t;21 � �

Q
t;21

�
decreases with the level of conditional betas. Interestingly, we see that both patterns in columns

1 and 3 are linear in beta and decrease as beta increases. As a result, stocks with relatively high

conditional beta have a negative beta return premium while low-beta portfolios have a positive

beta return premium. During the 1996-2016 sample period, the average beta return premium of the

high-minus-low beta strategy is �0:40% monthly (i.e., �4:79% annually). This deviation is highly

statistically signi�cant with a Newey-West t-statistic of �6:54 adjusted for 21 autocorrelation lags.

3.7 Beta Risk in the Cross-Section of NYSE Stocks

We now investigate whether the model implications hold across the entire cross-section of NYSE

stocks for which we of course do not have options, and so cannot directly use the dynamic stochastic

beta model developed. E¤ectively, this constitutes a tough out-of-sample assessment of the pre-

dictions of the model. We obtain daily stock excess return data from CRSP for all common shares

traded on the NYSE, and use CRSP market returns to proxy for the return on the market port-

folio. In each month t, we sort stocks into decile portfolios based on ex-ante betas obtained from

regressing daily stock excess returns against daily market excess returns over the last 252 trading

days, that is �OLSt;252. We compute �ve measures of ex-post betas for each stock. The year following

sorting, we regress daily excess stock returns against daily market excess returns to obtain �rms�

ex-post beta, �OLSt+253;252. Following Ang, Chen, and Xing (2006), we compute ex-post measures of

high and low market return betas, �H;Rett+253;252 and �
L;Ret
t+253;252, calculated by regressing excess stock
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returns against excess market returns on the subset of days with market returns above and below

its yearly average, respectively.23 Arguably, the sign of �H;Rett+253;252 � �
L;Ret
t+253;252 is informative about

the ex-post co-movement of stock beta with market returns. Note that �H;Rett+253;252 � �
L;Ret
t+253;252 > 0

indicates that the beta of the stock co-moves positively with market returns (i.e., negatively with

the SDF) in the subsequent year and vice versa. We also compute ex-post measures of high and

low market variance betas, �H;V art+253;252 and �
L;V ar
t+253;252, calculated by regressing excess stock returns

against excess market returns on the subset of days with market squared-returns above and below

its yearly median, respectively. For robustness purposes, we compute similar measures when using

the VIX index to identify high and low market variance days. When �H;V art+253;252 � �
L;V ar
t+253;252 > 0, it

indicates that the beta of the stock co-moves positively with market variance in the year following

the sorting and vice versa.

Table 7 presents the value-weighted results of sorting stocks into decile portfolios based on

ex-ante OLS betas for the 1996-2016 sample period. Comparing the �rst with the third column

con�rms that the beta of high-beta stocks co-moves positively with market returns as �H;Rett+253;252�

�L;Rett+253;252 > 0. In contrast, the beta of �rms with relatively low beta co-moves negatively with

market returns ex-post as �H;Rett+253;252��
L;Ret
t+253;252 < 0 for the low beta portfolio. Comparing the �rst

with the fourth and �fth columns provides evidence that the beta of high-beta stocks co-moves

negatively with market variance as �H;V art+253;252 � �
L;V ar
t+253;252 < 0. The opposite is true for �rms with

relatively low beta. In the sixth column, we report the one-year ex-post abnormal return which

we use to measure the deviation from the SML. We see that the high-minus-low beta strategy

earns a �5:16% abnormal return with a t-statistics of �1:71. The average conditional alpha of

the high-minus-low beta trading strategy reported in Table 7 is comparable to �4:79%, which is
23Ang, Chen, and Xing (2006) sort stocks on ex-post betas whereas we sort on ex-ante betas.
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the average conditional SML deviation of such a strategy implied by the model. The model thus

explains about 92% (i.e., �4:79=� 5:16) of the abnormal performance of such a strategy.

We conclude that our model�s predictions are qualitatively and quantitatively supported

in the cross-section of NYSE equity returns and that co-movements of beta with market variance

and the SDF explain the abnormal return of �betting against beta�trading strategies.

4 Summary and Conclusions

We study the implications of beta dynamics and beta risk for the cross-section of stock returns.

To this end we develop a new dynamic factor model with stochastic beta. In the model, individual

equity and market returns covary dynamically and their variance-covariance matrix follows a

bivariate Wishart process.

Our model can be used to �lter conditional betas from daily returns and it allows for

closed-form option pricing formulas. The model implies a term-structure of beta that can be used

to forecast future realized betas. We develop an estimation methodology that maximizes the joint

likelihood of returns and options for a large cross-section of stocks observed over a period of twenty

one years.

The model makes a series of predictions. First, the model shows that part of the equity

premium corresponds to compensation for risky betas. Second, it predicts that deviations from the

SML are related to the co-movements of beta with the SDF and market variance. When beta is

relatively low, it co-moves more positively with the stochastic discount factor (SDF) and negatively

with market returns. To compensate low-beta �rms for this risk, they earn an additional premium

beyond the SML. Empirically we �nd that the model predictions hold in the cross-section of �rms
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we study.

Several issues are left for future research. First, it may be useful to extend the model, for

instance by allowing for jumps in the market price (see, e.g., Bates, 2008; Bollerslev and Todorov,

2011; Kelly, Lustig, and van Nieuwerburgh, 2016). Second, combining option information with

high-frequency returns when estimating the parameters in our model may lead to even better

inference on beta (see, e.g., Andersen, Fusari, and Todorov, 2015; Patton and Verardo, 2012;

Bollerslev, Li, and Todorov, 2016). Finally, we have focused on analyzing the implications of beta

dynamics and risk for stock returns, but additionally analyzing option returns through the lens of

our model would be of great interest (see, e.g., An, Ang, Bali, and Caciki, 2014).
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Appendix A. The Physical Dynamics of �2I;t, �SI;t, and �
2
S;t

We use the dynamic of �t in equation (3) and the form of
p
�t in (2) to express the dynamics of

�2I;t, �SI;t, and �
2
S;t setting the upper o¤-diagonal element in K to 0. The dynamic of �2I;t is

d�2I;t = 2KI(�I � �2I;t)dt+ 2�I;t
�
Q1IdW

1
I;t +Q

2
IdW

2
I;t

�
; (A.1)

while the total individual equity variance follows

d�2S;t =
�
2KS(�S � �2S;t) + 2KSI(�SI � �SI;t)

�
dt

+2�t�I;t
�
Q1SdW

1
I;t +Q

2
SdW

2
I;t

�
+2
q
�2S;t � �2t�2I;t

�
Q2SdW

2
S;t +Q

1
SdW

1
S;t

�
; (A.2)

and the covariance dynamics follows

d�SI;t =
�
KSI(�I � �2I;t) + (KS +KI) (�SI � �SI;t)

�
dt

+
�
�I;tQ

1
S + �t�I;tQ

1
I

�
dW 1

I;t +
�
�I;tQ

2
S + �t�I;tQ

2
I

�
dW 2

I;t

+
q
�2S;t � �2t�2I;t

�
Q1IdW

1
S;t +Q

2
IdW

2
S;t

�
: (A.3)

Appendix B. Return and Variance-Covariance Risk-Neutral Dynamics

We now derive the return and variance-covariance dynamics under the risk-neutral measure. We

make use of these results in Appendix D and Appendix F.

