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Simulation results are discussed in Section A. The proofs of all theoretical results in the main

paper and additional technical results are provided in Section B.

A  Some simulation evidence

The aim of this section is to explore some features that were mentioned in Section 5.2 of the main
article.

We have undertaken simulation experiments to evaluate finite-sample performance of the com-
pn)> X—ES%L(pn)(ﬁ) and )TE\S;;L(M)(ﬂ) studied in Theorem 9. These composite
expectile-based estimators estimate the same conventional expected shortfall QES,, =~ as the direct
quantile-based estimator (jE\S;n = XE\S;;(pn)(ﬁ =1).

In order to illustrate the behavior of the presented estimation procedures, we use the same

posite versions ﬁg;ﬂ

considerations as in Section 5 of the main paper. Namely, we consider the Student ¢-distribution
with degree of freedom 1/7, the Fréchet distribution F(z) = e ", # > 0, and the Pareto
distribution F(z) = 1 — 27 %/7, # > 1. The finite-sample performance of the different estima-
tors is evaluated through their relative Mean-Squared Error (MSE) and bias, computed over 200
replications. The accuracy of the weighted estimators is investigated for various values of the
weight 5 € {0,0.2,0.4,0.6,0.8,1}. All the experiments have sample size n = 500 and tail index

v €{0.05,0.25,0.45}. In our simulations we used the extreme level p, = 1— % and the intermediate
k

level 7, = 1—, where the integer k can be viewed as the effective sample size for tail extrapolation.

We first examined the accuracy of m%(pn) and CjE\S;n (both independent of ) in comparison
with XES%,L(pn)(B), in Figures 1-2, and with )TE\S;,L(;D”)(B) in Figures 3-4.

Figures 1 and 2 give, respectively, the MSE (in log scale) and bias estimates of QES, /QES,
(grey curves), ﬁg%(pn) JQES,, (black curves) and X—Es%(pn)(ﬁ) JQES, (colored curves), against
k. In the case of the Student distribution (top panels), it may be seen that the black curves
perform globally quite well in terms of MSE and bias. In the cases of Fréchet distribution (panels
in the middle) and Pareto distribution (bottom panels), the grey and orange curves seem to be

superior.
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Figure 1: MSE estimates (in log scale) of @;n/QESpn (grey), ﬁg%(pn)/QESpn (black) and
XES%(pn)(ﬁ)/QESpn (colour-scheme), against k, for Student (top), Fréchet (middle) and Pareto
(bottom) distributions, with -y = 0.05 (left), v = 0.25 (middle) and v = 0.45 (right).
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Figure 2: Bias estimates  of @;n/QESpn (grey), X/\Eg;é(pn)/QESpn (black) and
XES%(%) (8)/QES,, (colour-scheme).



Figures 3 and 4 give, respectively, the MSE (in log scale) and bias estimates of ﬁg% o)/ QES,,,
(black curves) and XES;, , 1(8)/QES,, (colored curves), against k. Note that the orange curves
(B = 1) correspond to the Monte-Carlo estimates of QES, /QES, , since XES; (, ,(8 = 1) =
QES,, . In the case of the Student distribution (top panels), the black curves still perform quite
well. By contrast, in both cases of the Fréchet distribution (panels in the middle) and Pareto
distribution (bottom panels), the orange curves seem to be superior.

When comparing the four estimators QE\S;TL, }/(\Eg;{@(pn), X—ES%Q(pn)(ﬁ) and XE\S;A(%)(B) with

each other, we arrive at the following tentative conclusions:

e In the case of the real-valued profit-loss Student distribution, the best estimator seems to be
XES%, (pn);

e In the case of the non-negative Fréchet and Pareto loss distributions, the best estimators
seem to be XES%L(W)(B = 1) and/or CTE\S;M = m;é(pn)(ﬁ =1).
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Figure 3: MSE estimates (in log scale) of Eg;é(pn)/QESpn (black) and @%(pn)(ﬁ)/QESpn

(colour-scheme), against k, for Student (top), Fréchet (middle) and Pareto (bottom) distributions,
with v = 0.05 (left), v = 0.25 (middle) and v = 0.45 (right).
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Figure 4: Bias estimates of m;a(pn)/QESpn (black) and )TE'\;;L(pn)(ﬁ)/QESpn (colour-scheme).



