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Section A illustrates the properties of the expectHill estimator of the tail index with a real

data example. Simulation results are discussed in Section B. The proofs of all theoretical

results in the main paper and additional technical results are provided in Section C.

A On expectHill estimation

The aim of this section is to illustrate the behavior of the expectHill estimator with empirical

data and to highlight some of the theoretical findings in Section 3 of the main article. First,

the purely expectile-based estimator

rγτn “
1

tnp1´ τnqu

tnp1´τnqu
ÿ

i“1

log

˜

rξ1´pi´1q{n
rξ1´tnp1´τnqu{n

¸

of the tail index γ has exactly the same form as the quantile-based Hill estimator

pγτn “
1

tnp1´ τnqu

tnp1´τnqu
ÿ

i“1

log

ˆ

pq1´pi´1q{n
pq1´tnp1´τnqu{n

˙

with the tail empirical quantile process pq replaced by its least squares analogue rξ. Theorem 1

gives its asymptotic normality. As pointed out in Remark 1, the conditions involving the

auxiliary function A in Theorem 1 are also required to derive the asymptotic normality of

Hill’s estimator pγτn . These conditions are, however, difficult to check in practice, which makes

the choice of the intermediate sequence τn a hard problem. A usual practice for selecting a

reasonable estimate pγτn is to set τn “ 1 ´ k{n for a sequence of integers k, then to plot the

graph of k ÞÑ pγ1´k{n, and finally to pick out a value of k corresponding to the first stable

part of the plot (see Remark 2). Yet, the Hill plot may be so unstable that reasonable values

of k (which would correspond to the true value of γ) may be hidden in the graph. The

least squares analogue rγ1´k{n affords a smoother and more stable plot which counteracts the



volatility defect of the Hill plot. To illustrate this advantage of the expectHill estimator,

we use trade data on the SPDR S&P 500 ETF (SPY), which is an exchange traded fund

(ETF) that tracks the S&P 500 index. The dataset comprises 10 years of trade data on SPY

starting from June 15th, 2004, to June 13th, 2014. First, we estimate the tail index of the

daily open-to-close loss returns (i.e. minus returns) using the whole sample with 2,497 days

of trade data. Figure 1(a) shows the paths k ÞÑ pγ1´k{n in red and k ÞÑ rγ1´k{n in blue based on

these data, for the selected range of values 1 ď k ď n{ log n (this restriction allows to reject

large values of k). To determine a reasonable pointwise estimate, say pγ1´k{n, or equivalently

an appropriate sample fraction k, we applied the same simple automatic data-driven device

as El Methni and Stupfler (2017) and Daouia et al. (2020). Built on the idea of balancing the

potential estimation bias and variance, this automatic selection consists first in computing

the standard deviations of the estimator over a moving window large enough to cover around

5% of the possible values of k in the selected range 1 ď k ď n{ log n. The first window over

which the standard deviation has a local minimum, and is less than the average standard

deviation across all windows, may be viewed as the first stable region of the plot. The value

of k for which pγ1´k{n is the median estimate within this window defines then the desired

sample fraction. Appropriate values of k, or τn “ 1´k{n, in all our proposed expectile-based

estimators are chosen according to this selection procedure.

The resulting final estimates pγ1´k{n and rγ1´k{n are reported in the second row of Table 1

(third and fifth columns), along with their associated sample fractions k and stable regions.

These results confirm the model assumption γ ă 1
2
. To check whether the important tail

heaviness of the loss returns is driven by the crisis period, we also estimate γ in three

subperiods: Before Crisis, from June 15th, 2004, to August 29th, 2008 (1,053 trading days);

During Crisis, from September 2nd, 2008, to May 29th, 2009 (185 trading days), and After

Crisis, from June 1st, 2009, to June 13th, 2014 (1,259 trading days). The plots of the

estimates k ÞÑ pγ1´k{n and k ÞÑ rγ1´k{n corresponding to these subperiods are depicted in

Figure 1(b)-(d). The final estimates pγ1´k{n and rγ1´k{n, reported in Table 1 for each subperiod

(from the third row), are chosen according to the automatic selection procedure described

above (for the crisis period whose length is only 185 trading days, we used a moving window

which covers around 20% of the possible values of k in r1, n{ log ns). The messages yielded by

the two methods are broadly similar, giving evidence of a great variability in loss returns and

a fat tail of their distribution in the three periods before, during and after crisis. When using

weekly loss returns (corresponding to Wednesdays) in the same sample period, we obtain the

plots in Figure 2 and the final estimates in Table 2. Given the length of the crisis period

(38 trading weeks), we perform our extreme value estimation here only for the full period

(n “ 516), the pre-crisis period (n “ 219) and the post-crisis period (n “ 259).
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Figure 1: Plots of pγ1´k{n in red, rγ1´k{n in blue, and γ1´k{np1{2q in green, based on daily loss

returns of the SPDR S&P 500 ETF (SPY), for the selected range of values 1 ď k ď n{ log n.

The estimates depicted in (a)-(d) correspond, respectively, to the full 10-years period (2004-

2014) and the three sub-periods: Before Crisis (2004-2008), During Crisis (2008-2009) and

After Crisis (2009-2014).
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Figure 2: Plots of pγ1´k{n in red, rγ1´k{n in blue, and γ1´k{np1{2q in green, based on weekly loss

returns of the SPDR S&P 500 ETF (SPY), for the selected range of values 1 ď k ď n{ log n.