We proceed in two steps. First, we derive the model implication for the risk-neutralization

44



of the Brownian motions driving the dynamics of the economy. Based on the risk-neutral shocks

obtained, we subsequently risk-neutralize dIt, dSt, and d�t.

We now derive the risk-neutralization of the Brownian motions ZI;t, ZS;t, andWt consistent

with the SDF �t. To this end, let us de�ne LR �

2664 �RI
0

3775 and LV �
2664 ��I1 ��I2

0 0

3775. We can re-
write the SDF using the following matrix notation

d�t
�t
= �rdt� Tr

h
L
0

V

p
�tdWt

i
� L0

R

p
�tdBt: (A.4)

where Bt � [BI;t BS;t]
0
and Tr [�] is the trace operator. By application of the multivariate Girsanov

theorem, we have

d

2664 ~BI;t

~BS;t

3775 = d
2664 BI;t
BS;t

3775+p�t0LRdt (A.5)

d

2664 ~W 1
I;t

~W 2
I;t

~W 1
S;t

~W 2
S;t

3775 = d
2664 W 1

I;t W 2
I;t

W 1
S;t W 2

S;t

3775+p�t0LV dt; (A.6)

where the tildes denote risk-neutral Brownian motions. Note that the previous system is equivalent

to

d

2664 ~BI;t

~BS;t

3775 = d
2664 BI;t
BS;t

3775+ �I;t
2664 �RI

0

3775 dt

d

2664 ~W 1
I;t

~W 2
I;t

~W 1
S;t

~W 2
S;t

3775 = d
2664 W 1

I;t W 2
I;t

W 1
S;t W 2

S;t

3775+ �I;t
2664 ��I1 ��I2

0 0

3775 dt: (A.7)

Combining these results with the leverage e¤ect decomposition of dZI;t, and dZS;t, we can infer
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the risk-neutral expression for the return shock dynamics

d

2664 ~ZI;t

~ZS;t

3775 =
�p

1� �2
�
d

2664 ~BI;t

~BS;t

3775+ �d
2664 ~W 1

I;t
~W 2
I;t

~W 1
S;t

~W 2
S;t

3775
2664 1
0

3775

=
�p

1� �2
�
d

2664 BI;t
Bj;t

3775+ �p1� �2�p�t0LRdt

+�

0BB@d
2664 W 1

I;t W 2
I;t

W 1
S;t W 2

S;t

3775+p�t0LV dt
1CCA
2664 1
0

3775

= d

2664 ZI;t
ZS;t

3775+p�t0
0BB@�p1� �2�LR + �LV

2664 1
0

3775
1CCA dt: (A.8)

Combining (A.7) and (A.8) implies that

d ~ZI;t = dZI;t + �I;t(
p
1� �2�RI + ���I1 )

d ~ZS;t = dZS;t

d ~W 1
I;t = dW

1
I;t + �I;t�

�I
1 dt

d ~W 2
I;t = dW

2
I;t + �I;t�

�I
2 dt

d ~W 1
S;t = dW

1
S;t

d ~W 2
S;t = dW

2
S;t:

(A.9)

The absence of arbitrage opportunities implies that It = Et
h
�T
�t
IT

i
and St = Et

h
�T
�t
ST

i
which, in

turn, implies that the instantaneous return premium on the market index is

�I;t = (
p
1� �2�RI + ���I1 )�2I;t = �I�2I;t; (A.10)
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where �I �
p
1� �2�RI + ���I1 and that the individual equity instantaneous return premium is

�t�I;t = �t
�
�I�2I;t

�
= �I�SI;t: (A.11)

Thus, the risk-neutral dynamics for market index and individual equity returns is given by

2664 dIt
It

dSt
St

3775 =
2664 r
r

3775 dt+p�t
2664 d ~ZI;t
d ~ZS;t

3775 : (A.12)

The Wishart dynamics are also impacted by the change of measure. Using Q
0
Q = K� + �K 0,

we can rewrite the physical dynamics of the Wishart process

d�t = (K (�� �t) + (�� �t)K 0) dt+
p
�tdWtQ+

�p
�tdWtQ

�0
=

�
Q

0
Q�K�t � �tK

0
�
dt+

p
�tdWtQ+Q

0dW 0
t

p
�t

0

: (A.13)

Given the physical dynamics above and the risk-neutralization (A.6), that is d ~Wt = dWt+
p
�t

0
LV

with LV �

2664 ��I1 ��I2

0 0

3775, we have under the risk-neutral measure

d�t =
�
Q

0
Q�K�t � �tK

0
�
dt+

p
�t

�
d ~Wt �

p
�t

0

LV dt

�
Q

+Q0
�
d ~Wt �

p
�t

0

LV dt

�0p
�t

0
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, d�t =
�
Q

0
Q�K�t � �tK

0
�
dt+

p
�td ~WtQ� �tLVQdt

+Q0d ~W
0

t

p
�t

0

�Q0L0

V�tdt

, d�t =
�
Q

0
Q� ~K�t � �t ~K 0

�
dt+

p
�td ~WtQ+Q

0d ~W
0

t

p
�t

0

(A.14)

, d�t =
�
~K
�
~�� �t

�
+
�
~�� �t

�
~K 0
�
dt+

p
�td ~WtQ+

�p
�td ~WtQ

�0
; (A.15)

where

~K = K +Q0L
0

V = K +

2664 ��I1 Q
1
I + �

�I
2 Q

2
I 0

��I1 Q
1
S + �

�I
2 Q

2
S 0

3775 ; and Q
0
Q = ~K ~� + ~� ~K 0: (A.16)

Together, equations (A.12), (A.15), and (A.16) de�ne the joint risk-neutral dynamics of the market

index and equity returns, and of the variance-covariance matrix.

Appendix C. The Physical and Risk-Neutral Dynamics of Beta

We �rst derive the dynamics of equity risk under the physical measure. By de�nition, the stock

beta satis�es �t = �SI;t=�
2
I;t. A straightforward application of Itô�s lemma implies that

d�t =
1

�2I;t
d�SI;t �

�SI;t�
�2I;t
�2d�2I;t + �SI;t�

�2I;t
�3 covt �d�2I;t; d�2I;t�� 1�

�2I;t
�2 covt �d�2I;t; d�SI;t� ; (A.17)

where covt (�; �) denotes the instantaneous covariance operator. From (A.1) and (A.3), we see that

the quadratic variations covt
�
d�2I;t; d�

2
I;t

�
and covt

�
d�2I;t; d�SI;t

�
satisfy

covt
�
d�2I;t; d�

2
I;t

�
dt

= �2I;t �
�
4
��
Q1I
�2
+
�
Q2I
�2��

= �2I;t � A; (A.18)
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where A � 4
�
(Q1I)

2
+ (Q2I)

2
�
, and

covt
�
d�2I;t; d�SI;t

�
dt

= �2I;t � 2
�
Q1IQ

1
S +Q

2
IQ

2
S

�
+ �SI;t � 2

��
Q1I
�2
+
�
Q2I
�2�

= �2I;t �B + �SI;t � C; (A.19)

where B � 2 (Q1IQ1S +Q2IQ2S), and C � 2
�
(Q1I)