B Proofs

In all proofs, the sequence 7, is replaced by the sequence k = n(1 — 7,).

Proof of Proposition 1. We start by showing (i). By Proposition 1 in Daouia et al. (2018):

P& _ et
with e(r) = —”CI—:W@(Y) +o(1)) — %A((l ) (L +o(1)) as T — 1.

Using this convergence together with local uniformity of condition Cy(7y, p, A), we find that

1 U(1/F(&)) - - - - L= -1
T [T~ 07 0Tk~ 0702
as 7 — 1, or equivalently
U(1/F(&; _ _ Yyt =1
+<(7_1_1)_p+(7_1 > (1—7)" ) as 7 — 1.
L=y—=p
A use of Lemma 1 at ¢t = & makes it possible to replace U(1/F(&;)) by & asymptotically, thus

completing the proof of (i).

To show (ii), first note that if s = 1, there is nothing to prove. Otherwise, write

gl—ks/n _ El—ks/n % q1—k/n % qQ1—ks/n
glfk/n q1—ks/n Slfk:/n d1—k/n

With alternatively 7 = 1 —k/n and 7 = 1 — ks/n in (i), we obtain

(B.1)

Sibin _ o1y (1, 20 ) o
ko) (1+ — L) +o)
_%(W‘—4Y”+(7‘—lfp—l

l—v—p p

+ 0(1)) A(n/k))

and

gl—ks/n _ (’7_1 _ 1)-7 (1 + S’YM(E(Y) + 0(1))
qQ1—ks/n T1—k/n

+ ((Z__l ;i): - /1))_,) —1y 0(1)) s_pA(n/k))

because of the regular variation property of ¢t — ¢; ;-1 and |A|. Besides, it is a consequence of
condition Cq(7, p, A) that

Gi—ksin  U(n/ks) _ ( sP—1 )
= = 1+ A(n/k + o(A(n/k)) | .
Combining these three expansions with (B.1) yields the desired result. |
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Proof of Theorem 1. Note that, for any 7 e ( 1),
~ 1 2T — 1
57_5;3/’: 1—7 EZY )yt

which is a straightforward consequence of the definition of 57 as a minimiser (see e.g. Equation

(2.7) in Newey and Powell, 1987, applied to the empirical distribution function). We use this with
T=1—ks/n, se (0,1], in order to write
ks/n ~ — © o
——— (& ks — Y ) = Fo(u)d B.2
G AR O (8.
—ks/n

where Y, denotes the empirical mean and F,(u) = n™' > | Ly, is the empirical survival
function of the sample. The idea is now to obtain a uniform (in s) “asymptotic expansion” of the

integral on the right-hand side.

Our main tool will be Lemma 2(ii): we may enlarge the underlying sample space and choose a
suitable version of the empirical process ﬁ’n so that there is a sequence of standard Brownian

motions W, such that for any ¢ > 0 small enough (which we shall fix later):

~ 1 [/~ Pl —1q
"7, (2quogm) — 277 = 7 <Wn(a:1/7) + @A(n/k)x’l/vx— + DN Op(l))

k vp
uniformly in half-lines of the form z € [xg, ), for o > 0. Note then that, as a consequence of the
monotonicity of expectiles together with convergence

&
qr
(see Bellini and Di Bernardino, 2017) and Lemma 3, we have

—(y'=1)" as 71 (B.3)

Vs e (07 1]7 glfks/n fl k/n _) (7,1

—1)77 as n— .
q1—k/n Q1 k/n

Consequently

E1kon 1
P (Vs € (0,1], 1ty > (v - 1)_”) — 1 as n — . (B.4)
q1—k/n 2

It then follows from the above approximation by a sequence of Brownian motions that, with

arbitrarily large probability:

