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1 Introduction

Matching intermediaries, whose business is to link (or match) agents from multiple sides of a market,
have a long history. In England, for example, marriage and employment agencies exist since at least
the beginning of 19th century. In the US, the establishment of commercial lobbying firms, matching
interest groups with policymakers, predates World War II.1 Over the last two decades, the Internet
has permitted the development of matching intermediaries of unprecedented scale. Notable examples
include advertising exchanges, matching publishers and advertisers with compatible profiles; business-
to-business platforms, linking firms on different levels of the supply chain; and dating websites,
connecting potential partners with similar interests.

Matching intermediation is also at the heart of novel approaches to fund web content. Recently,
many media platforms started offering browsers the option to pay to reduce their exposure to ad-
vertising.2 The platform’s problem in designing such offers can be seen from two perspectives. The
more familiar one is that of designing a menu to offer to browsers, where each option in the menu
consists of a degree of exposure to advertising and a price. The mirror image of this problem consists
in designing a matching schedule for advertisers, where prices are contingent on the browsers that
each advertiser is able to reach. Because matching is reciprocal, the menus offered to the browsers
determine the matching schedules faced by the advertisers, and vice-versa. As a consequence, when
designing its price-discriminating menus on each side, platforms have to internalize the effects on
profits that each side induces on the other side.

The presence of such cross-side effects is what distinguishes price discrimination in matching mar-
kets from price discrimination in markets for standard products. In this paper, we present a tractable
model of price discrimination in many-to-many matching markets, and show how subsidization across
sides shapes the platforms’ matching and price schedules.

Model Ingredients. The main ingredients of our model are the following. Agents on each side
of the market (e.g., browsers and advertisers) are heterogeneous in, and privately informed about,
vertical characteristics that determine their willingness to pay for matching plans. For example,
browsers differ in their tolerance for advertising, while advertisers differ in their willingness to pay
for browsers’ eyeballs.

In addition, agents differ in their salience (or prominence), that is, in the utility (or disutility) they
generate to their matching partners. Importantly, we consider both the case in which willingness-

1See Jones (1805, page 329) and Seymour (1928) for early accounts of, respectively, marriage and employment
agencies in England. See Allard (2008) for a historical account of lobbying in the US.

2For example, Google recently launched a service, Google Contributor, that allows browsers to pay a monthly fee
to reduce the amount of advertising on affiliated sites. Some newspapers, such as the Guardian, allow users to pay to
remove advertising in their smartphone and tablet apps. Other newspapers, such as the Washington Post, offer cheaper
(tabloid) versions with similar content but more ads. Similar funding strategies have been adopted by many app and
video game developers, offering two versions of the same product that differ only in the amount of advertising. Online
publications follow a similar trend: Next Web, for example, charges an yearly fee of $36.30 to reduce the browsers’
exposure to advertising.
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to-pay and salience are positively related and the case in which they are negatively related. For
example, the ads of those advertisers with the highest willingness-to-pay may be the least annoying
for the browsers, although we also consider the opposite case. Analogously, browsers’ tolerance for ads
may be either positively or negatively related to the browsers’ purchasing habits (which determines
their value to the advertisers). More broadly, the agents’ willingness to pay captures their “consumer
value,” while their salience captures their “input value,” i.e., the utility or disutility they bring to the
opposite side.

Another flexible feature of the model is that it allows for either increasing or decreasing marginal
utility for matching. For example, the browsers’ nuisance costs may be convex in the amount of
advertising they are exposed to, and the advertisers’ profits may be concave in the number of eyeballs
they reach. In these cases, an agent’s marginal (dis)utility for an extra match depends on the entire
set of matches the agent receives.

We study the matching assignments that maximize either social welfare or profits (as many match-
ing intermediaries are privately owned). For each side of the market, the platform chooses a pricing
rule and a matching rule. Along with the usual incentive compatibility constraints (imposing that,
for example, each browser chooses the ad-avoidance plan that maximizes his utility), we require only
that matching mechanisms satisfy a minimal feasibility constraint, which we call reciprocity. This
condition requires that if browser i from side A is matched to advertiser j from side B, then advertiser
j is matched to browser i. The cases of welfare and profit maximization can then be treated similarly,
after one replaces valuations by their “virtual” counterparts (which discount for informational rents).

Our analysis provides answers to the following questions: What matching patterns arise when
agents are privately informed about the vertical characteristics that determine match values? How
does the private (profit-maximizing) provision of matching services compare with the public (welfare-
maximizing) provision? How are matching allocations affected by shocks that alter the distribution
of the agents’ characteristics?

Main Results. The recurring theme of this paper is how matching patterns reflect optimal
cross-subsidization between sides. Our first main result identifies conditions on primitives under
which optimal matching rules exhibit a threshold structure. Under a threshold structure, each browser
with advertising tolerance v

A

is matched to all advertisers with willingness-to-pay above a threshold
t

A

(v

A

), and, conversely, each advertiser with willingness-to-pay v

B

is matched to all browsers whose
advertising tolerance is higher than t

B

(v

B

).
Importantly, the reciprocity constraint described above implies that thresholds are weakly decreas-

ing in the vertical characteristic v
k

, k = A,B. As such, the advertisers with the highest willingness-to-
pay are matched to all browsers who are exposed to any advertising. In turn, advertisers with lower
willingness-to-pay are matched to only a subset of all browsers (namely, those with high tolerance to
advertising). Threshold rules thus capture matching allocations exhibiting vertical separation with-
out segmentation (in the form of mutually exclusive groups). The matching allocations induced by
threshold rules are consistent with the practice followed by many media platforms (e.g., newspapers)
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of exposing all readers to premium ads (displayed in all versions of the newspaper), but only those
readers with high tolerance to advertising to discount ads (displayed only in the tabloid or printed
version). They are also consistent with the practice followed by many commercial lobbying firms,
that match interest groups with high willingness to pay for political access to all policymakers in
their network of influence, while interest groups with lower willingness to pay to only those policy-
makers who are less sensitive to political exposure (for a more detailed discussion of the practices of
commercial lobbying firms, see Kang and You (2015), who test the predictions of our model using
data on US commercial lobbying).

Our second main result provides a precise characterization of the thresholds. We use variational
techniques to obtain an Euler equation that equalizes (i) the marginal gains from expanding the
matching sets on one side to (ii) the marginal losses that, by reciprocity, arise on the opposite side
of the market. Intuitively, this equation endogenously partitions agents from each side into two
groups. The first group consists of agents playing the role of consumers (e.g., advertisers with high
willingness-to-pay). These agents contribute positively to the platform’s objective by “purchasing”
sets of agents from the other side of the market. The second group consists of agents playing the role
of inputs (e.g., browsers with low tolerance for advertisement). These agents contribute negatively to
the platform’s objective, but are used to “feed” the matching sets of those agents from the opposite
side who play the role of consumers (cross-subsidization).

The above two results define the paper’s theoretical contribution. The fact that matches are
reciprocal, along with the fact that each agent is both a consumer and an input in the matching
production function, render the cost of extra matches endogenous, and dependent in a nontrivial
way on the entire matching rule. The endogeneity of costs is what distinguishes price discrimination
in matching markets from price discrimination in commodity markets, where the cost function is
exogenous (see, among others, Mussa and Rosen (1978), and Maskin and Riley (1984)).3

Our characterization results enable us to compare the matching allocations that result from the
public provision of matching services (which we assumed is motivated by welfare maximization)
to those that result from the private provision of such services (which we assume is motivated by
profit maximization). Interestingly, profit-maximization in vertical matching markets may result in
inefficiently small matching sets for all agents, including those “at the top” of the distribution (e.g.,
the advertisers with the highest willingness-to-pay). The reason is that the costs of cross-subsidizing
such agents is higher under profit maximization, due to the informational rents that must be given
to the agents-inputs.

Our analysis also delivers testable predictions about the effects of shocks that alter the salience of
the agents. In particular, we show that a shock that increases the salience of all agents from a given
side (albeit not necessarily uniformly across agents) induces a profit-maximizing platform to offer
larger matching sets to those agents with low willingness to pay and smaller matching sets to those

3This extra degree of complexity requires stochastic-order techniques and variational arguments that, to the best of
our knowledge, are novel to the literature.
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agents with high willingness to pay. In terms of surplus, these shocks make low-willingness-to-pay
agents better off at the expense of high-willingness-to-pay ones. In terms of pricing, an increase in
attractiveness induces an anti-clockwise rotation of the optimal price schedules.

Although formulated in a two-sided matching environment, all our results have implications also
for one-sided vertical matching markets. Indeed, the one-sided environment is mathematically equiv-
alent to a two-sided matching market where both sides have symmetric primitives and matching rules
are constrained to be symmetric across sides. As it turns out, in two-sided matching markets with
symmetric primitives, the optimal matching rules are naturally symmetric, in which case the latter
constraint is non binding. All our results thus have implications also for such problems in organization
and personnel economics that pertain to the optimal design of teams in the presence of peer effects.

The rest of the paper is organized as follows. Below, we close the introduction by briefly reviewing
the most pertinent literature. Section 2 describes the model. Section 3 contains all results. Section
4 discusses a few extensions, while Section 5 concludes. All proofs appear in the Appendix.

Related Literature

The paper is primarily related to the following literatures.
Matching Intermediation with Transfers. Damiano and Li (2007) and Johnson (2013) con-

sider a one-to-one matching intermediary that faces asymmetric information about the agents’ vertical
characteristics that determine match values. These papers derive conditions on primitives for a profit-
maximizing intermediary to induce positive assortative matching. In contrast to these papers, we
study many-to-many matching in a flexible setting where agents may differ in their consumer value
(willingness-to-pay) and input value (salience).

Group design with peer effects. Rayo (2013) studies second-degree price discrimination
by a monopolist selling a menu of conspicuous goods that serve as signals of consumers’ hidden
characteristics. Rayo’s model can be interpreted as a one-sided matching model where the utility of
a matching set is proportional to the average quality of its members. Allowing for more general peer
effects, Board (2009) studies the design of groups by a profit-maximizing platform (e.g., a school)
that can induce agents to self-select into mutually exclusive groups (e.g., classes).4

Price Discrimination. The availability of transfers and the presence of asymmetric information
relates this paper to the literature on second-degree price discrimination (e.g., Mussa and Rosen
(1978), Maskin and Riley (1983), Wilson (1997)). Our study of price discrimination in many-to-
many matching markets introduces two novel features relative to the standard monopolistic screening
problem. First, the platform’s feasibility constraint (namely, the reciprocity of the matching rule)
has no equivalent in markets for commodities.5 Second, each agent serves as both a consumer and an

4See also Arnott and Rowse (1987), Epple and Romano (1998), Helsley and Strange (2000), and Lazear (2001) for
models of group design under complete information.

5A related, but simpler, feasibility constraint is also present in the one-to-one matching models of Damiano and Li
(2007) and Johnson (2013).
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input in the matching production function. This feature implies that the cost of procuring an input
is endogenous and depends in a nontrivial way on the entire matching rule.

Two-Sided Markets. Markets where agents purchase access to other agents are the focus of
the literature on two-sided markets (see Rysman (2009) for a survey, and Weyl (2010), Bedre-Defolie
and Calvano (2013), and Lee (2013) for recent developments). This literature, however, restricts
attention to a single network or to mutually exclusive networks. Our contribution is in allowing for
general matching rules, in distinguishing the agents’ willingness to pay from their salience, and in
accommodating for nonlinear preferences over matching sets.

Decentralized Matching. Since Becker (1973), matching models have been used to study a
variety of markets, including marriage, labor, and education, in which agents are heterogeneous in
some vertical characteristics that determine the value of the matches (e.g., attractiveness, or skill).
A robust insight from this literature is that, when matches are one-to-one, the matching pattern
is positive assortative provided that the match value function satisfies appropriate supermodularity
conditions, which depend on the presence, and nature, of frictions, and on the possibility of transfers.
See, for example, Legros and Newman (2002, 2007) for a setting where frictions take the form of
transaction costs or moral hazard, and Shimer and Smith (2000) and Eeckhout and Kircher (2010)
for search/matching frictions. Relative to this literature, we study mediated matching, abstract from
search frictions or market imperfections, and consider many-to-many matching rules.

2 Model and Preliminaries

Environment

A platform matches agents from two sides of a market. Each side k 2 {A,B} is populated by a unit-
mass continuum of agents. Each agent from each side k 2 {A,B} has a type v

k

2 V

k

⌘ [v

k

, v

k

] ✓ R
that parametrizes both the agent’s valuation for matching intensity, that is, the value that the agent
assigns to interacting with agents from the opposite side, and the agent’s “salience,” which we denote
by �

k

(v

k

) 2 R+. Importantly, it is only for simplicity that we assume that salience is a deterministic
function of valuations: All our results extend to settings in which salience varies stochastically with
valuations and agents have private information about both their valuations and their salience, in
which case an agent’s type is given by (v

k

,�

k

) (see Appendix A for details).
Each v

k

is drawn from an absolutely continuous distribution F

k

(with density f

k

), independently
across agents. As is standard in the mechanism design literature, we assume that F

k

is regular in the
sense of Myerson (1981), meaning that the virtual valuations for matching v

k

� [1 � F

k

(v

k

)]/f

k

(v

k

)

are continuous and nondecreasing.
Given any (Borel measurable) set s of types from side l 6= k, the payoff that an agent from side

k 2 {A,B} with type v

k

obtains from being matched, at a price p, to the set s is given by

⇡

k

(s, p; v
k

) ⌘ v

k

· g
k

(|s|
l

)� p, (1)

6



where g
k

(·) is a positive, strictly increasing, and continuously differentiable function satisfying g

k

(0) =

0, and where
|s|

l

⌘
ˆ
vl2s

�

l

(v

l

)dF

l

(v

l

) (2)

is the matching intensity of the set s.
The case where an agent from side k dislikes interacting with agents from the other side is thus

captured by a negative valuation v

k

< 0. To avoid the uninteresting case where no agent from either
side benefits from interacting with agents from the opposite side, we assume that v̄

k

> 0 for some
k 2 {A,B}. The functions g

k

(·), k = A,B, in turn capture increasing (or, alternatively, decreasing)
marginal utility (or, alternatively, disutility) for matching intensity.

The payoff formulation in (1) is fairly flexible and accommodates the following examples as special
cases.

Example 1 (advertising avoidance). The platform is an online intermediary matching browsers
from side A to advertisers from side B. Browsers dislike advertising and their tolerance is indexed
by the parameter v

A

2 V

A

⇢ R�. The nuisance generated by an advertiser with willingness to pay
v

B

2 V

B

⇢ R+ to a browser with tolerance v

A

is given by

v

A

· �
B

(v

B

) · (|s|
B

)

�

,

where s is the set of ads displayed to the browser, and where � � 0 is the nuisance parameter.6 The
browser’s total payoff is then given by

⇡

A

(s, p; v
A

) =

ˆ
vB2s

v

A

· �
B

(v

B

) · (|s|)� dF (v

B

)� p = v

A

· g
A

(|s|
B

)� p,

where p is the price the browser pays to the intermediary (to avoid further advertising), and where
the function g

A

(x) = x

1+� (which is strictly convex for � > 0) captures the increasing “marginal”
nuisance of advertising. An increasing salience function �

B

(·) then captures the idea that advertisers
with a higher willingness to pay display, on average, ads that are more annoying to browsers, whereas a
decreasing �

B

(·) captures the opposite case. For simplicity, advertisers are assumed to have preferences
that are linear in the number of browsers reached by their ads:

⇡

B

(s, p̂; v
B

) = v

B

·
ˆ
vA2s

dF (v

A

)� p̂,

where p̂ is the price paid to the platform. }

The next example considers a market in which the matching values are supermodular, as in the
literature on positive assortative one-to-one matching (e.g., Damiano and Li 2007).