2
+ (Q2I)

2
�
, respectively. We can use these results

to obtain

d�t =
1

�2I;t
d�SI;t �

�SI;t�
�2I;t
�2d�2I;t + �SI;t�

�2I;t
�3�2I;tAdt� 1�

�2I;t
�2 ��2I;t �B + �SI;t � C� dt

=
1

�2I;t
d�SI;t �

�SI;t�
�2I;t
�2d�2I;t + �SI;t�

�2I;t
�2Adt� 1

�2I;t
Bdt� �SI;t�

�2I;t
�2Cdt

=
1

�2I;t
(d�SI;t �Bdt)�

�SI;t�
�2I;t
�2 �d�2I;t � (A� C) dt�

= �t

 
(d�SI;t � �ISdt)

�SI;t
�
�
d�2I;t � �Idt

�
�2I;t

!
; (A.20)

where �IS � 2 (Q1IQ1S +Q2IQ2S) and �I � 2
�
(Q1I)

2
+ (Q2I)

2
�
.

The SDF (13) combined with the dynamics (A.20) implies the following risk-neutral dy-

namics of equity risk

d�t = �t

 
(d�SI;t � �SIdt)

�SI;t
�
�
d�2I;t � �Idt

�
�2I;t

!
+ covt

�
d�t;

d�t
�t

�
; (A.21)

where covt (�; �) denotes the conditional covariance. Given equation (A.21) and the SDF dynamic

(13), beta�s instantaneous co-movement with the SDF takes the form

covt

�
d�t;

d�t
�t

�
=
�
�V RPI �t � �

�
S

�
dt;
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where �V RPI � ��I1 Q1I + �
�I
2 Q

2
I , and �

�
S � �

�I
1 Q

1
S + �

�I
2 Q

2
S.

We now discuss the implications of priced variance risks for the sign of covt
�
d�t;

d�t
�t

�
. The

instantaneous covariance of beta with the SDF in our model is implied directly by the prices of

the market variance risks. When market variance risks are not priced (i.e., ��I1 = ��I2 = 0), we

have �V RPI = 0 and ��S = 0. In this case, covt
�
d�t;

d�t
�t

�
is zero regardless of �t. The instantaneous

covariance of beta with the SDF is linear in �t and its sign and magnitude depend on the level

of �V RPI �t relative to �
�
S. The instantaneous covariance is positive whenever �

V RP
I �t > ��S ,

�t <
��S

�V RPI
for the empirical relevant case of negative market variance risk premium, �V RPI < 0.24

Empirically, we �nd that ��S < 0 on average and
��S

�V RPI
> 0. Thus, the instantaneous covariance

is positive when �t is relatively low. In contrast, the betas of high-beta stocks instead tend to

co-move negatively with the SDF.

By de�nition, the instantaneous beta risk premium satis�es

Et [d�t]� E
Q
t [d�t] � �covt (d�t; d�t=�t) = �V RPI

 
��S
�V RPI

� �t

!
dt:

From the previous equation, we see that the instantaneous beta risk premium is positive when

�t is relatively high (i.e., �t >
��S

�V RPI
) given �V RPI < 0. In contrast, the instantaneous beta risk

premium is negative when �t is relatively low. Together, the de�nition of the integrated beta risk

premium (20) and the dynamics (A.20) and (A.21) imply that BRPt;h is given by

24See, among others, Bollerslev, Tauchen, and Zhou (2009), Carr and Wu (2009), and Driessen, Maenhout, and
Vilkov (2009).
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BRPt;h = �t;h � �
Q
t;h

= Et

"Z t+h=252

t

(Z u

t

�v

 
(d�SI;v � �SIdv)

�SI;v
�
�
d�2I;v � �Idv

�
�2I;v

!)
du

#

�EQt

"Z t+h=252

t

(Z u

t

�v

 
(d�SI;v � �SIdv)

�SI;v
�
�
d�2I;v � �Idv

�
�2I;v

!)
du

#

�EQt

"Z t+h=252

t

�Z u

t

�
Ev [d�v]� EQv [d�v]

��
du

#
;

which cannot be solved explicitly.

Appendix D. Market Index and Individual Equity Return Premiums

We now derive integrated return premiums from t to t + � where we de�ne � � h
252

for ease of

notation. From equations (1) and (14), we have

Et

�Z t+�

t

dIu
Iu

�
� EQt

�Z t+�

t

dIu
Iu

�
= Et

�Z t+�

t

�
r + �I;u

�
du

�
� EQt

�Z t+�

t

rdu

�
= Et

�Z t+�

t

�I;udu

�
= �I

Z t+�

t

Et
�
�2I;u

�
du = �I�2I;t;h; (A.22)

where we have used the form of the market return premium �I;t = �
I�2I;t with �

I =
�p

1� �2
�
�RI+

���I1 (see Appendix B) and �2I;t;h �
R t+�
t

Et
�
�2I;u

�
du is the h-day expected integrated market vari-

ance under the P -measure.

Comparing (1) and (14), we see that the instantaneous individual equity return premium
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is equal to �t � �I;t. As a result, we have

Et

�Z t+�

t

dSu
Su

�
� EQt

�Z t+�

t

dSu
Su

�
= Et

�Z t+�

t

�
r + �u�I;u

�
du

�
� EQt

�Z t+�

t

rdu

�
= Et

�Z t+�

t

�u
�
�I�2I;u

�
du

�
= �I

Z t+�

t

Et [�SI;u] du = �
I�SI;t;h; (A.23)

where �SI;t;h �
R t+�
t

Et [�SI;u] du is the h-day expected integrated covariance under the P -measure.

The return dynamic for the individual equity in (1) given the form of
p
�t in (2) and the

risk-neutralization (A.9) satis�es

dSt
St

= rdt+ �t

�
dIt
It
� rdt

�
+

�q
�2S;t � �2t�2I;t

�
dZS;t; (A.24)

under the P -measure where Et
h
dIt
It

i
=
�
r + �I;t

�
dt and

dSt
St

= rdt+ �t

�
dIt
It
� rdt

�
+

�q
�2S;t � �2t�2I;t

�
d ~ZS;t; (A.25)

under the Q-measure where EQt
h
dIt
It

i
= rdt. The factor structure of individual equity return

(A.24) and (A.25) implies that

Et

�Z t+�

t

dSu
Su

�
� EQt

�Z t+�

t

dSu
Su

�
= Et

�Z t+�

t

rdu+ �u

�
dIu
Iu
� rdu

��
� EQt

�Z t+�

t

rdu+ �u

�
dIu
Iu
� rdu

��
= Et

�Z t+�

t

�u
dIu
Iu

�
� EQt

�Z t+�

t

�u
dIu
Iu

�
� r

Z t+�

t

�
Et [�u]� E

Q
t [�u]

�
du

= Et

�Z t+�

t

�u
dIu
Iu

�
� EQt

�Z t+�

t

�u
dIu
Iu

�
� r

�
�t;h � �

Q
t;h

�
; (A.26)
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where �t;h �
R t+�
t

Et [�u] du and �
Q
t;h �

R t+�
t

EQt [�u] du are the h-day expected integrated physical

and risk-neutral betas, respectively. Note that we have used the fact that idiosyncratic risk is not

priced in the model and thus Et
hR t+�
t

dZS;t

i
= EQt

hR t+�
t

d ~ZS;t

i
= 0.