ﬁo 7 (u)du

fl—ks/n
© S
= (qi-k/n J; Fn<xq1—k/n)dx
gl*ks/n/qlfk/n
k o0
= —Qi-k/n ﬁ V7 dx —|— — n(:cfl/v) dx
n Sl—kzs/'n/‘h—k/n 61 ks/n/‘h k/n

0 plv — 1 1
+  A(n/k) J~ o E dz + op . g VDN g (B.5)
gl—ks/n/ql—k/n ’yp \/% gl—ks/n/‘ll—k’/n

8



uniformly in s € (0, 1]. Note that the last term is indeed well-defined, if € is taken close enough to

0, because v € (0,1/2). We choose such an ¢ here and in the sequel.

The next step is to use Lemma 4, primarily to remove the randomness in the lower bound of
the integral of the Brownian motion W, in (B.5). Lemma 4 only allows us to do so on the
restricted range [k~1*° 1], and we therefore focus on this case for now; we will take care of the
case s € (0, k719) separately afterwards. Use first (B.4) to get, for any sufficiently small § > 0

and with arbitrarily large probability irrespective of s € [k~19 1]

0 —~ ee} —~
s7 ﬁ Wn(x_lm) dr — J Wn(:p_l/w) dx
&1 ks/n/T—k/n (yt-1)=7s77
e} ~ a0 .y
= J . Wo(su™7) du — f W,(su™Y7) du
Y€1 ks/n/T—k/n (y=t-1)=7

51—ks/n o 7_1 B 1)_,},8_7
q1—k/n

X sup |I/I~/n(st)|
0<t<(y=1—1)/2=1/7

< g7

Self-similarity of the Brownian motion WN/,L w.r.t. scaling gives

sup (Wa(st)| £4/s  sup  [Wa()] = Op(v/5)

ost<(y—1-1)/2-1/7 ost<(y—1-1)/2=

uniformly in s, because a standard Brownian motion is almost surely bounded on any compact

interval by almost sure continuity of its sample paths. A use of Lemma 4 then entails

0 0
sup  s7712 Jl W (277 dx — f W, (z7V7) dz| = op(1).
k=1+9<s<1 E1—ks/n/Q—k/n (y=1=1)=7s=7
Similarly,
» plv 1 0 v 1
sup  s77! f A J e | = op(1)
E-1+0<s<1 gl—k:s/n/‘]l—k:/n P (y=1=1)"7s—7 7Y%
o0 o0

and  sup sVTV/2HE J g EYD dy — J 2EVD dr| = op(1).

k=1T0<s<1 gl—k:s/n/‘]l—k/n (’771—1)7W87"/

Therefore, we have, uniformly in s € [k~ 1] and with arbitrarily large probability, that

~ 1-1/v
* = k Y gl—k‘s/n 1 * 7
F,(wdu = —q¢_g/m + — W, (x~Y)d
ﬁ (u)du p 0k | T 'q1—k/n \/ELI_DW“ (z77) da

gl—ks/n

0

Pl — 1 1 (®
+  A(n/k) f x—l/wx —dz + op (— J 2E=1/2)/y dx)
(y"1-1)=7s7 P vk (y~1—1)=7s—7

(=)



We now rewrite each integral as follows: firstly, a change of variables and self-similarity of the
Brownian motion w.r.t. scaling yield

fo W@ yde = (7' =17y L Wo((y™" = D))t dt

Y =) TS
_ (1) JO W ()t dt (B.6)

where W, (t) := (y"1=1)"Y2W,((v~'—1)t) defines another sequence of standard Brownian motions.