The estimates depicted in (a)-(c) correspond, respectively, to the full 10-years period (2004-

2014) and the two sub-periods: Before Crisis (2004-2008) and After Crisis (2009-2014).
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Period considered n pγ1´k{n γ1´k{np
1
2
q rγ1´k{n

(k P window) (k P window) (k P window)

Full period 2,497 0.3585 0.3437 0.3344

(57 P r46, 60s) (53 P r40, 54s) (47 P r40, 54s)

Before Crisis 1,053 0.2722 0.2917 0.3091

(30 P r29, 41s) (32 P r28, 40s) (41 P r34, 46s)

During Crisis 185 0.2445 0.2863 0.2962

(11 P r9, 17s) (9 P r8, 16s) (5 P r3, 11s)

After Crisis 1,259 0.2523 0.2670 0.2895

(14 P r12, 24s) (13 P r12, 24s) (19 P r10, 22s)

Table 1: Estimates of the tail index of the SPDR S&P 500 ETF (SPY), based on daily

loss returns over the full 10-years period (2004-2014) and three sub-periods: Before Crisis

(2004-2008), During Crisis (2008-2009) and After Crisis (2009-2014).

Period considered n pγ1´k{n γ1´k{np
1
2
q rγ1´k{n

(k P window) (k P window) (k P window)

Full period 516 0.3909 0.3829 0.3355

(42 P r30, 46s) (35 P r30, 46s) (23 P r15, 31s)

Before Crisis 219 0.2182 0.2705 0.3031

(7 P r4, 12s) (12 P r7, 15s) (10 P r4, 12s)

After Crisis 259 0.4316 0.4199 0.3997

(11 P r10, 26s) (17 P r10, 26s) (16 P r7, 23s)

Table 2: Estimates of the tail index based on weekly loss returns.

In each considered period, the purely least asymmetrically weighted squares estimator

rγ1´k{n seems to be beneficial in producing smoother and more stable and pleasing plots, but

these plots may not be more revealing than Hill plots. Already in Figure 1(a)-(b), it may be

seen that the smooth paths of rγ1´k{n can exhibit a sample-wise monotonic evolution with k.

This may result in estimates with higher bias than the Hill estimates. One way to reduce

this potential defect is by using a linear combination of rγ and pγ for estimating γ. For α P R
we have then defined the more general expectHill estimator

γτnpαq “ αpγτn ` p1´ αqrγτn .

For example, as visualized in Figure 1, the simple mean γτnp1{2q in green line would represent
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a reasonable compromise between the use of large asymmetric least squares in rγτn and top

order statistics in pγτn . Also, Figure 3 shows that the mean γτnp1{2q affords a middle course

between pγτn ” γτnp1q and rγτn ” γτnp0q in terms of asymptotic variance.
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Figure 3: Asymptotic variance vα of pγτn in red pα “ 1q, rγτn in blue pα “ 0q, and γτnp1{2q in

green pα “ 0.5q, as functions of γ P p0, 1{2q.

The important question of how to select in practice the combination parameter α is

discussed in Section 6 of the main paper and implemented in Section 8 through the same

empirical data.

B Some simulation evidence

The aim of this section is to explore some features that were mentioned in Section 7 of the

main article. We will illustrate the following points:

(B.1) Estimates of γ.

(B.2) Estimates of ξτ 1n .

(B.3) Estimates of XESτ 1n .

(B.4) Estimates of QESpn .
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In order to illustrate the behavior of the presented estimation procedures, we use the same

considerations as in Section 7 of the main paper. Namely, we consider the Student t-

distribution with 1{γ degrees of freedom, the Fréchet distribution F pxq “ e´x
´1{γ

, x ą 0,

and the Pareto distribution F pxq “ 1 ´ x´1{γ, x ą 1. The finite-sample performance of the

different estimators is evaluated through their relative Mean-Squared Error (MSE) and bias,

computed over 200 replications. All the experiments have sample size n “ 2,500 and true

tail index γ P t0.33, 0.48u. In our simulations we used the extreme levels τ 1n “ pn “ 1´ 1
n

and

the intermediate level τn “ 1´ k
n
, where the integer k can be viewed as the effective sample

size for tail extrapolation.

B.1 Estimation of the tail index

This section provides Monte Carlo evidence that the two-step expectHill estimator γ1´k{n,

as introduced in (19), has a very similar accuracy to the optimal version γ1´k{npαpγqq. Both

estimators have the common linear form described in (8), with the combination parameter

being α “ α1´k{n :“ αpγ1´k{np
1
2
qq in the former estimator and the true theoretical optimal

weight αpγq in the latter. These empirical and theoretical ‘variance-optimal’ expectHill es-

timators were compared with the ‘oracle’ expectHill estimator γ1´k{npαoracleq obtained by

selecting the value of α which minimizes its MSE, as well as the ‘hybrid’ version γ1´k{np1{2q

obtained with the average weight α “ 1{2. In the case of Student distribution, Figure 4(a)

gives the evolution of the MSE (in top panels) and the bias (in bottom panels) of γ1´k{n{γ

(dashed red line), γ1´k{npαpγqq{γ (solid blue line), γ1´k{npαoracleq{γ (dashed orange line) and

γ1´k{np1{2q{γ (solid green line), as functions of the effective sample fraction k. It is remark-

able that the three plots of the resulting ‘variance-optimal’ and ‘hybrid’ estimates (in red,

blue and green) are overall almost identical in this case. Most importantly, they are extremely

close to the benchmark plot (in orange) of the ‘oracle’ estimate in terms of both MSE and

bias. The results obtained in the cases of Fréchet and Pareto distributions are displayed in

Figures 4(b) and 5. Here also the MSE estimates are still very close for the ‘variance-optimal’

and ‘oracle’ estimators (in red, blue and orange), with a slight advantage in terms of bias

for the ‘oracle’ estimator in the case γ “ 0.48. However, the ‘hybrid’ version (in green), in

contrast to the Student scenario, deteriorates slightly in terms of MSE and appreciably in

terms of bias.