We can now further develop the �rst term in (A.26). By Fubini�s theorem, we have

Et

�Z t+�

t

�u
dIu
Iu

�
� EQt

�Z t+�

t

�u
dIu
Iu

�
=

Z t+�

t

Et

�
�u
dIu
Iu

�
�
Z t+�

t

EQt

�
�u
dIu
Iu

�
:

Noting that

Et

�
�u
dIu
Iu

�
= Et [�u]Et

�
dIu
Iu

�
+ covt

�
�u;

dIu
Iu

�
;

independently of the measure considered, we have

Et

�Z t+�

t

�u
dIu
Iu

�
� EQt

�Z t+�

t

�u
dIu
Iu

�
(A.27)

=

Z t+�

t

�
Et [�u]Et

�
dIu
Iu

�
� EQt [�u]E

Q
t

�
dIu
Iu

��
+

Z t+�

t

covt

�
�u;

dIu
Iu

�
� covQt

�
�u;

dIu
Iu

�
:

We now show that

Z t+�

t

covt

�
�u;

dIu
Iu

�
� covQt

�
�u;

dIu
Iu

�
=

Z t+�

t

covt
�
�u; �I;u

�
du (A.28)

= �I
Z t+�

t

covt
�
�u; �

2
I;u

�
du: (A.29)

First, consider covt
�
�u;

dIu
Iu

�
and covQt

�
�u;

dIu
Iu

�
which satisfy

covt

�
�u;

dIu
Iu

�
= Et

�
(�u � Et [�u])

�
dIu
Iu
� Et

�
dIu
Iu

���
covQt

�
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dIu
Iu

�
= EQt

��
�u � E

Q
t [�u]

��dIu
Iu
� EQt

�
dIu
Iu

���
:
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Under the risk-neutral measure, we have dIu=Iu � EQt [dIu=Iu] = �I;ud ~ZI;u which implies that

covQt

�
�u;

dIu
Iu

�
is equal to

EQt

h�
�u � E

Q
t [�u]

��
�I;ud ~ZI;u

�i
= EQt

h�
�u � E

Q
t [�u]

�
EQu

h�
�I;ud ~ZI;u

�ii
= 0; (A.30)

while under the physical measure, we have dIu=Iu �Et [dIu=Iu] = �I;u �Et
�
�I;u

�
+ �I;udZI;u and

covt

�
�u;

dIu
Iu

�
satis�es

Et
�
(�u � Et [�u])

��
�I;u � Et

�
�I;u

��
+ �I;udZI;u

��
= Et

�
(�u � Et [�u])

�
�I;u � Et

�
�I;u

���
+ 0

= covt
�
�u; �I;u

�
: (A.31)

Combining the results in equations (A.26), (A.27), and (A.28), we get

Et

�Z t+�

t

dSu
Su
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� EQt

�Z t+�

t

dSu
Su
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=
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Et [�u]Et
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� EQt [�u]E

Q
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dIu
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��
+

Z t+�

t

covt
�
�u; �I;u
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du� r

�
�t;h � �

Q
t;h

�
= RP SML

t;h +RPBRPt;h ; (A.32)
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where

RP SML
t;h �

Z t+�

t

�
Et [�u]Et

�
dIu
Iu

�
� EQt [�u]E

Q
t

�
dIu
Iu

��
(A.33)

RPBRPt;h �
Z t+�

t

covt
�
�u; �I;u

�
du� r

�
�t;h � �

Q
t;h

�
(A.34)

= �I
�Z t+�

t

covt
�
�u; �

2
I;u

�
du

�
� r

�
�t;h � �

Q
t;h

�
; (A.35)

where we have used the de�nition �I;u = �
I�2I;u to obtain the last equality, which completes the

proof.

Appendix E. Term Structure of Risks

We start by deriving the model�s prediction for the expected integrated variance-covariance matrix.

We then apply this result to �nd the expression for expected integrated beta.

An application of Itô�s Lemma to eKt�tetK
0
where �t follows

d�t =
�
Q

0
Q�K�t � �tK

0
�
dt+

p
�tdWtQ+Q

0dW 0
t

p
�t

0

;

with Q
0
Q = K�+�K 0 implies

d
�
eKt�te

tK0
�
=

�
eKtK�te

tK0
+ eKt�tK

0etK
0
�
dt+ eKtd�te

tK0

= eKtQ
0
QetK

0
dt+ eKt

�p
�tdWtQ+Q

0dW 0
t

p
�t

0
�
etK

0
: (A.36)
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Integrating both sides of the previous equation from t to u with u > t gives

eKu�ue
uK0�eKt�tetK

0
= 

Z u

t

eKvQ
0
QevK

0
dv+

Z u

t

eKv
�p

�vdWvQ+Q
0dW 0

v

p
�v

�
evK

0
; (A.37)

which implies that

Et

h
eKu�ue

uK0
i
= eKt�te

tK0
+ 

Z u

t

eKvQ
0
QevK

0
dv: (A.38)

Multiplying by e�Ku from the left and e�uK
0
from the right, we get

Et [�u] = e
�Ku

�
eKt�te

tK0
+ 

Z u

t

eKvQ
0
QevK

0
dv

�
e�uK

0
= e�K(u�t)�te

�K0(u�t) + �t;u; (A.39)

where �t;u � 
R u
t
e�K(u�v)Q

0
Qe�K

0(u�v)dv. To obtain the model�s h-day expected integrated

variance-covariance matrix, we need to integrate the previous expression over h days. This gives

�t;h =

Z t+�

t

Et [�u] du =

Z t+�

t

�
e�K(u�t)�te

�K0(u�t) + �t;u

�
du; (A.40)

where � = h
252
. We now derive an approximation formula for the h-day ahead model forecast of

future realized beta: �t;h =
�R t+�

t
Et [�u] du

�
. A �rst-order Taylor-expansion of conditional beta

around �SI=�I leads to

�u =
�SI;u
�2I;u

=
�SI
�I
+
(�SI;u � �SI)

�I
�
�
�2I;u � �I

�
�SI

(�I)
2 +O; (A.41)

where O is the error terms. Taking the expectation and ignoring the errors of order greater than
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two, we get

Et [�u] �
�SI
�I
+
(Et [�SI;u]� �SI)

�I
�
�
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�
�2I;u

�
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2 (A.42)

� Et [�SI;u]

�I
�
�
Et
�
�2I;u

�
� �I

�
�SI

(�I)
2 : (A.43)

Integrating the previous expression from t to t+ � , we obtain

�t;h �
�SI;t;h
�I

�
�
�2I;t;h � �I�

�
�SI

(�I)
2 ; (A.44)

where �2I;t;h =
R t+�
t

Et
�
�2I;u

�
du = (�t;h)

(1;1), �SI;t;h =
R t+�
t

Et [�SI;u] du = (�t;h)
(2;1), and � = h

252
.

