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Abstract

We study the optimal mechanism in a dynamic sales relationship where the buyer�s arrival

date is uncertain, and where his value changes stochastically over time. The buyer�s arrival

date is the �rst date at which contracting is feasible and is his private information. To induce

immediate participation, the buyer is granted positive expected rents even if his value at arrival

is the lowest possible. The buyer is punished for arriving late; i.e., he expects to earn less of the

surplus. Optimal allocations for a late arriver are also further distorted below �rst-best levels.

Conditions are provided under which allocations converge to the e¢ cient ones long enough after

contracting, and this convergence occurs irrespective of the time the contract is initially agreed

(put di¤erently, the so-called "principle of vanishing distortions" introduced by Battaglini (2005)

continues to apply irrespective of the buyer�s arrival date).
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1 Introduction

Markets for most goods are highly dynamic. Buyers may become interested in acquiring goods at

di¤erent times, such as when they �rst encounter advertisements for the product. Once in the

market, their preferences can be expected to change. Buyers�eagerness to consume often hinges on

their own circumstances. Purchasers of cellular telephone plans or wireless internet packages, for

instance, have preferences that �uctuate with their available leisure time and contact with friends.

Commercial buyers�needs may change in long-term supply relationships. For instance, a restaurant�s

preferences for acquiring high-quality ingredients from a supplier may vary with changes in its menu,

which may come at the whim of the chef.

This paper studies the optimal mechanism for a buyer who has vertical preferences over the

quality levels that the seller can supply. The buyer�s arrival date to the market (which is the

�rst date he can contract with the seller) is uncertain and, having arrived, his preferences evolve

stochastically with time. The key di¢ culty for designing the pro�t-maximizing mechanism in such

a setting is that the buyer is strategic, and can �hide�his (privately known) arrival to the market.

That is, he may participate in the mechanism only at the moment of his choice. In particular, the

buyer may prefer to wait to learn if his preferences will change before participating.

That the revelation principle applies in our set-up means that there is never any loss in inducing

the buyer to participate in the mechanism immediately upon arrival; in fact, such a policy is typically

strictly the most pro�table. Because a buyer who has not yet participated in the mechanism retains

the ability to wait and participate at a later date, he enjoys a positive outside option. This outside

option is endogenous, since it depends on the seller�s choice of mechanism for later participation dates.

An optimal mechanism therefore punishes late participation: If the buyer participates later, then he

faces worse terms of trade, purchases quality levels which are distorted further below their e¢ cient

levels, and expects to earn less rent. By lowering the option value of waiting, the seller extracts

more of the surplus for herself. Our �nding thus contrasts with the much simpler case of constant

values, where the optimal mechanism involves a repetition of the static optimum, and where the

buyer therefore receives the same treatment irrespective of the participation date. Because values

are persistent in our setting, how the buyer fares if delaying participation depends on his current

value for quality, and this means the value of his outside option is type dependent.1

The quality levels supplied under a contract signed at a given date � depend critically on the

ratio between the probability of arrival at date � and the probability of arrival at any earlier date.

A smaller ratio implies that the seller cares relatively less about e¢ ciency at date � and more about

limiting the rents available in case of arrival before � . When the ratio decreases with time, the

optimal quality allocations thus become increasingly (downward) distorted at later contracting dates.

When the horizon is in�nite, and when the buyer arrives at each date with positive probability, the

1See Jullien (2000) for a study of (static) mechanism design with type-dependent outside options.
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ratio necessarily converges to zero with time. The rents the buyer expects for an optimal mechanism

then converge to zero as the participation date goes to in�nity.

Although the buyer receives lower qualities if he arrives late, it is often still the case that quality

prescriptions converge to their �rst-best levels after a su¢ ciently long relationship. Put di¤erently,

the �principle of vanishing distortions��rst described by Battaglini (2005) and adapted to richer

settings by Pavan, Segal and Toikka (2014) continues to hold. The reason is that quality choices at

dates long after the relationship has commenced have little e¤ect on the information rents that the

buyer expects, as perceived at the time of contracting. This is familiar from the existing literature:

loosely, the result is driven by an assumption that a buyer�s initial value for quality is a poor predictor

of his value far in the future. Of course, many stochastic processes fail such a restriction; existing

work (see, e.g., Boleslavsky and Said, 2013, Pavan, Segal and Toikka, 2014, Skrzypacz and Toikka,

2015, and Bergemann and Strack, 2015) shows how distortions can fail to vanish if the type process

is su¢ ciently persistent.

Outline. The rest of the paper is as follows. The remainder of this section provides a review

of related literature. Section 2 then introduces a model in which the buyer can have at most two

values for quality (building on work by Battaglini, 2005, as explained below). Section 3 provides a

detailed analysis of the two-value model and Section 4 concludes. Appendix A provides proofs of all

results relating to the two-value model, while Appendix B provides additional results (with proofs)

for the model with a continuum of values (which builds, especially, on work by Pavan, Segal and

Toikka, 2014).

1.1 Related literature

This paper connects two distinct lines of research in dynamic mechanism design. One strand

considers pro�t-maximizing mechanisms for agents whose preferences evolve stochastically with time

and who are available to participate at the date the principal �xes the mechanism (see, e.g., Baron

and Besanko (1984), Besanko (1985), Courty and Li (2000), Battaglini (2005), Eso and Szentes

(2007), and Pavan, Segal and Toikka (2014)). The other considers dynamic mechanisms when

agents arrive over time but preferences do not change (see, e.g., Conlisk, Gerstner and Sobel (1984),

Board (2008), Gershkov and Moldovanu (2009), Said (2012), Pai and Vohra (2013) and Board and

Skrzypacz (2016)).2 While these strands have mainly developed independently (see Bergemann and

Said (2011) for a summary), combining features from both is an important step towards realism and

allows us to uncover new tradeo¤s.

The analysis in the main text focuses on a highly tractable framework that builds on Battaglini

(2005). Battaglini studies a dynamic contracting setting with a �xed and commonly known partic-

2There is also a literature with dynamic arrivals but without commitment; examples include Conlisk, Gerstner and

Sobel (1984) and Dilme and Li (2016).
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ipation date, and where the buyer can have only two values for quality. The buyer�s value evolves

according to a �rst-order Markov process. The key novelty in our set-up is that the buyer�s arrival

date to the market �which is the �rst date at which a contract can be agreed �is instead uncertain

and the buyer�s private information. The optimal mechanism must therefore permit participation

at each possible arrival date (unlike in Battaglini�s model, where the buyer is simply excluded for-

ever if he does not participate at the �rst opportunity). An important di¢ culty, new relative to

Battaglini�s paper, is that design of the mechanism is non-separable across di¤erent participation

dates. For example, adjustments to how the buyer is treated when participating at any given date

typically necessitate adjustments also to the treatment for earlier dates, in order to preserve the

buyer�s incentive constraints (in particular, to guarantee timely participation in the mechanism).

It is perhaps worth emphasizing that the present paper builds on an earlier working paper,

Garrett (2011), which was the �rst to address dynamic mechanism design with both dynamic arrivals

and stochastic evolution of preferences. A key aim of the present paper is to summarize insights

from the earlier work, but in a simpli�ed setting.3

Deb and Said (2015) have since provided an analysis of a two-period model, where a unit is

allocated in the second period and there is no competition among buyers. Deb and Said solve

the case where the seller fully commits (as in the present work), but then focus on relaxing this

commitment ability. That the seller allocates a single homogeneous unit to a single buyer simpli�es

the analysis, facilitating a characterization of the optimal mechanism under quite weak restrictions

on the distribution of buyer information and values (in particular, see the full-commitment case).

The present paper instead considers variable quality in a repeated Mussa-Rosen framework. The

approach in this paper necessarily di¤ers from Deb and Said and appears more readily applicable to

a broad class of contracting problems (including multi-agent settings).

Ely, Garrett and Hinnosaar (forthcoming) also provide an analysis of a two-period problem, with

allocation of the good in the second period. The focus there, however, is on a restricted "simple"

mechanism (where early ticket sales are made at a single price, but auctions are permitted to reallo-

cate capacity). Unlike the two-period settings of Deb and Said and Ely, Garrett and Hinnosaar, the

present paper analyzes an arbitrary horizon length. It therefore elucidates how optimal mechanisms

evolve when agent participation can take place over longer horizons, and shows how the distortions

in optimal mechanisms tend to accumulate over time, so that agents who arrive later receive more

distorted allocations. For instance, studying longer horizons allows us to examine issues such as

the limiting behavior of mechanisms as the arrival time becomes arbitrarily late, as well as the ap-

plicability of the so-called "principle of vanishing distortions" for relationships that have lasted a

su¢ ciently long time.

3The earlier (unpublished) paper considers a durable goods setting. The dynamic optimization problem there is

more complex, motivating the simpler environment of the present paper.
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Perhaps the most important antecedents to Garrett (2011), and hence the present paper, are

Deb (2011, 2014) and Nocke, Peitz and Rosar (2011).4 Deb studies a seller�s optimal price path in

an in�nite-horizon setting where a buyer arrives at a �xed date (date zero), and his value changes at

a single random time. Deb �nds that the optimal price path often features low introductory pricing.