B.2 Estimates of ξτ 1
n

The simulation experiments undertaken in this section are concerned with the two-step esti-

mator ξ
‹

τ 1n
:“ ξ

‹

τ 1n
pα, βq of the extreme expectile ξτ 1n . It is defined in (21) by substituting in the
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Figure 4: MSE estimates (top panels) and Bias estimates (bottom panels) of γ1´k{n{γ

(dashed red line), γ1´k{npαpγqq{γ (solid blue line), γ1´k{npαoracleq{γ (dashed orange line) and

γ1´k{np1{2q{γ (solid green line), as functions of k, for γ “ 0.33 (left) and γ “ 0.48 (right).
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Figure 5: MSE estimates (top panels) and Bias estimates (bottom panels) of γ1´k{n{γ

(dashed red line), γ1´k{npαpγqq{γ (solid blue line), γ1´k{npαoracleq{γ (dashed orange line) and

γ1´k{np1{2q{γ (solid green line), as functions of k, for γ “ 0.33 (left) and γ “ 0.48 (right),

in the case of a Pareto distribution.

estimated values α “ ατn and β “ βτn of the theoretical optimal weights αpγq and βαpγqpγq,

as described in Section 6. Its accuracy is evaluated in comparison with the variance-optimal

version ξ
‹

τ 1n
pαpγq, βαpγqpγqq that is obtained by replacing the combination parameters α and β

with their true optimal values αpγq and βαpγqpγq. We also considered the ‘hybrid’ version of

ξ
‹

τ 1n
pα, βq which corresponds to the average weights α “ β “ 1{2, and the ‘oracle’ benchmark

obtained by selecting the values of α and β which minimize the MSE of ξ
‹

τ 1n
pα, βq .

Figures 6 and 7 display the Monte Carlo estimates for ξ
‹

τ 1n
pαpγq, βαpγqpγqq{ξτ 1n in blue,

ξ
‹

τ 1n
{ξτ 1n in red, ξ

‹

τ 1n
p1{2, 1{2q{ξτ 1n in green, and ξ

‹

τ 1n
pαoracle, βoracleq{ξτ 1n in orange. Clearly, the

use of the estimated values α “ ατn and β “ βτn provides, in all cases, very similar results,

in terms of both MSE and bias, to the true optimal weights αpγq and βαpγqpγq themselves.

Most importantly, the MSE and bias estimates based on our variance-optimal selection of

weights are also very similar to those based on the oracle selection device over the range

of intermediate values, say, k ď 100. Their behavior outside this range of k values remains

quite good in comparison with the oracle estimates. As for the hybrid version ξ
‹

τ 1n
p1{2, 1{2q, it

exhibits a respectable evolution with k relative to both variance-optimal and oracle estimates,

with a slightly better bias relative to the variance-optimal estimates.
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Figure 6: MSE estimates (in log scale) against k, for Student (top), Fréchet (middle)

and Pareto (bottom) distributions, with γ “ 0.33 (left) and γ “ 0.48 (right). Re-

sults for ξ
‹

τ 1n
pαpγq, βαpγqpγqq{ξτ 1n in blue, ξ

‹

τ 1n
{ξτ 1n in red, ξ

‹

τ 1n
p1{2, 1{2q{ξτ 1n in green, and

ξ
‹

τ 1n
pαoracle, βoracleq{ξτ 1n in orange.
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Figure 7: Bias estimates in the same setting as in Figure 6.
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B.3 Estimates of XESτ 1
n

We have also investigated the accuracy of the two-step XESτ 1n estimators ĆXES
‹

τ 1n
:“ĆXES

‹

τ 1n
pαq

and XES
‹

τ 1n
:“ XES

‹

τ 1n
pα, βq, introduced respectively in (22) and (23). They are computed by

substituting in the estimated values α “ ατn and β “ βτn of the optimal weights αpγq and

βαpγqpγq. We also compared these competing estimators with their best versions ĆXES
‹

τ 1n
pαpγqq

and XES
‹

τ 1n
pαpγq, βαpγqpγqq that are obtained by substituting in the true optimal weights

α “ αpγq and β “ βαpγqpγq.

Figures 8 and 9 give the evolution of the MSE (in log scale) and bias estimates of

XES
‹

τ 1n
pαpγq, βαpγqpγqq{XESτ 1n in blue, XES

‹

τ 1n
{XESτ 1n in red, ĆXES

‹

τ 1n
pαpγqq{XESτ 1n in violet,

and ĆXES
‹

τ 1n
{XESτ 1n in green. Here also, the two-step estimators (in red, respectively, green)

have very similar results, in terms of both MSE and bias, to their optimal versions (in blue,

respectively, violet) in all cases.

Moreover, in the case of Student distribution (top panels), it may be seen that the green

and violet curves, which correspond to the estimates ĆXES
‹

τ 1n
, perform better than the red and

blue curves that correspond to the estimates XES
‹

τ 1n
. By contrast, in the cases of Fréchet and

Pareto distributions (middle and bottom panels), the situation is reversed as the estimates

XES
‹

τ 1n
seem to be superior to their competitors ĆXES

‹

τ 1n
in terms of both MSE and bias.

B.4 Estimates of QESpn

We have also undertaken simulation experiments to evaluate the finite-sample performance

of the composite versions ĆXES
‹

pτ 1nppnq
:“ĆXES

‹

pτ 1nppnq
pαq in (24) and XES

‹

pτ 1nppnq
:“ XES

‹

pτ 1nppnq
pα, βq

in (25), with α “ ατn and β “ βτn , which estimate the same conventional expected shortfall

QESpn as the purely quantile-based estimator zQES
‹

pn in (26).