Appendix F. Index and Individual Equity Option Prices

For ease of notation, we de�ne the integrated Brownian ~Z�;t;� �
t+�R
t

p
�ud

2664 ~ZI;u

~ZS;u

3775 and the inte-
grated variance-covariance matrix �Intt;� �

t+�R
t

�udu. Given the Q-dynamics in Appendix B for dIt

and dSt, we can apply Itô�s lemma to ln(Pt) where Pt � [It St]
0
and obtain after integration the

following expression for log-returns

ln (PT )� ln (Pt) = r1� �
1

2
diag

�
�Intt;�

�
+ ~Z�;t;� ; (A.45)
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where 1 is a 2� 1 vector of ones and T = t+ � . Therefore, the conditional characteristic function

of the risk-neutral log-returns takes the form

~�LRt (� ; uI ; uS) = EQt

h
exp

�
iu
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(ln (PT )� ln (Pt))

�i
= EQt

�
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�
iu

0
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2
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�
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�
+ ~Z�;t;�

���
; (A.46)

where u � [uI uS]0 is a 2� 1 vector. Let us introduce the stochastic exponential �(�) de�ned by
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Then, we can write (A.46) as
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: (A.48)

We can de�ne the following change-of-measure

dC

dQ
(t) � �

�
iu

0 ~Z�;0;t

�
: (A.49)

Combining (A.48) with the change of measure (A.49), we can write

~�LRt (� ; uI ; uS) = exp(iu
0
r1�)EQt

"
dC
dQ
(T )

dC
dQ
(t)

exp

 
iu

0 �
�Intt;� iu� diag

�
�Intt;�

��
2

!#
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) ~�LRt (� ; uI ; uS) = exp(iu
0
r1�)ECt

"
exp

 
iu

0 �
�Intt;� iu� diag

�
�Intt;�

��
2

!#
:

Because

iu
0 �
�Intt;� iu� diag

�
�Intt;�

��
2

= Tr
�
� (uI ; uS) �

Int
t;�

�
where

� (uI ; uS) �
1

2
�

2664 � (uI)2 � iuI �uIuS

�uIuS � (uS)2 � iuS

3775 ;
we have

~�LRt (� ; uI ; uS) = exp(iu
0
r1�)ECt

�
exp

�
Tr
�
� (uI ; uS) � �Intt;�

���
: (A.50)

While � (�; �) is function of uI and uS, we drop the two input arguments in the rest of the proof for

ease of notation. Thus, we now refer to it simply as �. An extension of the multivariate Girsanov

theorem to the complex plane implies that under the C-measure, we have

dZCt = d
~Zt � i

p
�t

0

udt;

where ~Zt �
h
~ZI;t ~ZS;t

i0
and

dWC
t = d ~Wt � i�

p
�t

0

[u 0] dt;

where 0 is a 2� 1 vector of zeros. We can now infer the Wishart dynamic under the new measure

given the risk-neutral dynamic (A.14)

d�t =
�
Q

0
Q� ~K�t � �t ~K

0
�
dt+

p
�td ~WtQ+Q

0d ~W 0
t

p
�t

0
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which satis�es

, d�t =
�
Q

0
Q� ~K�t � �t ~K

0
�
dt+

p
�t

�
d ~WC

t + i�
p
�t

0

[u 0] dt

�
Q

+Q0
�
d ~WC

t + i�
p
�t

0

[u 0] dt

�0p
�t

0

, d�t =
�
Q

0
Q� ~K�t � �t ~K

0
�
dt+

p
�td ~W

C
t Q+ i��t [u 0]Qdt

+Q0d ~WC0

t

p
�t

0

+ i�Q0 [u 0]
0
�tdt

, d�t =
�
Q

0
Q�KC�t � �tKC0

�
dt+

p
�td ~W

C
t Q+Q

0d ~WC0

t

p
�t; (A.51)

where

KC = ~K � i�Q0 [u 0]
0
:

We can nowmake use of the closed-form solution for the moment generating functionECt [exp
�
Tr
�
� � �Intt;�

��
]

to obtain the following expression for ~�LRt (�);

~�LRt (� ; uI ; uS) = exp (Tr [A(�) � �t] +B(�)) ; (A.52)

with

A(�) =
�
a22 (�)

��1 � �a21 (�)� ; (A.53)

where 0BB@ a11 (�) a12 (�)

a21 (�) a22 (�)

1CCA = exp

0BB@�
2664 �KC �2Q0

Q

� KC0

3775
1CCA ;
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and

B (�) = �
2
Tr
h
log
�
a22 (�)

�
� �KC

0
+ i�ru

0
1
i
; (A.54)

where

u = [uI uS]
0

KC = ~K � i�Q0 [u 0]
0
;

and

� =
1

2
�

2664 � (uI)2 � iuI �uIuS

�uIuS � (uS)2 � iuS

3775 :
Given the characteristic function above the price of a call written on the market index with strike

price X is

CIt (It; X; �) = It

�
1

2
� �It;�

�
; (A.55)

and the price of a call written on the individual equity is

CSt (St; X; �) = St

�
1

2
� �St;�

�
; (A.56)

where the risk-neutral probabilities �It;� and �
S
t;� are de�ned by

�It;� =
e�r�

2�

1Z
0

Re

"
e�iuI lnX=It~�LRt (� ; uI � i; 0)

(uI)
2 � iuI

+
eiuI lnX=It~�LRt (� ;�uI � i; 0)

(uI)
2 + iuI

#
duI ;
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e�r�

2�

1Z
0

Re

"
e�iuS lnX=St~�LRt (� ; 0; uS � i)

(uS)
2 � iuS

+
eiuS lnX=St~�LRt (� ; 0;�uS � i)

(uS)
2 + iuS

#
duS:
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Figure 2

Unconditional OLS beta versus unconditional stochastic beta
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We scatter plot the unconditional OLS betas against the unconditional stochastic betas, �SI=�I ,

for the 344 �rms. We compute the unconditional OLS beta for each stock by regressing daily

excess stock returns on daily excess S&P 500 returns over the entire sample.

70



Figure 3

One-month OLS beta (grey) and one-month expected integrated stochastic beta

(black)
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We plot the value-weighted average of the one-month OLS and stochastic expected integrated

betas over time for decile portfolios of stocks. On each day, we sort stocks into decile portfolios

based on the model�s one-month beta forecast (i.e., 21-day expected integrated physical beta). We

then calculate the daily value-weighted average of the OLS and model betas for each portfolio.

Portfolio 1 corresponds to the low-beta portfolio while portfolio 10 corresponds to the high-beta

portfolio.
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Monthly conditional beta return premia
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We plot the time-series of the daily value-weighted average of monthly beta return premiums

for various beta-sorted portfolios. On each day, we sort stocks into decile portfolios based on

the model one-month beta forecast (i.e., 21-day expected integrated physical beta). We consider

three portfolios, the low, and the high beta-sorted portfolios, and a high-minus-low beta portfolio,

respectively. For each stock in a given portfolio, we compute RPBRPt;21 �100 on each day t setting r

to its sample mean of 2:34% and �I to 1:77. We then calculate the daily value-weighted average of

the stock-level one-month beta return premiums for each portfolio, and plot the results obtained.