6See Kaiser and Wright (2006) and Kaiser and Song (2009) for an empirical assessment of the preferences of browsers
vis-a-vis advertisers.
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Example 2 (business-to-business platform). A business-to-business platform matches firms on
two levels of the supply chain (identified with sides A and B).7 The match between a firm of pro-
ductivity v

A

in level A and a firm of productivity v

B

in level B yields a total surplus v

A

v

B

, which
is split according to a generalized Nash bargaining protocol. In this specification, the salience of each
firm coincides with her productivity (i.e., �

k

(v

k

) = v

k

for all v
k

2 V

k

, with V

k

⇢ R+ and g

k

(x) = x,

k = A,B). The payoff of a level-A firm is then equal to

⇡

A

(s, p; v
A

) = ↵ · v
A

·
ˆ
vB2s

v

B

dF

B

(v

B

)� p,

whereas the payoff of a level-B firm is

⇡

B

(s, p; v
A

) = (1� ↵) · v
B

·
ˆ
vA2s

v

A

dF

A

(v

A

)� p,

where the prices here denote the commissions paid to the platform, and where ↵ is the bargaining
weight of level-A firms. }

Another special case of our model (where the functions g

k

are linear and the functions �
k

are
weakly increasing) is developed in Kang and You (2015). This paper brings to data the empirical
implications of our model in the context of commercial lobbying firms (matching interest groups and
policymakers).

Matching Mechanisms

A matching mechanism M ⌘ {s
k

(·), p
k

(·)}
k=A,B

consists of two pairs (indexed by side) of matching
and payment rules. For each type v

k

2 V

k

, the rule p

k

(·) specifies the payment asked to an agent
from side k 2 {A,B} with type v

k

, while the rule s
k

(·) ✓ V

l

specifies the set of types from side
l 6= k included in type v

k

’s matching set. Note that p
k

(·) maps V
k

into R (both positive and negative
payments are allowed), while s

k

(·) maps V

k

into the Borel sigma algebra over V

l

. With some abuse
of notation, hereafter we will denote by |s

k

(v

k

)|
l

the matching intensity of type v

k

’s matching set.8

A matching rule {s
k

(·)}
k=A,B

is feasible if and only if it satisfies the following reciprocity con-

dition

v

l

2 s
k

(v

k

) ) v

k

2 s
l

(v

l

), (3)

which requires that if an agent from side l with type v

l

is included in the matching set of an agent
from side k with type v

k

, then any agent from side k with type v

k

is included in the matching set of
any agent from side l with type v

l

.
7Lucking-Reiley and Spulber (2001) and Jullien (2012) survey the literature on business-to-business platforms.
8Restricting attention to deterministic mechanisms is without loss of optimality under the assumptions in the model

(The proof is based on arguments similar to those in Strausz (2006)). It is easy to see that restricting attention
to anonymous mechanisms is also without loss of optimality given that there is no aggregate uncertainty and that
individual identities are irrelevant for payoffs.
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Next, denote by ˆ

⇧

k

(v

k

, v̂

k

;M) ⌘ v

k

· g
k

(|s
k

(v̂

k

)|
l

) � p

k

(v̂

k

) the payoff that type v

k

obtains when
reporting type v̂

k

, and by ⇧
k

(v

k

;M) ⌘ ˆ

⇧

k

(v

k

, v

k

;M) the payoff that type v

k

obtains by reporting
truthfully. A mechanism M is individually rational (IR) if ⇧

k

(v

k

;M) � 0 for all v
k

2 V

k

, k = A,B,

and is incentive compatible (IC) if ⇧
k

(v

k

;M) � ˆ

⇧

k

(v

k

, v̂

k

;M) for all v
k

, v̂

k

2 V

k

, k = A,B.

A matching rule is implementable if there exists a payment rule {p
k

(·)}
k=A,B

such that the mech-
anism M = {s

k

(·), p
k

(·)}
k=A,B

is individually rational and incentive compatible.9

Welfare and Profit Maximization

The welfare generated by the mechanism M is given by

⌦

W

(M) =

X

k=A,B

ˆ
Vk

v

k

· g
k

(|s
k

(v

k

)|
l

) dF

k

(v

k

), (4)

whereas the profits generated by the mechanism M are given by

⌦

P

(M) =

X

k=A,B

ˆ
Vk

p

k

(v

k

)dF

k

(v

k

). (5)

A mechanism is efficient (alternatively, profit-maximizing) if it maximizes ⌦W

(M) (alternatively,
⌦

P

(M)) among all mechanisms that are individually rational, incentive compatible, and satisfy
the reciprocity condition (3). Note that the reciprocity condition implies that the matching rule
{s

k

(·)}
k=A,B

can be fully described by its side-k correspondence s
k

(·).
It is standard to verify that a mechanism M is individually rational and incentive compatible if

and only if the following conditions jointly hold for each side k = A,B:
(i) the matching intensity of the set s

k

(v

k

) is nondecreasing in the valuation v

k

;
(ii) the equilibrium payoffs ⇧

k

(v

k

;M) of the agents with the lowest valuation are non-negative;
(iii) the pricing rule satisfies the envelope formula

p

k

(v

k

) = v

k

· g
k

(|s
k

(v

k

)|
l

)�
ˆ

vk

vk

g

k

(|s
k

(x)|
l

) dx�⇧
k

(v

k

;M). (6)

It is also easy to see that in any mechanism that maximizes the platform’s profits, the IR con-
straints of those agents with the lowest valuations bind, i.e., ⇧

k

(v

k

;M

P

) = 0, k = A,B. Using the
expression for payments (6), it is then standard practice to rewrite the platform’s profit maximization
problem in a manner analogous to the welfare maximization problem. One simply needs to replace the
true valuations with their virtual analogs (i.e., with the valuations discounted for informational rents).
Formally, for any k = A,B, any v

k

2 V

k

, let 'W

k

(v

k

) ⌘ v

k

and '

P

k

(v

k

) ⌘ v

k

� [1 � F

k

(v

k

)]/f

k

(v

k

).
9Implicit in the aforementioned specification is the assumption that the platform must charge the agents before

they observe their payoffs. This seems a reasonable assumption in most applications of interest. Without such an
assumption, the platform could extract the entire surplus by using payments similar to those in Crémer and McLean
(1988) — see also Mezzetti (2007).
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Using the superscript h = W (or, alternatively, h = P ) to denote welfare (or, alternatively, profits),
the platform’s problem then consists in finding a matching rule {s

k

(·)}
k=A,B

that maximizes

⌦

h

(M) =

X

k=A,B

ˆ
Vk

'

h

k

(v

k

) · g
k

(|s
k

(v

k

)|
l

) dF

k

(v

k

) (7)

among all rules that satisfy the monotonicity constraint (i) and the reciprocity condition (3). Bearing
these observations in mind, hereafter, we will say that a matching rule {sh

k

(·)}
k=A,B

is h-optimal if it
solves the above h-problem. For future reference, for both h = W,P, we also define the reservation
value r

h

k

⌘ inf{v
k

2 V

k

: '

h

k

(v

k

) � 0} when {v
k

2 V

k

: '

h

k

(v

k

) � 0} 6= ?.

3 Optimal Matching Rules

We start by introducing an important class of matching rules and by identifying natural conditions
under which restricting attention to such rules entails no loss of optimality. We then proceed by
studying properties of optimal rules and conclude with comparative statics.

3.1 Threshold Rules

Consider the following class of matching rules.

Definition 1 (threshold rules). A matching rule is a threshold rule if for any v

k

2 V

k

, k = A,B,

s
k

(v

k

) =

(

[t

k

(v

k

), v

l

] if v
k

� !

k

; otherwise,

where the exclusion type !
k

2 V

k

is the valuation below which types are excluded. In this case, we say
that the matching rule exhibits the threshold structure {t

k

(·),!
k

}
k=A,B

.

Matching rules with a threshold structure are remarkably simple. Any type below !

k

is excluded,
while a type v

k

> !

k

is matched to any agent from the other side whose type is above the threshold
t

k

(v

k

). To satisfy the reciprocity condition (3), the threshold functions {t
k

(·)}
k=A,B

have to satisfy
the constraints identified in the next lemma.

Lemma 1 (feasible threshold rules). Consider a matching rule exhibiting the threshold structure
{t

k

(·),!
k

}
k=A,B

. This rule is feasible if and only if the following conditions jointly hold:

1. for all v
k

2 [!

k

, v

k

], k, l = A,B, l 6= k,

t

k

(v

k

) = min{v
l

: t

l

(v

l

)  v

k

}. (8)

2. for all k = A,B, t

k

(·) is a weakly decreasing function.

10



Condition 1 requires that each threshold function t

k

(·), k = A,B, coincide with the generalized
inverse of the threshold function on the other side of the market. In turn, Condition 2 requires that
threshold functions be weakly decreasing in the agents’ valuation for matching intensity. The formal
proof that these two conditions are jointly equivalent to feasibility is in the Appendix. The sufficiency
claim is proved by directly verifying that any threshold rule satisfying the above two conditions is
reciprocal in the sense of (3). The necessity claim is proved by contradiction.

Lemma 1 also implies that matching rules with a threshold structure exhibit a form of negative
assortativeness at the margin: Those agents with a low valuations are matched only to those agents
from the opposite side whose valuation is sufficiently high. Furthermore, the matching sets are ordered
across types, in the weak (inclusion) set-order sense, i.e., if v

k

< v̂

k

then s
k

(v

k

) ✓ s
k

(v̂

k

).

Remark 1 (implementability) Lemma 1 implies that feasible threshold rules are always imple-
mentable (they generate matching sets whose matching intensity is nondecreasing in v

k

). Yet, many
implementable matching rules do not exhibit a threshold structure. Incentive compatibility simply re-
quires the matching intensity to be nondecreasing in valuations, but imposes no restrictions on the
composition of the matching sets. To see this, suppose, for example, that v

k

is drawn uniformly from
V

k

= [0, 1] and that �
k

(v

k

) = 1 for all v
k

2 V

k

, k = A,B. Then partitional rules of the type

s
k

(v

k

) =

(

⇥

1
2 , 1
⇤

if v

k

2
⇥

1
2 , 1
⇤

⇥

0,

1
2

⇤

if v

k

2
⇥

0,

1
2

⇤

,

are clearly implementable but do not exhibit a threshold structure. In fact, the matching sets induced
by incentive compatible rules need not be nested or connected.10

We proceed by identifying weak conditions on payoffs that, along with incentive compatibility,
make threshold rules optimal.

Condition 1 [TP] Threshold Primitives: One of the following two sets of conditions holds:
(a) the functions g

k

(·) are weakly concave, and the functions �
k

(·) are weakly increasing, for both
k = A and k = B;

(b) the functions g

k

(·) are weakly convex, and the functions �
k

(·) are weakly decreasing, for both
k = A and k = B.

Condition TP covers two alternative scenarios. The first scenario is one where, on both sides,
agents have (weakly) concave preferences for matching intensity. In this case, Condition TP also
requires that, on both sides, salience increases (weakly) with valuations. The second scenario covers

10For example, continue to assume that valuations are drawn uniformly from Vk = [0, 1] but now let �k(vk) = 1� vk,
for all vk 2 Vk, k = A,B. The following matching rule, described by its side-k correspondence, is implementable:

sk(vk) =

8
<

:

⇥
0, 1

3

⇤
[
⇥
2
3 , 1

⇤
if vk 2

h
1�

p
2

2 , 1
i

⇥
1
3 ,

2
3

⇤
if vk 2

h
0, 1�

p
2

2

i
.
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a symmetrically opposite situation, where agents have (weakly) convex preferences for matching
intensity and salience decreases (weakly) with valuations. To illustrate, note that the preferences in
Example 1 (advertising avoidance) satisfy Condition TP as long as salience on side B is non-increasing
in valuations, meaning that the ads of those advertisers with the highest willingness to pay are seen,
on average, as being the least annoying ones. The preferences in Example 2 (business-to-business
platform) also satisfy Condition TP, for in this case preferences are linear and salience is increasing
in valuations on both sides.

Proposition 1 (optimality of threshold rules) Assume Condition TP holds. Then both the profit-
maximizing and the welfare-maximizing rules have a threshold structure.

Below, we illustrate heuristically the logic behind the arguments that lead to the result in Propo-
sition 1 (the formal proof in the Appendix is significantly more complex and uses results from the
theory of stochastic orders to verify the heuristics described below).

Sketch of the Proof of Proposition 1. Consider an agent for whom '

h

k

(v

k

) � 0. In case of welfare
maximization (h = W ), this is an agent who values positively interacting with agents from the other
side. In case of profit maximization (h = P ), this is an agent who contributes positively to profits,
even when accounting for informational rents. Ignoring for a moment the monotonicity constraints, it
is easy to see that it is always optimal to assign to this agent a matching set s

k

(v

k

) � {v
l

: '

h

l

(v

l

) � 0}
that includes all agents from the other side whose 'h

l

-value is non-negative. This is because (i) these
latter agents contribute positively to type v

k

’s payoff and, (ii) these latter agents have non-negative
'

h

l

-values, which implies that adding type v

k

to these latter agents’ matching sets (as required by
reciprocity) never reduces the platform’s payoff.

Next, consider an agent for whom '

h

k

(v

k

) < 0. It is also easy to see that it is never optimal to
assign to this agent a matching set that contains agents from the opposite side whose 'h

l

-values are
also negative. The reason is that matching two agents with negative valuations (or, alternatively,
virtual valuations) can only decrease the platform’s payoff.

These general observations do not hinge on Condition TP. Moreover, they say nothing on how
to optimally match agents with a positive (virtual) valuation to agents from the opposite side with
a negative (virtual) valuation (cross-subsidization). This is where Condition TP, along with the fact
that valuations are private information, plays a role.

Consider first the scenario of Condition TP(a), where g

k

(·) is weakly concave and �
k

(·) is weakly
increasing. Pick an agent from side k with 'h

k

(v

k

) > 0 and suppose that the platform wants to assign
to this agent a matching set whose intensity

q = |s|
l

>

ˆ
[rhl ,vl]

�

l

(v

l

)dF

l

(v

l

)

exceeds the matching intensity of those agents from side l with non-negative 'h

l

-values (i.e., for whom
v

l

� r

h

l

). The combination of the assumptions that (i) salience is weakly increasing in valuations, (ii)

12



g

l

are weakly concave, and (iii) valuations are private information, implies that the least costly way
to deliver intensity q to such an agent is to match him to all agents from side l whose 'h

l

(v

l

) is the
least negative. This is because (a) these latter agents are the most attractive ones, and (b) by virtue
of g

l

being concave, using the same agents from side l with a negative 'h

l

-valuations intensively is
less costly than using different agents with negative 'h

l

-valuations. This, in turn, means that type
v

k

’s matching set takes the form [t

k

(v

k

), v

l

], where the threshold t

k

(v

k

) is computed so that
ˆ
[tk(vk),vl]

�

l

(v

l

)dF

l

(v

l

) = q. (9)

Building on the above ideas, the formal proof in the Appendix uses results from the monotone
concave order to verify that, when Condition TP(a) holds, starting from any incentive-compatible
matching rule, one can construct a threshold rule that weakly improves upon the original one. The
idea is that threshold rules minimize the costs of cross-subsidization by delivering to those agents who
play the role of consumers (i.e., whose 'h

k

-valuation is nonnegative) matching sets of high quality in
the most economical way. Note that the threshold rule constructed above is implementable provided
that the original matching rule is implementable. In particular, under the new rule, among those
agents with negative 'h

l

-valuations, those with a higher valuations may receive larger matching sets.
Next, consider the scenario of Condition TP(b), where g

k

(·) is weakly convex on both sides and
where �

k

(·) is weakly decreasing. Then pick a type v

k

from side k with 'h

k

(v

k

) < 0. Recall that using
such an agent is costly for the platform. Now imagine that the platform wanted to assign to this
type a matching set of strictly positive intensity, |s

k

(v

k

)|
l

> 0. The combination of the assumptions
that (i) salience decreases with valuations, (ii) g

l

(·) are weakly convex and (iii) types are private
information, then implies that the most profitable way of using type v

k

as an input is to match
him to those agents from side l with the highest positive 'h

l

-valuations. This is because (a) these
latter types are the ones that benefit the most from interacting with type v

k

(indeed, as required by
incentive compatibility, these types have the matching sets with the highest intensity and hence, by
the convexity of g

l

(·), the highest marginal utility for meeting additional agents) and (b) these latter
types are the least salient ones and hence exert the lowest negative externalities on type v

k

(recall
that 'h

k

(v

k

) < 0). In the scenario covered by Condition TP(b), the reason why a threshold structure
is thus optimal is that it maximizes the welfare benefits (or profits) of cross-subsidization. Q.E.D.

