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Abstract

It is well-known that group testing is an efficient strategy to screen
for the presence of a virus. It consists in pooling n individual sam-
ples with a single test using RT-PCR. If no individual in the group
is infected, the group test is negative. Thus, a single test may reveal
this crucial information. We show how group testing can be optimized
in three applications to multiply the power of tests against Covid-19 :
Estimating virus prevalence to measure the evolution of the pandemic;
bringing negative groups back to work to exit the current lockdown;
and testing for individual infectious status to treat sick people. For
an infection level around 2%, group testing could multiply the power
of testing by a factor 20. The implementation of this strategy in the
short run requires limited investments and could bypass the current
immense shortage of testing capacity.

1 Introduction

As the coronavirus pandemic develops, governments around the world
have now reacted and imposed lockdowns in many countries. Since
India imposed strict lockdown restrictions on more that 1.3 Billion
residents, the total world population under lockdown is now around 3
Billion. By stopping many production processes, the economic cost of
the lockdown is very large. For example, [12] estimates the cost of the
lockdown in the United States at 7.2 trillion USD. Finding a way is
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therefore a critical issue. No doubt that the decision to unlock people
in the next few weeks or months will be a complex political, health,
social and economic issue. A major risk exists that, once the pandemic
slows down or appears to be under control and lockdown measures are
lifted, new waves of Covid-19 reappear. The 20th century has known
three influenza pandemics: the 1918 “Spanish flu”, the 1957 “Asian
flu”, and the 1968 H3N2 ”Hong Kong flu”, and the 21st century has
already witnessed 2009 “Swine Flu”. These four pandemics came in
waves, with subsequent waves being more deadly than the first [9].

Therefore, a key element to reduce the economic consequences of
Covid-19 is the ability to test individuals, given the large prevalence of
asymptomatic but highly contagious people in the population. Mas-
sive testing is necessary to monitor the prevalence of the virus in the
population in different period of times and geographical areas. It is
also a necessary component to detect infected individuals, quarantine
them and provide medical treatment whenever necessary. Moreover,
mass reliable testing would allow to free people tested negative to bring
them back to work in strategic sectors of the economy, without risk-
ing a second wave of contagion. As shown by the experience of South
Korea, mass testing is crucial to control the pandemic. As stated by
[3], ”restarting production in the economy requires the reliable identi-
fication of individuals who will not contract the virus or transmit it to
others, whether they have previously displayed the associated symptoms
or not”.

The standard method for testing the presence of Covid-19 in a sam-
ple is called Real-Time Polymerase Chain Reaction (RT-PCR), which
involves a chemical reaction that produces fluorescent light if viral
DNA is present in the sample. Testing involves two steps, first tak-
ing samples from individuals, then amplifying parts of the virus DNA
known as markers through a PCR machine. The first step is relatively
cheap, but the second one is the bottleneck that limits our testing
capacities. Scaling up the capacity of RT-PCR testing for the SARS-
COV-2 virus responsible for the Covid-19 will take time. It reduces our
expectation of a rapid exit from the current lockdown strategy. The
USA is currently scaling up production up to 1.2 Million per week (for
a population of 330 Million), Germany is producing 500,000 tests per
week (pop 84 Million) and France is producing a mere 84,000 tests per
week, scaling up to 210,000 per week in April (population 65 Million).
Current test production levels are insufficient for mass testing in these
countries, not to mention the huge need for tests in developing coun-
tries. Each Covid-19 test has to be viewed as a precious resource, to
be utilized as efficiently as possible.

In this paper, we exploit a standard testing methodology in which
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individual samples are pooled.1 This pooled sample is then tested with
a single test. If the test of the combined sample is negative, then all
individuals in the group are known to be virus free, a highly valuable
information if the size of the group is large. The implementation of
this methodology at the Technion University for Covid-19 suggests
that the dilution effect of pooling individual samples is very limited.2

While individual testing allows to determine a given person is a carrier
of the virus, group testing will determine whether the virus is present
in the group sample or not. Therefore, group testing will be able to
reach one of two conclusions: a negative outcome will indicate that
none of the individuals of the group is a carrier or the virus ; a positive
outcome will indicate that at least one individual in the group is a
virus carrier, without any further information on the identity of this
person. The optimization of the group testing strategy depends upon
the objective pursued by the test. In this paper, we examine three
highly relevant objectives in the context of the Covid-19 pandemic,
and we characterize efficient detection strategies to attain them.