Given the restriction to a price path, a buyer often chooses not to participate in the mechanism at

�rst instance; that is, he chooses to delay his purchase decision. The seller may choose a higher

price at later dates (after date zero) precisely to deter delay in purchasing. Nocke, Peitz and

Rosar study a two-period model where the buyer learns his value only at the second date. They

also �nd that introductory pricing can be optimal (again, this can re�ect the seller�s aim to punish

delayed purchase). The optimal price path in their paper turns out to implement also the optimal

mechanism (as chosen without any restrictions). Notably, this means that the seller sometimes

�nds it optimal to induce participation at a date after the buyer is initially available, although by

the revelation principle she could achieve the same outcome by always inducing participation at

the initial date. In our setting (as noted above), the seller instead typically �nds it strictly more

pro�table to induce buyer participation in the mechanism at the �rst possible instant. Participation

then occurs at di¤erent dates in our optimal mechanism only because the buyer�s arrival date is

random/heterogeneous.

There are still further papers highlighting the value to a seller of deterring delayed purchase.

Garrett (2016) studies the optimal price path in an in�nite-horizon setting where buyers arrive over

time, and where values then change randomly over time. Armstrong and Zhou (2015) study com-

mitments a seller may make to deter buyers from searching for a better product and then returning

to purchase. While these papers focus on particular applications and selling formats, the present

paper focuses on developing a mechanism design approach that can be applied quite generally in

settings where agents arrive over time and have preferences that change randomly.

2 Model and Preliminaries

Basics. We consider a repeated buyer-seller relationship in discrete time, which starts at date t = 1

and lasts until the end of period T 2 f2; : : : ;1g . The buyer values consumption of a non-durable
good, which can be provided by the seller in each period. Both buyer and seller have a common

discount factor � � 1 (� < 1 in case T =1).

4Other antecedents include Mierendor¤ (2016) and Deb and Pai (2013). These papers consider buyers who are

heterogeneous not only in their value for the good (which is constant across time), but also in the deadline they face

for purchasing it. The optimal mechanism can be implemented as a "biased" auction on a �nal date, with what

Mierendor¤ terms an (endogenous) "outside option" to purchase the good at a posted price before the auction. Under

this implementation, buyers may again face a choice between participating in the mechanism (by purchasing the good

at the posted price) or delaying participation until a later date (say participating in the biased auction).
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The buyer arrives at some date � 2 f1; : : : ; Tg. This is the �rst date at which the buyer is
available to communicate with the seller; contracting is impossible before this date. Inability to

contract at earlier dates may re�ect a range of reasons: the buyer may be entirely unaware of the

seller�s existence before encountering an advertisement which explains the mechanism, or he may

be aware of the seller�s o¤er but unable to communicate until the opportunity arises to physically

meet.5

Payo¤s. At each date after arrival, if the buyer purchases a good of quality q at date t, paying

p, then he earns a date�t payo¤
��;tq � p

where ��;t 2 � is his value at date t, and where � is a bounded subset of R+ representing the set of
possible buyer values for quality. If the buyer does not purchase the good at date t and makes no

payment, then he earns a payo¤ equal to zero in that period.

The seller has a (per-period) cost of producing q units equal to c (q), where c (�) is a continuously-
di¤erentiable cost function de�ned on [0; �q]. The cost function c (�) is strictly increasing, strictly
convex, and satis�es c0 (0) = c (0) = 0 and c0 (�q) > sup�.6 (A helpful example of such a cost function

puts c (q) = q2

2 up to some bound �q > sup�; this renders closed-form solutions for optimal qualities

in Proposition 1 below.) The seller then earns a period�t payo¤ from selling q units at price p equal

to p� c (q) (the seller�s date�t payo¤ in case making no sale at date t, and receiving no payment, is
equal to zero).

Distribution of buyer arrival dates. The probability of arrival at each date � is �� � 0,
with

PT
�=1 �� � 1. For each � , let �� =

P��1
s=1 �s be the probability that the buyer arrives before

date � . (It is worth emphasizing that, in case �1 = 1 and �t = 0 for t � 2, then the model will be
identical to that in Battaglini, 2005. As indicated above, the key novelty in our setting will be that

the buyer�s arrival time is instead random.)

Process for values: In the main text, we consider the case where the buyer has two possible

values for the good, leaving the case of a continuum of values to Appendix B. Hence, � = f�L; �Hg,
with 0 < �L < �H (�L is the "low value", while �H is the "high value"). We adopt the following

notation: if the buyer arrives at date � , then a sequence of values from date t to t0 > t, with t � � ,
is denoted �t

0
�;t =

�
��;t; : : : ; ��;t0

�
.

The processes we consider satisfy the following restriction, which is particularly important for

keeping the seller�s problem tractable. The distribution of the buyer�s value at each date after his

arrival depends only on his value in the previous period, and neither on his earlier values nor on his

5Our notion of �arrival� is distinct from other notions that one might be tempted to use, such as the date a buyer

�rst learns his value for the good. See Akan, Ata and Dana (2015) for a model where a buyer learns his value at

di¤erent dates.
6The latter assumption will guarantee that the solutions to the optimal quality schedules that we derive below

remain strictly below �q.
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arrival date.7 This implies that, at any date t, the period-t value ��;t is a su¢ cient statistic for later

values.

If the buyer arrives at date � , then he draws a value ��;� 2 f�L; �Hg. The probability of drawing
a high date-� value is given by Pr

�
~��;� = �H

�
= � 2 (0; 1). Values at each date t > � are determined

by the transitions Pr
�
~��;t = �H j~��;t�1 = �L

�
= �L 2 (0; 1) and Pr

�
~��;t = �H j~��;t�1 = �H

�
= �H 2

(0; 1), with �L < �H . Thus, a high value at any date implies a greater likelihood of high values at

future dates (put di¤erently, the process satis�es the �rst-order stochastic dominance assumption

which is common in the literature).

Mechanisms. Both the buyer�s arrival time and the evolution of his value are his private

information. The seller can fully commit to a dynamic mechanism. By the revelation principle,

we restrict attention to incentive-compatible direct mechanisms. The buyer is asked to report his

arrival date � and initial value ��;� , and then to report his subsequent values ��;t in each period

t > � . If the buyer arrives at date � , then he can report to the mechanism at any moment from

that date onwards.

A mechanism 
 = hq;pi is a collection of allocation rules q = hq�;ti1���t and payments p =
hp�;ti1���t. If the buyer reports to the mechanism at date � , and then reports a sequence of values

�̂
t

� ;� =
�
�̂�;� ; : : : ; �̂�;t

�
2 �t�� , then he receives the quality q�;t

�
�̂
t

� ;�

�
2 [0; �q] and pays p�;t

�
�̂
t

� ;�

�
2 R

at date t. A buyer who reports to the mechanism at date � is deemed to accept the o¤er and binds

himself to participate at all future dates. A buyer who never participates in the mechanism earns a

total discounted payo¤ equal to zero.

As is the case elsewhere in the literature, given that we impose no cash constraints, our as-

sumption that the buyer can fully commit comes at no loss of generality. Indeed, by appropriately

structuring the timing of payments so that the buyer�s continuation payo¤ in the mechanism is

never negative, the buyer can always be induced to continue participating at every subsequent date,

irrespective of his realized values.

3 Analysis and results

Consider the process de�ned above where the buyer has two possible values for the good. Fix a

mechanism 
 = hq;pi and consider a buyer who reports to the mechanism at date � , makes reports

�̂
t�1
�;� up to date t� 1 (if any) and has a date�t valuation ��;t. The expected continuation payo¤ of
this buyer if he plans to report truthfully at all future dates is

V 
�;t

�
��;t; �̂

t�1
�;�

�
� E

"
TX
s=t

�s�t
�
��;s q�;s

�
�̂
t�1
�;� ;

~�
s
�;t

�
� p�;s

�
�̂
t�1
�;� ;

~�
s
�;t

��
j ~��;t = ��;t

#
.

7As a result of this restriction, our analysis cannot be directly applied to settings where the evolution of preferences

is di¤erent for di¤erent cohorts of buyers.
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Using the same arguments as in Battaglini (2005), we can establish the following useful result con-

cerning how the buyer�s continuation payo¤ at any date t depends on his date�t value. To state it,
we introduce the following notation: for any k 2 f1; : : : ; Tg, �kL = (�L; : : : ; �L) is a sequence of low
values of length k.