Discussion

Before moving to the characterization of optimal threshold rules, we discuss the role of Condi-
tion TP and of private information for the result in Proposition 1. Considered in isolation, neither
Condition TP nor incentive compatibility is itself sufficient for the optimality of threshold rules. It
is the combination of the cross-subsidization logic outlined in the proof sketch of Proposition 1 with
the monotonicity requirements of incentive compatibility that leads to the optimality of threshold
rules. To illustrate this point, we exhibit two examples. The first one shows that threshold rules
may not be optimal when information is incomplete but Condition TP fails. The second one shows

13



that threshold rules may not be optimal when Condition TP holds but information is complete. The
logic behind these examples clarifies what can “go wrong” once we dispense with either one of these
conditions.

Example 3 (sub-optimality of threshold rules - 1). Agents from sides A and B have their
valuations drawn uniformly from V

A

= [0, 1] and V

B

= [�1, 0], respectively. The salience of the side-
B agents is constant and normalized to one, i.e., �

B

(v

B

) ⌘ 1 for all v
B

2 V

B

, while the salience of
the side-A agents is given by

�

A

(v

A

) =

(

10 if v

A

2
⇥

9
10 , 1

⇤

10
9 if v

A

2
⇥

0,

9
10

⇤

.

Preferences for matching intensity are linear on side A (that is, g
A

is the identity function), whereas
preferences on side B are given by the convex function11

g

B

(x) =

(

x if x  1

+1 if x > 1.

In this environment, the welfare-maximizing threshold rule is described by the threshold function
t

A

(v) = � v

10 , with exclusion types !
A

=

9
10 and !

B

= � 1
10 , as can be easily verified from Proposition

2 below. Total welfare under such a rule is 4/10

3. Now consider the following non-threshold rule,
which we describe by its side-A correspondence:

s
A

(v

A

) =

(

⇥

� 1
10 , 0

⇤

if v

A

2
⇥

9
10 , 1

⇤

⇥

� 2
10 ,�

1
10

⇤

if v

A

2
⇥

0,

9
10

⇤

.

It is easy to check that this matching rule is implementable. Total welfare under this rule equals
3/10

2
> 4/10

3. }

The matching rules in this example are illustrated in Figure 1. To understand the logic of the
example, let agents from side A be advertisers and agents from side B be browsers. The advertisers
with the highest willingness to pay for eyeballs, v

A

2
⇥

9
10 , 1

⇤

, are the most salient ones (i.e., their
ads are perceived as the most annoying by the browsers). Browsers have convex nuisance costs, as
described by the function g

B

(in particular, the disutility from advertising becomes arbitrarily large
once the salience-adjusted mass of advertising exceeds one). In this example, the optimal threshold
rule matches advertisers with a high willingness to pay with those browsers whose tolerance for
advertising is sufficiently high, and assigns empty matching sets to all other advertisers and browsers.
Because of the convexity of nuisance costs, few advertisers are matched to browsers under such a
rule. The alternative rule proposed in the example better distributes advertisers to browsers. Under
the proposed rule, advertisers with willingness to pay v

A

2 [0,

9
10 ] (whose ads are not particularly

11That the function gB jumps at infinity at x = 1 simplifies the exposition but is not important for the result; the
sub-optimality of threshold rules clearly extends to an environment identical to the one in the example but where the
function gB is replaced by a sufficiently close smooth convex approximation.
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Figure 1: The welfare-maximizing rule among those with a threshold structure (left) and the welfare-
improving non-threshold rule (right) from Example 3.

annoying) are matched to browsers with moderate tolerance for advertising (i.e., v
B

2 [� 2
10 ,�

1
10 ]),

while advertisers with a high willingness to pay (whose ads are the most annoying ones) are matched
with browsers whose tolerance for advertising is the highest (i.e., the matching allocation exhibits
segmentation). Welfare under the proposed rule is almost ten times higher than under the optimal
threshold rule.

The example above violates Condition TP by exhibiting a salience function which is nondecreasing
in valuations and preferences which are strictly convex in matching intensity. Similarly, one can show
that threshold rules may fail to be optimal when salience is non-increasing but preferences are strictly
concave (see Appendix B for an example with this structure). The next example illustrates the role
of private information for the result in Proposition 1.

Example 4 (sub-optimality of threshold rules - 2). Agents from sides A and B have valuations
drawn uniformly from V

A

= [0, 1] and V

B

= [�2, 0], respectively. Preferences are linear on both sides,
that is, g

k

(x) = x, k = A,B. The salience function on side A is constant, �
A

(v

A

) = 1 all v
A

2 V

A

,

whereas the salience function on side B is given by

�

B

(v

B

) =

(

1 if v

B

2 [�1, 0]

8 if v

B

2 [�2,�1].

These preferences clearly satisfy Condition TP(b). Now suppose that valuations are publicly ob-
servable on both sides and that the platform maximizes welfare. The optimal matching rule is then
given by

t

A

(v

A

) =

8

>

>

<

>

>

:

[�2,�1] [ [�v

A

, 0] if v

A

� 1
4

[�8v

A

,�1] [ [�v

A

, 0] if 1
8  v

A

<

1
4

[�v

A

, 0] if 0  v

A

<

1
8 .

Furthermore, no threshold rule yields the same welfare as the above rule. }
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The key ingredient of the above example is that salience is decreasing in valuations on side B

(which is the “input” side, as v

B

 0). As such, some of the most “expensive” agents from side
B are the most attractive ones to the side-A agents. The welfare-maximizing rule (under complete
information) then proceeds by evaluating separately each possible match between agents from the
two sides (note that this follows from the fact that, in this example, g is linear on both sides, which
implies that preferences are separable in the matches). It is then welfare-enhancing to include in the
matching sets of side-A agents (whose valuation is positive) a disjoint collection of types from side B.
The matching rule in the example, however, fails the monotonicity condition required by incentive
compatibility (that is, the total salience of the matching sets is non-monotone in valuations). As
such, it is not implementable when types are private information.

Interestingly, threshold rules are “more likely” to be optimal when information is incomplete. This
is discussed in the next remark.

Remark 2 (threshold rules: complete and incomplete information) Consider a welfare-
maximizing platform. By virtue of Lemma 1, whenever a threshold rule is optimal under complete
information, it is also optimal under incomplete information; the reason is that feasible threshold
rules are always implementable (see Remark 1). The converse is however false, as demonstrated by
Example 4.

Further assume that preferences are linear on both sides, that is, g
k

(x) = x, k = A,B. In this case,
the welfare-maximizing rule is obtained by evaluating separately each possible match between agents
from the two sides. That is, agents with valuations v

A

and v

B

are matched if and only if

v

A

�

B

(v

B

) + v

B

�

A

(v

A

) � 0 () v

A

�

A

(v

A

)

+

v

B

�

B

(v

B

)

� 0.

Together with Lemma 1, the last inequality implies that a threshold rule is welfare-maximizing under
complete information if and only if v

k

/�

k

(v

k

) is weakly increasing, k = A,B. As discussed below, a
similar condition determines whether welfare-maximizing matching rules under incomplete informa-
tion exhibit bunching or not (see Remark 6 below).

Remark 3 (one-to-one matching) The optimality of threshold rules hinges on the assumption
that the attractiveness of any set of agents is determined by the intensity of the set. When, instead,
the attractiveness of a set is determined either by the average, or by the maximal salience, of its
members, optimal rules are typically one-to-one and exhibit positive assortativeness (i.e., s

k

(v

k

) =

F

�1
l

(F

k

(v

k

)), for all v

k

2 V

k

, k = A,B) when salience is increasing in values on both sides and
negative assortativeness (i.e., s

k

(v

k

) = F

�1
l

(1� F

k

(v

k

)), for all v
k

2 V

k

, k = A,B) when salience is
decreasing in values on both sides.12 Interestingly, when preferences are linear on both sides, that is,
when g

k

(x) = x, k = A,B, one can also reinterpret our results as describing the optimal matching
rule between the types of a given pair of agents. As in Myerson and Satterthwaite (1983), in this

12The result follows from arguments similar to those in Damiano and Li (2007).
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case, the matching rule specifies whether matching between any pair of types of the two agents should
occur.13

3.2 Properties of Optimal Threshold Rules

Assuming throughout the rest of the paper that Condition TP holds, we then proceed by further
investigating the properties of optimal threshold rules. To conveniently describe the agents’ payoffs,
we introduce the function ĝ

k

: V

l

! R+ defined by

ĝ

k

(v

l

) ⌘ g

k

✓ˆ
vl

vl

�

l

(x)dF

l

(x)

◆

,

k, l = A,B, l 6= k. The utility that an agent with type v

k

obtains from a matching set [t
k

(v

k

), v

l

] can
then be written concisely as v

k

· ĝ
k

(t

k

(v

k

)). Note that ĝ
k

(t

k

(v

k

)) in decreasing in t

k

(v

k

), as increasing
the threshold t

k

(v

k

) reduces the intensity of the matching set.
Equipped with this notation, we can then recast the platform’s problem as choosing a pair of

threshold functions (t

h

k

(·))
k2{A,B} along with two scalars (!

A

,!

B

) so as to maximize the platform’s
objective subject to the conditions of Lemma 1. Note that the reciprocity constraint (8) renders the
platform’s problem a nonstandard control problem (as each of the two controls t

k

(·), k 2 {A,B}, is
required to coincide with the generalized inverse of the other).

The next definition extends to our two-sided matching setting the notion of separating schedules,
as it appears, for example, in Maskin and Riley (1984).

Definition 2 (separation) The h-optimal matching rule entails

1. separation if there exists a (positive measure) set ˆ

V

k

⇢ V

k

such that, for any v

k

, v

0
k

2 ˆ

V

k

,
t

h

k

(v

k

) 6= t

h

k

(v

0
k

),

2. exclusion at the bottom on side k if !h

k

> v

k

,

3. bunching at the top on side k if th
l

(!

h

l

) < v̄

k

.

The rule is maximally separating if th
k

(·) is strictly decreasing over the interval [!h

k

, t

h

l

(!

h

l

)], which,
hereafter, we refer to as the “separating range.”

Accordingly, separation occurs when some agents on the same side receive different matching sets.
Exclusion at the bottom occurs when all agents in a neighborhood of v

k

are assigned empty matching
sets. Bunching at the top occurs when all agents in a neighborhood of v̄

k

receive identical matching
sets. In turn, maximal separation requires that, as valuations increase, matching sets strictly expand
whenever they are “interior” (in the sense that t

h

k

(v

k

) 2 (!

h

l

, t

h

k

(!

h

k

))).
The following regularity condition guarantees that the optimal rules are maximally separating.

13The same is true when g is non-linear, but in this case our preference representation is no longer consistent with
expected utility.
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Condition 2 [MR] Match Regularity: The functions  h

k

: V

k

! R defined by

 

h

k

(v

k

) ⌘
f

k

(v

k

) · 'h

k

(v

k

)

�ĝ

0
l

(v

k

)

=

'

h

k

(v

k

)

g

0
l

(|[v
k

, v̄

k

]|
k

) · �
k

(v

k

)

are strictly increasing, k = A,B, h = W,P.

As will be clear shortly, the optimal matching rules entail maximal separation if and only if
Condition MR holds for every valuation in the separating range. Accordingly, this condition is the
analog of Myerson’s standard regularity condition in two-sided matching problems.

To understand the condition, take the case of profit-maximization, h = P . The numerator in
 

h

k

(v

k

) accounts for the effect on the platform’s revenue of an agent from side k with valuation v

k

as
a consumer (as his virtual valuation 'h

k

(v

k

) is proportional to the marginal revenue produced by the
agent). In turn, the denominator accounts for the effect on the platform’s revenue of this agent as an
input (as �ĝ

0
l

(v

k

) is proportional to the marginal utility brought by this agent to every agent from
side l who is already matched to any other agent from side k with valuation above v

k

). Therefore,
the above regularity condition requires that, under a threshold rule, the contribution of an agent as
a consumer (as captured by his virtual valuation) increases faster than his contribution as an input.

Remark 4 (Conditions MR and TP) Note that, except in the uninteresting case in which 'h

k

(v

k

) <

0 (alternatively, 'h

k

(v

k

) � 0) for all v
k

2 V

k

, k = A,B, h = W,P, Condition MR is not implied
by, nor it implies, Condition TP. In particular, Condition MR requires that 'h

k

(v

k

) increases faster
than g

0
l

(|[v
k

, v̄

k

]|
k

)�

k

(v

k

) over [r

h

k

, v̄

k

] (that is, over the subset of V
k

in which 'h

k

(v

k

) > 0) and that
|'h

k

(v

k

)| decreases slower than g

0
l

(|[v
k

, v̄

k

]|
k

)�

k

(v

k

) over [v
k

, r

h

k

] (that is, over the subset of V
k

in which
'

h

k

(v

k

) < 0), for k = A,B, and h = W,P.

To better appreciate the platform’s trade-offs at the optimum, it is convenient to introduce the
marginal surplus function 4h

k

: V

k

⇥ V

l

! R defined by

4h

k

(v

k

, v

l

) ⌘ �ĝ

0
k

(v

l

) · 'h

k

(v

k

) · f
k

(v

k

)� ĝ

0
l

(v

k

) · 'h

l

(v

l

) · f
l

(v

l

), (10)

for k, l 2 {A,B}, l 6= k. Note that 4h

A

(v

A

, v

B

) = 4h

B

(v

B

, v

A

) represents the marginal effect on the
platform’s objective of decreasing the threshold t

h

A

(v

A

) below v

B

, while, by reciprocity, also reducing
the threshold t

h

B

(v

B

) below v

A

.

Proposition 2 (optimal rules) Assume Conditions TP and MR hold. Then, for both h = W

and h = P, the h-optimal matching rules are such that sh
k

(v

k

) = V

l

for all v
k

2 V

k

, k = A,B if
4h

k

(v

k

, v

l

) � 0.14

When, instead, 4h

k

(v

k

, v

l

) < 0, the h-optimal matching rule is maximally separating and entails

1. bunching at the top on side k and no exclusion at the bottom on side l if 4h

k

(v̄

k

, v

l

) > 0;
14The statement above holds true even when Condition MR is violated, provided that either 'h

k(vk) < 0 for k = A,B,

or '

h
k(vk) > 0 for k = A,B. Condition MR is only needed in the case where '

h
k(vk) > 0 > '

h
l (vl) for k, l 2 {A,B}.
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2. exclusion at the bottom on side l and no bunching at the top on of side k if 4h

k

(v̄

k

, v

l

) < 0.15

Finally, the threshold function t

h

k

(·) is implicitly defined by the Euler equation

4h

k

(v

k

, t

h

k

(v

k

)) = 0 (11)

for any v

k

in the separating range [!

h

k

, t

h

l

(!

h

l

)].

The optimal matching rule thus entails separation whenever the marginal surplus function evalu-
ated at the lowest valuations on both sides of the market is negative: 4h

k

(v

k

, v

l

) < 0. When, instead,
this condition fails, each agent from each side is matched to any other agent from the opposite side:
sh
k

(v

k

) = V

l

for all v
k

2 V

k

, k = A,B.
When separation occurs, Proposition 2 sheds light on the optimal cross-subsidization strategy

employed by the platform. To illustrate, consider the case of profit-maximization (the arguments
for welfare maximization are analogous), and let v

k

< 0, for k = A,B. An important feature of the
profit-maximizing rule is that t

P

k

(v

k

)  r

P

l

if and only if v
k

� r

P

k

, where the reservation type r

P

k

is
the lowest type for whom '

P

k

(v

k

) � 0. This implies that agents from each side of the market are
endogenously partitioned in two groups. Those agents with positive virtual valuations (equivalently,
with valuations v

k

� r

P

k

) play the role of consumers, “purchasing” sets of agents from the other side
of the market (these agents contribute positively to the platform’s profits). In turn, those agents
with negative virtual valuations (equivalently, with valuation v

k

< r

P

k

) play the role of inputs in the
matching process, providing utility to those agents from the opposite side they are matched to (these
agents contribute negatively to the platform’s profits). At the optimum, the platform recovers the
“costs” of procuring agents-inputs from the gains obtained by agents-consumers.