Secondly, a straightforward integration gives

[ AT PN LS ] e n S
(y1=1) =75~ P p L=y—p 1—v
Thirdly and finally, another direct integration entails
0
J 2D dr = O (S—'y+1/2—a) '
(y =175

All in all, and combining these calculations with (B.2), we obtain, uniformly in s e [k~1+° 1]:
S glfks/n . ?n
1- 2]{?8/72, q1—k/n q1—k/n

~ 1-1/v
—RS/Nn 1 — — s —
_ 7 [51 k/ ] + _(f_)/ ]__ 1)1/2 ’y,_yJ\ Wn(t)t ¥ 1dt
0

L=7| q1-tm vk
(771 _ 1)1778177 (,yfl _ 1)7psfp 1 S*’y+1/275
Aln/k — — . B.
+ Aln/k) p l—y—p [ I > (B7)
Recall now the following equivalent characterisation of population expectiles:
21 — 1
& —B(Y) = T E((Y — &) Tyae). (B3)

We use this identity with 7 = 1 — k/n to get:
1 <§1—k/n . E(Y)>

1 - Zk/n q1—k/n q1—k/n

1 E—
- Iy J F(u)du
k ql*k/n El*k/n

= " Flgm) (L [&_kmr—l/v+14(n/k>(vl—1)lv (yt=1)" 1 D

3

k L= L q1-k/m p l-y—p 1—7v
+ o(A(n/k))

thanks to convergence (B.3), the asymptotic equivalence F(gi_x/m) ~ k/n from Lemma 1(ii) and
used inside the regularly varying function A, Lemma 5 and calculations identical to those we have
carried out so far. Using the condition v/kA(n/k) = O(1) and the convergence

n—

b (P 1) -0
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which follows from Lemma 1(ii), we obtain

1 (&—k/n E(Y))

1—2k/mn \qi—kn  Qi—k/n

] e SR ()

Dividing (B.7) by (B.9) and using convergence (B.3) together with a Taylor expansion, we get

1— 2]{3/% % glfks/n - 771
S
1—2ks/n &pm —E(Y)

~ 1-1/v
—RS/N ]- — — N —~—
= ! Fl’”] +—=(y = 1)Y? wj Wa(t)t 7 dt
0

-~ q1—k/n \/E
(,yfl o 1)1778177 [(,}/1 _ 1)fpsfp 1 ] (S'erl/ZE)]
+ A(n/k — +op | ———
(n/k) p l—y—p =] "\ vk

1—v ql_k/n]l‘l/w( . 7—1—1[(7—1—1)—p_ 1 ] (L))
Ty l&_k/n L= Aln/k) p l=y—=p 1-9v T\ Vk

~ 1-1/v
—RS/N 1 s — A —
E1-ks/ +—7\/7—1—1f Wya(t)t™ Lt
Vk 0

glfk/n

O =Ds [ =1*s7 1
+ AT l L= —p _1—7]

~ Aln/k) Flﬂrw”ll[”l”p e ().

§1k/n P l—y=p 1-9v

Define now a random process s — r,(s) by the equality

57 fl—ks/n

=1+r7r,(s).
glfk:/n ( )

We know, by a combination of convergence (B.3) and Lemma 4, that r,(s) — 0 uniformly in

s e [k71*9 1]. The above expansion then simplifies as

I 2kj/n glfks/n - Yn glfks/n 1 va 1
S X = + —=y/y =1 W)t dt
I 2k:s/n f1—k/n - E(Y) [ fl—k/n \/%7 7 0 ( )

-1 _ 1)1, -»_1 —y+1/2—¢
+ A(TL/]C) X % X 81_75 P + op (ST) . (BlO)