Lemma 1 (Battaglini, 2005) Fix an incentive-compatible mechanism 
, and consider a buyer

who �rst reports at date � , and then reports a sequence �̂
t�1
�;� up to date t � 1 (or makes no reports

in case t = �). The buyer�s expected payo¤ satis�es

V 
�;t

�
�H ; �̂

t�1
�;�

�
� V 
�;t

�
�L; �̂

t�1
�;�

�
� (�H � �L)

TX
s=t

�s�t (�H � �L)s�t q�;s
�
�̂
t�1
�;� ; �

s�t+1
L

�
. (1)

Lemma 1 provides a lower bound on the additional payo¤ the buyer expects when his value is

high rather than low at a given date t. One way to interpret the condition is as follows. First,

suppose we adjust payments at dates t + 1 onwards so that the payo¤s satisfy (1) with equality at

all such dates, and for all histories. Assuming the new mechanism is incentive compatible at dates

t+1 onwards, the buyer is then willing to always report a low value at all such dates. We can then

evaluate the buyer�s incentive to misreport at date t under the assumption that he always reports

a low value in future. A necessary condition for incentive compatibility at date t is then that the

buyer expects a payo¤ from a high value at date t (i.e., V 
�;t
�
�H ; �̂

t�1
�;�

�
) which exceeds that for a low

value (i.e., V 
�;t
�
�L; �̂

t�1
�;�

�
) by more than the expected di¤erence in valuations under a strategy of

always reporting a low value. The right-hand side of (1) is this di¤erence.

Next, we must go beyond Battaglini�s (2005) analysis to deduce a lower bound on V 
�;� (�L; ;)
(i.e., on the buyer�s payo¤ when participating at date � with a low value) in an incentive-compatible

and individually-rational mechanism.8 Here, we use the following requirement. A buyer who arrives

at date � with a value �L must prefer to participate at date � rather than to delay participation until

date � + 1, then reporting truthfully at all future dates. That is, for all dates � ,

V 
�;� (�L; ;) � �
�
(1� �L)V 
�+1;�+1 (�L; ;) + �LV 
�+1;�+1 (�H ; ;)

�
. (2)

Note that the simplicity of this participation constraint follows from our Markovian assumption that

the buyer�s current value is a su¢ cient statistic for the evolution of his future values. In particular,

a buyer who arrives at date � but participates at date � + 1 faces the same problem as a buyer who

in fact arrives at date � + 1 (conditional on his date�� + 1 value being either low or high).
Condition (2), together with the one given in Lemma 1, yields the following result.

8 In Battaglini�s (2005) paper, the only relevant participation date is � = 1, and the optimal mechanism sets

V 

1;1 (�L; ;) = 0.
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Lemma 2 Fix an incentive-compatible mechanism 
 = hq;pi. The expected payo¤ of a buyer who
arrives at date � with a low value must satisfy

V 
�;� (�L; ;) � �L (�H � �L)
T��X
i=1

TX
s=�+i

�s�� (�H � �L)s���i q�+i;s
�
�s���i+1L

�
: (3)

Lemma 2 provides a lower bound on payo¤s that will turn out to be tight in the optimal mech-

anism (under a certain regularity condition to be speci�ed momentarily). To begin understanding

this expression, it is simplest to consider the case where T is �nite. Since the buyer must be willing

to participate if he arrives at date T with a low value, we have V 
T;T (�L; ;) � 0. Now consider

the buyer who arrives at date � = T � 1 with value �L. If the buyer chooses not to participate

at T � 1, then he will have the option to participate at date T with a high value with probabil-

ity �L. In this case, he earns a positive rent V 
T;T (�H ; ;), which is at least (�H � �L) qT;T (�L)
by (1). Hence, we have V 
T�1;T�1 (�L; ;) � �L� (�H � �L) qT;T (�L), which is (3) evaluated at
� = T � 1. We can then work recursively backwards to deduce lower bounds on the rents at

earlier dates. For instance, to deduce a lower bound V 
T�2;T�2 (�L; ;), we observe that, if the buyer
delays participation until the subsequent period, then he earns a rent V 
T�1;T�1 (�L; ;) (which is at
least �L� (�H � �L) qT;T (�L)) in case his value remains low (with probability 1 � �L), or this plus
an additional rent V 
T�1;T�1 (�H ; ;) � V 
T�1;T�1 (�L; ;) satisfying (1) if his value turns high (with
probability �L).

Expression (3) is central to our analysis, for it shows how the rent that must be promised to

ensure agent participation accumulates with time. When T is �nite, the agent, in deciding whether

to participate at date T , faces the usual outside option of not purchasing (which has payo¤ zero).

As just explained, ensuring participation at date T �1 requires ceding larger rents because the agent
can wait for his value to increase at date T . In turn, this raises the rents that must be promised to

ensure participation at T � 2.
In terms of characterizing the optimal mechanism, the value of Lemma 2 is that it allows us

to �nd a convenient lower bound on buyer payo¤s as a function of the quality allocations q. In

particular, Lemmas 1 and 2 together allow us to provide an upper bound on the achievable pro�t

in an incentive-compatible mechanism, as stated in the next result. This bound coincides with

the seller�s pro�ts in case all the inequalities in (1) and (3) hold as equalities. This upper bound,

analogous to the �virtual surplus� in static mechanism design, turns out to be achievable under a

mild condition on the arrival probability, which we describe below.

Lemma 3 Suppose that 
 is an incentive-compatible, individually-rational mechanism implementing

an allocation q. Then expected pro�ts are no greater than

E

"
TX
s=~�

�s�1
�
ms
~�

�
~�
s
~�;~�

�
q~�;s

�
~�
s
~�;~�

�
� c

�
q~�;s

�
~�
s
~�;~�

���#
, (4)
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where, for all � , and all s � � ,

ms
�

�
�s��+1L

�
= �L �

�
��
��

�L
1� � +

�

1� �

��
�H � �L
1� �L

�s��
(�H � �L) , and

ms
�

�
�s�;�

�
= ��;s for all �s�;� 6= �s��+1L , (5)

and where expectations are taken over the arrival time ~� , as well as the realized values ~�
T
~�;~� .

It will be helpful to understand the virtual values ms
� in (5) as the surplus due to awarding

additional quality at date s to a buyer who arrived at date � , less the e¤ect on the lowest feasible

values of buyer rents. Condition (1) shows that the (lower bound on) additional rent a buyer

expects when arriving with a high rather than a low value, i.e. V 
�;� (�H ; ;) � V 
�;� (�L; ;) for arrival
date � , depends only on the quality at histories where the buyer�s value remains low. In turn, the

bound on rents in (3) also depends only on the quality at these histories. Hence, at any history

�s�;� 6= �s��+1L , the virtual value corresponds simply to the buyer�s value for quality ��;s (note that the

same observation is made also in Battaglini�s, 2005, paper; although, as noted, that paper considers

only a single participation date, say � = 1).

For any history �s�;� where the buyer arrives at date � and his value remains low until s, the

virtual value of incremental quality is the buyer�s value �L less a quantity that can be rewritten as

���L (�H � �L)s�� (�H � �L) + ��� (�H � �L)s�� (�H � �L)
�� (1� �) (1� �L)s��

. (6)

Analogous to the distortion term in the virtual values of static mechanism design, this expres-

sion is the ratio of the e¤ect of date-s quality q�;s
�
�s��+1L

�
on buyer rents to the probability this

quality is awarded. The second term in the numerator (i.e., ��� (�H � �L)s�� (�H � �L)) corre-
sponds to the additional expected rents if the buyer happens to arrive at date � with a high (rather

than a low) value, an event which occurs with probability ���. The �rst term in the numerator

(i.e., ���L (�H � �L)s�� (�H � �L)) corresponds to the e¤ect of increasing q�;s
�
�s��+1L

�
on the rents

earned in case of arrival at date � � 1 or earlier (the probability of such an arrival time is �� , and
how much rent the buyer expects at such dates depends on the rate at which a low value turns high,

�L, as explained in relation to Lemma 2). The denominator in (6) (i.e., �� (1� �) (1� �L)s�� ) is
simply the probability that the history �s�;� = �

s��+1
L occurs.

One can now choose the qualities which maximize the expression (4), and then verify that these

qualities can be implemented as part of an incentive-compatible mechanism. This leads to the

following result.

Proposition 1 Suppose that, for all � � T �1, m�+1
�+1 (�L) � m�+1

�

�
�2L
�
. Pro�t-maximizing qualities

q��;s are given, for each arrival date � , each date s � � , and each �s�;� , by

c0
�
q��;s

�
�s�;�

��
= max

�
ms
�

�
�s�;�

�
; 0
	
. (7)
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The proof proceeds by constructing a mechanism with allocations given by (7), such that all

of the inequalities in (1) and (3) hold with equality. Buyer rents are then as small as possible for

an incentive-compatible individually-rational mechanism implementing these allocations (implying

that the upper bound on pro�ts in (4) is attained). Given that the allocations (7) maximize the

expression in (4), the mechanism must maximize pro�ts provided it is incentive compatible.9

Optimal qualities balance the cost of providing a given quality level against the �virtual value�

of provision introduced in Lemma 3. As discussed above, following sequences of low values, virtual

values are less than the value to the buyer, capturing ex-ante expected buyer rents.

The allocation q�1;t which applies when the buyer arrives at date � = 1 is exactly the allocation

that the seller would optimally choose in a problem where the buyer is known to arrive at date 1.