The Euler equation (11) in the proposition then describes the optimal level of cross-subsidization
for each type. In particular this equation can be rewritten as

�ĝ

0
k

(t

P

k

(v

k

)) · 'P

k

(v

k

) · f
k

(v

k

)

| {z }

marginal gains

= ĝ

0
l

(v

k

) · 'P

l

(t

P

k

(v

k

)) · f
l

(t

P

k

(v

k

))

| {z }

marginal losses

. (12)

At the optimum, the platform equalizes the marginal gains and the marginal losses of expanding the
matching set of each agent in the separating range. When v

k

corresponds to an agent-consumer (i.e.,
when 'P

k

(v

k

) > 0), the left-hand side of (12) is the marginal revenue of expanding the agent’s matching
set, starting from a situation in which the agent is matched already to all agents from the other side
whose valuation is above t

P

k

(v

k

). In turn, the right-hand-side of (12) is the marginal cost associated
with procuring extra agents-inputs from the opposite side; under a threshold rule, this cost is the loss
that the platform incurs by expanding the matching set of an agent from side l whose valuation is
v

l

= t

P

k

(v

k

), starting from a situation where such an agent is already matched to all agents from side
k whose valuation exceeds v

k

= t

P

l

(v

l

), as required by reciprocity (recall that t

P

l

(t

P

k

(v

k

)) = v

k

). The
15In the knife-edge case where 4h

k(v̄k, vl) = 0, the h-optimal rule entails neither bunching at the top on side k nor
exclusion at the bottom on side l.
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terms ĝ0
k

(t

P

k

(v

k

)) and ĝ

0
l

(v

k

) adjust the marginal utilities to account for the effect of the new matches
on the supra-marginal matches (i.e., those matches above the profit-maximizing thresholds).

Note that optimality also implies that there is bunching at the top on side k if and only if there
is no exclusion at the bottom on side l. In other words, bunching can only occur at the top due to
binding capacity constraints, that is, when the “stock” of agents from side l 6= k has been exhausted.

Remark 5 Condition MR is necessary and sufficient for the marginal surplus function 4h

k

(v

k

, v

l

)

to satisfy the following single-crossing property: whenever 4h

k

(v

k

, v

l

) � 0, then 4h

k

(v

k

, v̂

l

) > 0 for
all v̂

l

> v

l

and 4h

k

(v̂

k

, v

l

) > 0 for all v̂
k

> v

k

. As can be seen from the Euler equation (11), this
single-crossing property is equivalent to the threshold function t

h

k

(·) being strictly decreasing over the
separating range. Therefore, Condition MR is the “weakest” regularity condition that rules out non-
monotonicities (or bunching) in the matching rule.

Remark 6 Consider a welfare-maximizing platform and assume that preferences are linear on both
sides, that is, g

k

(x) = x, k = A,B. Then, the following statements are equivalent: (i) Condition MR
holds; (ii) the optimal matching rule under complete information exhibits a threshold structure; (iii)
the optimal matching rule under incomplete information is maximally separating.

Consider the environment described in Example 4. It follows from the above remark that, under
incomplete information, the welfare-maximizing matching rule is not maximally separating (therefore
exhibiting some interior bunching interval). Accordingly, threshold rules are welfare-maximizing
under incomplete information, but not under complete information, exactly when the monotonicity
constraint associated with incentive compatibility is binding at the optimum. The presence of this
constraint explains why incomplete information is “more conductive” to threshold rules than complete
information.

The next example illustrates the characterization of Proposition 2.

Example 5 (advertising avoidance) Consider an online intermediary matching advertisers to
browsers with convex nuisance costs, as in Example 1. Assume that browsers and advertisers have
valuations drawn from a uniform distribution over V

A

= (�1, 0) and V

B

= (0, 1), respectively. The
advertisers’ salience function is �

B

(v

B

) = 1/v

B

. It is easy to check that Conditions TP(b) and MR
are satisfied. From Proposition 2, the welfare-maximizing rule is described by the threshold function

t

W

B

(v

B

) = � v

2
B

(1 + �) [� log v

B

]

�

for any v

B

in the separating range. Moreover, there is bunching at the top of side B, i.e., all adver-
tisers with high enough valuation are matched to all browsers. As the nuisance cost � increases, all
advertisers obtain weakly smaller matching sets (strictly so for advertisers in the separating range).
}
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Figure 2: The welfare-maximizing matching rule (left) and the profit-maximizing matching rule (right)
from Example 6 when ↵ =

1
2 .

3.3 Welfare-maximizing vs Profit-Maximizing Rules

We now turn to the distortions brought in by profit-maximization relative to the welfare-maximizing
matching rule. Consider the following example.

Example 6 (business-to-business platform) Let the environment be as in Example 2 and assume
that all v

k

are drawn from a uniform distribution over [v, v], with v > 0 and 2v < v̄, k = A,B. Because
linking any two firms generates positive surplus, the welfare-maximizing rule matches all firms on each
level of the supply chain. Next, consider the profit-maximizing rule. It is easy to check that Conditions
TP(a) and MR are satisfied. Because 4P

k

(v, v) = v(2v � v̄) < 0, it follows from Proposition 2 that
the profit-maximizing rule entails separation and is described by the threshold function

t

P

A

(v

A

) =

v̄(1� ↵)v

A

2v

A

� ↵v̄

defined over (!

P

k

, v̄) =

⇣

↵

1+↵

v̄, v̄

⌘

. Under profit-maximization, there is exclusion at the bottom on
both levels and each firm who is not excluded from the platform is matched to a strict subset of its
efficient matching set. }

The matching rules in this example are illustrated in Figure 2 above. As indicated in the next
proposition, the distortions in this example are general properties of profit-maximizing rules (the
proof follows directly from Proposition 2).

Proposition 3 (distortions) Assume Conditions TP and MR hold. Relative to the welfare-maximizing
rule, the profit-maximizing rule

1. completely excludes a larger group of agents (exclusion effect) — i.e., !P

k

� !

W

k

, k = A,B;
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2. matches each agent who is not excluded to a subset of his efficient matching set (isolation
effect) — i.e., sP

k

(v

k

) ✓ sW
k

(v

k

) for all v
k

� !

P

k

, k = A,B.

The intuition for both effects can be seen by comparing 4P

k

(v

k

, v

l

) with 4W

k

(v

k

, v

l

): under profit-
maximization, the platform only internalizes the cross-effects on marginal revenues (which are pro-
portional to the virtual valuations), rather than the cross-effects on welfare (which are proportional to
the true valuations). Contrary to other mechanism design problems, inefficiencies do not necessarily
vanish as agents’ types approach the “top” of the distribution (i.e., the highest valuation for matching
intensity). The reason is that, although virtual valuations converge to the true valuations as agents’
types approach the top of the distribution, the cost of cross-subsidizing these types remains strictly
higher under profit maximization than under welfare maximization, due to the infra-marginal losses
implied by reciprocity on the opposite side.

3.4 Comparative Statics: The Detrimental Effects of Becoming More Attractive

Shocks that alter the cross-side effects of matches are common in vertical matching markets. Changes
in productivity, for example, affect the pricing strategies of business-to-business platforms, for they
affect the attractiveness of business connections for the same population of firms.

The next definition formalizes the notion of a change in attractiveness. We restrict the attention
here to a platform maximizing profits in a market where all agents from each side value positively
interacting with agents from the opposite side (i.e., v

k

� 0 for k = A,B). For simplicity, we also
restrict attention to markets in which preferences for matching intensity are linear (i.e., g

A

(x) =

g

B

(x) = x, all x 2 R+).

Definition 3 (higher attractiveness) Consider a market in which all agents value positively in-
teracting with agents from the opposite side, i.e., v

k

� 0 for k = A,B. Side k is more attractive
under �̂

k

(·) than under �
k

(·) if �̂
k

(v

k

) � �

k

(v

k

) for all v

k

2 V

k

, with the inequality strict for a
positive-measure subset of V

k

.

The definition above does not impose that the attractiveness of side-k agents increases uniformly
across agents. For instance, it allows that only the attractiveness of agents with high valuations
increase, while that of other agents remains the same. The next proposition describes how the profit-
maximizing matching rule changes as side k becomes more attractive.

Proposition 4 (increase in attractiveness) Consider a market in which (a) conditions TP and
MR hold, (b) all agents value positively interacting with agents from the opposite side (i.e., v

k

� 0

for k 2 {A,B}), and (b) preferences for matching intensity are linear (i.e., g
A

(x) = g

B

(x) = x, all
x 2 R+). Suppose side k becomes more attractive. Then a profit-maximizing platform switches from
a matching rule sP

k

(·) to a matching rule ˆsP
k

(·) such that

1. the matching sets on side k increase for those agents with a low valuation and decrease for those
agents with a high valuation, i.e., ŝP

k

(v

k

) ◆ sP
k

(v

k

) if and only if v
k

 r

P

k

;
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2. low-valuation agents from side k are better off, whereas the opposite is true for high-valuation
ones, i.e., there exists ⌫̂

k

2 (r

P

k

, v̄

k

] such that ⇧
k

(v

k

;

ˆ

M

P

) � ⇧
k

(v

k

;M

P

) if and only if v
k

 ⌫̂

k

.

Intuitively, an increase in the attractiveness of side-k agents alters the costs of cross-subsidization
between the two sides. Recall that agents with v

k

� r

P

k

are valued by the platform mainly as
consumers. As these agents become more attractive, the costs of cross-subsidizing their “consumption”
using agents from side l with negative virtual valuation increases, whereas the revenue gains on side
k are unaltered. As a consequence, the matching sets of these agents shrink. The opposite is true for
those agents with valuation v

k

 r

P

k

. These agents are valued by the platform mainly as inputs; as
they become better inputs, their matching sets expand.

Perhaps surprisingly, an agent from side k can suffer from a positive shock to his own attractiveness
(holding constant the attractiveness of all other agents). To understand why, consider the case where
salience �

k

(v

k

) is strictly increasing and take an agent from side k with the highest possible valuation,
i.e., for whom v

k

= v̄

k

. Assume that �
k

(v̄

k

) increases by � > 0 while �
k

(v

k

) for all v
k

< v̄

k

remains
constant. Because the revenues collected from any agent with valuation v̄

k

are unaltered, at the
optimum, the matching set of any agent with valuation v̄

k

must shrink. At the same time, because
the size of the matching sets must be monotone in types, the matching sets of all agents whose
valuation is close to v̄

k

must also shrink. As a result, an agent with valuation v̄

k

is negatively affected
by an increase in his own attractiveness, even if all other agents’ attractiveness does not change.

This result has interesting implications in terms of payoffs. For all v
k

 r

P

k

, we can evaluate
payoffs according to

⇧

k

(v

k

;M

P

) =

ˆ
vk

vk

|s
k

(x)|
l

dx 
ˆ

vk

vk

|̂s
k

(x)|
l

dx = ⇧

k

(v

k

;

ˆ

M

P

),

meaning that all agents from side k with valuation v

k

 r

h

k

are necessarily better off. On the other
hand, since |̂s

k

(v

k

)|
l

 |s
k

(v

k

)|
l

for all v
k

� r

h

k

, then either payoffs increase for all agents from side k,
or there exists a threshold ⌫̂

k

> r

h

k

such that the payoff of each agent from side k is higher under the
new rule than under the original one if and only if v

k

 v̂

k

.
In many applications, the agents’ payoffs and matching sets are not observable, whereas the prices

charged by the platform are publicly available (e.g., business-to-business platforms do not offer precise
descriptions of how the matching sets assigned to firms are determined; yet, the prices charged are
clear). To derive a testable implication of Proposition 4, the next corollary studies the impact of the
agents’ attractiveness on the platform’s pricing policy.

For any matching intensity q

k

, let ⇢P
k

(q

k

) denote the total price that each agent from side k has to
pay for any matching set of intensity q

k

under the profit-maximizing mechanism M

P . By optimality,
the tariff ⇢

P

k

(·) has to satisfy

⇢

P

k

(q

k

) = p

P

k

(v

k

) for all v
k

such that |sP
k

(v

k

)|
l

= q

k

. (13)

We then have the following result.
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Corollary 1 (effect of an increase in attractiveness on prices) Under the assumptions of
Proposition 4, if the attractiveness of side k increases (in the sense of Definition 3), the platform’s
price schedule rotates anti-clockwise. That is, the platform switches from a price schedule ⇢P

k

(·) to
a price schedule ⇢̂P

k

(·) such that ⇢̂P
k

(q

k

)  ⇢

P

k

(q

k

) for any matching set of intensity q

k

 q̂

k

, where
q̂

k

>

�

�sP
k

(r

P

k

)

�

�

l

=

�

�ŝP
k

(r

P

k

)

�

�

l

.

An increase in the attractiveness of side k thus triggers a reduction in the price that the platform
charges on side k for matching sets of low intensity, possibly along with an increase in the price it
charges for matching sets of high intensity.

4 Extensions

The analysis developed above can accommodate a few simple enrichments which we discuss hereafter.
Imperfect Correlation between Salience and Valuation. To simplify the exposition, the

baseline model assumes that salience is a deterministic function of the valuations. As mentioned
above, all our results extend to environments in which the two dimensions are imperfectly correlated
and in which agents have private information about both dimensions. We formally establish this result
in the Appendix by first relaxing Condition TP to require that salience and valuation be positively
(or, alternatively, negatively) affiliated. This is the natural generalization of the assumption that �

k

be increasing (or, alternatively, decreasing) in v

k

, as required by Condition TP. Under this condi-
tion, we then show that the optimal matching rules have a threshold structure, with the thresholds
depending on valuations but not on salience. Note that the result is not a mere consequence of the
fact that individual preferences are invariant in the agents’ own salience. Combined with incentive
compatibility, the latter property only implies that the matching intensity is invariant in the agent’s
own salience, thus permitting the composition of the matching sets to depend on salience. Once this
result is established, it is then immediate that all other results in the paper extend to this richer
environment.

The Group Design Problem. Consider now the problem of how to assign agents to different
“teams” in the presence of peer effects, which is central to the theory of organizations and to personnel
economics. As anticipated in the Introduction, such one-sided matching problem is a special case of
the two-sided matching problems studied in this paper. To see this, note that the problem of designing
nonexclusive groups in a one-sided matching setting is mathematically equivalent to the problem of
designing an optimal matching rule in a two-sided matching setting where (i) the preferences and
type distributions of the two sides coincide, and (ii) the matching rule is required to be symmetric
across sides, i.e., s

A

(v) = s
B

(v) for all v 2 V

A

= V

B

.

Under the new constraint that matching rules be symmetric across the two sides, maximizing
(7) is equivalent to maximizing twice the objective function associated with the one-sided matching
problem. As it turns out, the symmetry constraint is never binding in a two-sided matching market
in which the two sides are symmetric (in which case  h

l

(·) =  

h

k

(·)). Indeed, the characterization
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from Proposition 2 reveals that, at any point where the threshold rule t

h

k

(·) is strictly decreasing,
t

h

k

(v) =

�

 

h

l

��1 �� h

k

(v)

�

=

�

 

h

k

��1 �� h

l

(v)

�

= t

h

l

(v). It is also easy to see that the symmetry
condition is satisfied when the optimal rule entails bunching at the top.