We now work on the left-hand side of the above identity. Note that we can write, uniformly in

s€ (0,1]:
1—2k/n 2k 1—s 2k k
VAL R LV S A oY (LA N
1 —2ks/n n 1o 2ks/n n (1-s) [ " <n)]
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Moreover,

gl—ks/n - ?n _ (gl—ks/n . 1) (1 + E(Y> > + gl—k/n - 7n

gl—k/n - E(Y) gl—k/n gl—k/n - E(Y) €l—k/n - E(Y)
_ Eikan ( (vL = 1)E(Y) ) ( 1 )
1+ < o 1) 1+ P (I+0o(1))) + Op —ql_k/n\/ﬁ

by asymptotic proportionality of ¢i_j/, and & _g/,, and the central limit theorem. Since v < 1/2,

we have by regular variation of t — ¢;_;—1 that

1 / 1_ﬂ¢k _o(1)
ql—k/n\/ﬁ \/E n Q1—k/n .
Consequently

gl_ks/n—_?n— rn(s 0 _ & (v ' = 1)EY) o o 1
ey~ e ror) + (1) P o) +or (7).

Notice finally that, by the mean value theorem:
1—s
1< sup <
o<s<1 (1 —87
so that, using the relationship qi_y, = o(n/k), we get again that

1-— Qk/n v El—ks/n - ?n
1—2ks/n " E_pm— E(Y)

s7

- D)YEY)
d1—k/n

— 1t r(s) (1 +op(1) + (1 —8) (v

1
(1 + Op(l)) + op (_k) .
Because, uniformly in s € [k~ 1],
~ 1-1/5 1
S1-ko/n = 1YL+ 7a(s)) VY = 1Y <1 + [1 - —] rn(s)(1 + O[P(l)))
él—k/n Y
we obtain using (B.10) that:

14 rn(s) (14 0p(1)) + (1 — s 2= ®B) £ 0p(1)) + 0 (i)

Q1fk/n \/E
1 1 s
=1+ [1 — —] ra(s)(1+op(l)) + —=7v/7 1 -1 37_1f W, (t)t 7 dt
Y Vk 0
(7—1 . 1)1—,0 sP—1 <S—l/2—a)
+ A(n/k) x X +o0 )
(n/k) T—— ; P\ x

Rearrange and solve for r,(s) to get, uniformly in s € [k=1+9 1]

ra(s) = (57— 1Wq_1—]:mm<ﬁ<y> +op(1))

1 S
- ———72\/7—4-—-157—1~[ W, ()t~ at
vk 0

. -1 _ 1\—p P — 8—1/2—8
+A(n/k)><(1 17)_(77_)01) X ; 1+0]p< 7 )
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This is precisely what we wanted to show, but in the restricted case s € [k~1+9,1].

We conclude the proof by focusing on the case s € (0, k~1+°). To this end, we choose 6 € (0,/(2¢ +
1 + 27)) and we note that vk s/2*¢ — 0 uniformly in s € (0, k~'*%). It then follows that, by a
direct calculation:

VE sup s/*te (L%—Ls%l
O<s<k—1+8 Q1—k/n vk

J W, ()t dt‘ + yA(n/k;)|> 0.
0
It is then enough to show that

P

glfks/n _ s o

et glfks/n
gl—k/n

vk sup gl/2te

O<s<k—1+6

:\/% sup gV +1/2+e

O<s<k—1+¢

-1

1—k/n

Recall that expectiles of an arbitrary distribution are monotonically increasing and exactly cover
its support, and apply this to the empirical distribution to get El,ks/n < 51 =Y, , forany s € (0, 1).
Write then

51—ks/n _

< k1/2+(—1+6)(7+1/2+5) Yn»n Jro(l)‘
glfk/n

\/E sup gV H1/2+e
glfk/n

O<s<k—1+6

Using Lemma 2(i) with s = 1/(2k) and £/2 in place of what was an arbitrary n there, gives:

Yn,n

_ Op(k'y+e/2)
q1—k/n

and therefore, by a use of (B.3) again, we get

flfk:s/n _ s

Vk sup §7TV/2HE
gl—k/n

O<s<k—1+6

= op (k5(7+1/2+5)—5/2) + O(l)

Recalling that § < e/(2¢ + 1 + 27), we obtain

flfks/n _ s

\/% sup gV FT1/2+e
gl—k/n

O<s<k—1+6

This concludes the proof of the approximation result for the tail expectile process.