Figures 10 and 11 give the MSE (in log scale) and bias estimates of XES
‹

pτ 1nppnq
{QESpn in

red, ĆXES
‹

pτ 1nppnq
{QESpn in green, and zQES

‹

pn{QESpn in yellow. We superimpose in the same

figures the MSE and bias estimates of the optimal versions XES
‹

pτ 1nppnq
pαpγq, βαpγqpγqq{QESpn in

blue and ĆXES
‹

pτ 1nppnq
pαpγqq{QESpn in violet. The results indicate that both two-step estimators

ĆXES
‹

pτ 1nppnq
and XES

‹

pτ 1nppnq
are very accurate with respect to their optimal versions. They

also suggest the superiority of the former estimator (green plots) in the case of Student

distribution, and of the latter (red plots) in the other cases.
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Figure 8: MSE estimates (in log scale) against k, for Student (top), Fréchet (middle)

and Pareto (bottom) distributions, with γ “ 0.33 (left) and γ “ 0.48 (right). Results for

XES
‹

τ 1n
pαpγq, βαpγqpγqq in blue, XES

‹

τ 1n
in red, ĆXES

‹

τ 1n
pαpγqq in violet, and ĆXES

‹

τ 1n
in green.
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Figure 9: Bias estimates in the same setting as in Figure 8.
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Figure 10: MSE estimates (in log scale) against k, for Student (top), Fréchet (middle)

and Pareto (bottom) distributions, with γ “ 0.33 (left) and γ “ 0.48 (right). Results for

XES
‹

pτ 1nppnq
pαpγq, βαpγqpγqq in blue, XES

‹

pτ 1nppnq
in red, ĆXES

‹

pτ 1nppnq
pαpγqq in violet, ĆXES

‹

pτ 1nppnq
in

green, and zQES
‹

pn in yellow.
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Figure 11: Bias estimates in the same setting as in Figure 10.
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C Proofs

In all proofs, the sequence τn is replaced by the sequence k “ np1´ τnq.

Proof of Theorem 1. To show (i), the main idea is to combine Proposition 1 with a Taylor

expansion of the logarithm function. This is not quite as straightforward as one might expect,

because the error term in the approximation of the tail empirical expectile process given by

Proposition 1 does not converge to 0 uniformly in s. The trick we use here is to split the

integral defining qγk in two parts, corresponding to “low” and “high” values of s respectively;

we then show directly that the first part is asymptotically negligible, and we analyse the

second part using the aforementioned Taylor expansion. A similar argument is used in e.g.

page 113 of de Haan and Ferreira (2006) and El Methni and Stupfler (2017, 2018). Let us

finally mention that to use Proposition 1, we should work with a suitable version of the tail

expectile process that allows us to write its Gaussian approximation; we can of course do so

since this operation leaves the distribution of the estimator qγk unchanged. A similar idea

will be used, without further mention, in the proof of Theorem 2.

Set then sn “ k´p1´εq{p1`2εq for some ε ą 0 sufficiently small (and in particular less than 1{4),

and write

qγk “

ż sn

0

log

˜

rξ1´ks{n
rξ1´k{n

¸

ds`

ż 1

sn

log

˜

rξ1´ks{n
rξ1´k{n

¸

ds “: In,1 ` In,2. (B.1)

We start by controlling directly In,1. This is done by writing

|In,1| ď sn log

˜

rξ1
rξ1´k{n

¸

.

Recall that rξ1 “ Yn,n and use a combination of convergence ξτ{qτ „ pγ
´1 ´ 1q´γ as τ Ñ 1

and Lemmas 2(i) and 3 in Daouia et al. (2020) to find that

log

˜

rξ1
rξ1´k{n

¸

“ log

ˆ

Yn,n
pq1´k{n

˙

`OPp1q.

Using further the heavy-tailed assumption on the distribution on Y , it follows from Theo-

rem 1.1.6, Theorem 1.2.1 and Lemma 1.2.9 in de Haan and Ferreira (2006) that

Yn,n
Upnq

d
ÝÑ 1` γGγ

where Gγ has distribution function x ÞÑ expp´p1 ` γxq´1{γq, for x ą ´1{γ. It follows that

the limiting variable 1` γGγ is positive and thus logpYn,n{Upnqq “ OPp1q by the continuous
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mapping theorem. Besides, pq1´k{n{Upn{kq “ pq1´k{n{q1´k{n
P
ÝÑ 1, by Lemma 2(i) in Daouia

et al. (2020) again. Therefore

log

˜

rξ1
rξ1´k{n

¸

“ log

ˆ

Upnq

Upn{kq

˙

`OPp1q.

Potter bounds (see e.g. Proposition B.1.9.5 in de Haan and Ferreira, 2006) then yield

log

˜

rξ1
rξ1´k{n

¸

“ OPplog kq. (B.2)

Recalling that sn “ k´p1´εq{p1`2εq with ε ă 1{4, it is now straightforward to get

?
k|In,1| “ OP

´

sn ˆ
?
k log k

¯

“ oPp1q. (B.3)

We now work on In,2. Note that for s P rsn, 1s, s
´1{2´ε{

?
k ď s

´1{2´ε
n {

?
k “ k´ε{2 Ñ 0; use

then Proposition 1 and a Taylor expansion of the logarithm function to obtain

In,2 “ ´γ

ż 1

sn

logpsq ds

`
1
?
k
γ2
a

γ´1 ´ 1

ˆ
ż 1

sn

sγ´1
„
ż s

0

Wnptq t
´γ´1 dt



ds´ p1´ snq

ż 1

0

Wnptq t
´γ´1 dt

˙

`
γpγ´1 ´ 1qγ

q1´k{n

ˆ

EpY q
ż 1

sn

psγ ´ 1q ds` oPp1q

˙

`
p1´ γqpγ´1 ´ 1q´ρ

1´ γ ´ ρ

ˆ
ż 1

sn

s´ρ ´ 1

ρ
ds

˙

Apn{kq ` oP

ˆ

1
?
k

˙

.