Coarse Matching. In reality, platforms typically offer menus with finitely many alternatives.
As pointed out by McAfee (2002) and Hoppe, Moldovanu and Ozdenoren (2011), the reason for such
coarse matching is that platforms may face costs for adding more alternatives to their menus.16 It is
easy to see that the analysis developed above extends to a setting where the platform can include no
more than N plans in the menus offered to each side. Furthermore, as the number of plans increases
(e.g., because menu costs decrease), the solution to the platform’s problem uniformly converges to
the h-optimal rule identified in the paper.17 In other words, the maximally-separating matching rules
of Proposition 2 are the limit as N grows large of those rules offered when the number of plans is
finite.

Quasi-Fixed Costs. Permitting an agent to interact with agents from the other side of the
market typically involves a quasi-fixed cost. From the perspective of the platform, these costs are
quasi-fixed, in the sense that they depend on whether or not an agent is completely excluded, but
not on the composition of the agent’s matching set.

The analysis developed above can easily accommodate such costs. Let c

k

denote the quasi-fixed
cost that the platform must incur for each agent from side k whose matching set is nonempty. The
h-optimal mechanism can then be obtained through the following two-step procedure:

1. Step 1: Ignore quasi-fixed costs and maximize (7) among all weakly decreasing threshold func-
tions t

h

k

(·).

2. Step 2: Given the optimal threshold function t

h

k

(·) from Step 1, choose the h-optimal exclusion
types !h

A

,!

h

B

by solving the following problem:

max

!A,!B

X

k=A,B

ˆ
vk

!k

⇣

ĝ

k

(max{th
k

(v

k

),!

l

}) · 'h

k

(v

k

)� c

k

⌘

· dF
k

(v

k

).

As the quasi-fixed costs increase, so do the exclusion types !h

k

(c

A

, c

B

), k = A,B. For c

k

sufficiently
high, the exclusion types reach the reservation values r

h

k

, in which case the platform switches from
offering a menu of matching plans to offering a unique plan. Therefore, another testable prediction
that the model delivers is that, ceteris paribus, discrimination should be more prevalent in matching
markets with low quasi-fixed costs.

Robust Implementation. In the direct revelation version of the matching game, each agent
from each side is asked to submit a report v

k

which leads to a payment ph
k

(v

k

), as defined in (6), and
grants access to all agents from the other side of the market who reported a valuation above t

h

k

(v

k

).
16See also Wilson (1989).
17This follows from the fact that any weakly decreasing threshold function tk(·) can be approximated arbitrarily well

by a step function in the sup-norm, i.e., in the norm of uniform convergence.
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This game admits one Bayes-Nash equilibrium implementing the h-optimal matching rule sh
k

(·), along
with other equilibria implementing different rules.18

As pointed out by Weyl (2010) in the context of a monopolistic platform offering a single plan,
equilibrium uniqueness can however be guaranteed when network effects depend only on quantities
(i.e., when �

k

(·) ⌘ 1 for k = A,B).

19 In the context of our model, it suffices to replace the payment
rule (p

h

k

(·))
k=A,B

given by (6) with the payment rule

%

h

k

(v

k

, (v

j

l

)

j2[0,1]
) = v

k

· g
k

⇣

�

�

�

{j 2 [0, 1] : v

j

l

� t

k

(v

k

)}
�

�

�

l

⌘

�
ˆ

vk

vk

g

k

⇣

�

�

�

{j 2 [0, 1] : v

j

l

� t

k

(x)}
�

�

�

l

⌘

dx,

(14)
where

�

�

�

{j 2 [0, 1] : v

j

l

� t

k

(v

k

)}
�

�

�

k

⌘
´
{j:vjl �tk(vk)}

d�(j) denotes the Lebesgue measure of agents from
side l 6= k reporting a valuation above t

k

(v

k

). Given the above payment rule, it is weakly dominant
for each agent to report truthfully. This follows from the fact that, given any profile of reports
(v

j

l

)

j2[0,1] by agents from the opposite side, the intensity of the matching set for each agent from side
k is increasing in his report, along with the fact that the payment rule %h

k

(·; (vj
l

)

j2[0,1]
) satisfies the

familiar envelope formula with respect to v

k

. In the spirit of the Wilson doctrine, this also means that
the optimal allocation rule can be robustly fully implemented in weakly undominated strategies.20

5 Concluding Remarks

The analysis reveals how matching patterns reflect optimal cross-subsidization between sides in cen-
tralized markets. We deliver two main results. First, we identify conditions on primitives under
which the optimal matching rules have a simple threshold structure, according to which agents with
a low valuation for matching are included only in the matching sets of those agents from the opposite
side whose valuation is sufficiently high. While these conditions are arguably weak, they cannot be
dispensed with. We demonstrate this fact by means of counter-examples highlighting the complemen-
tary role that incentive compatibility and the monotonicity requirements on salience and marginal
utility play in the optimality of threshold rules.

Second, we show that the optimal matching rules are determined by a simple formula that equalizes
the marginal gains in welfare (or, alternatively, in profits) with the cross-subsidization losses that the
platform must incur on the opposite side of the market. We show that the optimal rules endogenously

18In the implementation literature, this problem is referred to as “partial implementation,” whereas in the two-sided
market literature as the “chicken and egg” problem (e.g., Caillaud and Jullien (2001, 2003)) or the “failure to launch”
problem (e.g., Evans and Schmalensee (2010)). See also Ellison and Fudenberg (2003) and Ambrus and Argenziano
(2009).

19See also White and Weyl (2015).
20With more general preferences, it is still possible to robustly fully implement any monotone matching

rule in weakly undominated strategies by replacing the definition of
��{j 2 [0, 1] : vjl � tk(vk)}

��
l

in (14) with
��{j 2 [0, 1] : vjl � tk(vk)}

��
l
⌘
´
{j:vj

l �tk(vk)}
�ld�(j), where �l ⌘ min{�l(vl) : vl 2 Vl}. However, these payments gener-

ate less revenue than the ones given in (6), implying that, in general, there is a genuine trade-off between robust full
implementation and profit-maximization.

26



separate agents into consumers and inputs. At the margin, the “costs” of procuring agents-inputs are
recovered from the gains from agents-consumers (cross-subsidization).

The model is flexible enough to permit interesting comparative statics. For example, we show
that, when the attractiveness of one side increases, a profit-maximizing platform responds by reducing
the intensity of the matching sets offered to those agents whose valuation is high, and by increasing
the intensity of the matching sets offered to those agents whose valuation is low. This leads to
lower (respectively, higher) payoffs to those agents at the top (respectively, bottom) of the valuation
distribution, and induces an anti-clockwise rotation of the price schedule.

The above analysis is worth extending in a few important directions. For example, all the results
are established assuming that the utility/profit that each agent derives from any given matching set is
independent of who else from the same side has access to the same set. This is a reasonable starting
point but is definitely inappropriate for certain markets. In advertising, for example, reaching a
certain set of consumers is more profitable when competitors are blocked from reaching the same set.
Extending the analysis to accommodate for “congestion effects” and other “same-side externalities” is
challenging but worth exploring.

Likewise, the analysis focuses on a market with a single platform. Many matching markets are
populated by competing platforms. Understanding to what extent the distortions identified in the
present paper are affected by the degree of market competition, and studying policy interventions
aimed at inducing platforms “to get more agents on board” (for example, through subsidies, and
in some cases the imposition of universal service obligations) are other important venues for future
research (see Damiano and Li (2008), Lee (2014), and Jullien and Pavan (2014) for models of platform
competition in settings with a limited degree of price discrimination).
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6 Appendix A

This appendix collects all proofs omitted in the text.

Proof of Lemma 1. Necessity. We first show that t

k

(·) must be weakly decreasing, k = A,B.
Towards a contradiction, assume that t

k

(·) is strictly increasing in an open neighborhood of v
k

2 V

k

.
This means that there exists " > 0 such that t

k

(v

k

+ ") > t

k

(v

k

). Let v̂

l

⌘ 1
2 tk(vk + ") +

1
2 tk(vk) and

note that v̂

l

2 s
k

(v

k

) and that t

l

(v̂

l

)  v

k

(else, reciprocity is violated). Therefore, v
k

+ " 2 s
l

(v̂

l

)

and yet v̂

l

/2 s
k

(v

k

+ "), violating reciprocity. Hence, Condition 2 in Lemma 1 must hold.
Next, we show that Condition 1 in Lemma 1 must also hold. To this end, let ṽ

l

(v

k

) ⌘ inf{v
l

:

t

l

(v

l

)  v

k

}. We first show that t

k

(v

k

) = ṽ

l

(v

k

), and then prove that ṽ

l

(v

k

) = min{v
l

: t

l

(v

l

)  v

k

}
(that is, a minimum exists).

We proceed again by contradiction and assume that exists some v

k

2 V

k

such that t
k

(v

k

) 6= ṽ

l

(v

k

).
If t

k

(v

k

) > ṽ

l

(v

k

), there exists v

l

� ṽ

l

(v

k

) such that t

l

(v

l

)  v

k

and t

k

(v

k

) > v

l

. This implies that
v

k

2 s
l

(v

l

) and yet v

l

/2 s
k

(v

k

), violating reciprocity.
Therefore, it must be that t

k

(v

k

) < ṽ

l

(v

k

). Let v̌
l

⌘ 1
2 ṽl(vk)+

1
2 tk(vk) 2 (t

k

(v

k

), ṽ

l

(v

k

)) and notice
that t

l

(v̌

l

) > v

k

. But then v̌

l

2 s
k

(v

k

) and yet v

k

/2 s
l

(v̌

l

), again violating reciprocity. We conclude
that t

k

(v

k

) = ṽ

l

(v

k

).
Finally, suppose that min{v

l

: t

l

(v

l

)  v

k

} does not exist. Because t

k

(v

k

) = ṽ

l

(v

k

), it follows that
t

l

(ṽ

l

(v

k

)) > v

k

, a violation of reciprocity. We conclude that Condition 1 in Lemma 1 is also necessary.
Sufficiency. Take any v

l

2 s
k

(v

k

). By definition of a threshold rule, v
l

� t

k

(v

k

). Furthermore, by
Condition 2 in the lemma, t

l

(v

l

)  t

l

(t

k

(v

k

)). In turn, by Condition 1, t
l

(t

k

(v

k

))  v

k

. This means
that t

l

(v

l

)  v

k

and hence v

k

2 s
l

(v

l

). This concludes the proof. Q.E.D.

Proof of Proposition 1. Below we prove a stronger result that supports both the claim in the
proposition as well as the claim in Section 4 about the optimality of threshold rules in environments
where salience is imperfectly correlated with the valuation and where agents have private information
about both dimensions.

To this purpose, we enrich the model as follows. For each v

k

2 V

K

, let  
k

(·|v
k

) denote the
conditional distribution of �

k

, given v

k

, k = A,B and denote by ⇤
k

= F

k

· 
k

the measure defined by
the product of F

k

and  
k

. Now assume that agents observe both v

k

and �
k

at the time they interact
with the platform. Each agent’s type is then given by the bi-dimensional vector ✓

k

⌘ (v

k

,�

k

) 2
⇥

k

⌘ V

k

⇥ ⌃
k

, with ⌃
k

⇢ R+. In this environment, a matching mechanism M = {s
k

(·), p
k

(·)}
k=A,B

continues to be described by a pair of matching rules and a pair of payment rules, with the only
difference that p

k

(·) now maps ⇥
k

into R, whereas s
k

(·) maps ⇥
k

into the Borel sigma algebra
over ⇥

l

, k, l = A,B, l 6= k. With some abuse of notation, hereafter we will denote by |s
k

(✓

k

)|
l

=´
(vl,�l)2sk(✓k) �ld⇤l

the matching intensity of the set s
k

(✓

k

).
Now consider the following extension of Condition TP in the main text.
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Condition TP-extended. One of the following two sets of conditions holds for both k = A and
k = B:

(1.a) the function g

k

(·) is weakly concave, and (1.b) the random variables �̃
k

and ṽ

k

are weakly
positively affiliated;

(2.a) the function g

k

(·) is weakly convex, and (2.b) the random variables �̃
k

and ṽ

k

are weakly
negatively affiliated.21

Below we will prove the following claim.

Claim 1 Assume Condition TP-extended holds. Then both the profit-maximizing (h = P ) and
the welfare-maximizing (h = W ) rules discriminate only along the valuation dimension (that is,
s

h

k

(v

k

,�

k

) = s

h

k

(v

k

,�

0
k

) for any k = A,B, v

k

2 V

k

, �

k

,�

0
k

2 ⌃
k

, h = W,P ) and are threshold rules.
That is, there exists a scalar !h

k

2 [v

k

, v

k

] and a non-increasing function t

h

k

: V

k

! V

l

such that, for
any ✓

k

= (v

k

,�

k

) 2 ⇥
k

, k = A,B,

sh
k

(v

k

,�

k

) =

(

[t

h

k

(v

k

), v

l

]⇥ ⌃
l

if v
k

2 [!

h

k

, v

k

]

↵ otherwise.
(15)

The case where salience is a deterministic monotone function of the valuation is clearly a special
case of affiliation. It is then immediate that the above claim implies the result in Proposition 1.

To establish the claim, we start by observing that, if 'h

k

(v

k

) � 0 for k = A,B, then it is immediate
from (7) that h-optimality requires that each agent from each side be matched to all agents from the
other side, in which case sh

k

(✓

k

) = ⇥

l

for all ✓
k

2 ⇥
k

. This rule is obviously a threshold one.
Thus consider the situation where 'h

k

(v

k

) < 0 for some k 2 {A,B}. Define ⇥h+
k

⌘ {✓
k

= (v

k

,�

k

) :

'

h

k

(v

k

) � 0} the set of types ✓
k

whose 'h

k

-value is non-negative, and ⇥h�
k

⌘ {✓
k

= (v

k

,�

k

) : '

h

k

(v

k

) <

0} the set of types with strictly negative 'h

k

-values.
Let s0

k

(·) be any implementable matching rule. We will show that when Condition TP-extended
holds, starting from s0

k

(·), one can construct another implementable matching rule ŝ
k

(·) that satisfies
the threshold structure described in (15) and that weakly improves upon the original one in terms of
the platform’s objective.

The proof proceeds as follows. First, it establishes a couple of lemmas that will be used throughout
the rest of the proof. It then considers separately the two sets of primitive conditions covered by
Condition TP-extended.

Lemma 2 A mechanism M is incentive compatible only if, with the exception of a countable subset
of V

k

, |s
k

(v

k

,�

k

)|
l

= |s
k

(v

k

,�

0
k

, )|
l

for all �
k

,�

0
k

2 ⌃
k

, k = A,B.

Proof of Lemma 2. To see this, note that incentive compatibility requires that |s
k

(v

k

,�

k

)|
l

�
|s

k

(v

0
k

,�

0
k

)|
l

for any (v

k

,�

k

) and (v

0
k

,�

0
k

) such that v

k

� v

0
k

. This in turn implies that E[|s
k

(v

k

, �̃

k

)|
l

]

must be nondecreasing in v

k

, where the expectation is with respect to �̃

k

given v

k

. Now at any
21See Milgrom and Weber (1982) for a formal definition of affiliation.
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point v

k

2 V

k

at which |s
k

(�

k

, v

k

)|
l

depends on �

k

, the expectation E[|s
k

(�̃

k

, v

k

)|
l

] is necessarily
discontinuous in v

k

. Because monotone functions can be discontinuous at most over a countable set
of points, this means that the intensity of the matching set may vary with �

k

only over a countable
subset of V

k

. Q.E.D.
The next lemma introduces a property for arbitrary random variables that will turn useful to

establish the results.

Definition 4 [monotone concave/convex order] Let F be a probability measure on the interval
[a, b] and z1, z2 : [a, b] ! R be two random variables defined over [a, b]. We say that z2 is smaller
than z1 in the monotone concave order if E [g (z2(!̃))]  E [g (z1(!̃))] for any weakly increasing and
weakly concave function g : R ! R. We say that z2 is smaller than z1 in the monotone convex order
if E [g (z2(!̃))]  E [g (z1(!̃))] for any weakly increasing and weakly convex function g : R ! R.