To complete the proof, just note that the sequence W,, has the closed form expression

where W, denotes the sequence of standard Brownian motions appearing in Lemma 3(ii), see (B.6).
This sequence of Brownian motions is also the one appearing in Lemma 3(i), which is nothing but
the Gaussian approximation of the tail quantile process. We omit the remaining straightforward

technical details. ]
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Proof of Theorem 2. The idea is to use (B.7) in the proof of Theorem 1 together with an
analogue of (B.9), with &;_j, replaced by &;_js/, and valid uniformly in s € (0,1]. To prove such
an analogue relationship, note first that

gl—ks/n _ gl—ks/n » U(n/k‘s)
Qb Qksm  UN/k)

Recall that since p < 0, the function ¢ — U(?) is equivalent to a constant multiple of ¢ — ¢7 in a

neighbourhood of infinity, see p.49 of de Haan and Ferreira (2006). Using (B.3), we obtain

Sicko/n _ (v P =1)""s77(1 + o(1)) (B.11)
q1—k/n
uniformly in s € (0, 1]. Use then (B.8) with 7 =1 — ks/n to get

s (fl_ks/n B E(Y)) _ % " %Jw F(u)du.

1-— 2]{73/” q1—k/n qQ1—k/n —k/n JE _kon

Use now the asymptotic equivalence F(qi_4n) ~ k/n following from Lemma 1(ii) and used inside

the regularly varying function A together with Lemma 5 to obtain, for any small £ > 0,

s (gl_ks/n - IE(Y))

q1—k/n qi—k/n

1-1/ o/
n— gl—ks/n:| Y 1 1 |:§1—ks/n] 1
= DF(guyy) | 2 4 Afk)- S
) | S (1_7 </>p[1_,y_p s |7 2

+ o (A(n/k) [gl—ks/nr‘(l—p)/wf@)

di1—k/n

uniformly in s € (0, 1]. According to (B.11),

gl—ks/n
qi—k/n

2yt =) sup s =2(y - 1) < 0
0<s<1

p/y+E
sup [ ]

0<s<1
for k small enough (recall that p < 0) and n large enough. Therefore, by (B.11) again:

s (gl_ks/n B ]E(Y))

1 - QICS/TL q1—k/n q1—k/n

7 [Gkem 1‘1/”( 7—1—1l(7—1—1)—ps—ﬂ_ 1] <L)>
B 1—7lq1_k/n] L+ Aln/k) p l—y—p =] T\ Wk

14



uniformly in s € (0, 1]. Divide (B.7) by this expansion and use once again (B.11) to get:

glfks/n - 7n
gl—ks/n - ]E(Y)

~ 1-1/~
—RS/N ]- — — # —~—
= 1 Fl b/ ] e ) wf W, ()t dt
0

1—- v Q1—k/n \/E
-1 _ 1)1=vgl— -1 _ 1)—pg=p 1 —v+1/2—¢
N A(n/k)(v )\ 7s l(v )PsTP ]MP(S )]
p l—y—p 1—1 Vi
1— e | 11 [(yt=1)rsP 1 1
el (e [ e ()
Y L&i—ksn P lL—=y—=p 1 -~ k
g 1-1/v 1 s
_ 1—ks/n a1 7—1J —-1
= + — —1s W, (t)t dt
lglks/n] \/E’y 7 0 ( )
~ 1-1/~
-1_1 -1 _ 1)—rg—r 1 —ks/n —1/2—¢
+ A(n/k)2 [(7 )5 ] | Sk + op (3 )
p l—y-p -y 1—ks/n Vk

uniformly in s € [k~1%9, 1] and with arbitrarily large probability (here, as in the proof of Theorem 1,
J is a sufficiently small positive number to be chosen later). Define a random process s — R,,(s)
by the equality R
Sikon _ 1+ R, (s).
§1—ks/n
We know, by a combination of convergence (B.11) and Lemma 4, that R, (s) — 0 uniformly in
s € [k~ 1]. Recalling that v/kA(n/k) = O(1), the above expansion then reads

gl—ks/n - ?n
él—ks/n - ]E(Y)