Hence the allocation for a date-1 arrival is precisely the same as in Battaglini�s (2005) paper, which

did not study uncertain arrival times. This result is to be expected, since the allocation for date-1

arrival does not a¤ect the rents that must be left in case of arrival after date 1. The only di¤erence

between the mechanism for � = 1 in the present setting, and the one studied by Battaglini, lies in

the prices paid (equivalently, the rent obtained) by the buyer. In the present setting, the buyer�s

payments must be lower so that the buyer is willing to participate at date 1 rather than delaying

participation.

For arrival at dates � > 1, the optimal qualities at histories of low values, i.e. q��;t
�
�t��+1L

�
, are

further distorted below �rst-best values. In particular, q��;�+k
�
�k+1L

�
� q�1;1+k

�
�k+1L

�
for all � � 2

and k 2 f0; 1; : : : ; T � �g. These additional distortions re�ect the seller�s goal of reducing rents

in case of arrival at a later date, in turn permitting a reduction of rents in case of earlier arrival

(including possible arrival at date 1).

Note that Proposition 1 provides a su¢ cient condition for the incentive compatibility of our

candidate mechanism in terms of the primitives of the problem. In particular, the assumption that

m�+1
�+1 (�L) � m�+1

�

�
�2L
�
is equivalent to

��+1
��+1

�L
1� � +

�

1� � �
�H � �L
1� �L

(
��
��

�L
1� � +

�

1� �): (8)

This condition guarantees that, for all � � T � 1 and all s 2 f� + 1; : : : ; Tg,

q��;s
�
�s��+1L

�
� q��+1;s

�
�s��L

�
.

In other words, the assumption guarantees that a buyer receives a higher quality allocation if he

participates in the mechanism one period earlier, even if his values turn out to remain low from

9The proof of incentive compatibility can be viewed in two parts: (i) verifying the optimality of truthful reporting

of values after participating in the mechanism, and (ii) verifying that the buyer is always willing to participate in the

mechanism upon arrival. While the �rst part is familiar from Battaglini�s work, the second part is new to the present

paper.
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the date of arrival. This ensures that, if the buyer�s value is high, he expects a higher rent from

immediate participation than by delaying (that this is true also when the buyer�s value is low follows

because the mechanism is constructed to satisfy (3); i.e., the buyer is precisely indi¤erent between

participating and instead waiting one more period when his value is low).10

From (8), it is easy to see that our su¢ cient condition is more likely to hold in case ��
��
does

not decrease too fast in � or if the process is not too persistent, i.e. if �H��L1��L is small. It is always

enough that ���� is increasing in � . It is therefore worth emphasizing that ���� being increasing in �

is a condition that holds for many natural distributions of arrival times. Since the probability of

earlier arrival �� is increasing in � , it su¢ ces that �� is non-increasing. For instance, if T is �nite

with �� =
1
T for all � , then

��
��
= � � 1. If arrivals are geometrically distributed with parameter

� 2 (0; 1), i.e. �� = (1� �)��1 � for all � , then
��
��
=
P��1
s=1 (1� �)

s�� .

If ���� decreases too fast in � , then pro�ts equal to the the maximum of (4) may not be attainable

in an incentive-compatible mechanism. In this case, one must resort to �ironing� to derive the

optimal allocation. Roughly speaking, this requires raising the quality after histories of low values

for earlier arrivals, and lowering them for later arrivals, as compared to the quality levels speci�ed

in (7). We do not study the ironed solution, but expect our key qualitative insights to carry over to

settings where ironing is needed.

If ���� is increasing in � , then the weight the seller attributes to reducing the rent of earlier arrivals

increases over time relative to the weight she assigns to the surplus generated in case of arrival at date

� . Since buyer rents are determined by the qualities allocated in case the buyer�s value remains low,

this implies that these qualities are distorted downward more at later dates relative to the �rst-best

levels. In particular, conditional on the buyer being in the relationship for the same length of time,

distortions are greater if the buyer arrives later. Formally, we �nd the following.

Corollary 1 Suppose that ���� is increasing in � . Consider any two dates � ; �
0, with � < � 0, and let

k 2 f0; 1; : : : ; T � � 0g. Then
q��;�+k

�
�k+1L

�
� q�� 0;� 0+k

�
�k+1L

�
,

with a strict inequality in case q��;�+k
�
�k+1L

�
> 0. Moreover, if ��;� = �� 0;� 0, then V 
�;� (��;� ; ;) �

V 
� 0;� 0
�
�� 0;� 0 ; ;

�
, with a strict inequality if q��;s

�
�s��+1L

�
> 0 for some period s � � .

The result indicates that, when ��
��
is increasing with � , late arrivals are punished in that they

expect lower rents. This discourages delayed participation in the mechanism, allowing the seller to

10Formally, the high type�s participation constraint (which is the constraint that the mechanism is shown to satisfy

in the Appendix) is simply

V 

�;� (�H ; ;) � �

�
(1� �H)V 


�+1;�+1 (�L; ;) + �HV 

�+1;�+1 (�H ; ;)

�
,

analogous to the participation constraint (2) for the low type.
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extract more rents from early arrivals. In particular, the quality choices are designed to discourage

a buyer who arrives with a low value from delaying participation until his value becomes high. It

therefore allows the seller to give up less rent in case of earlier arrival while inducing immediate

participation.

When T = +1, and when the buyer arrives with positive probability at each date, the ratio
��
��
necessarily approaches +1 with � . As a consequence, we �nd that contracts become arbitrarily

ine¢ cient as the participation date grows large along histories where the buyer realizes only the low

value �L.

Corollary 2 Suppose that T = +1, with m�+1
�+1 (�L) � m�+1

�

�
�2L
�
for all � (a su¢ cient condition is

that ���� is increasing in �). For any s, there exists �� su¢ ciently large that q��;t
�
�t��+1L

�
= 0 for all

� � �� and all t such that t� � � s. Hence, buyer rents converge to zero with the participation date.

What emerges then is a fairly robust principle that optimal mechanisms punish a late arrival.

When the horizon is in�nite, for instance, buyer rents become arbitrarily small with the participation

date. Punishing very late arrivals is bene�cial for the seller, since it permits a reduction in rents at

all earlier dates, back to date 1.

In contrast, it is worth noting that the �vanishing distortions at the bottom�principle described

by Battaglini (2005) continues to hold. In particular, we can show the following.

Corollary 3 Suppose that T = +1 with m�+1
�+1 (�L) � m�+1

�

�
�2L
�
for all � (a su¢ cient condition is

that ���� is increasing in �). For any arrival date � , q��;t
�
�t��+1L

�
converges to its e¢ cient value �L

as the length of the relationship t� � + 1 becomes large.

The reason for this result is that quality choices at dates long after contracting have little e¤ect

on the buyer�s rents; choosing qualities close to the e¢ cient ones therefore costs the seller little in

terms of the surplus that must be left to the buyer. This is easily seen from the inequality (1) in

Lemma 1. According to this lemma, the additional rents that must be given to the buyer in case of

arrival with a high value depends on the additional probability that the buyer has of a high value in

future. Since �H � �L < 1, the additional probability of a high value vanishes with time, so later
quality allocations a¤ect the buyer�s rents less (see Battaglini, 2005, for a more detailed explanation

of the vanishing distortions property).

Finally, it is interesting to consider comparative statics on the transition probabilities. Virtual

values and hence qualities for sequences of low values are decreasing in �H . The reason is that, for

higher �H , a high value persists for a longer time, implying that qualities assigned for sequences of

low values have a greater e¤ect on the rents that must be left to the buyer in case his value is initially

high (again, see the inequalities in (1) of Lemma 1). The parameter �L, however, plays two roles.

First, a higher value of �L implies a smaller advantage of high values over low ones, i.e. the opposite

12



e¤ect as for �H (see the inequalities in (1)). Second, it increases the likelihood that the buyer�s

value becomes high if his value is low and he delays participation in the mechanism. This in turn

increases the option value of delaying participation. The seller�s optimal response to the �rst e¤ect

is to increase qualities, while her optimal response to the second is the opposite. Whether qualities

increase or decrease with �L at any date then depends on parameters and the participation date.

3.1 Experience goods

One subtlety which we have so far overlooked is the possibility that the buyer�s value evolves dif-

ferently when consuming the good compared to when he is without it. For �experience goods�,

for instance, a buyer may learn about suitability through consumption, but otherwise learn only a

little. More generally, the level of excitement a buyer has about a good (and the importance of high

quality, in particular) might be expected to �uctuate di¤erently depending on whether the buyer is

consuming. In terms of our model, this means values switching at di¤erent rates before and after

participating in the mechanism.

Let �WH and �WL ; with �
W
L < �WH ; denote the probabilities of a high value at date � given,

respectively, high and low values at date � � 1 when not consuming at � � 1. Maintain the existing
notation for the probability of changes conditional on consumption (i.e., let �H and �L denote the

probabilities of a high value at date t given high and low values when consuming at date t� 1). The
previous analysis is easily adapted to this setting, yielding the following result.