Lemma 3 Part (i). Suppose that z1, z2 : [a, b] ! R+ are nondecreasing and that z2 is smaller than
z1 in the monotone concave order. Then for any weakly increasing and weakly concave function g :

R ! R and any weakly increasing and weakly negative function h : [a, b] ! R�, E [h(!̃) · g (z1(!̃))] 
E [h(!̃) · g (z2(!̃))].

Part (ii). Suppose that z1, z2 : [a, b] ! R+ are nondecreasing and that z2 is smaller than z1 in
the monotone convex order. Then for any weakly increasing and weakly convex function g : R !
R and any weakly increasing and weakly positive function h : [a, b] ! R+, E [h(!̃) · g (z1(!̃))] �
E [h(!̃) · g (z2(!̃))].

Proof of Lemma 3. Consider first the case where z2 is smaller than z1 in the monotone concave
order, g is weakly increasing and weakly concave and h is weakly increasing and weakly negative. Let
(h

n

)

n2N be the family of weakly increasing and weakly negative step functions hn : [a, b] ! R, where
n is the number of steps. Because z2 is smaller than z1 in the monotone concave order, the inequality
in the lemma is obviously true for any one-step negative function h

1. Induction then implies that it
is also true for any n-step negative function h

n

, any n 2 N. Because the set of weakly increasing and
weakly negative step functions is dense (in the topology of uniform convergence) in the set of weakly
increasing and weakly negative functions, the result follows. Similar arguments establish part (ii) in
the lemma. Q.E.D.

The rest of the proof considers separately the two sets of primitive conditions covered by Condition
TP-extended.

Case 1 Consider markets in which the following primitive conditions jointly hold for k = A,B : (1a)
the functions g

k

(·) are weakly concave; (1b) the random variables �̃
k

and ṽ

k

are weakly positively
affiliated.

Let s0
k

(·) be the original rule and for any ✓
k

2 ⇥h+
k

, let ˆ

t

k

(v

k

) be the threshold defined as follows:
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1. If |s0
k

(✓

k

)|
l

�
�

�

�

⇥

h+
l

�

�

�

l

, then let ˆ

t

k

(v

k

) be such that

|[ˆt
k

(v

k

), v̄

l

]⇥ ⌃
l

|
l

=

�

�s0
k

(✓

k

)

�

�

l

.

2. If |s0
k

(✓

k

)|
l


�

�

�

⇥

h+
l

�

�

�

l

= |⇥
l

|
l

, then ˆ

t

k

(v

k

) = v

l

.

3. If 0 < |s0
k

(✓

k

)|
l


�

�

�

⇥

h+
l

�

�

�

l

< |⇥
l

|
l

, then let ˆ

t

k

(v

k

) = r

h

l

(note that in this case r

h

l

2 (v

l

, v̄

l

)).

Now apply the construction above to k = A,B and consider the matching rule ŝ
k

(·) such that

ŝ
k

(✓

k

) =

(

[

ˆ

t

k

(v

k

), v̄

l

]⇥ ⌃
l

, ✓

k

2 ⇥h+
k

{(v
l

,�

l

) 2 ⇥+
l

:

ˆ

t

l

(v

l

)  v

k

} , ✓

k

2 ⇥h�
k

.

By construction, ŝ
k

(·)
k

is implementable. Moreover, g
k

(|̂s
k

(✓

k

)|
l

) � g

k

(|s0
k

(✓

k

)|
l

) for all ✓
k

2 ⇥h+
k

,
implying that for k = A,B,

ˆ
⇥h+

k

'

h

k

(v

k

) · g
k

(|̂s
k

(v

k

,�

k

)|
l

) d⇤

k

�
ˆ
⇥h+

k

'

h

k

(v

k

) · g
k

�

�

�s0
k

(�

k

, v

k

)

�

�

l

�

d⇤

k

. (16)

Below, we show that the matching rule ŝ
k

(·) also reduces the costs of cross-subsidization, relative to
the original matching rule s0

k

(·). That is,
ˆ
⇥h�

k

'

h

k

(v

k

) · g
k

�

�

�s0
k

(v

k

,�

k

)

�

�

l

�

d⇤
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
ˆ
⇥h�

k

'

h

k

(v

k

) · g
k

(|̂s
k

(v

k

,�

k

)|
l

) d⇤

k

. (17)

We start with the following result.

Lemma 4 Consider the two random variables z1, z2 : [v
k

, r

h

k

] ! R+ given by z1(v
k

) ⌘ E
�̃k [|s0k(vk, �̃k)|

l

|v
k

]

and z2(v
k

) ⌘ E
�̃k [|̂sk(vk, �̃k)|

l

|v
k

], where the distribution over [v
k

, r

h

k

] is given by F

k

(v

k

)/F

k

(r

h

k

). Then
z2 is smaller than z1 in the monotone concave order.

Proof of Lemma 4. From (i) the construction of ŝ
k

(·), (ii) the assumption of positive affiliation
between valuations and salience, (iii) the fact that the measure F

k

(v

k

) is absolute continuous with
respect to the Lebesgue measure and (iv) Lemma 2, we have that for all x 2 [v

k

, r

h

k

],

ˆ
x

vk

ˆ
⌃k

�

�s0
k

(v

k

,�

k

)

�

�

l

d⇤

k

�
ˆ

x

vk

ˆ
⌃k

|̂s
k

(v

k

,�

k

)|
l

d⇤

k

,

or, equivalently, ˆ
x

vk

z1(v
k

)dF

k

(v

k

) �
ˆ

x

vk

z2(v
k

)dF

k

(v

k

). (18)

The result in the lemma clearly holds if for all v

k

2 [v

k

, r

h

k

], z1(v
k

) � z2(v
k

). Thus consider the
case where z1(v

k

) < z2(v
k

) for some v

k

2 [v

k

, r

h

k

], and denote by [v̇

1
k

, v̇

2
k

], [v̇

3
k

, v̇

4
k

],[v̇

5
k

, v̇

6
k

], ... the
collection of T (where T 2 N [ {1}) subintervals of [v

k

, r

h

k

] in which z1(v
k

) < z2(v
k

). Because´
r

h
k

vk
z1(v

k

)dF

k

(v

k

) �
´
r

h
k

vk
z2(v

k

)dF

k

(v

k

), it is clear that T ⌘ [T�1
t=0 [v̇

2t+1
k

, v̇

2t+2
k

] is a proper subset of
[v

k

, r

h

k

]. Now construct ż2(·) on the domain [v

k

, r

h

k

] so that:
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1. ż2(v
k

) = z1(v
k

) < z2(v
k

) for all v
k

2 T ;

2. z2(v
k

)  ż2(v
k

) = ↵z1(v
k

) + (1� ↵)z2(v
k

)  z1(v
k

), where ↵ 2 [0, 1], for all v
k

2 [v

k

, r

h

k

]\T ;

3.
´
[vk,r

h
k ]\T

{ż2(v
k

)� z2(v
k

)} dF
k

(v

k

) =

´
T {z2(v

k

)� z1(v
k

)} dF
k

(v

k

).

Because
´
r

h
k
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k

)dF
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k

) �
´
r

h
k
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z2(v

k

)dF

k

(v

k

), there always exists some ↵ 2 [0, 1] such that 2 and
3 hold. From the construction above, ż2(·) is weakly increasing and

ˆ
r

h
k
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ż2(v
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)dF
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)/F

k

(r

h
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) =

ˆ
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h
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z2(v
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)dF
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)/F

k
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h
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). (19)

This implies that for all weakly concave and weakly increasing functions g : R ! R,
ˆ

r

h
k
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g (z2(v
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)) dF
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h
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) 
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h
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) 
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h
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g (z1(v
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k

)/F
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(r

h
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),

where the first inequality follows from the weak concavity of g(·) along with (19), while the second
inequality follows from the fact that ż2(v

k

)  z1(v
k

) for all v
k

2 [v

k

, r

h

k

] and g(·) is weakly increasing.
Q.E.D.

We are now ready to prove inequality (17). The results above imply that
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=
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The first equality follows from changing the order of integration. The second equality follows from
the fact that, since s0

k

(·) is implementable, g
k

(|s0
k

(v

k

,�

k

)|
l

) is invariant in �
k

except over a countable
subset of [v

k

, r

h

k

], as shown in Lemma 2. The first inequality follows from part (i) of Lemma 3. The
equality in the fifth line follows again from the fact that, by construction, ŝ

k

(·) is implementable,
and hence invariant in �

k

except over a countable subset of [v

k

, r

h

k

]. The series of equalities and
inequalities above establishes (17), as we wanted to show.

Combining (16) with (17) establishes the result that the threshold rule ŝ
k

(·) improves upon the
original rule s0

k

(·) in terms of the platform’s objective, thus proving the result in Claim 1 for the case
of markets that satisfy conditions (1a) and (1b) in Condition TP-extended.

Next, consider markets satisfying conditions (2a) and (2b) in Condition TP-extended.
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Case 2 Consider markets in which the following primitive conditions jointly hold for k = A,B :

(2a) the functions g

k

(·) are weakly convex; (2b) the random variables �̃
k

and ṽ

k

are weakly negatively
affiliated.

Again, let s0
k

(·) be any (implementable) rule and for any ✓

k

2 ⇥h�
k

, let ˆ

t

k

(v

k

) be the threshold
defined as follows:

1. If |⇥
l

|
l

> |s0
k

(✓

k

)|
l

�
�

�

�

⇥

h+
l

�

�

�

l

> 0, then let ˆ

t

k

(v

k

) = r

h

l

(note that in this case r

h

l

2 (v

l

, v̄

l

));

2. If |s0
k

(✓

k

)|
l

�
�

�

�

⇥

h+
l

�

�

�

l

= 0, then let ˆ

t

k

(v

k

) = v̄

l

;

3. If |s0
k

(✓

k

)|
l

=

�

�

�

⇥

h+
l

�

�

�

l

= |⇥
l

|
l

, then ˆ

t

k

(v

k

) = v

l

;

4. If 0  |s0
k

(✓

k

)|
l

<

�

�

�

⇥

h+
l

�

�

�

l

, then let ˆ

t

k

(v

k

) be such that

|[ˆt
k

(v

k

), v̄

l

]⇥ ⌃
l

|
l

=

�

�s0
k

(✓

k

)

�

�

l

.

Now apply the construction above to k = A,B and consider the matching rule ŝ
k

(·) such that

ŝ
k

(✓

k

) =

(

⇥

h+
l

[ {(v
l

,�

l

) 2 ⇥h�
l

:

ˆ

t

l

(v

l

)  v

k

} , ✓

k

2 ⇥h+
k

[

ˆ

t

k

(v

k

), v̄

l

]⇥ ⌃
l

, ✓

k

2 ⇥h�
k

.

By construction, ŝ
k

(·)
k

is monotone and invariant in �
k

and hence implementable. Moreover, we have
that |̂s

k

(✓

k

)|
l

 |s0
k

(✓

k

)|
l

for all ✓
k

2 ⇥h�
k

. This implies that, for k = A,B,

ˆ
⇥h�

k

'

h

k

(v

k

) · |̂s
k

(v

k

,�

k

)|
l

d⇤

k

�
ˆ
⇥h�

k

'

h

k

(v

k

) ·
�

�s0
k

(v

k

,�

k

)

�

�

l

d⇤

k

. (20)

The arguments below show that the new matching rule ŝ
k

(·), relative to s0
k

(·), also increases the
surplus from the positive 'h

k

(v

k

)-agents, k = A,B (recall that, by assumption, there exists at least
one side k 2 {A,B} for which '

h

k

(v

k

) > 0 for v

k

high enough, h = P,W ). That is, for any side
k 2 {A,B} for which ⇥h+

k

6= ?,

ˆ
⇥h+

k

'

h

k

(v

k

) · |̂s
k

(v

k

,�

k

)|
l

d⇤

k

�
ˆ
⇥h+

k

'

h

k

(v

k

) ·
�

�s0
k

(v

k

,�

k

)

�

�

l

d⇤

k

(21)

We start with the following result.

Lemma 5 Consider the two random variables z1, z2 : [rh
k

, v̄

k

] ! R+ given by z1(v
k

) ⌘ E
�̃k [|̂sk(vk, �̃k)|

l

|v
k

]

and z2(v
k

) ⌘ E
�̃k

⇥

|s0
k

(v

k

, �̃

k

)|
l

|v
k

⇤

, where the distribution over [rh
k

, v̄

k

] is given by F

v
k (vk)�F

v
k (r

h
k )

1�F

v
k (r

h
k )

. Then
z2 is smaller than z1 in the monotone convex order.

Proof of Lemma 5. From (i) the construction of ŝ
k

(·), (ii) the assumption of negative affiliation
between valuations and salience, (iii) the fact that the measure F

k

(v

k

) is absolute continuous with
respect to the Lebesgue measure and (iv) Lemma 2, we have that for all x 2 [r

h

k

, v̄

k

],

ˆ
v̄k

x

ˆ
⌃k

|̂s
k

(v

k

,�

k

, )|
l

d⇤

k

�
ˆ

v̄k

x

ˆ
⌃k

�

�s0
k

(v

k

,�

k

)

�

�

l

d⇤

k

,
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or, equivalently, ˆ
v̄k

x

z1(v
k

)dF

k

(v

k

) �
ˆ

v̄k

x

z2(v
k

)dF

k

(v

k

).

The result in the lemma clearly holds if for all v
k

2 [r

h

k

, v̄

k

], z1(v
k

) � z2(v
k

). Thus consider the case
where z1(v

k

) < z2(v
k

) for some v

k

2 [r

h

k

, v̄

k

] and denote by [v̇

1
k

, v̇

2
k

], [v̇

3
k

, v̇

4
k

],[v̇

5
k

, v̇

6
k

], ... the collection of
T (where T 2 N[{1}) subintervals of [rh

k

, v̄

k

] in which z1(v
k

) < z2(v
k

). Because
´
v̄k

r

h
k
z1(v

k

)dF

k

(v

k

) �´
v̄k

r

h
k
z2(v

k

)dF

k

(v

k

), it is clear that T ⌘ [T�1
t=0 [v̇

2t+1
k

, v̇

2t+2
k

] is a proper subset of [rh
k

, v̄

k

]. Now construct
ż2(·) on [r

h

k

, v̄

k

] so that:

1. ż2(v
k

) = ↵z1(v
k

) + (1� ↵)z2(v
k

) < z1(v
k

) for all v
k

2 [r

h

k

, v̄

k

]\T ;

2. ż2(v
k

) = z2(v
k

), for all v
k

2 T ;

3.
´
[rhk ,v̄k]\T

{ż2(v
k

)� z2(v
k

)} dF
k

(v

k

) =

´
T {z2(v

k

)� z1(v
k

)} dF
k

(v

k

).

Because
´
v̄k

r

h
k
z1(v

k

)dF

k

(v

k

) �
´
v̄k

r

h
k
z2(v

k

)dF

k

(v

k

), there always exists some ↵ 2 [0, 1] such that 2 and
3 hold. From the construction above, ż2(·) is weakly increasing and

ˆ
v̄k

r

h
k

ż2(v
k

)dF

k

(v

k

) =

ˆ
v̄k

r

h
k

z1(v
k

)dF

k

(v

k

).

This implies that for all weakly increasing and weakly convex functions g : R ! R
ˆ

v̄k

vk

g (z2(v
k

)) dF

k

(v

k

) 
ˆ

v̄k

vk

g (ż2(v
k

)) dF

k

(v

k

) 
ˆ

v̄k

vk

g (z1(v
k

)) dF

k

(v

k

),

where the first inequality follows the fact that z2(v
k

)  ż2(v
k

) for all v
k

2 [r

h

k

, v̄

k

] and g(·) is weakly
increasing, while the second inequality follows from the construction of ż2(v

k

) and the weak convexity
of g(·). Q.E.D.