~ 1-1/~
o ] s —1/2—¢
B [& ks/ ] +\/_%7\/7—1—_18v—1f W, ()t "1 dt + op (S > (B.12)
0

flfks/n \/E

We now work on the left-hand side of this identity:

gl—ks/n - ?n _ gl—ks/n _1 (1 + E(Y) ) + él—ks/n - ?n
£l—ks/n - E(Y> fl—ks/n él—ks/n - E(Y) gl—ks/n - E(Y)

_ gl—k:s/n . ( 1 >
1+ (&_k/n 1) (1+o0(1)) + Op —ql_k/n\/ﬁ

by asymptotic proportionality of q;_x/, and §;_x/, and the central limit theorem. Since moreover

v < 1, we obtain

1

Eikn =Y _ L+ Ru(s) (1 + 0p(1)) + op (_) '

gl—ks/n - E<Y)

Vi
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Because, uniformly in s € [k, 1],

[2:::]11/7 = (L+ Ry(s)) ™" = (1 + [1 _ l} Ro(s)(1 + Op(l)))

we obtain, using (B.12) and solving for R,(s), that:

—1/2—¢
R, ( 7\/ 177 IJW t”ldt—ko]p(s )

This is the desired result in the restricted case s € [k~179 1].

We conclude the proof by focusing on the case s € (0, k7 '*°). The idea is very similar to that of
the final stages of the proof of Theorem 1. Choose § € (0,e/(2e + 1 + 27)): it is enough to show
that

VE  osup sV S1ks/n —1| 5.
O<s<k—1+9 1—ks/n
Write then
3 —RKS/n Yn n
VEk sup sV*e Sickn _ 1| <VEk sup sY*° {—} +o(1).
O<s<k—1+6 1—ks/n O<s<k—1+6 gl—ks/n
Using (B.11) again, we obtain
1 kojn Yo
VEk  sup  sYHE Sicks/n _ 1|=0 <\/E sup s/ Hl/2te {—}) + o(1).
O<s<k—1+4 1—ks/n O<s<k—1+é q1—k/n
Argue then as in the end of the proof of Theorem 1 to conclude the present proof. [ ]

Proof of Theorem 3. Let us start by remarking that

! Q1-|k q1-
%_f log( lJS/n)ds—log( LJ/n).
0 q1—|k|/n q1—|k|/n

Note that, in Theorem 1, the sequence of Brownian motions is left unchanged if &k is changed into
|k| or [k]; this is indeed the fundamental argument behind the proof of Lemma 3(i). Set then

sp = |k|~(179/0+29) for some sufficiently small € € (0,1/4), and write
Sn ~ 1 ~
Vi + log <Ch L J/n) = J log ((‘h L s/n) ds + J log <w> ds =: 11+ L. (B.13)
q1—|k|/n 0 qi1—|k)/ Sn q1—|k|/n
I, 1 is controlled by writing
YTL n
L] < snlog( ’ >
q1—|k|/n

Using further the heavy-tailed assumption on the distribution on Y, it follows from Theorem 1.1.6,
Theorem 1.2.1 and Lemma 1.2.9 in de Haan and Ferreira (2006) that

Ynn d
— — 1 G
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where G, has distribution function z +— exp(—(1 + yx)~%7), for # > —1/y. Tt follows that the
limiting variable 1 + vG.,, is positive and thus log(Y,,,/U(n)) = Op(1) by the continuous mapping
theorem. Besides, Gi_(x)/n/U(n/|k]) = Gi—{k)/n/d1—1k)m — 1, by Lemma 2(i) again. Therefore

o ( 5722-) = s (i ) + Oe(D) = Ostemh

by Potter bounds (see e.g. Proposition B.1.9.5 in de Haan and Ferreira, 2006). Recalling that
= k= (179)/(142¢) with ¢ < 1/4, it is now straightforward to get

VE|L1| = Op <5n x VI log k;) — op(1).