Proposition 2 Suppose that ���� is increasing in � . Suppose that values evolve di¤erently contingent

on past consumption, as described above. Let virtual values be given, for all � , all s � � , by

mW;s
�

�
�s��+1L

�
= �L �

�
��
��

�WL
1� � +

�

1� �

��
�H � �L
1� �L

�s��
(�H � �L) , and

mW;s
�

�
�s�;�

�
= ��;s for all �s�;� 6= �s��+1L :

Pro�t-maximizing qualities qW�;s are given, for each arrival date � , each date s � � , and each �s�;� , by

c0
�
qW�;s

�
�s�;�

��
= max

�
mW;s
�

�
�s�;�

�
; 0
	
. (9)

A natural assumption is that �WL < �L, with the implication that quality allocations are less

distorted than those given in Proposition 1. In the extreme case where �WL = 0, optimal allocations

do not depend on the arrival date. The buyer earns no additional rents from his private information

about arrival � i.e., a buyer who arrives with a low value expects zero rent irrespective of the

arrival date. It is readily checked that the optimal qualities then coincide with those for the optimal

mechanism with a known arrival date (as in Battaglini, 2005; equivalently, optimal qualities are the

same as for date-1 arrival in Proposition 1). Otherwise, for �WL > 0, our main qualitative predictions

continue to hold; in particular, a buyer whose initial value is low expects positive rent, and (provided

that ���� is increasing in �) quality allocations are less e¢ cient the later the arrival date.
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4 Conclusions

This paper considered dynamic mechanism design in a setting where buyers arrive over time and

where their preferences evolve stochastically. We provided an approach to fully characterize the

optimal mechanism. The key �nding was that the mechanism punishes a late participant: late

participants face tougher terms of trade and therefore purchase lower qualities and receive less rent.

Early arrivals fare better, and buyers earn positive expected rents even if their values are equal

to the lowest. Although later arrivals receive less e¢ cient allocations for longer, the �principle of

vanishing distortions�, by which allocations converge to �rst-best levels with time in the relationship,

can continue to apply (for instance, it does so in Battaglini�s, 2005, Markovian setting).

Our �ndings can be expected to have relevance for a broad class of agency relationships beyond

the setting of the paper. For instance, a government seeking to procure services at the least cost

to tax payers may face new suppliers arising over time whose production costs can be expected to

change. Firms seeking to �ll top management positions may face potential managers who become

available or learn of the position only after time, while their suitability for the job continues to

change. Our focus on the seller�s problem with vertical preferences over quality (as in Mussa and

Rosen (1978)) was thus only for convenience, and because it allowed us to draw comparisons to

the existing literature, especially Battaglini (2005) and subsequent work (e.g., Boleslavsky and Said

(2012) and Battaglini and Lamba (2015)). Of course, long-term contracts in various settings may

be shaped by considerations speci�c to each and so di¤erent applications may call for further study.
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A Appendix: Proofs of results for two-value case (main text)

Proof of Lemma 1. Consider a buyer who at date t has reported �̂
t�1
�;� from date � up to date

t� 1. That the buyer must be willing to report truthfully a date�t value �H implies

V 
�;t

�
�H ; �̂

t�1
�;�

�
� V 
�;t

�
�L; �̂

t�1
�;�

�
� (�H � �L) q�;t

�
�̂
t�1
�;� ; �L

�
(A.1)

+� (�H � �L)
�
V 
�;t+1

�
�H ; �̂

t�1
�;� ; �L

�
� V 
�;t+1

�
�L; �̂

t�1
�;� ; �L

��
.

Suppose that

V 
�;t

�
�H ; �̂

t�1
�;�

�
� V 
�;t

�
�L; �̂

t�1
�;�

�
� (�H � �L)

t0X
s=t

�s�t (�H � �L)s�t q�;s
�
�̂
t�1
�;� ; �

s�t+1
L

�
+�t

0�t+1 (�H � �L)t
0�t+1

�
V 
�;t0+1

�
�H ; �̂

t�1
�;� ; �

t0�t+1
L

�
� V 
�;t0+1

�
�L; �̂

t�1
�;� ; �

t0�t+1
L

��
holds for some t0 > t. Using (A.1) to substitute for the �nal term then yields

V 
�;t

�
�H ; �̂

t�1
�;�

�
� V 
�;t

�
�L; �̂

t�1
�;�

�
� (�H � �L)

t00X
s=t

�s�t (�H � �L)s�t q�;s
�
�̂
t�1
�;� ; �

s�t+1
L

�
+�t

00�t+1 (�H � �L)t
00�t+1

�
V 
�;t00+1

�
�H ; �̂

t�1
�;� ; �

t00�t+1
L

�
� V 
�;t00+1

�
�L; �̂

t�1
�;� ; �

t00�t+1
L

��
for t00 = t0 + 1. The result then follows by induction and (for the case of T = +1) the observa-
tion that, in an incentive-compatible mechanism, V 
�;s+1

�
�H ; �̂

t�1
�;� ; �

s�t+1
L

�
�V 
�;s+1

�
�L; �̂

t�1
�;� ; �

s�t+1
L

�
must be uniformly bounded for all s � t.

Proof of Lemma 2. For an incentive-compatible mechanism 
 and any date � , the buyer�s

expected payo¤ must satisfy

V 
�;� (�L; ;) � �
�
(1� �L)V 
�+1;�+1 (�L; ;) + �LV 
�+1;�+1 (�H ; ;)

�
= �

�
V 
�+1;�+1 (�L; ;) + �L

�
V 
�+1;�+1 (�H ; ;)� V 
�+1;�+1 (�L; ;)

��
� �

 
V 
�+1;�+1 (�L; ;) + �L (�H � �L)

TX
s=�+1

�s���1 (�H � �L)s���1 q�+1;s
�
�s��L

�!
,

where the �nal equality follows from Lemma 1. The same inequality holds also for V 
�+1;�+1 (�L; ;).
Hence,

V 
�;� (�L; ;) � ��L (�H � �L)
TX

s=�+1

�s���1 (�H � �L)s���1 q�+1;s
�
�s��L

�
+�2�L (�H � �L)

TX
s=�+2

�s���2 (�H � �L)s���2 q�+2;s
�
�s���1L

�
+�2V 
�+2;�+2 (�L; ;) .
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The result then follows from induction, and the fact that V 
� 0;� 0 (�L; ;) remains bounded uniformly
over � 0 > � .

Proof of Lemma 3. First note that the buyer�s expected rent is given by

TX
�=1

���1��
�
�V 
�;� (�H ; ;) + (1� �)V 
�;� (�L; ;)

�
=

TX
�=1

���1��V


�;� (�L; ;) + �

TX
�=1

���1��
�
V 
�;� (�H ; ;)� V 
�;� (�L; ;)

�
.

The �rst term re�ects the rent that the buyer expects to earn even if his value is low at the arrival

date, while the second term re�ects the additional rent he expects if his value is instead high. A

lower bound for the �rst term is available from Lemma 2:

TX
�=1

���1��V


�;� (�L; ;) � �L (�H � �L)

TX
�=2

TX
s=�

�s�1�� (�H � �L)s�� q�;s
�
�s��+1L

�
.

A lower bound for the second term is available from simply substituting the expression in Lemma 1:

�
TX
�=1

���1��
�
V 
�;� (�H ; ;)� V 
�;� (�L; ;)

�
� � (�H � �L)

TX
�=1

��

 
TX
s=�

�s�1 (�H � �L)s�� q�;s
�
�s��+1L

�!
.

Therefore, the rents that a buyer is expected to earn must be at least

TX
�=1

TX
s=�

�s�1 (�L�� + ��� ) (�H � �L) (�H � �L)s�� q�;s
�
�s��+1L

�
.

The expression for pro�ts in the lemma is then simply the expected surplus less the lower bound on

buyer expected rents.

Proof of Proposition 1. The allocations q� =
�
q��;t
�
1���t are chosen to maximize (4). (A

unique optimum exists by convexity of the cost function c (�).) It remains to verify the existence of

a system of transfers p which implements q� as part of an incentive-compatible mechanism. To this

end, we begin by specifying the payo¤ that the buyer expects from truthful reporting at each date t

following any history of reports �̂
t�1
�;� from date � . We choose these payo¤s so that the inequalities

(1) and (3) hold with equality, which in turn implies that the buyer�s expected rents are as small

as possible in an incentive-compatible and individually-rational mechanism implementing q�. This

means that expected pro�ts are equal to the expression in (4).

There is still much freedom in how payo¤s are spread across time. One possible speci�cation is

as follows: At each date � of �rst reporting

V 
�;� (�L; ;) = �L (�H � �L)
T��X
i=1

�i

 
TX

s=�+i

�s���i (�H � �L)s���i q��+i;s
�
�s���i+1L

�!
.
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For each t > � , and each history of reports �̂
t�1
�;� , V



�;t

�
�L; �̂

t�1
�;�

�
= 0. For each � , each t � � , and

each �̂
t�1
�;� ,

V 
�;t

�
�H ; �̂

t�1
�;�

�
= V 
�;t

�
�L; �̂

t�1
�;�

�
+ (�H � �L)

TX
s=t

�s�t (�H � �L)s�t q��;s
�
�̂
t�1
�;� ; �

s�t+1
L

�
.