Since sn “ k´p1´εq{p1`2εq, we find that

?
k

ˇ

ˇ

ˇ

ˇ

ż 1

0

logpsq ds´

ż 1

sn

logpsq ds

ˇ

ˇ

ˇ

ˇ

“ O
`

kp´1{2`2εq{p1`2εq log k
˘

Ñ 0.

Using again the fact that sn Ñ 0, along with the conditions 1{q1´k{n “ OPp1{
?
kq and

Apn{kq “ OPp1{
?
kq, we get

In,2 “ γ `
1
?
k
γ2
a

γ´1 ´ 1

ˆ
ż 1

0

sγ´1
„
ż s

0

Wnptq t
´γ´1 dt



ds´

ż 1

0

Wnptq t
´γ´1 dt

˙

´ EpY q
γ2pγ´1 ´ 1qγ

γ ` 1

1

q1´k{n
`
p1´ γqpγ´1 ´ 1q´ρ

p1´ ρqp1´ γ ´ ρq
Apn{kq ` oP

ˆ

1
?
k

˙

.

By an integration by parts (with the inner integral being differentiated as a function of s),

we obtain
ż 1

0

sγ´1
„
ż s

0

Wnptq t
´γ´1 dt



ds “
1

γ

ż 1

0

Wnpsq

s
ps´γ ´ 1qds
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and therefore, denoting by

Z “ γ
a

γ´1 ´ 1

ż 1

0

W psq

s
pr1´ γss´γ ´ 1qds

where W is a standard Brownian motion, we find that

?
kpIn,2 ´ γq

d
ÝÑ

p1´ γqpγ´1 ´ 1q´ρ

p1´ ρqp1´ γ ´ ρq
λ1 ´ EpY q

γ2pγ´1 ´ 1qγ

γ ` 1
λ2 ` Z.

It is now enough to compute the variance of Z, which is

VarpZq “ γp1´ γq

ż 1

0

ż 1

0

minps, tq

st
pr1´ γss´γ ´ 1qpr1´ γst´γ ´ 1q ds dt.

It then follows from straightforward but lengthy computations that VarpZq “ 2γ3{p1 ´ 2γq;

we omit the details. Consequently

?
kpIn,2 ´ γq

d
ÝÑ N

ˆ

p1´ γqpγ´1 ´ 1q´ρ

p1´ ρqp1´ γ ´ ρq
λ1 ´ EpY q

γ2pγ´1 ´ 1qγ

γ ` 1
λ2,

2γ3

1´ 2γ

˙

. (B.4)

Combining (B.1), (B.3) and (B.4) completes the proof of (i).

To show (ii), it suffices to prove that

|qγk ´ rγk,l| “ OP

ˆ

logpkq

l

˙

. (B.5)

Write then

|qγk ´ rγk,l| “

ˇ

ˇ

ˇ

ˇ

ˇ

l
ÿ

i“1

ż i{l

pi´1q{l

«

log

˜

rξ1´ks{n
rξ1´k{n

¸

´ log

˜

rξ1´pi´1qk{plnq
rξ1´k{n

¸ff

ds

ˇ

ˇ

ˇ

ˇ

ˇ

and use the sample-wise monotonicity of the random function s ÞÑ rξ1´ks{n to get

|qγk ´ rγk,l| ď
1

l

l
ÿ

i“1

log

˜

rξ1´pi´1qk{plnq
rξ1´ik{plnq

¸

“
1

l
log

˜

rξ1
rξ1´k{n

¸

.

Conclude then using (B.2), which shows (B.5) and completes the proof.

Proof of Theorem 2. Since

γkpαq “ αpγk ` p1´ αqrγk

it is sufficient to analyse the joint asymptotic behaviour of ppγk, rγk, pq1´k{n, rξ1´k{nq. Let us then

start by remarking that

pγk “

ż 1

0

log

ˆ

pq1´tkus{n

q1´tku{n

˙

ds´ log

ˆ

pq1´tku{n

q1´tku{n

˙

.
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Note that, in Proposition 1, the sequence of Brownian motions is left unchanged if k is changed

into tku or rks; this is indeed the fundamental argument behind the proof of Lemma 2(i) in

Daouia et al. (2020). Arguing as in the proof of Theorem 1 (i.e. splitting the domain s P p0, 1s

into low and high values of s and using a Taylor expansion), and using the asymptotic

equivalences
a

tku „
?
k and Apn{tkuq „ Apn{kq (the latter due to the regular variation of

|A|), we get by Proposition 1 that:

?
kppγk´γq “

λ1
1´ ρ

`γ
a

γ´1 ´ 1

ˆ
ż 1

0

1

s
Wn

ˆ

s

γ´1 ´ 1

˙

ds´Wn

ˆ

1

γ´1 ´ 1

˙˙

`oPp1q. (B.6)