74



Portfolio of 
All Stocks

R-Squared 
(%) Correlation Beta Beta

9.59 19.15 98.90 0.99 0.98 1.00 -0.51 24.83

1. Low Beta 8.71 15.04 46.81 0.68 0.53 0.55 -0.99 21.49
2. 8.36 15.64 58.45 0.76 0.62 0.64 -1.14 23.86
3. 8.60 17.54 70.01 0.84 0.76 0.78 -1.22 32.05
4. 10.53 19.75 69.58 0.83 0.85 0.87 -0.88 32.16
5 10.90 20.26 81.30 0.90 0.94 0.96 -1.57 17.44
6 10.21 22.28 79.77 0.89 1.03 1.04 -0.68 13.56
7 11.47 23.35 80.76 0.90 1.08 1.10 -0.92 18.24
8 11.26 23.68 83.98 0.92 1.12 1.14 -1.41 36.77
9 11.73 27.97 80.08 0.89 1.29 1.31 -0.78 26.22

10. High Beta 11.36 32.30 80.14 0.90 1.49 1.50 -0.30 26.20

Table 1

The table reports various summary statistics for excess portfolio returns. We consider the value-weighted portfolio 
composed of all stocks and decile portfolios of stocks sorted unconditionally on their sample OLS betas with respect 
to S&P 500 returns. The first two columns report the sample mean and volatility of excess returns annualized. 
Columns three to five report the OLS R-squared, correlation, and beta of each portfolio estimated by regressing daily 
excess portfolio returns on daily excess S&P 500 returns over the entire sample. In column six, we report an 
alternative measure of beta for each portfolio estimated by OLS using the value-weighted portfolio of all stocks as a 
factor. Column 7 presents the t-statistics of the difference in betas calculated using Newey-West methodology with 5 
autocorrelation lags. In the last column, we report the average market capitalization of the stocks constituting each 
portfolio in $ billions. For each stock, the market capitalization is held constant over the month and updated on the 
last trading day of each month. Each portfolio is value-weighted. The sample period is from January 8th, 1996 to 
December 30th, 2016.

Summary statistics for daily excess portfolio returns

S&P 500 t-Stat. of 
Difference 

in Betas

Market 
Cap. ($ 

Billions)
Portfolio Mean (%)

Standard 
Deviation 

(%)

Portfolio of All 
Stocks



Parameters, unconditional risk premiums, and model fit

6.392 1.802 0.145 0.045 -0.640 -3.894 0.041 -0.611 -0.018

1.585 -0.786 0.081 -0.085 0.069 0.025 0.600 -0.330 -0.001 -0.007 0.039
1.248 -0.413 0.099 -0.098 0.079 0.027 0.652 -0.409 -0.001 -0.007 0.062
1.236 -0.138 0.086 0.012 0.084 0.029 0.720 -0.333 -0.009 -0.012 -0.007
1.226 0.103 0.102 0.014 0.080 0.031 0.764 -0.404 -0.010 -0.013 0.001
0.941 0.121 0.117 -0.057 0.106 0.032 0.780 -0.441 -0.006 -0.010 0.051
0.931 -0.087 0.115 -0.039 0.114 0.036 0.892 -0.438 -0.010 -0.013 0.029
1.000 -0.157 0.115 -0.044 0.130 0.036 0.879 -0.398 -0.010 -0.013 0.038
1.005 0.179 0.125 0.026 0.140 0.041 1.016 -0.389 -0.021 -0.018 -0.020
0.939 -0.052 0.122 -0.009 0.157 0.041 1.016 -0.392 -0.017 -0.017 0.005
0.808 0.129 0.153 -0.050 0.161 0.047 1.149 -0.491 -0.016 -0.017 0.045

The table reports parameter estimates, unconditional risk premiums, and goodness of fit measures for the market 
index and portfolios of stocks sorted on sample OLS betas. Based on this sorting, we calculate the value-
weighted average of the stock-specific parameters, risk premiums, and measures of fit by portfolio. Panel A 
presents the parameters for return and variance dynamics and risk premiums. We adopt a two-step procedure to 
estimate the model. In the first step, we estimate the market parameters. In the second step, we estimate the 
equity parameters for each stock paired with the S&P500 index setting the market parameters to the values 
obtained in the first step. For each step, the parameters are estimated by maximizing the composite log-
likelihoods of returns and options over the 1996-2014 sample period. We construct measures of unconditional 
risk premium as follow. For a given risk measure (i.e. variance, covariance, or beta), the premium is defined as 
the difference between physical and risk-neutral expectations. For each firm and the market index, we compute 
the 252-day expected integrated risk measures under P and Q for the 1996-2016 sample period given the filtered 
latent variables, and take the difference. For equities, we then calculate the value-weighted average of the daily 
stock-level premiums. The table reports the sample average of these measures. Panel B reports various goodness 
of fit measures calculated over the 1996-2016 sample including log-likelihood values of returns and options, R-
squared, and IVRMSE. Note that the return log-likelihoods for equities correspond to the conditional log-
likelihood (i.e., joint log-likelihood of a given pair of equity and market index minus market index return log-
likelihood).

Panel A: Model Parameters, Unconditional Second Moments, and Unconditional Risk Premiums

Panel B: Goodness of Fit

Table 2

5.31

28 610 9.22

37 290 6.42
36 231 6.35
36 682 6.59
33 164 7.36
30 765 8.20

5.53
5.25

5.42

51 047 3.50

41 569 

26.18

36.02

4. 16 418 33.20
5. 16 016 25.03

8. 15 442 34.17
9. 14 893 28.85

6. 15 588 

7.
8.

10. High Beta 15 120 

7. 15 125 

2.

Index 17 004 
Log-likelihood

9.
10. High Beta

Return

26.48

30.60

6.

Index

Portfolio
1. Low Beta

2.
3.
4.
5.

3.

Option

Portfolio
1. Low Beta 16 778 23.38

Log-likelihood IVRMSE (%)

40 754 
41 864 

16 319 39 429 
16 817 23.92

100.00
R-Squared (%)

𝜃𝜃𝑆𝑆 𝜃𝜃𝑆𝑆𝑆𝑆 𝛽𝛽𝑄𝑄𝑆𝑆1 𝑄𝑄𝑆𝑆2𝐾𝐾𝑆𝑆 𝐾𝐾𝑆𝑆𝑆𝑆

𝜃𝜃𝑆𝑆𝜌𝜌𝛾𝛾 λ𝜎𝜎𝐼𝐼𝑄𝑄𝑆𝑆1 𝑄𝑄𝑆𝑆2𝐾𝐾𝑆𝑆 𝜌𝜌𝑆𝑆

𝜌𝜌𝑆𝑆

𝑉𝑉𝑉𝑉𝑉𝑉𝑆𝑆
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Forecasting realized beta
Adjusted

R-Squared
Portfolio t-Stat. t-Stat. t-Stat. t-Stat. (%)