2 Applications of Group Testing

Group testing is not a new idea, it originated in [4] in the context of
syphilis detection, but it has also been applied in the case of hepatitis
B, avian pneumovirus and HIV (see for example [6]). A more advanced
mathematical theory of group testing can be found for instance in [7]
[8]. A recent survey is [1]. Our paper illustrates three applications of
this theory to the problem of fighting Covid-19 in the coming weeks.
Group testing can be used for the same purposes as individual testing
is. Only the protocol needs to be adapted to the situation. We detail
below practical applications of group testing, and discuss its efficiency
in comparison with individual testing.

As we write this article, group testing for Covid-19 has already
implemented in Nebraska3 and in Israel.

1See also [5].
2PCR was able to detect the presence of the virus in a pooled sample from 64 individ-

uals with a single infected person. See https://www.technion.ac.il/en/2020/03/pooling-
method-for-accelerated-testing-of-Covid-19/. A team at the University of Frankfurt came
to a similar conclusion: https://aktuelles.uni-frankfurt.de/englisch/pool-testing-of-sars-
cov-02-samples-increases-worldwide-test-capacities-many-times-over/.

3https://www.3newsnow.com/news/coronavirus/live-gov-ricketts-provides-
coronavirus-briefing-3-24-20

3



3 Prevalence estimation

There is widespread discussion about the prevalence of the virus in
different populations. This information is of crucial importance and
will impact policy in many cases. In particular, it allows to closely
monitor the spread of the disease. It also allows to estimate the ratio
of critical cases over total number of cases, as well as the fatality rate,
and it allows to identify geographical zones with high infection levels.

The main reason why the information is not well known is the
limited availability of tests. Typically, a testing method would involve
randomly sampling and testing a group in the population. Relying
on hospital admissions is not satisfactory as many cases are either
asymptomatic or symptoms are mild enough to recommend prolonged
confinement without testing. Here we show how group testing leads to
more accurate results with a lesser number of tests (cf. also [10]).

We compare two methods for estimating the prevalence of the virus
in the population: individual testing, in which a sample of 12,000
people are tested for the virus, and a standard binomial test is applied
to derived a 95% confidence interval, and group testing, in which 500
groups of 35 people are tested (total population involved 17,500).

Individual Testing. Assume that 2% of people in the sample are
infected, returning 240 positive tests4. A standard binomial test re-
turns the following 95% confidence interval on the infected population:

CIIT = [1.76%, 2.27%].

Group Testing. Assume here too that 2% of individuals in the
sampled population are infected, and that individuals are allocated
to groups randomly for testing. Each group of 35 has a probability
1− (1− 0.02)35 ∼ 50.7% to contain at least one infected person, hence
to return positive. This corresponds to 253 group tests returning pos-
itive, and 247 returning negative. With such data, the 95% confidence
interval on the proportion of groups of 35 in the population contain-
ing at least one infected person is: [46.1%, 55.1%]. The corresponding
confidence interval on the underlying proportion of infected people in
the population is5:

CIGT = [1.75%, 2.26%].

4For simplification, the tests are assumed in these applications to return no false posi-
tives or negatives.

5The confidence interval on proportion of infected people is given by [1−(1−.455)
1
35 , 1−

(1 − .545)
1
35

].

4



Comparison of results. Both Group Testing and Individual Test-
ing return the same point estimate on the proportion of infected in-
dividuals (2%). They return slightly different confidence intervals due
to a non-linearity in the formulas involved. Both confidence intervals
have the same size of 0.5%, which is a reasonable size on which policy
making decisions can be based. However, the cost in terms of num-
ber of tests if drastically lower for group testing (500) compared to
individual testing (12,000). In this application, group testing allows to
economise on tests by a factor 24.

Note that group size 35 is optimised so that each group test positive
with probability circa .5 for 2% prevalence. In principle, prevalence is
not known, so group size may not be chosen optimally. This will lead
to a slightly degraded performance of group testing.

4 A plan to exit the lockdown

Building testing capacity will take time, even with a war-time mobiliza-
tion of means. We therefore propose to complement this investment
plan with an immediate expansion of the testing capacity by using
group testing. Contrary to Dorfman in [4], we don’t attempt in this
section to identify infected individuals. We rather determine the size
of group testing that maximizes the number of individuals whose test-
ing demonstrates they are not infected. The scarcity of tests obviously
means that it is better to use a test to detect the virus in another
untested group than to try to discover who is infected in a positive
group. This is because the value of information from the test does
not come from the treatment of infected people in the absence of an
efficient drug to do that. In the context of Covid-19, the value of the
test rather comes from sending healthy people back to work as soon as
possible, without risking infection.