We are now ready to prove inequality (21). The results above imply that
ˆ
⇥h+

k

'

h

k

(v

k

) · g
k

�

�

�s0
k

(v

k

,�

k

)

�

�

l

�

d⇤

k

=

ˆ
v̄k

r

h
k

'

h

k

(v

k

) · E
�̃k

⇥

g

k

�

�

�s0
k

(v

k

, �̃

k

)

�

�

l

�

|v
k

⇤

dF

k

(v

k

)

=

ˆ
v̄k

r

h
k

'

h

k

(v

k

) · g
k

(z2(v
k

)) dF

k

(v

k

)

=

⇣

1� F

k

(r

h

k

)

⌘

· E
h

'

h

k

(ṽ

k

) · g
k

(z2(ṽ
k

)) |v
k

� r

h

k

i


⇣

1� F

k

(r

h

k

)

⌘

· E
h

'

h

k

(v

k

) · g
k

(z1(v
k

)) |v
k

� r

h

k

i

=

ˆ
v̄k

r

h
k

'

h

k

(v

k

) · g
k

(z1(v
k

)) dF

k

(v

k

)

=

ˆ
v̄k

r

h
k

'

h

k

(v

k

) · g
k

(E
�̃k [|̂sk(vk, �̃k)|

l

|v
k

]) dF

k

(v

k

)

=

ˆ
⇥h+

k

'

h

k

(v

k

) · g
k

(|̂s
k

(�

k

, v

k

)|
l

) d⇤

k

.

The first equality follows from changing the order of integration. The second equality follows from
the fact that, since s0

k

(·) is implementable, g
k

(|s0
k

(v

k

,�

k

)|
l

) is invariant in �
k

except over a countable
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subset of [rh
k

, v̄

k

], as shown in Lemma 2. The first inequality follows from part (ii) of Lemma 3. The
equality in the last line follows again from the fact that, by construction, ŝ

k

(·) is implementable,
and hence invariant over �

k

, except over a countable subset of [rh
k

, v̄

k

]. The series of equalities and
inequalities above establishes (21), as we wanted to show.

Combining (20) with (21) establishes that the threshold rule ŝ
k

(·) improves upon the original rule
s0
k

(·) in terms of the platform’s objective, thus proving the result in Claim 1 under the conditions in
part 2 of Condition TP-extended. Q.E.D.

Proof of Proposition 2. We start with the following lemma, which establishes the first part of
the proposition.

Lemma 6 Assume Conditions TP and MR hold. For h = W,P, the h-optimal matching rule is such
that th

k

(v

k

) = v

l

for all v
k

2 V

k

if 4h

k

(v

k

, v

l

) � 0 and entails separation otherwise.

Proof of Lemma 6. The proof considers separately the following three different cases.

• First, consider the case where 'h

k

(v

k

) � 0 for k = A,B, implying that 4h

k

(v

k

, v

l

) � 0. Be-
cause valuations (virtual valuations) are all nonnegative, welfare (profits) is (are) maximized by
matching each agent from each side to all agents from the other side, meaning that the optimal
matching rule employs a single complete network.

• Next, consider the case where 'h

k

(v

k

) < 0 for k = A,B, so that 4h

k

(v

k

, v

l

) < 0. We then show
that, starting from any non-separating rule, the platform can strictly increase its payoff by
switching to a separating one. To this purpose, let !̂h

k

denote the threshold type corresponding
to the non-separating rule so that agents from side k are excluded if v

k

< !̂

h

k

and are otherwise
matched to all agents from side l whose valuation is above !̂h

l

otherwise.

First, suppose that, for some k 2 {A,B}, !̂h

k

> r

h

k

, where recall that r

h

k

⌘ inf{v
k

2 V

k

:

'

h

k

(v

k

) � 0}. The platform could then increase its payoff by switching to a separating rule
that assigns to each agent from side k with valuation v

k

� !̂

h

k

the same matching set as the
original matching rule while it assigns to each agent with valuation v

k

2 [r

h

k

, !̂

h

k

] the matching
set [v̂

#
l

, v

l

], where v̂

#
l

⌘ max{rh
l

, !̂

h

l

}.

Next, suppose that !̂h

k

< r

h

k

for both k = A,B. Starting from this non-separating rule, the
platform could then increase its payoff by switching to a separating rule s}

k

(·) such that, for
some k 2 {A,B}22

s}
k

(v

k

) =

8

>

>

<

>

>

:

[!̂

h

l

, v

l

] , v

k

2 [r

h

k

, v

k

]

[r

h

l

, v

l

] , v

k

2 [!̂

h

k

, r

h

k

]

↵ , v

k

2 [v

k

, !̂

h

k

]

.

The new matching rule improves upon the original one because it eliminates all matches between
agents whose valuations (virtual valuations) are both negative.

22The behavior of the rule on side l is then pinned down by reciprocity.
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Finally, suppose that !̂h

k

= r

h

k

for some k 2 {A,B} whereas !̂h

l

 r

h

l

for l 6= k. The platform
could then do better by switching to the following separating rule:

s#
k

(v

k

) =

8

>

>

<

>

>

:

[!̂

h

l

, v

l

] , v

k

2 [r

h

k

, v

k

]

[r

h

l

, v

l

] , v

k

2 [!̂

#
k

, r

h

k

]

↵ , v

k

2 [v

k

, !̂

#
k

]

.

By setting the new exclusion threshold !̂

#
k

sufficiently close to (but strictly below) r

h

k

the
platform increases its payoff. In fact, the marginal benefit of increasing the quality of the
matching sets of those agents from side l whose '

h

l

-value is positive more than offsets the
marginal cost of getting on board a few more agents from side k whose 'h

k

-value is negative,
but sufficiently small.23 Note that for this network expansion to be profitable, it is essential
that the new agents from side k that are brought “on board” be matched only to those agents
from side l whose 'h

l

-value is positive, which requires employing a separating rule.

• Finally, suppose that 'h

l

(v

l

) < 0  '

h

k

(v

k

). First, suppose that 4h

k

(v

k

, v

l

) � 0 and that the
matching rule is different from a single complete network (i.e., th

k

(v

k

) > v

l

for some v

k

2 V

k

.
Take an arbitrary point v

k

2 [v

k

, v̄

k

] at which the function t

h

k

(·) is strictly decreasing in a right
neighborhood of v

k

. Consider the effect of a marginal reduction in the threshold t

h

k

(v

k

) around
the point v

l

= t

h

k

(v

k

). This is given by 4h

k

(v

k

, v

l

). Next note that, given any interval [v0
k

, v

00
k

]

over which the function t

h

k

(·) is constant and equal to v

l

, the marginal effect of decreasing
the threshold below v

l

for any type v

k

2 [v

0
k

, v

00
k

] is given by
´
v

00
k

v

0
k
[�

h

k

(v

k

, v

l

)]dv

k

. Lastly note
that sign{�h

k

(v

k

, v

l

)} = sign{ h

k

(v

k

) +  

h

l

(v

l

)}. Under the MR condition, this means that
4h

k

(v

k

, v

l

) > 0 for all (v
k

, v

l

). The results above then imply that the platform can increase its
objective by decreasing the threshold for any type for which t

h

k

(v

k

) > v

l

, proving that a single
complete network is optimal.

Next, suppose that 4h

k

(v

k

, v

l

) < 0 and that the platform employs a non-separating rule. First
suppose that such rule entails full participation (that is, !̂h

l

= v

l

or, equivalently, th
k

(v

k

) = v

l

).
The fact that 4h

k

(v

k

, v

l

) < 0 implies that the marginal effect of raising the threshold t

h

k

(v

k

) for
the lowest type on side k, while leaving the threshold untouched for all other types is positive.
By continuity of the marginal effects, the platform can then improve its objective by switching
to a separating rule that is obtained by increasing t

h

k

(·) in a right neighborhood of v

k

while
leaving t

h

k

(·) untouched elsewhere.

Next consider the case where the original rule excludes some agents (but assigns the same
matching set to each agent whose valuation is above !̂h

k

). From the same arguments as above,
for such rule to be optimal, it must be that !̂h

l

< r

h

l

and !̂

h

k

= v

k

, with !̂

h

l

satisfying the
23To see this, note that, starting from !̂

#
k = r

h
k , the marginal benefit of decreasing the threshold !̂

#
k is

�ĝ

0
l(r

h
k )
´ vl

rhl
'

h
l (vl)dF

v
l (vl) > 0, whereas the marginal cost is given by �ĝk(r

h
l ) · 'h

k(r
h
k )f

v
k (r

h
k ) = 0 since '

h
k(r

h
k ) = 0.
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following first-order condition

ĝ

l

(v

k

) · 'h

l

(!̂

h

l

)� ĝ

0
k

(!̂

h

l

) ·
ˆ

vk

vk

'

h

k

(v

k

)dF

v

k

(v

k

) = 0.

This condition requires that the total effect of a marginal increase of the size of the network
on side l (obtained by reducing the threshold t

h

k

(v

k

) below !̂

h

l

for all types v

k

) be zero. This
rewrites as

´
vk

vk
[�

h

k

(v

k

, !̂

h

l

)]dv

k

= 0. Because sign{�h

k

(v

k

, !̂

h

l

)} = sign{ h

k

(v

k

)+ 

h

l

(!̂

h

l

)}, under
Condition MR this means that there exists a v

#
k

2 (v

k

, v̄

k

) such that
´
vk

v

#
k

�

h

k

(v

k

, !̂

h

l

)dv

k

> 0.

This means that there exists a !

#
l

< !̂

h

l

such that the platform could increase its payoff by
switching to the following separating rule:

s

h

k

(v

k

) =

(

[!

#
l

, v

l

] , v

k

2 [v

#
k

, v

k

]

[!̂

h

l

, v

l

] , v

k

2 [v

k

, v

#
k

],

We conclude that a separating rule is optimal when 4h

k

(v

k

, v

l

) < 0. Q.E.D.

The rest of the proof shows that when, in addition to Conditions TP and MR, 4h

k

(v

k

, v

l

) < 0 then
the optimal separating rule satisfies properties (i)-(iv) in the proposition.

To see this, note that the h-optimal matching rule solves the following program, which we call
the Full Program (P

F

) :

P

F

: max

{!k,tk(·)}k=A,B

X

k=A,B

ˆ
vk

!k

ĝ

k

(t

k

(v

k

)) · 'h

k

(v

k

) · dF v

k

(v

k

) (22)

subject to the following constraints for k, l 2 {A,B}, l 6= k

t

k

(v

k

) = inf{v
l

: t

l

(v

l

)  v

k

}, (23)

t

k

(·) weakly decreasing, (24)

and t

k

(·) : [!
k

, v

k

] ! [!

l

, v

l

] (25)

with !

k

2 [v

k

, v̄

k

] and !

l

2 [v

l

, v̄

l

]. Constraint (23) is the reciprocity condition, rewritten using
the result in Proposition 1. Constraint (24) is the monotonicity constraint required by incentive
compatibility. Finally, constraint (25) is a domain-codomain restriction which requires the function
t

k

(·) to map each type on side k that is included in the network into the set of types on side l that
is also included in the network.

Because 4h

k

(v

k

, v

l

) < 0, it must be that r

h

k

> v

k

for some k 2 {A,B}. Furthermore, from the
arguments in the proof of Lemma 6 above, at the optimum, !h

k

2 [v

k

, r

h

k

]. In addition, whenever
r

h

l

> v

l

, !h

l

2 [v

l

, r

h

l

] and t

h

k

(r

h

k

) = r

h

l

. Hereafter, we will assume that r

h

l

> v

l

. When this is not the
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case, then !

h

l

= v

l

and t

h

k

(v

k

) = v

l

for all v
k

� r

h

k

, while the optimal !h

k

and t

h

k

(v

k

) for v

k

< r

h

k

are
obtained from the solution to program P

F

k

below by replacing r

h

l

with v

l

).
Thus assume 'h

k

(v

k

) < 0 for k = A,B. Program P

F can then be decomposed into the following
two independent programs P

F

k

, k = A,B:

P

F

k

: max

!k,tk(·),tl(·)

ˆ
r

h
k

!k

ĝ

k

(t

k

(v

k

)) · 'h

k

(v

k

) · dF v

k

(v

k

) +

ˆ
vl

r

h
l

ĝ

l

(t

l

(v

l

)) · 'h

l

(v

l

) · dF v

l

(v

l

) (26)

subject to t

k

(·) and t

l

(·) satisfying the reciprocity and monotonicity constraints (23) and (24), along
with the following constraints:

t

k

(·) : [!
k

, r

h

k

] ! [r

h

l

, v

l

], t

l

(·) : [rh
l

, v

l

] ! [!

k

, r

h

k

]. (27)

Program P

F

k

is not a standard calculus of variations problem. As an intermediate step, we will
thus consider the following Auxiliary Program (PAu

k

), which strengthens constraint (24) and fixes
!

k

= v

k

and !
l

= v

l

:

P

Au

k

: max

tk(·),tl(·)

ˆ
r

h
k

vk

ĝ

k

(t

k

(v

k

)) · 'h

k

(v

k

) · dF v

k

(v

k

) +

ˆ
vl

r

h
l

ĝ

l

(t

l

(v

l

)) · 'h

l

(v

l

) · dF v

l

(v

l

) (28)

subject to (23),
t

k

(·), t
l

(·) strictly decreasing, (29)

and t

k

(·) : [v
k

, r

h

k

] ! [r

h

l

, v

l

], t

l

(·) : [rh
l

, v

l

] ! [v

k

, r

h

k

] are bijections. (30)

By virtue of (29), (23) can be rewritten as t

k

(v

k

) = t

�1
l

(v

k

). Plugging this into the objective
function (28) yields

ˆ
r

h
k

vk

ĝ

k

(t

k

(v

k

)) · 'h

k

(v

k

) · fv

k

(v

k

)dv

k

+

ˆ
vl

r

h
l

ĝ

l

(t

�1
k

(v

l

)) · 'h

l

(v

l

) · fv

l

(v

l

)dv

l

. (31)

Changing the variable of integration in the second integral in (31) to ṽ

l

⌘ t

�1
k

(v

l

), using the fact
that t

k

(·) is strictly decreasing and hence differentiable almost everywhere, and using the fact that
t

�1
k

(r

h

l

) = r

h

k

and t

�1
k

(v

l

) = v

k

, the auxiliary program can be rewritten as follows:

P

Au

k

: max

tk(·)

ˆ
r

h
k

vk

n

ĝ

k

(t

k

(v

k

)) · 'h

k

(v

k

) · fv

k

(v

k

)� ĝ

l

(v

k

) · 'h

l

(t

k

(v

k

)) · fv

l

(t

k

(v

k

)) · t0
k

(v

k

)

o

dv

k

(32)
subject to t

k

(·) being continuous, strictly decreasing, and satisfying the boundary conditions

t

k

(v

k

) = v

l

and t

k

(r

h

k

) = r

h

l

. (33)

Consider now the Relaxed Auxiliary Program (PR

k

) that is obtained from P

Au

k

by dispensing with
the condition that t

k

(·) be continuous and strictly decreasing and instead allowing for any measurable
control t

k

(·) : [v
k

, r

h

k

] ! [r

h

l

, v

l

] with bounded sub-differential that satisfies the boundary condition
(33).
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Lemma 7 P

R

k

admits a piece-wise absolutely continuous maximizer ˜

t

k

(·).

Proof of Lemma 7. Program P

R

k

is equivalent to the following optimal control problem PR

k

:

PR

k

: max

y(·)

ˆ
r

h
k

vk

n

ĝ

k

(x(v

k

)) · 'h

k

(v

k

) · fv

k

(v

k

)� ĝ

l

(v

k

) · 'h

l

(x(v

k

)) · fv

l

(x(v

k

)) · y(v
k

)

o

dv

k

subject to

x

0
(v

k

) = y(v

k

) a.e., x(v

k

) = v

l

, x(r

h

k

) = r

h

l

y(v

k

) 2 [�K,+K] and x(v

k

) 2 [r

h

l

, v

l

],

where K is a large number. Program PR

k

satisfies all the conditions of the Filipov-Cesari Theorem
(see Cesari (1983)). By that theorem, we know that there exists a measurable function y(·) that
solves PR

k

. By the equivalence of PR

k

and PR

k

, it then follows that PR

k

admits a piece-wise absolutely
continuous maximizer ˜

t

k

(·). Q.E.D.