1. Low Beta 0.178 3.78 0.353 5.95 0.172 4.15 0.505 7.66 36.33
2. 0.158 4.06 0.305 4.49 0.090 3.69 0.559 15.77 39.42
3. 0.232 5.13 0.236 3.29 0.024 1.33 0.559 17.03 39.46
4. 0.277 6.33 0.163 2.76 -0.012 -0.72 0.596 16.25 41.26
5. 0.337 6.79 0.104 2.56 -0.024 -1.48 0.582 14.42 38.65
6. 0.396 8.71 0.128 4.80 -0.002 -0.10 0.489 11.09 29.71
7. 0.309 7.24 0.161 6.68 0.036 2.27 0.515 12.65 36.97
8. 0.273 6.52 0.203 6.99 0.084 5.43 0.471 13.77 38.70
9. 0.231 4.84 0.294 7.99 0.124 7.43 0.381 10.10 43.77

10. High Beta 0.107 1.66 0.356 8.09 0.171 5.40 0.329 7.48 47.99

Table 3

The table presents the loadings and t-statistics from daily portfolio-level regressions of one-month 
future realized beta on our model expected stochastic beta controlling for option-implied and lagged 
OLS betas. On each day, we obtain future realized beta for each stock by estimating the CAPM 
regression using the 21-day-ahead index and stock excess returns. The 21-day forecast from our 
stochastic model on a given day is computed using the filtered conditional latent variables from the 
previous day. For option-implied betas, we follow Chang, Christoffersen, Jacobs, and Vainberg 
(2012) and construct daily measures of beta for each stock. On each day, we sort stocks into decile 
portfolios based on the model one-month expected stochastic beta. For a given beta measure, we then 
calculate the value-weighted average of the stock-level measures to obtain one single estimate for 
each portfolio on each day. The t-statistics (in italics) are calculated using Newey-West methodology 
with 21 lags. The sample period is from January 8th, 1996 to December 30th, 2016.

Model:  β𝑡𝑡+22,21
𝑂𝑂𝑂𝑂𝑆𝑆 = a𝑐𝑐𝑡𝑡𝑐𝑐 + a𝑆𝑆𝑆𝑆 × β𝑡𝑡,21

𝑆𝑆𝑆𝑆 + a𝑂𝑂𝑆𝑆 × β𝑡𝑡,21
𝑂𝑂𝑆𝑆 + a𝑂𝑂𝑂𝑂𝑆𝑆 × β𝑡𝑡,21

𝑂𝑂𝑂𝑂𝑆𝑆+ ε𝑡𝑡+22,21

a𝑐𝑐𝑡𝑡𝑐𝑐 a𝑆𝑆𝑆𝑆 a𝑂𝑂𝑂𝑂𝑆𝑆a𝑂𝑂𝑆𝑆



One-month conditional beta risk premiums

Portfolio t-Stat. t-Stat. t-Stat.
1. Low Beta 0.120 11.33 -0.514 -26.89 -0.231 -40.31

2. 0.338 43.05 -0.405 -23.02 -0.139 -36.96
3. 0.461 60.16 -0.336 -19.68 -0.104 -33.03
4. 0.566 69.46 -0.270 -16.71 -0.076 -23.41
5. 0.665 72.69 -0.225 -13.58 -0.049 -14.46
6. 0.766 73.61 -0.184 -11.16 -0.023 -5.73
7. 0.876 72.81 -0.122 -7.69 0.004 0.96
8. 1.006 71.77 -0.065 -3.87 0.039 6.92
9. 1.183 69.31 0.002 0.10 0.087 12.51

10. High Beta 1.580 61.44 0.138 6.46 0.200 17.86

Table 4

The table presents the sample average of daily one-month integrated stochastic betas, and daily model-free and model-
implied beta risk premiums by portfolio. Beta risk premium is defined as the difference between physical and risk-neutral 
expected beta. On each day, we obtain model-free measures of physical beta for a horizon of 21 days by estimating the 
CAPM regression using the most recent 21-day index and stock excess returns. To obtain data-based measures of risk-
neutral beta, we follow Chang, Christoffersen, Jacobs, and Vainberg (2012) and compute option-implied betas from 
index and equity risk-neutral moments. We use options of maturity of one-month to construct 21-day measures of option-
implied beta. The model conditional beta risk premium corresponds to the difference between the physical and risk-
neutral expectations of integrated stochastic beta.  The model-free beta risk premium is defined as the difference between 
OLS and option-implied betas. On each day, we sort stocks into decile portfolios based on the model one-month expected 
integrated physical beta. We then construct one single daily measure of conditional beta risk premium (model-free or 
model-implied) for each portfolio by value-weighting stock-level measures. The t-statistics (in italics) are calculated 
using Newey-West methodology with 21 lags. The sample period is from January 8th, 1996 to December 30th, 2016.

Model-Free Model-ImpliedStochastic Beta Forecast

β𝑡𝑡,21
𝑂𝑂𝑂𝑂𝑆𝑆 - β𝑡𝑡,21

𝑂𝑂𝑆𝑆 𝛽𝛽𝑡𝑡,21
𝑆𝑆𝑆𝑆 - 𝛽𝛽𝑡𝑡,21

𝑆𝑆𝑆𝑆,𝑄𝑄𝛽𝛽𝑡𝑡,21
𝑆𝑆𝑆𝑆



Panel A: Multivariate Regressions Based on Model Physical Beta

Coeff. t-Stat. Coeff. t-Stat. Coeff. t-Stat.

Intercept 0.0018 3.72 0.0058 3.05 0.0137 2.11

time-t  h- day Expected 
Integrated Physical Beta 0.0018 3.91 0.0042 2.32 0.0073 1.31

time-t  h- day OLS Beta 0.0000 0.06 0.0016 1.19 0.0050 0.78

time-t  h- day Option-Implied 
Beta -0.0006 -2.51 -0.0003 -0.43 0.0053 1.22

R-Squared (%)

Panel B: Multivariate Regressions Based on Model Risk-Neutral Beta

Coeff. t-Stat. Coeff. t-Stat. Coeff. t-Stat.

Intercept 0.0012 2.26 0.0043 2.14 0.0102 1.40

time-t  h- day Expected 
Integrated Risk-Neutral Beta 0.0024 3.70 0.0059 2.35 0.0138 2.04

time-t  h- day OLS Beta 0.0001 0.50 0.0017 1.35 0.0038 0.62

time-t  h- day Option-Implied 
Beta -0.0006 -2.57 -0.0003 -0.41 0.0050 1.17

R-Squared (%)

Table 5
Predictive cross-sectional regressions. Various horizons, and specifications

h = 5 days h = 21 days h = 63 days
Weekly Monthly Quarterly

The table shows the results of cross-sectional Fama-MacBeth predictive regressions. On each day, we regress future realized 
excess stock returns on model expected integrated physical betas in Panel A, and on model expected integrated risk-neutral 
betas in Panel B. In both panels, we further control for OLS and option-implied betas. The table reports the sample average 
of the daily coefficients, their t-statistics, and the average of the regression R-squared. We consider three horizons. For a 
given horizon of h days, we compute future realized excess stock returns on each day by compounding the h -day-ahead 
daily excess returns. The daily stochastic beta forecasts (i.e., the h -day expected integrated physical and risk-neutral betas) 
are calculated based on the latent variables filtered on day t . The daily OLS beta measures for a given horizon are obtained 
by regressing past excess stock returns on S&P 500 excess returns using an estimation window of length equal to the horizon 
considered. To construct option-implied betas, we follow Chang, Christoffersen, Jacobs, and Vainberg (2012) and construct 
daily measures of risk-neutral beta for each stock. Because of data limitations, we use one-month option implied betas to 
predict one-week ahead stock excess returns. We use one-month and three-month option-implied betas for the 21 and 63-day 
forecast horizons, respectively. The t-statistics (in italic) are calculated using the Newey-West methodology allowing for h 
autocorrelation lags. The sample period is from January 8th, 1996 to December 30th, 2016.