Next, one can choose prices to ensure that these payo¤s are realized if the buyer reports truthfully.

This is achieved if, for each � , each t � � and each �̂t�1�;� , we let

p��;t

�
�̂
t�1
�;� ; ��;t

�
= ��;tq

�
�;t

�
�̂
t�1
�;� ; ��;t

�
� V 
�;t

�
��;t; �̂

t�1
�;�

�
+ �E

h
V 
�;t+1

�
~��;t+1; �̂

t�1
�;� ; ��;t

�
j��;t

i
.

Now, we wish to check that the mechanism hq�;p�i, with p� =
�
p��;t
�
1���t is incentive compat-

ible. Two kinds of incentive constraints must be checked. First, conditional on the buyer having

reported to the mechanism, he must be willing to report his values truthfully (checking these con-

straints requires arguments akin to those in Battaglini, 2005; see footnote 9 for further discussion).

Second, he must be willing to participate in the mechanism and report to it immediately on the date

of his arrival.

Truthful reporting of values. By the �one-shot deviation principle�of Blackwell (1965), it

is enough to check that one-shot deviations from truth-telling are never optimal, for any history of

past reports. Because the process is �rst-order Markov, the payo¤s available to the buyer at any

date t depend only on his date�t value ��;t, and the past reports �̂
t�1
�;� , and not on any previous

values. Verifying that the buyer does not pro�t from a one-shot deviation when his value is high

amounts to verifying (A.1), which holds by construction. Verifying that the buyer does not pro�t

from a one-shot deviation when his value is low amounts to checking

V 
�;t

�
�L; �̂

t�1
�;�

�
� V 
�;t

�
�H ; �̂

t�1
�;�

�
� (�H � �L) q��;t

�
�̂
t�1
�;� ; �H

�
�� (�H � �L)

�
V 
�;t+1

�
�H ; �̂

t�1
�;� ; �H

�
� V 
�;t+1

�
�L; �̂

t�1
�;� ; �H

��
.

That (1) holds with equality at all histories implies that this is equivalent to

(�H � �L)
TX
s=t

�s�t (�H � �L)s�t q��;s
�
�̂
t�1
�;� ; �

s�t+1
L

�
� (�H � �L) q��;t

�
�̂
t�1
�;� ; �H

�
+ � (�H � �L)

�
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�
�H ; �̂

t�1
�;� ; �H

�
� V 
�;t+1

�
�L; �̂

t�1
�;� ; �H

��
= (�H � �L)

TX
s=t

�s�t (�H � �L)s�t q��;s
�
�̂
t�1
�;� ; �H ; �

s�t
L

�
.

This is satis�ed because, for all � , t and s, with � � t � s, and all �̂
t�1
�;� , q

�
�;s

�
�̂
t�1
�;� ; �H ; �

s�t
L

�
�

q��;s

�
�̂
t�1
�;� ; �

s�t+1
L

�
.
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Timely participation. The above implies that, if the buyer participates at date � , he then

reports his values truthfully from then on, and therefore expects to earn the payo¤s speci�ed above.

Since transition probabilities do not depend on the buyer�s arrival date to the market, the buyer�s

problem of whether to participate is identical irrespective of his true arrival date. Specifying that

the buyer participates at every opportunity, we can then check that the buyer does not gain from

one-shot deviations, i.e. from delaying participation. This follows when the buyer�s value is low by

(2), which is satis�ed by construction.

For a high value, we need to check

V 
�;� (�H ; ;) � �
�
(1� �H)V 
�+1;�+1 (�L; ;) + �HV 
�+1;�+1 (�H ; ;)

�
.

This is equivalent to

(�H � �L) q��;� (�L) + (�H � �L)
TX

s=�+1

�s�� (�H � �L)s��
�
q��;s

�
�s��+1L

�
� q��+1;s

�
�s��L

��
� 0. (A.2)

It is readily checked that, for all � � T � 1, m�+1
�+1 (�L) � m�+1

�

�
�2L
�
implies ms

�+1

�
�s��L

�
�

ms
�

�
�s��+1L

�
for all s � � + 1. Therefore, q��+1;s

�
�s��+1L

�
� q��;s

�
�s��+1L

�
for all s � � + 1, so

that (A.2) is indeed satis�ed.

Proof of Corollary 1. The �rst part follows directly from the qualities speci�ed in Proposition

1. The second part follows using these optimal qualities and the fact that the buyer payo¤s at the

participation/arrival date V�;� (��;� ; ;) satisfy the inequalities (1) and (3) with equality.

Proof of Corollary 2. The �rst part follows directly from the qualities speci�ed in Proposition

1. The implication for buyer rents follows using the optimal qualities and the fact that the buyer

payo¤s at the participation/arrival date V�;� (��;� ; ;) satisfy the inequalities (1) and (3) with equality.

Proof of Corollary 3. This follows immediately from the qualities speci�ed in Proposition 1.

Proof of Proposition 2. The lower bound (3) in Lemma 2 becomes

V 
�;� (�L; ;) � �WL (�H � �L)
T��X
i=1

TX
s=�+i

�s�� (�H � �L)s���i q�+i;s
�
�s���i+1L

�
:

Together with the inequalities in Lemma 1 one obtains a lower bound on buyer expected rents. This

allows us to derive the upper bound on expected pro�ts

E

"
TX
s=~�

�s�1
�
mW;s
~�

�
~�
s
~�;~�

�
q~�;s

�
~�
s
~�;~�

�
� c

�
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�
~�
s
~�;~�

���#
,
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with virtual values mW;s
� given in the present result. One then chooses qualities to maximize this

expression and then proposes an appropriate implementation as in the proof of Proposition 1. In

particular, one should specify payments such that all incentive (and individual rationality) constraints

bind, and can than specify that, for each t > � , and each history of reports �̂
t�1
�;� , V



�;t

�
�L; �̂

t�1
�;�

�
= 0.

Verifying that the buyer, having chosen to participate in the mechanism, is willing to report all

values truthfully follows the same steps as in the proof of Proposition 1. It then remains to verify

the buyer�s willingness to participate at his arrival date. By construction, he is indi¤erent to doing

so when his value is low. When his value is high, it is enough to verify that

(�H � �L)
TX
s=�

�s�� (�H � �L)s�� qW�;s
�
�s��+1L

�
�

�
�WH � �WL

�
(�H � �L)

TX
s=�+1

�s�� (�H � �L)s���1 qW�+1;s
�
�s��L

�
.

That this is satis�ed follows because �WH � �WL � 1, and because ��
��
is increasing in � . The latter

guarantees that qW�;s
�
�s��+1L

�
� qW�+1;s+1

�
�s��+1L

�
for all s � T � 1.
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B Appendix: Continuum of values

This appendix provides results for a continuum of values. The process for arrivals is as described in

the model set-up. The key di¤erence will be that, in each period t after arrival, the buyer draws a

value from � =
�
�; ��
�
. The buyer�s initial type ��;� at arrival date � is drawn from a continuously

di¤erentiable c.d.f. FIn with density fIn and full support on �.

For each date t > � , if the buyer�s date t� 1 value is ��;t�1 2 �, then his date-t value is drawn
according to a continuously di¤erentiable c.d.f. FTr (�j��;t�1) with density fTr (�j��;t�1) and with
support on

�
�Tr (��;t�1) ; ��Tr (��;t�1)

�
� �. The function FTr (�j�) is also continuously di¤erentiable

in its second argument. Following Garrett and Pavan (2012), we specify that, for any ��;t�1; ��;t 2 �,

�fTr (��;tj��;t�1) �
@FTr (��;tj��;t�1)

@��;t�1
� 0.

The second inequality implies that the conditional distributions FTr (��;tj��;t�1) are ranked in terms
of �rst-order stochastic dominance, while the �rst inequality ensures that we can apply a �dynamic

revenue equivalence�result developed in Pavan, Segal and Toikka (2014).11

Following Pavan, Segal and Toikka (2014), we introduce the notion of �impulse responses�. For

any � , t, s, with � � t < s, and any �s�;t, let

Jst
�
�s�;t
�
� �sl=t+1

�
�@FTr(��;lj��;l�1)=@��;l�1

fTr(��;lj��;l�1)

�
.

If instead s = t, then Jst
�
�s�;t
�
= J tt (��;t) = 1. The value of the impulse response Jst

�
�s�;t
�
can be

interpreted as capturing the e¤ect of an in�nitesimal variation in ��;t on ��;s. A simple example

is any �rst-order autoregressive process with persistence parameter 
, in which case the impulse

responses are independent of valuations and given by Jst = 
s�t. A property that is helpful for

understanding the impulse response function is that, given � � t < s,

@

@��;t
E
h
~��;sj~��;t = ��;t

i
= E

h
Jst

�
~�
s
�;t

�
j~��;t = ��;t

i
.