Besides, an inspection of the proof of Theorem 1 shows that

?
kprγk ´ γq “

p1´ γqpγ´1 ´ 1q´ρ

p1´ ρqp1´ γ ´ ρq
λ1 ´ EpY q

γ2pγ´1 ´ 1qγ

γ ` 1
λ2

` γ
a

γ´1 ´ 1

ż 1

0

Wnpsq

s
pr1´ γss´γ ´ 1qds` oPp1q (B.7)

where Wn is the sequence of Brownian motions appearing in Proposition 1. Using Proposi-

tion 1 twice more, we can also write

?
k

ˆ

pq1´k{n
q1´k{n

´ 1

˙

“ γ
a

γ´1 ´ 1Wn

ˆ

1

γ´1 ´ 1

˙

` oPp1q (B.8)

as well as
?
k

˜

rξ1´k{n
ξ1´k{n

´ 1

¸

“ γ2
a

γ´1 ´ 1

ż 1

0

Wnptqt
´γ´1dt` oPp1q. (B.9)

As a consequence, the random vector

?
k

˜

pγk ´ γ, rγk ´ γ,
pq1´k{n
q1´k{n

´ 1,
rξ1´k{n
ξ1´k{n

´ 1

¸

is asymptotically four-variate Gaussian, and as such

?
k

˜

γkpαq ´ γ,
pq1´k{n
q1´k{n

´ 1,
rξ1´k{n
ξ1´k{n

´ 1

¸

is asymptotically trivariate Gaussian. To complete the proof, we analyse the marginal asymp-

totic behaviour of each of the three components in this vector, as well as their pairwise

asymptotic covariance structure.

Marginal asymptotic behaviour of γkpαq: This is determined by the joint convergence of
?
k ppγk ´ γ, rγk ´ γq, to what we already know to be a bivariate Gaussian distribution. We

also know from Theorem 3.2.5 in de Haan and Ferreira (2006) that

?
kppγk ´ γq

d
ÝÑ N

ˆ

λ1
1´ ρ

, γ2
˙

.
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This is of course also a corollary of (B.6). Meanwhile, Theorem 1(ii) gives

?
kprγk ´ γq

d
ÝÑ N

ˆ

p1´ γqpγ´1 ´ 1q´ρ

p1´ ρqp1´ γ ´ ρq
λ1 ´ EpY q

γ2pγ´1 ´ 1qγ

γ ` 1
λ2,

2γ3

1´ 2γ

˙

.

It therefore only remains to calculate the limiting covariance of
?
kppγk ´ γ, rγk ´ γq. This

is obtained by computing the expectation of the product of the centred Gaussian terms

appearing in the two asymptotic expansions (B.6) and (B.7). In other words, the limiting

covariance is

cov “ cov1 ´ cov2

with cov1 :“ γp1´ γq

ż 1

0

ż 1

0

minps, pγ´1 ´ 1q´1tq

st
pr1´ γss´γ ´ 1qds dt

and cov2 :“ γp1´ γq

ż 1

0

minps, pγ´1 ´ 1q´1q

s
pr1´ γss´γ ´ 1qds.

Recalling that γ´1 ´ 1 ą 1, straightforward computations entail

cov1 “ pγ´1 ´ 1qγ´1 ´ γrγ ` 1` γ logpγ´1 ´ 1qs

and cov2 “ γrpγ´1 ´ 1qγ ´ 1´ γ logpγ´1 ´ 1qs. (B.10)

This results in

cov “ γrpγ´1 ´ 1qγ´1 ´ γs “ γ2
ˆ

pγ´1 ´ 1qγ

1´ γ
´ 1

˙

.

Wrapping up, we obtain
?
k ppγk ´ γ, rγk ´ γq

d
ÝÑ N pm,V q (B.11)

where m is the 2ˆ 1 vector

m :“

ˆ

λ1
1´ ρ

,
p1´ γqpγ´1 ´ 1q´ρ

p1´ ρqp1´ γ ´ ρq
λ1 ´ EpY q

γ2pγ´1 ´ 1qγ

γ ` 1
λ2

˙

and V is the 2ˆ 2 matrix

V :“

¨

˚

˚

˝

γ2 γ2
ˆ

pγ´1 ´ 1qγ

1´ γ
´ 1

˙

γ2
ˆ

pγ´1 ´ 1qγ

1´ γ
´ 1

˙

2γ3

1´ 2γ

˛

‹

‹

‚

.

After some more straightforward computations, we conclude that

?
k pγkpαq ´ γq

d
ÝÑ N pbα,Vαp1, 1qq

with the notation of the statement of Theorem 2.
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Marginal asymptotic behaviour of pq1´k{n: It is a straightforward byproduct of Equation (B.8)

that
?
k

ˆ

pq1´k{n
q1´k{n

´ 1

˙

d
ÝÑ N p0, γ2q.

Marginal asymptotic behaviour of rξ1´k{n: It is a direct consequence of Equation (B.9) that

?
k

˜

rξ1´k{n
ξ1´k{n

´ 1

¸

d
ÝÑ N

ˆ

0,
2γ3

1´ 2γ

˙

.

See also the discussion below Theorem 1 in Daouia et al. (2020).

Asymptotic covariance structure of pγkpαq, pq1´k{nq: For this, we remark first that pγk ´ γ and

pq1´k{n{q1´k{n ´ 1 are asymptotically independent: this is a consequence of the asymptotic

representation of pγk ´ γ obtained in the proof of Theorem 3.2.5 in de Haan and Ferreira

(2006) together with Lemma 3.2.3 therein. Besides, the limiting covariance structure of
?
kprγk ´ γ, pq1´k{n{q1´k{n´ 1q is obtained by computing the expectation of the product of the

centred Gaussian terms appearing in the asymptotic expansions (B.7) and (B.8). By (B.10)

above, this limiting covariance is:

cov2 “ γrpγ´1 ´ 1qγ ´ 1´ γ logpγ´1 ´ 1qs

with the notation of (B.10). The limiting covariance of
?
kpγkpαq ´ γ, pq1´k{n{q1´k{n ´ 1q is

then

p1´ αqγrpγ´1 ´ 1qγ ´ 1´ γ logpγ´1 ´ 1qs “ Vαp1, 2q.