Lemma 8 Consider the function ⌘(·) implicitly defined by

�

h

k

(v

k

, ⌘(v

k

)) = 0. (34)

Let ṽ
k

⌘ inf{v
k

2 [v

k

, r

h

k

] :(34) admits a solution}. The solution to P

R

k

is given by

˜

t

k

(v

k

) =

(

v̄

l

if v

k

2 [v

k

, ṽ

k

]

⌘(v

k

) if v

k

2 (ṽ

k

, r

h

k

].

(35)

Proof of Lemma 8. From Lemma 7, we know that PR

k

admits a piece-wise absolutely continuous
solution. Standard results from calculus of variations then imply that such solution ˜

t

k

(·) must satisfy
the Euler equation at any interval I ⇢ [v

k

, r

h

k

] where its image ˜

t

k

(v

k

) 2 (r

h

l

, v

l

). The Euler equation
associated with program P

R

k

is given by (34). Condition MR ensures that (i) there exists a ṽ

k

2 [v

k

, r

h

k

)

such that (34) admits a solution if and only if v
k

2 [ṽ

k

, r

h

k

], (ii) that at any point v

k

2 [ṽ

k

, r

h

k

] such
solution is unique and given by ⌘(v

k

) =

�

 

h

l

��1 �� h

k

(v

k

)

�

, and (iii) that ⌘(·) is continuous and
strictly decreasing over [ṽ

k

, r

h

k

].

When ṽ

k

> v

k

, (34) admits no solution at any point v

k

2 [v

k

, ṽ

k

], in which case ˜

t

k

(v

k

) 2 {rh
l

, v

l

}.
Because 'h

k

(v

k

) < 0 for all v
k

2 [v

k

, ṽ

k

] and because ĝ

k

(·) is decreasing, it is then immediate from
inspecting the objective (32) that ˜

t

k

(v

k

) = v̄

l

for all v
k

2 [v

k

, ṽ

k

].
It remains to show that ˜

t

k

(v

k

) = ⌘(v

k

) for all v
k

2 [ṽ

k

, r

h

k

]. Because the objective function in
P

R

k

is not concave in (t

k

, t

0
k

) for all v
k

, we cannot appeal to standard sufficiency arguments. Instead,
using the fact that the Euler equation is a necessary optimality condition for interior points, we will
prove that ˜t

k

(v

k

) = ⌘(v

k

) by arguing that there is no function ˆ

t

k

(·) that improves upon ˜

t

k

(·) and such
that ˆ

t

k

(·) coincides with ˜

t

k

(·) except on an interval (v1
k

, v

2
k

) ✓ [ṽ

k

, r

h

k

] over which ˆ

t

h

k

(v

k

) 2 {rh
l

, v

l

}.
To see that this is true, fix an arbitrary (v

1
k

, v

2
k

) ✓ [ṽ

k

, r

h

k

] and consider the problem that consists
in choosing optimally a step function ˆ

t

k

(·) : (v1
k

, v

2
k

) ! {rh
l

, v

l

}. Because step functions are such that
ˆ

t

0
k

(v

k

) = 0 at all points of continuity and because 'h

k

(v

k

) < 0 for all v
k

2 (v

1
k

, v

2
k

), it follows that
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the optimal step function is given by ˆ

t

k

(v

k

) = v

l

for all v
k

2 (v

1
k

, v

2
k

). Notice that the value attained
by the objective (32) over the interval (v1

k

, v

2
k

) under such step function is zero. Instead, an interior
control t

k

(·) : (v1
k

, v

2
k

) ! (r

h

l

, v

l

) over the same interval with derivative

t

0
k

(v

k

) <

ĝ

k

(t

k

(v

k

)) · 'h

k

(v

k

) · fv

k

(v

k

)

ĝ

l

(v

k

) · 'h

l

(t

k

(v

k

)) · fv

l

(t

k

(v

k

))

for all v
k

2 (v

1
k

, v

2
k

) yields a strictly positive value. This proves that the solution to P

R

k

must indeed
satisfy the Euler equation (34) for all v

k

2 [ṽ

k

, r

h

k

]. Together with the property established above
that ˜

t

k

(v

k

) = v̄

l

for all v
k

2 [v

k

, ṽ

k

], this establishes that the unique piece-wise absolutely continuous
function that solves P

R

k

is the control ˜t
k

(·) that satisfies (35). Q.E.D.

Denote by max{PR

k

} the value of program P

R

k

(i.e., the value of the objective (32) evaluated under
the control ˜th

k

(·) defined in Lemma 8). Then denote by sup{PAu

k

} and sup{PF

k

} the supremum of
programs P

Au

k

and P

F

k

, respectively. Note that we write sup rather than max as, a priori, a solution
to these problems might not exist.

Lemma 9 sup{PF

k

} = sup{PAu

k

} = max{PR

k

}.

Proof of Lemma 9. Clearly, sup{PF

k

} � sup{PAu

k

}, for P

Au

k

is more constrained than P

F

k

.
Next note that sup{PF

k

} = sup{ ˆPF

k

} where ˆ

P

F

k

coincides with P

F

k

except that !
k

is constrained to
be equal to v

k

and t

k

(v

k

) is constrained to be equal to v̄

l

. This follows from the fact that excluding
types below a threshold !

0
k

gives the same value as setting t

k

(v

k

) = v̄

l

for all v
k

2 [v

k

,!

0
k

). That
sup{ ˆPF

k

} = sup{PAu

k

} then follows from the fact any pair of measurable functions t
k

(·), t
l

(·) satisfying
conditions (23), (24) and (27), with !

k

= v

k

and t

k

(v

k

) = v̄

l

can be approximated arbitrarily well
in the L

2-norm by a pair of functions satisfying conditions (23), (29) and (30). That max{PR

k

} �
sup{PAu

k

} follows from the fact that PR

k

is a relaxed version of PAu

k

. That max{PR

k

} = sup{PAu

k

} in
turn follows from the fact that the solution ˜

t

h

k

(·) to P

R

k

can be approximated arbitrarily well in the
L

2-norm by a function t

k

(·) that is continuous and strictly decreasing. Q.E.D.

From the results above, we are now in a position to exhibit the solution to P

k

F

. Let !h

k

= ṽ

k

, where
ṽ

k

is the threshold defined in Lemma 8. Next for any v

k

2 [ṽ

k

, r

h

k

], let t

h

k

(v

k

) =

˜

t

k

(v

k

) where ˜

t

k

(·) is
the function defined in Lemma 8. Finally, given t

h

k

(·) : [!h

k

, r

h

k

] ! [r

h

l

, v

l

], let tk
l

(·) : [rh
l

, v

l

] ! [!

h

k

, r

h

k

]

be the unique function that satisfies (23). It is clear that the tripe !h

k

, t

h

k

(·), th
l

(·) constructed this
way satisfies conditions (23), (24) and (27), and is therefore a feasible candidate for program P

F

k

. It
is also immediate that the value of the objective (26) in P

F

k

evaluated at !h

k

, t

h

k

(·), th
l

(·) is the same
as max{PR

k

}. From Lemma 9, we then conclude that !h

k

, t

h

k

(·), th
l

(·) is a solution to P

F

k

.
Applying the construction above to k = A,B and combining the solution to program P

F

A

with
the solution to program P

F

B

then gives the solution
�

!

h

k

, t

h

k

(·)
 

k2{A,B} to program P

F

.
By inspection, it is easy to see that the corresponding rule is maximally separating. Furthermore,

from the arguments in Lemma 8, one can easily verify that there is exclusion at the bottom on side k
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(and no bunching at the top on side l) if ṽ
k

> v

k

and bunching at the top on side l (and no exclusion
at the bottom on side k) if ṽ

k

= v

k

. By the definition of ṽ
k

, in the first case, there exists a v

0
k

> v

k

such that �h

k

(v

0
k

, v̄

l

) = 0, or equivalently  

h

k

(v

0
k

) +  

h

l

(v̄

l

) = 0. Condition MR along with the fact
that sign{�h

k

(v

k

, v

l

)} = sign{ h

k

(v

k

)+ 

h

l

(v

l

)} then implies that 4h

k

(v

k

, v̄

l

) = 4h

l

(v̄

l

, v

k

) < 0. Hence,
whenever 4h

k

(v

k

, v̄

l

) = 4h

l

(v̄

l

, v

k

) < 0, there is exclusion at the bottom on side k and no bunching at
the top on side l. Symmetrically, 4h

l

(v

l

, v̄

k

) = 4h

k

(v̄

k

, v

l

) < 0 implies that there is exclusion at the
bottom on side l and no bunching at the top on of side k, as stated in the proposition.

Next, consider the case where ṽ

k

= v

k

. In this case there exists a ⌘(v

k

) 2 [r

h

l

, v

l

] such that
4h

k

(v

k

, ⌘(v

k

)) = 0, or equivalently  h

k

(v

k

)+ 

h

l

(⌘(v

k

)) = 0. Assume first that ⌘(v
k

) < v

l

. By Condition
MR, it then follows that  h

k

(v

k

)+ 

h

l

(v̄

l

) > 0 or, equivalently, that 4h

k

(v

k

, v̄

l

) = 4h

l

(v̄

l

, v

k

) > 0. Hence,
whenever 4h

k

(v

k

, v̄

l

) = 4h

l

(v̄

l

, v

k

) > 0, there is no exclusion at the bottom on side k and bunching at
the top on side l. Symmetrically, 4h

l

(v

l

, v̄

k

) = 4h

k

(v̄

k

, v

l

) > 0 implies that there is bunching at the
top on side k and no exclusion at the bottom on side l, as stated in the proposition.

Next, consider the case where ⌘(v
k

) = v

l

. In this case !h

k

= v

k

and t

h

k

(v

k

) = v̄

l

. This is the
knife-edge case where 4h

k

(v

k

, v̄

l

) = 4h

l

(v̄

l

, v

k

) = 0 in which there is neither bunching at the top on
side l nor exclusion at the bottom on side k. Q.E.D.

Proof of Proposition 4. Hereafter, we use the notation "ˆ"for all variables in the mechanism
ˆ

M

P corresponding to the new salience function �̂

k

(v

k

) and continue to denote the variables in the
mechanism M

P corresponding to the original function �
k

(v

k

) without annotation. By definition, we
have that ˆ

 

P

k

(v

k

) �  

P

k

(v

k

) for all v
k

 r

P

k

while ˆ

 

P

k

(v

k

)   

P

k

(v

k

) for all v
k

� r

P

k

. Recall, from
the arguments in the proof of Proposition 2, that for any v

k

< !

P

k

, �

P

k

(v

k

, v̄

l

) < 0 or, equivalently,
 

P

k

(v

k

) +  

P

l

(v̄

l

) < 0, whereas for any v

k

2 (!

k

, r

P

k

], t

P

k

(v

k

) satisfies  P

k

(v

k

) +  

P

l

(t

P

k

(v

k

)) = 0. The
ranking between ˆ

 

P

k

(·) and  P

k

(·), along with the strict monotonicity of these functions then implies
that !̂P

k

 !

P

k

and, for any v

k

2 [!

P

k

, r

P

k

],

ˆ

t

P

k

(v

k

)  t

P

k

(v

k

). Symmetrically, because ˆ

 

P

k

(v

k

)+ 

P

l

(v

l

) <

 

P

k

(v

k

) +  

P

l

(v

l

) for all v
k

> r

P

k

, all v
l

, we have that ˆ

t

P

k

(v

k

) � t

P

k

(v

k

) for all v
k

> r

P

k

. This completes
the proof of part (1) in the proposition.

Next consider part (2). The result in part 1 implies that |̂s
k

(v

k

)|
l

� |s
k

(v

k

)|
l

if and only if v
k

 r

P

k

.
Using (6), note that for all types with valuation v

k

 r

P

k

⇧

k

(v

k

;

ˆ

M

P

) =

ˆ
vk

vk

|̂s
k

(x)|
l

dx � ⇧
k

(v

k

;M

P

) =

ˆ
vk

vk

|s
k

(x)|
l

dx.

Furthermore, since |̂s
k

(v

k

)|
l

 |s
k

(v

k

)|
l

for all v
k

� r

P

k

, there exists a threshold type ⌫̂
k

> r

P

k

(possibly
equal to v̄

k

) such that ⇧
k

(v

k

;

ˆ

M

P

) � ⇧
k

(v

k

;M

P

) if and only if v
k

 ⌫̂

k

, which establishes part 2 in
the proposition. Q.E.D.

Proof of Corollary 1. Let y

k

(v

k

) ⌘
�

�sP
k

(v

k

)

�

�

l

denote the quality of the matching set that
each agent with valuation v

k

obtains under the original mechanism, and ŷ

k

(v

k

) ⌘
�

�ŝP
k

(v

k

)

�

�

l

the
corresponding quality under the new mechanism. Using (6), for any q 2 y

k

(V

k

)\ ŷ

k

(V

k

), i.e., for any
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q offered both under M

P and ˆ

M

P ,

⇢

P

k

(q) = y

�1
k

(q)q �
ˆ

y

�1
k (q)

vk

y

k

(v)dv and

⇢̂

P

k

(q) = ŷ

�1
k

(q)q �
ˆ

ŷ

�1
k (q)

vk

ŷ

k

(v)dv,

where y

�1
k

(q) ⌘ inf{v
k

: y
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[ŷ

k

(v)� y

k

(v)]dv +

ˆ
ŷ
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7 Appendix B

This appendix complements the discussion in Subsection 3.1 by exhibiting an example where threshold
rules fail to be optimal when salience is non-increasing and preferences are strictly concave.

Example 7 (sub-optimality of threshold rules - 3). Agents from sides A and B have their
valuations drawn uniformly from V

A

= [0, 1] and V

B

= [�2, 0], respectively. The salience of side-A
agents is constant and normalized to one, i.e., �

A

(v

A

) ⌘ 1 for all v
A

2 V

A

, while the salience of the
side-B agents is given by

�

B

(v

B

) =

(

1 if v

B

2 [�1, 0]

8 if v

B

2 [�2,�1].

Preferences for matching intensity are linear on side B (that is, g
B

is the identity function), whereas
preferences on side A are given by the concave function24

g

A

(x) = min

⇢

x,

1

2

�

.

In this environment, the welfare-maximizing threshold rule is described by threshold function
t

A

(v) = t

B

(v) = �v, with exclusion types !
A

= 0 and !

B

= �1, as can be easily verified from
Proposition 2. Total welfare under the optimal threshold rule is 1/12. Now consider the following
non-threshold rule, which we describe by its side-A correspondence:

s
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>

>

<

>

>
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2
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1
2

⇤

.

It is easy to check that this rule is implementable. Total welfare under this rule equals 3/32 > 1/12.
}

The matching rules in this example are illustrated in Figure 3 below.
Intuitively, the reason why threshold rules fail to be optimal (and segmentation occurs) is that they

fail to maximize the benefits of cross-subsidization. Agents from side B with valuation v

B

2 [�2,�1]

are more expensive but significantly more attractive than agents with valuation v

B

2 [�1, 0]. That
salience is decreasing in valuations (weakly on side A, strictly on side B) per se does not make
threshold rules suboptimal. Indeed, as established in Proposition 1, were preferences for matching
intensity weakly convex on both sides, threshold rules would maximize welfare. Under concavity,
however, once the high-valuation agents from side A interact with the high-valuation agents from
side B (those with v

B

> �1), they no longer benefit from interacting with agents from side B

whose valuation is low (those with v

B

 �1). This is inefficient, for those side-B agents with a
24That the function gA has a kink simplifies the computations but is not important for the result; the sub-optimality

of threshold rules clearly extends to an environment identical to the one in the example but where the function gA is
replaced by a sufficiently close smooth concave approximation.
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Figure 3: The welfare-maximizing rule among those with a threshold structure (left) and the welfare-
improving non-threshold rule (right) from Example 7.

low valuation are in fact the most attractive ones from the eyes of the side-A agents. More efficient
cross-subsidization (and hence higher welfare) can be achieved by matching high-valuations agents
from side A only to low-valuations agents from side B (segmented matching).
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