As for the two-type case, the buyer�s expected payo¤ from truthful reporting in a mechanism


 = hq;pi is denoted V 
�;t
�
��;t; �̂

t�1
�;�

�
. The following analog to Lemma 1 then determines how, if

the mechanism is incentive compatible, the buyer�s expected payo¤must depend on his value at each

date.

Lemma B.1 (Pavan, Segal and Toikka, 2014) Fix an incentive-compatible mechanism 
, and

consider a buyer who �rst reports at date � , and then reports a sequence �̂
t�1
�;� up to date t � 1 (or

11As noted in Garrett and Pavan (2012), the lower bound on
@FTr(�tj�t�1)

@�t�1
is equivalent to the assumption that, for

any �t�1 2 �, and any x 2 R, 1� F (�t�1 + xj�t�1) is nonincreasing in �t�1.
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makes no reports in case t = �). If the buyer�s value at date t is ��;t, then his expected payo¤ satis�es

V 
�;t

�
��;t; �̂

t�1
�;�

�
= V 
�;t

�
�; �̂

t�1
�;�

�
+

Z ��;t

�
E

"
TX
s=t

�s�tJst

�
~�
s
�;t

�
q�;s

�
�̂
t�1
�;� ;

~�
s
�;t

�
j~��;t = r

#
dr.

Proof of Lemma B.1. This follows immediately from Theorem 1 of Pavan, Segal and Toikka

(2014).

Our goal is to use this result to derive a lower bound on the buyer�s expected payo¤when arriving

at any date � , as in Lemma 2 for the two-type case. To do this we consider the incentive of a buyer

who arrives at date � with the lowest possible initial value � to misreport his arrival date by delaying

participation until the following period. For this deviation to be unpro�table requires

V 
�;� (�; ;) � �E
h
V 
�+1;�+1

�
~��;�+1; ;

�
j~��;� = �

i
. (B.1)

Iterating this requirement yields the following result.

Lemma B.2 Fix an incentive-compatible mechanism 
 = hq;pi. The buyer�s expected payo¤ for

any arrival date � must satisfy
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�;� (�; ;) �
T��X
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~��+i;�+i

� TX
t=�+i

�t��J t�+i

�
~�
t
�+i;�+i

�
q�+i;t

�
~�
t
�+i;�+i

�35 . (B.2)

Proof of Lemma B.2. By (B.1), for any � ,
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35
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�
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�
~�
t
�+1;�+1

� 35 ,
where the �rst equality follows from integration by parts and the second by a simple rearrangement.

Iterating then yields (B.2).

Lemmas B.1 and B.2 can be used to provide the following analog of Lemma 3.
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Lemma B.3 Suppose that 
 is an incentive-compatible, individually-rational mechanism implement-

ing an allocation q. Then expected pro�ts are no greater than

E

"
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t=~�

�s�1
�
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�
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t
~�;~�

�
q~�;t
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~�
t
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���#
, (B.3)

where, for all � , all t � � , and all �t� ;� ,

mt
�

�
�t� ;�

�
= ��;t � J t�

�
�t� ;�

����
��

1� FTr (��;� j�)
fIn (��;� )

+
1� FIn (��;� )
fIn (��;� )

�
, (B.4)

and where expectations are taken over the arrival time ~� , as well as the realized values ~�
T
~�;~� .

Proof of Lemma B.3. By Lemmas B.1 and B.2, the buyer�s expected rent conditional on

arriving at date � is at least

T��X
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For each � , integrate the second term by parts and subtract the full expression for buyer expected

rents from the expected surplus. Taking expectations over the arrival date � then yields the result.

We choose qualities to maximize the expression in (B.3). Under certain conditions, we can then

�nd an incentive-compatible mechanism which implements these allocations, implying the following

result.

Proposition B.1 Suppose that, (i) for all � � T�1, and all pairs ��+1�;� , m
�+1
�+1 (��;�+1) � m�+1

�

�
��+1�;�

�
,

and (ii) for all � and all t � � , each mt
� (�) is non-decreasing. Then pro�t-maximizing qualities are

given, for all � , all t � � , and all �t� ;� , by

c0
�
q��;t
�
�t� ;�

��
= max

�
mt
�

�
�t� ;�

�
; 0
	
.

Proof of Proposition B.1. Since the qualities q��;t are chosen to maximize (B.3), we need

only to provide an incentive-compatible mechanism which implements them. As for the proof of

Proposition 1, we begin by specifying the buyer�s expected payo¤s that the mechanism is to deliver

the buyer when he reports his values truthfully. For all � and all ��;� , let
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For all � , all t > � , and all
�
�̂
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�;� ; ��;t

�
, let
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We then specify the transfers p��;t which deliver these payo¤s; i.e., we take
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We now verify that the proposed mechanism is incentive compatible. First note that, since the

allocations q��;t (�) are non-decreasing, Condition (iv) of Corollary 1 in Pavan, Segal and Toikka (2014)
is satis�ed, so the buyer must be willing to report his values truthfully conditional on participation.

This implies that the buyer�s expected payo¤ when participating at any date � with a value ��;� is

equal to
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We use this in the remaining step, which is to check the incentive compatibility of immediate par-

ticipation at the buyer�s arrival date.

By the one-shot deviation principle, it su¢ ces to verify that the buyer is willing to participate

at an arbitrary date � . By delaying participation until the following period, the buyer expects a

payo¤, given ��;� , of
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By construction,
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Therefore, a one-shot deviation at date � to delaying participation is unpro�table ifZ ��;�
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To see that this holds, we reason as follows. First consider our assumption that, for all � and all ��+1�;� ,

m�+1
�+1 (��;�+1) � m�+1

�
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��+1�;�

�
. This implies that, for all � , all s > � , and all �s�;� , m

s
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, and hence q��+1;s
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�s�;�+1

�
� q��;s

�
�s�;�

�
. That the inequality holds is then immediate from

the assumption that Js� is non-negative (equivalently, that the distribution of values after date � are

ordered in the sense of �rst-order stochastic dominance).
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Conditions (i) and (ii) of this proposition can be understood as follows. First, Condition (ii)

guarantees the existence of a mechanism in which, once the buyer has accepted to participate, he

truthfully reports his values at all dates. As discussed by Pavan, Segal and Toikka (2014), this

condition can be relaxed, although the weaker conditions are often di¢ cult to check. Condition (i)

then plays the role of ensuring that the allocations which maximize (B.3) are implementable by an

incentive-compatible mechanism in which the constraints in (B.2) are satis�ed with equality.

Condition (i), which guarantees timely participation in the mechanism, is new relative to settings

where the agent�s arrival date is �xed or known (as in Pavan, Segal and Toikka, 2014, for instance).

The mechanism we construct ensures that the inequality (B.2) holds as an equality, which means

that the buyer is indi¤erent between participating and waiting to participate in the next period when

his value is equal to �. Condition (i) then implies that, under the allocations which maximize (B.3),

immediate participation at date � is preferred by all higher types. More precisely, it implies that

the bene�t of immediate participation is increasing in the buyer�s date-� value. Intuitively, this is

because earlier participation gives the buyer access to higher quality levels, for the same evolution

of his values (assuming these values are reported truthfully). Like Condition (ii), Condition (i) is

a kind of monotonicity condition � it implies monotonicity of the allocations in the participation

date. Like Condition (ii), it is somewhat stronger than required, but it is simple to state and a

natural analogue to the condition of Proposition 1 for the two-value case considered above.

At least when the conditions of Proposition B.1 hold, we are able to con�rm the �ndings in

Corollary 1. If ���� is increasing in � , then qualities are distorted further below the �rst-best level at

later dates and the buyer expects less rent conditional on his value at arrival. A generalized �principle

of vanishing distortions�also applies, provided that the impulse response functions J t�
�
�t� ;�

�
vanish

uniformly over time.

We next provide examples of processes for which Proposition B.1 is satis�ed.

Example B.1 Let �� > 0, let FIn be the uniform distribution on
�
0; ��
�
, and let � be a positive scalar.

For each � and each t > � , let ~��;t = ��
�
1� ~"t��e����;t�1

�
, where ~"t�� is a random variable distributed

uniformly on the unit interval. For each � , each t > � , and each �t� ;� ,

mt
�

�
�t� ;�

�
= ��;t � �t���ts=�

�
�� � �s

����
��
+ 1

�
. (B.5)

The conditions of Proposition B.1 are satis�ed provided that, for all � ,

���

�
��
��
+ 1

�
�
��+1
��+1

+ 1. (B.6)

Proof of Example B.1 . For any � , t and (��;t�1; "t�� ), let z (��;t�1; "t�� ) = ��
�
1� "t��e����;t�1

�
.