Asymptotic covariance structure of pγkpαq, rξ1´k{nq: It follows from Equations (B.6), (B.7)

and (B.9) that the limiting covariance of
?
kpγkpαq ´ γ,

rξ1´k{n{ξ1´k{n ´ 1q is

COV “ αCOV1 ` p1´ αqCOV2

with

COV1 “ γ2p1´ γq

„
ż 1

0

ż 1

0

minppγ´1 ´ 1q´1s, tq

s
t´γ´1ds dt´

ż 1

0

minppγ´1 ´ 1q´1, tqt´γ´1dt



and

COV2 “ γ2p1´ γq

ż 1

0

ż 1

0

minps, tq

s
pr1´ γss´γ ´ 1qt´γ´1ds dt.

Direct computations yield

COV1 “ γ2
ˆ

pγ´1 ´ 1qγ

p1´ γq2
´ 1

˙

´ γ2
ˆ

pγ´1 ´ 1qγ

1´ γ
´ 1

˙

“
γ3pγ´1 ´ 1qγ

p1´ γq2
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and

COV2 “
γ3

p1´ γqp1´ 2γq
.

Consequently

COV “ γ3

p1´ γq2

„

αpγ´1 ´ 1qγ ` p1´ αq
1´ γ

1´ 2γ



“ Vαp1, 3q.

Asymptotic covariance structure of ppq1´k{n, rξ1´k{nq: Combining Equations (B.8) and (B.9),

we find that the limiting covariance of
?
kppq1´k{n{q1´k{n ´ 1, rξ1´k{n{ξ1´k{n ´ 1q is

γ2p1´ γq

ż 1

0

minpt, pγ´1 ´ 1q´1qt´γ´1dt “ γ2
ˆ

pγ´1 ´ 1qγ

1´ γ
´ 1

˙

“ Vαp2, 3q

after some straightforward calculations.

Combining these arguments on marginal convergence and asymptotic covariance structure,

we get
?
k

˜

γkpαq ´ γ,
pq1´k{n
q1´k{n

´ 1,
rξ1´k{n
ξ1´k{n

´ 1

¸

d
ÝÑ N pmα,Vαq (B.12)

with mα and Vα as in the statement of Theorem 2. This concludes the proof.

Proof of Theorem 3. Applying Theorem 2 and arguing as in the proof of Theorem 1 in

Daouia et al. (2018), we get the joint convergence

?
k

˜

pξ1´k{npαq

ξ1´k{n
´ 1,

rξ1´k{n
ξ1´k{n

´ 1

¸

d
ÝÑ

`

rp1´ γq´1 ´ logpγ´1 ´ 1qsΓα `Θ´ λ, Ξ
˘

where pΓα,Θ,Ξq is the limiting vector in Theorem 2, and

λ :“

ˆ

pγ´1 ´ 1q´ρ

1´ γ ´ ρ
`
pγ´1 ´ 1q´ρ ´ 1

ρ

˙

λ1 ` γpγ
´1
´ 1qγEpY qλ2.

Then clearly

?
k

˜

ξ1´k{npα, βq

ξ1´k{n
´ 1

¸

d
ÝÑ rp1´ γq´1 ´ logpγ´1 ´ 1qsβΓα ` βΘ` p1´ βqΞ´ βλ.

Set Ψα “ Γα ´ bα and rearrange the bias component to complete the proof.

Proof of Theorem 4. Define pn “ 1´ τ 1n and note that

log

˜

ξ
‹

1´pnpα, βq

ξ1´pn

¸

“ pγ1´k{npαq ´ γq log

ˆ

k

npn

˙

` log

˜

ξ1´k{npα, βq

ξ1´k{n

¸

´ log

ˆ

”npn
k

ıγ ξ1´pn
ξ1´k{n

˙

.
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The convergence logrk{pnpnqs Ñ 8 yields

?
k

logrk{pnpnqs
log

˜

ξ1´k{npα, βq

ξ1´k{n

¸

“ OP p1{ logrk{pnpnqsq “ oPp1q (B.13)

and

?
k

logrk{pnpnqs
log

ˆ

”npn
k

ıγ ξ1´pn
ξ1´k{n

˙

“

?
k

logrk{pnpnqs

ˆ

log

ˆ

ξ1´pn
q1´pn

˙

´ log

ˆ

ξ1´k{n
q1´k{n

˙

` log

ˆ

”npn
k

ıγ q1´pn
q1´k{n

˙˙

“ O

˜ ?
k

logrk{pnpnqs

„

1

q1´k{n
` |Apn{kq| `

1

q1´pn
` |Ap1{pnq|



¸

“ O

˜ ?
k

logrk{pnpnqs

„

1

q1´k{n
` |Apn{kq|



¸

“ op1q. (B.14)

Here, convergence (B.13) is a consequence of Theorem 3. Convergence (B.14) follows from

a combination of Proposition 1 in Daouia et al. (2020), Theorem 2.3.9 in de Haan and

Ferreira (2006) and the regular variation of |A|. Combining these convergences and using the

delta-method leads to the desired result.