7.94 8.20 9.76

Weekly Monthly Quarterly
h = 5 days h = 21 days h = 63 days

7.94 8.23 9.56

Dependent Variable: 𝑉𝑉𝑡𝑡+1,ℎ
𝑆𝑆

Dependent Variable: 𝑉𝑉𝑡𝑡+1,ℎ
𝑆𝑆



One-month conditional beta return premiums

1. Low Beta 0.0997 5.26 0.0451 40.31 0.1447 7.52 1.7366
2. 0.0474 4.67 0.0271 36.96 0.0745 7.15 0.8942
3. 0.0229 3.42 0.0204 33.03 0.0433 6.17 0.5197
4. 0.0057 0.97 0.0148 23.41 0.0205 3.27 0.2461
5. -0.0117 -1.60 0.0097 14.46 -0.0020 -0.26 -0.0239
6. -0.0284 -2.93 0.0044 5.73 -0.0240 -2.35 -0.2880
7. -0.0471 -3.59 -0.0009 -0.96 -0.0480 -3.49 -0.5763
8. -0.0692 -3.97 -0.0076 -6.92 -0.0767 -4.21 -0.9209
9. -0.1009 -4.30 -0.0170 -12.51 -0.1179 -4.80 -1.4148

10. High Beta -0.2155 -5.18 -0.0391 -17.86 -0.2546 -5.87 -3.0552
H-L -0.3152 -5.33 -0.0841 -31.43 -0.3993 -6.54 -4.7918

Table 6

The table presents the sample average of the daily model-implied one-month beta return premium and of 
its components by portfolio.  For each firm on each day, we calculate the model one-month expected 
integrated covariance between beta and market variance, the negative of the risk-free rate times the one-
month beta risk premium, and the sum of the two (i.e., the one-month beta return premium). Each day, 
we sort stocks into decile portfolios based on the model one-month expected integrated physical beta. 
We then construct daily portfolio measure of these variables by taking the value-weighted average of 
the stock-level measures. The t-statistics (in italics) are calculated using Newey-West methodology with 
21 lags. The sample period is from January 8th, 1996 to December 30th, 2016.

Portfolio t-Stat. t-Stat. t-Stat.
-r × 𝛽𝛽𝑡𝑡,21 − 𝛽𝛽𝑡𝑡,21

𝑄𝑄Λ𝑆𝑆 �
𝑡𝑡

𝑡𝑡+ 21
252

𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 𝛽𝛽𝑢𝑢;𝜎𝜎𝑆𝑆,𝑢𝑢2 𝑑𝑑𝑑𝑑 𝑉𝑉𝑉𝑉𝑡𝑡,21
𝑆𝑆𝐵𝐵𝐵𝐵 𝑉𝑉𝑉𝑉𝑡𝑡,21

𝑆𝑆𝐵𝐵𝐵𝐵

× 100 × 100× 100 × 100 × 12



Value-weighted decile portfolio sorting results for all NYSE stocks

1. Low 0.35 -0.15 -2.66% 5.18% 4.15% 1.96% 1.92% 1.95%
2. 0.55 -0.09 -1.24% 3.27% 2.72% 2.61% 2.54% 2.24%
3. 0.68 -0.07 -2.75% 2.83% 2.54% 1.36% 1.80% 0.94%
4. 0.79 -0.04 -2.41% 1.95% 2.14% 0.41% 1.32% 0.28%
5. 0.89 -0.03 0.24% 3.11% 3.01% 0.17% 1.32% 0.21%
6. 0.99 -0.01 1.19% 0.54% 2.00% -0.01% 1.28% 0.53%
7. 1.10 0.03 1.39% -0.50% -0.03% -1.16% 0.35% -0.69%
8. 1.24 0.06 3.72% 0.68% -0.10% -1.88% -0.28% -1.51%
9. 1.42 0.10 6.93% -0.80% -0.90% -3.23% -1.33% -2.91%

10. High 1.81 0.23 6.79% -10.60% -4.31% -3.20% -2.62% -4.58%
H-L 1.46 0.37 9.45% -15.77% -8.46% -5.16% -4.55% -6.54%

 t-Stat. 37.48 6.84 2.01 -2.73 -2.48 -1.71 -1.57 -1.77

Each month, we sort stocks into decile portfolios based on ex-ante betas obtained by regressing daily stock 
excess returns on daily market excess returns from the last 252 trading days. In the first column, we report the 
value-weighted average ex-ante betas for each portfolio. In the second column, we report the value-weighted 
average of the difference between ex-ante and ex-post betas, where the ex-post betas are obtained by 
regressing daily excess stock returns against daily excess market returns during the 252 days following the 
sorting. In the third column, we report the difference between a high and low market return ex-post beta 
(times 100), which we calculate by regressing excess stock returns against excess market returns during the 
next year for above- and below-average market return days, separately. In the fourth column, we report the 
difference between high and low squared market return ex-post betas (times 100), which we calculate by 
regressing excess stock returns against excess market returns during the next year for above- and below-
median market squared return days separately. In the fifth column, we report the difference between high and 
low ex-post betas (times 100), where we use average VIX to identify high and low market variance days. In 
the sixth column, the ex-post annual abnormal returns are obtained for each stock by taking the difference 
between the compounded daily excess equity return over the next year and the product of ex-post beta and the 
compounded daily excess market return. The value-weighted abnormal returns are subsequently calculated for 
each portfolio. Finally, we report CAPM and Fama-French-Carhart (FFC) alphas for each portfolio as well as 
for high minus low where the alphas are estimated over the full sample. The t-statistics are from Newey-West 
using 12 lags. The sample period is from January 8th, 1996 to December 30th, 2016.

Table 7

Portfolio
Ex-ante 

Beta

Ex-ante 
minus Ex-
Post Betas

Ex-Post 
Annual 

Abnormal 
Return 

CAPM Ex-
post Alpha

FFC Ex-
Post Alpha(High and Low based on 

Average Market Return)

(High and Low based on 
Median Squared-Market 

Return)

(High and Low based on 
Average VIX)

𝛽𝛽𝑡𝑡+253,252
𝐻𝐻,𝐵𝐵𝑐𝑐𝑡𝑡 -𝛽𝛽𝑡𝑡+253,252

𝑂𝑂,𝐵𝐵𝑐𝑐𝑡𝑡 𝛽𝛽𝑡𝑡+253,252
𝐻𝐻,𝑉𝑉𝑉𝑉𝑉𝑉 -𝛽𝛽𝑡𝑡+253,252

𝑂𝑂,𝑉𝑉𝑉𝑉𝑉𝑉
𝛽𝛽𝑡𝑡+253,252
𝐻𝐻,𝑉𝑉𝑉𝑉𝑉𝑉 -𝛽𝛽𝑡𝑡+253,252

𝑂𝑂,𝑉𝑉𝑉𝑉𝑉𝑉
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