For any sequence of values �t� ;� , we may �nd for each s 2 f� + 1; : : : ; tg the shock "s�� such that
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��;s = ��
�
1� "s��e����;s�1

�
. Indeed, these are given by

"s�� =
�� � ��;s
��e����;s�1

.

The chain rule yields that

J t�
�
�t� ;�

�
= �ts=�+1

@z (��;s�1; "s�� )

@��;s�1

Hence,

J t�
�
�t� ;�

�
= �ts=�+1

���"s��e
����;s�1

= �t���ts=�+1
�
�� � ��;s

�
.

Note also that, for � 2
�
0; ��
�
, FTr (�j0) =

����
��
. Substituting in (B.4) yields (B.5). It is then easy

to see that Condition (ii) of Proposition B.1 is satis�ed. That Condition (i) is satis�ed follows from

(B.6).

Example B.1 is notable in that it typically includes a wide class of distributions for the arrival

date. If ��� � 1, for instance, then it is enough that ���� is non-decreasing in � , which is the condition
we emphasized for the two-value case. More generally, Condition (i) of Proposition B.1 is more likely

to hold if the process is not too persistent. In the above example, the impulse response function is

given, for any dates � , and t > � , by J t�
�
�t� ;�

�
= �t���ts=�+1

�
�� � ��;s

�
; thus � is a parameter which

indexes the persistence of the process and the condition holds more easily whenever � is small.

An important class of examples in the literature, beginning with Besanko (1985), concerns au-

toregressive processes. Suppose the buyer�s value evolves according to an autoregressive process,

with ~��;t = 
��;t�1 + ~"t for some 
 2 (0; 1] and ~"t an independently distributed �shock�. In this

case, Condition (ii) is often straightforward to check, while Condition (i) is more di¢ cult, unless

restrictive assumptions are made on the distribution of arrivals. Condition (i) is easier to check

when there are two possible arrival dates, however, as in the following example.

Example B.2 Suppose that T = 2. Let FIn be the uniform distribution on � =
�
�; ��
�
, which

determines the distribution of ~�1;1 and ~�2;2. Let 
 2 (0; 1] and let G be a continuously di¤erentiable

c.d.f. on
�
� (1� 
) ; �� (1� 
)

�
. Suppose that ~�1;2 is distributed according to 
�1;1 + ~", where ~" is

distributed according to G. Then m1
1 (�1;1) = �1;1 �

1�FIn(�1;1)
fIn(�1;1)

, m2
1

�
�21;1
�
= �1;2 � 
 1�FIn(�1;1)fIn(�1;1)

, and

m2
2 (�2;2) = �2;2�

1�FIn(�2;2)
fIn(�2;2)

� �1
�2

1�G(�2;2�
�)
fIn(�2;2)

. Then both conditions of Proposition B.1 are satis�ed.

Proof of Example B.2. Condition (ii) is simple to check. For Condition (i), note that, for

each possible �21,
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1� FIn (�1;2)
fIn (�1;2)

= �� � �1;2

� �� �
�

�1;1 + �� (1� 
)

�
= 


�
�� � �1;1

�
= 


1� FIn (�1;1)
fIn (�1;1)

.

Therefore, m2
2 (�1;2) � �1;2 �

1�FIn(�1;2)
fIn(�1;2)

� �1;2 � 
 1�FIn(�1;1)fIn(�1;1)
= m2

1

�
�21;1
�
, as required.

While verifying the conditions in Proposition B.1 can be di¢ cult, certain qualitative properties

of the optimal mechanism are quite robust. Indeed, under fairly general conditions (requiring neither

of the Conditions (i) or (ii) of Proposition B.1), we can establish a partial analogue of Corollary 2.

This describes how the agent fares for all su¢ ciently late participation dates.

Proposition B.2 Suppose that T = +1, with �� > 0 for all � . Then the following are true of an

optimal mechanism:

(i) V�;� (�; ;) converges to zero with � .
(ii) If, in addition, FTr(�j�) has full support on �, then the buyer�s expected rents conditional

on participation at date � , E
h
V�;�

�
~��;� ; ;

�i
, converge to zero with � .

Proof of Proposition B.2. We begin with Part (i). Suppose for a contradiction that there

exists " > 0 such that, for all �� , there is some � > �� with V�;� (�; ;) > ". We consider excluding the
buyer after date � , and then reducing the buyer�s rents in case of arrival at date � or before. We

argue that this is possible in such a way that the reduction in (ex-ante) expected buyer rents exceeds

the (ex-ante) loss in surplus.

Let �S = maxqf��q � c(q)g be the upper bound on the surplus that is generated in each period.
The total (discounted life-time) surplus generated by a buyer who participates at some date s is no

greater than SL =
�S

1�� in date-s dollars. The contribution to ex-ante expected discounted surplus

from arrival after date � is therefore no greater than

���1
1X

s=�+1

�s�
s��SL � ��SL

1X
s=�+1

�s

=
�S��

1� �

1X
s=�+1

�s:

Let R� = V�;� (�; ;) denote the rent expected conditional on arrival at date � with value �. Con-
sider excluding participation in the mechanism after date � and charging an additional participation

fee equal to ���tR� in case of arrival at each date t � � . The adjusted mechanism remains incentive
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compatible and induces immediate participation whenever the buyer arrives at date � or earlier. The

reduction in the ex-ante expected rent left to the buyer is at least ���1R�
P�
s=1 �s. The increase in

pro�ts is therefore at least

���1R�

�X
s=1

�s �
�S��

1� �

1X
s=�+1

�s

= ���1

 
R�

�X
s=1

�s �
�S�

1� �

1X
s=�+1

�s

!
. (B.7)

By assumption, we can pick � arbitrarily large and such that R� = V�;� (�; ;) > ". Hence, the

expression (B.7) can be assured strictly positive for � chosen su¢ ciently large. That is, pro�ts are

higher under the new mechanism.

Now consider Part (ii). If this result does not hold, then there exists " > 0 such that we can

�nd a sequence (�k)
1
k=1 with the property that E

h
V�k;�k

�
~��k;�k ; ;

�i
� " for all k = 1; 2; : : : . First

note that V�k;�k (��k;�k ; ;) is uniformly bounded over k and ��k;�k 2 �. Otherwise, by Lemma B.1

and the assumption that q � �q, we must have V�k;�k (�; ;) is not uniformly bounded, contradicting
Part (i) of the proposition. Because E

h
V�k;�k

�
~��k;�k ; ;

�i
� " for all k, and because V�k;�k (�; ;)

is non-decreasing by Lemma B.1, we can hence �nd �; � > 0 such that V�k;�k (��k;�k ; ;) > � for

all ��k;�k > �� � �. The assumption that FTr (�j�) has full support on � then implies the exis-

tence of � such that E
h
V�k;�k

�
~��k�1;�k ; ;

�
j~��k�1;�k�1 = �

i
> � for all k. Since V�k�1;�k�1 (�; ;) �

�E
h
V�k;�k

�
~��k�1;�k ; ;

�
j~��k�1;�k�1 = �

i
by the incentive constraint (B.1), we have established that

V�k�1;�k�1 (�; ;) remains bounded above �� > 0, again contradicting Part (i) of the proposition.

For Part (i) of the proposition, the intuition is the familiar one: reducing rents at later dates

allows the seller to reduce rents also at all earlier dates, so the seller does well to pick V�;� (�; ;) close
to zero for large � . However, this does not necessarily imply that V�;� (��;� ; ;) should vanish with
� for all ��;� . In particular, one can �nd processes with ��(�) < �� such that the buyer continues

to expect positive rent upon arrival with a value larger than ��(�) under an optimal mechanism.

Intuitively, the reason is that permitting the buyer a large rent for high initial values need not create

a valuable option for the buyer when he arrives in the previous period. For instance, such high

values might only be obtained at the buyer�s arrival date. The full-support assumption in Part (ii)

of the proposition guarantees that this does not happen.

Proposition B.2 also has implications for optimal qualities, which can be understood by exam-

ining Lemma B.1. In particular, note that

V 
�;� (��;� ; ;) = V 
�;� (�; ;) +
Z ��;�

�
E

" 1X
s=�

�s��Js�

�
~�
s
�;�

�
q��;s

�
~�
s
�;�

�
j~��;� = r

#
dr

under an optimal mechanism with allocation rule
�
q��;t
�
1���t. Hence, if FTr(�j�) has full support

on �, the observation that E
h
V�;�

�
~��;� ; ;

�i
vanishes with � (Part (ii) of Proposition B.2) implies
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that the allocations q��;s
�
�s�;�

�
cannot be too large at histories �s�;� such that the impulse responses

Js�
�
�s�;�

�
are large, except perhaps with small probability.12

12Conversely, if the buyer�s values are not very persistent, then qualities may not be very distorted after the early

periods of the relationship. In the extreme case, where the buyer�s values are independently distributed across time,

we have Js�
�
�s�;�

�
= 0 whenever s > � . The optimal allocation then coincides with the e¢ cient allocation at every

date after the arrival date � (i.e., q��;s
�
�s�;�

�
= ��;s for all s > � and all �s�;� ).
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