Proof of Theorem 5. The proof of the convergence of ĆXES
‹

τ 1n
pαq is entirely similar to

that of Theorem 4 (applying Theorem 6 in Daouia et al. (2020) instead of Theorem 3, and

Proposition 4 in Daouia et al. (2020) instead of their Proposition 1). We omit the details.

We proceed by examining the convergence of XES
‹

1´pnpα, βq. Define pn “ 1´ τ 1n and write

log

˜

XES
‹

1´pnpα, βq

XES1´pn

¸

“ log

˜

ξ
‹

1´pnpα, βq

ξ1´pn

¸

` log

˜

r1´ γ1´k{npαqs
´1

r1´ γs´1

¸

´ log

ˆ

XES1´pn

r1´ γs´1ξ1´pn

˙

.

By Theorem 4 and the delta-method,

?
k

logrk{pnpnqs
log

˜

ξ
‹

1´pnpα, βq

ξ1´pn

¸

d
ÝÑ N pbα, vαq. (B.15)

Using then Theorem 2, the delta-method and the convergence logrk{pnpnqs Ñ 8, we get

?
k

logrk{pnpnqs
log

˜

r1´ γ1´k{npαqs
´1

r1´ γs´1

¸

P
ÝÑ 0. (B.16)
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Using finally a combination of Propositions 1(i) and 4 in Daouia et al. (2020) and the regular

variation of |A| and t ÞÑ q1´t´1 , we obtain

?
k

logrk{pnpnqs
log

ˆ

XES1´pn

r1´ γs´1ξ1´pn

˙

Ñ 0. (B.17)

Combining convergences (B.15), (B.16) and (B.17), it follows that

?
k

logrk{pnpnqs
log

˜

XES
‹

1´pnpα, βq

XES1´pn

¸

d
ÝÑ N pbα, vαq.

Another use of the delta-method completes the proof of the convergence of XES
‹

1´pnpα, βq.

Proof of Theorem 6. We only show the result for ĆXES
‹

pτ 1nppnq
pαq as the proof of the other

convergence is entirely similar. The key point is to write

ĆXES
‹

pτ 1nppnq
pαq “

ˆ

1´ pτ 1nppnq

1´ τ 1nppnq

˙´γτn pαq

ĆXES
‹

τ 1nppnq
pαq. (B.18)

It is, moreover, shown as part of the proof of Theorem 6 in Daouia et al. (2018) that

1´ pτ 1nppnq

1´ τ 1nppnq
“ 1`OP

˜

1
a

np1´ τnq

¸

.

[Combine (B.52), (B.53), (B.54) and (B.55) in the Supplementary Material document of

Daouia et al. (2018), noting that the strict monotonicity of FY is not required thanks to

Proposition 1(i) in Daouia et al. (2020); this also results in a corrected version of (B.51) in

the former paper]. Therefore

ˆ

1´ pτ 1nppnq

1´ τ 1nppnq

˙´γτn pαq

“ exp

ˆ

´γτnpαq log

„

1´ pτ 1nppnq

1´ τ 1nppnq

˙

“ exp

˜

´

«

γ `OP

˜

1
a

np1´ τnq

¸ff

ˆOP

˜

1
a

np1´ τnq

¸¸

“ 1`OP

˜

1
a

np1´ τnq

¸

. (B.19)

Furthermore, using the equivalent

1´ τ 1nppnq „ p1´ pnq
γ

1´ γ
, (B.20)
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we conclude that the conditions of Theorem 5 are satisfied if the parameter τ 1n there is set

equal to τ 1nppnq. By Theorem 5 then:

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nppnqqs

˜

ĆXES
‹

τ 1nppnq
pαq

XESτ 1nppnq
´ 1

¸

d
ÝÑ N pbα, vαq.

Now

log

„

1´ τn
1´ τ 1nppnq



“ log

„

1´ τn
1´ pn



` log

„

1´ pn
1´ τ 1nppnq



and in the right-hand side of this identity, the first term tends to infinity, while the second

term converges to a finite constant in view of (B.20). As a conclusion

log

„

1´ τn
1´ τ 1nppnq



„ log

„

1´ τn
1´ pn



.

Hence the convergence

a

np1´ τnq

logrp1´ τnq{p1´ pnqs

˜

ĆXES
‹

τ 1nppnq
pαq

XESτ 1nppnq
´ 1

¸

d
ÝÑ N pbα, vαq. (B.21)

We conclude the proof by writing

XESτ 1nppnq “ QESpn ˆ

"

p1´ γq
XESτ 1nppnq
ξτ 1nppnq

*

ˆ

"

p1´ γq
QESpn
qpn

*´1

(since ξτ 1nppnq ” qpn by definition). By a combination of Proposition 4 in Daouia et al. (2020)

with (B.20) and the regular variation of the functions |A| and t ÞÑ q1´t´1 , one gets

p1´ γq
XESτ 1nppnq
ξτ 1nppnq

“ 1` o

˜

logrp1´ τnq{p1´ pnqs
a

np1´ τnq

¸

.

Similarly and by Equation (B.20) in the Supplementary Material document of Daouia et al.

(2020),

p1´ γq
QESpn
qpn

“ 1` o

˜

logrp1´ τnq{p1´ pnqs
a

np1´ τnq

¸

.

Therefore
XESτ 1nppnq

QESpn
´ 1 “ o

˜

logrp1´ τnq{p1´ pnqs
a

np1´ τnq

¸

.

Together with (B.21), this entails

a

np1´ τnq

logrp1´ τnq{p1´ pnqs

˜

ĆXES
‹

τ 1nppnq
pαq

QESpn
´ 1

¸

d
ÝÑ N pbα, vαq. (B.22)

Combining (B.18), (B.19) and (B.22) completes the proof.
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