Suppose that the prevalence rate of the virus in the target pop-
ulation is p. The testing capacity is assumed to be very limited in
the sense that even group testing will not allow for testing the entire
population. We assume that when a group is detected with the virus,
their members remain confined. Let n denote the size of the groups
to be tested. If n is too large, too many groups will be detected with
the virus, and that will reduce the expected number of people who will
be allowed to get back to work. Technically, the frequency of groups
tested negative is equal to (1 − p)n, so that the expected number of
people freed from confinement with a single test is equal to n(1 − p)n.
The optimal size of group testing maximizes this function of n. It
satisfies the following first-order condition:

n =
−1

log(1 − p)
≈ 1

p
. (1)
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The optimal size of the group is decreasing with the prevalence
ratio. It is optimal that the group size be approximately equal to
the inverse of the prevalence ratio. The above equation gives us the
following expected number N of people back to work with a single test:

N =
(1 − p)

−1
log(1−p)

− log(1 − p)
. (2)

The expected number of people freed from confinement with a sin-
gle test is decreasing in the prevalence ratio. The individual testing
strategy with one test allows for freeing an expected number of people
equaling 1 − p, we obtain that the power of the group testing strategy
over the individual testing strategy is equal to

P =
(1 − p)

−1
log(1−p)

−1

− log(1 − p)
. (3)

This means that the optimal group testing strategy relaxes in expec-
tation P times more people from the lockdown than when using the
individual testing strategy.

We can also value the benefit of increasing the testing capacity. To
do this, we need to measure the social cost q of individual confinement.
Suppose that the optimal confinement strategy in the absence of testing
is to remain idle for two months. Therefore, we can assume that this
social cost equals two months of GDP per capita. For the EU whose
GDP/cap is approximately 31.000 EUR per annum, this corresponds
to q = 5, 167 EUR. The social value of each test is thus equal qN .

Individual Testing. Suppose for example that the prevalence
ratio is 2%. Each individual has 98% chances of not being infected
and released after testing. Each test allows the release of .98 people
on average. The value of a single test is thus equal to 5,063 EUR.

Group Testing. Consider testing groups of n = 50 people. Each
test returns negative if everyone in the group is healthy, which has
probability .9850 ∼ 36%. The average number of people each test
allows to release is then N = .36 × 50 ∼ 18.2. The value of a single
test is thus equal to 94.077 EUR. Although fewer tests are negative
with group testing, each of them allows to release 50 people back to
work. Group testing is more efficient than individual testing by a factor
P = 18.6.

In Table 1, we describe the characteristics of the optimal strategy
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prevalence optimal expected number power of group expected benefit
ratio (p) size (n) deconfined (N) testing (P ) (qN , in euros)

0.01 99 36.60 36.97 189 129
0.02 49 18.21 18.58 94 083
0.05 19 7.17 7.55 37 046
0.1 9 3.49 3.87 18 016
0.2 4 1.64 2.05 8 466
0.3 3 1.03 1.47 5 317
0.4 2 0.72 1.20 3 720

Table 1: Optimal group testing strategy as a function of the prevalence rate
in the target population. We assume that q=5167 EUR.

for different values of the prevalence ratio, taking account of the integer
nature of n.

We assumed that the health status is i.i.d. in the target population.
In practice, group size has to be tailored according to available infor-
mation on risk prevalence. Also, groups of people may be correlated
in their risks of being infected.

Testing positively correlated groups and adjusting group size ade-
quately would increase performance of the system. People working in
the same production units, such as production lines or offices, have a
high degree of correlation in their infectious statuses. Individual work-
ers also have a high degree of complementarity. In such situations, it is
efficient to test a whole production unit as a group, and close it when
the test returns positive.

5 Testing individuals with group testing

One of the most important applications of testing is to know whether
an individual is infected. Group testing can allow for a much more
efficient way of testing each individual in a population than individual
testing.

Here we present a protocol for testing whether individuals in a
population carry the virus, based on sequential group tests. Each indi-
vidual of in the population will be market as positive (”+”), negative
(”-”), or unknown (”?”). Initially everyone is marked as ”?”.
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Testing protocol

T32 Test a group of 32 individuals.

1. If the test is negative, mark all 32 individuals as ”-” and the protocol
stops

2. If the test is positive, form two subgroups of 16, tagged 16A and 16B

T16 Test the group 16A

1. If 16A is positive, mark everyone in 16B as ”?”, from 16A create two
subgroups of 8 individuals, tagged 8A and 8B

2. If 16A is negative, mark everyone in 16A as ”-”, from 16B create two
subgroups of 8 individuals, tagged 8A and 8B

T8 Test the group 8A

1. If 8A is positive, mark everyone in 8B as ”?”, from 8A create two sub-
groups of 4 individuals, tagged 4A and 4B

2. If 8A is negative, mark everyone in 8A as ”-”, from 8B create two sub-
groups of 8 individuals tagged 4A and 4B

Proceed until a group of 2 individuals is known to hold at least one virus
holder.

T1 Test one of the two individuals

1. If the test returns positive, mark this individual ”+”, the other as ”?”

2. If the test returns negative, mark this individual ”-”, the other as ”+”

The protocol returns the infectious status of individuals marked “+” or “-”. No
information is known about those marked “?” and these individuals re-enter the
protocol in newly formed groups of 32.

Estimation of the protocol efficiency.
We estimate the average number of tests for each run of the proto-

col, as well as the average number of individuals for whom the infection
status returns as known. For simplification we make the approxima-
tion that a group of 32 individuals has probability 50% to contain at
least one infected person.

In case the first group is negative, the protocol ends. In case it is
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positive, it runs tests T32, T16, T8, T4, T2, and T1, hence 6 tests. So
on average the protocol runs 7/2 tests.

If the first test is negative, all 32 people’s status is returned as
known. If the first test is positive, each test TX (X = 16, 8, 4, 2,
1) returns either positive or negative with probabilities approximately
1/2. If it returns positive, X people exit the protocol with unknown
status at this stage ; if it returns negative none exit with unknown
status at this stage. Therefore, the average number of people who exit
with unknown status is:

1

2
(
1

2
16 +

1

2
8 +

1

2
4 +

1

2
2 +

1

2
1) =

31

4
,

so the number of people returning with known status is on average
32 − 31/4 = 97/4.

Each test therefore allows to return the status of 97
4 / 7

2 ∼ 6.9.
Applying the protocol is tantamount to an increase of test produc-

tion by a factor almost 7. Even a factor 3 would mean a huge scaling
up in world testing capabilities.

5.1 2 stages protocols

Note that the sequential protocol may require that several swabs are
used for a given individual. Given the cost of collecting a swab, includ-
ing its labor cost, is much smaller than the cost of testing a sample,
we find this point essentially non-problematic. In practice, one should
probably amend the protocol in order to have a reasonable upper bound
on the number of swabs each individual is required to provide.

With only two swabs, both Technion Institute of Technology and
Nebraska hospitals have started implementing the original algorithm
of [4], which goes as follows:

• Test a group of n individuals

– If the test is negative, all n individuals are negative

– If the test is positive, test each individual separately

With a probability p of each individual of being infected, the aver-
age number of tests per individual is

Tp(n) =
1 + (1 − (1 − p)n)n

n

Given p, we must adjust group size to minimize Tp(n). For p = 2%, we
find that n = 8 is optimal, using .27 tests per individual, thus allowing
to find out about 3.65 individual conditions per test used. For p = 1%,
n = 11 is optimal, allowing to find out about 5.11 individual conditions
per test.

In practice, such a simple algorithm is not optimal, but already
allows for very significant savings in the number of tests used.
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6 Errors and Information Theory

Abstracting from virus detection, sequential group testing can be viewed
as a coding problem. The list of infectious status of all individuals in
the population consists of a message, and a sequence of test results
read should be enough to recover this message. Information Theory
([11] [2]) tells us that a lower bound on the number of tests required
per individual in the population is:

h/C

where

• C is known as the capacity of the channel, and depends on the
test accuracy. A perfect test returning the infectious status of
the patient (positive or negative) with no errors has a capacity
of 1. Tests with lower accuracy also have lower capacities, and

• h is the entropy per individual in the population. In the case of
an iid population with prevalence p, h = H(p) = −p log2(p) −
(1 − p) log2(1 − p). When p = 2%, h ∼ 0.112. Assuming a
test with no errors, the theoretical bound on the number of tests
per individual is then 1/.1414 ∼ 7.1, showing that the protocol
suggested above achieves near-optimality.

7 Conclusion

Testing for Covid-19 is a bottleneck that we face in front of the pan-
demic. Test production is currently much below what is necessary for
mass testing strategies which are required in order to control the pan-
demic while letting people go back to work. Adequate use of group
testing can save many tests, between 85% and 95% depending on the
applications. Although this work is of theoretical nature and does not
account for many technical details of group testing such as maximal
group sizes and error types, a very conservative assessment of the tests
that can be saved in this application is about two thirds, which means
that use of group testing is equivalent to a scaling up of test production
by a factor of 3 or more.

In this paper, we focused our attention to RT-PCR tests that are
able to detect infection. Alternatively, serological tests are used to de-
tect the presence of antibodies, thus the immunity of the individual.
In the absence of vaccine, it is an urgent strategic issue to detect im-
munity in the most essential professions, and group testing should also
be used for this purpose.
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