Combining then (B.13) with this convergence along with Theorem 1, a Taylor expansion of the

logarithm function within I, » and some straightforward calculus, we find that

VE@E —7) = 1%) + 9/ T =1 (f %Wn (ﬁ) ds — W, (711_ 1)) +op(1). (B.14)

Using Theorem 1 twice more, we can also write

Vk (‘h kin _ 1) — =1 W, ( 1) + op(1) (B.15)

q1—k/n

as well as

NG <§1k/n _ 1) _ 72\/7—1—_1J1 W, ()t dt + op(1). (B.16)

1-k/n

As a consequence, the random vector

\/% (ak — 7, q1—k/n . 1’ gl—k/n . 1)

Q1—k/n §1—k/n

is asymptotically trivariate Gaussian. To complete the proof, we analyse the marginal asymptotic
behaviour of each of the three components in this vector, as well as their pairwise asymptotic

covariance structure.

Marginal asymptotic behaviour of 4y : We know from Theorem 3.2.5 in de Haan and Ferreira (2006)
that

VRGL =7 4 &7 (125 2).

Marginal asymptotic behaviour of G : It is a straightforward byproduct of Equation (B.15) that

Vk (ql’“/” - 1) ~4 N(0,72).

q1—k/n

Marginal asymptotic behaviour of gl_k/n : It is a direct consequence of Theorem 1 that

gl—k:/n B d < 2+° )
vE (f1—k/n 1) N0 1—2y)"

17




Asymptotic covariance structure of (Y, ¢1 /n) - It is a consequence of the asymptotic representation
of 4, — = obtained in the proof of Theorem 3.2.5 in de Haan and Ferreira (2006) together with
Lemma 3.2.3 therein that 7y — v and ¢i_j/n/q1—k/m — 1 are asymptotically independent.

Asymptotic covariance structure of (%,El_k/n): It follows from Equations (B.14) and (B.16) that
the limiting covariance of vk(Jx — 7, 51,k/n/§1,k/n —1)is

COV — 22(1 - 7) Uol L i - D) g g Ll min((y~! — 1)_1,t)t‘7‘1dt] |

S

Direct computations yield

Asymptotic covariance structure of (fl\l,k/n,gl,k/n): Combining Equations (B.15) and (B.16), we
find that the limiting covariance of \/E(Ejl,k/n/ql,k/n -1, é,k/n/gl,k/n —1)is

after some straightforward calculations.

Combining these arguments on marginal convergence and asymptotic covariance structure, we get

q1—k/n ’ glfk/n

Vk (% -7, Db Sikin 1) L N (m, )

with m and U as in the statement of Theorem 3. This concludes the proof. [ ]

Proof of Theorem 4. Applying Theorem 3 and arguing as in the proof of Theorem 1 in Daouia

et al. (2018), we get the joint convergence

Vi(f 0 2] ) ey - Dl 60 )

where (I', ©, Z) is the limiting vector in Theorem 3, and

1 _1)-r 1) -1
A::<(7 ) b )
l—y—p p

)M+7w1—iWMYMz

Then clearly

v%(é§%¥ﬁ—l>—L[H—VYJ—bMTJ—DWF+5@+(L—@E—BX

Rearrange the bias component to complete the proof. [ ]
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Proof of Theorem 5. Define p,, = 1 — 7/, and note that

Ei—pn(ﬂ) A i i glfk/n(ﬁ) B < % v fl—pn>
log< §1pn >_(%_k/n 7)o <npn) +10g< §1—k/n > tog [ k ] Eimkm)

The convergence log[k/(np,)] — oo yields

\/% El—k/n(ﬁ)
log
log[k/(npn)] E1-k/n

\/% Npn v glfpn
and log[k/(npn)] log ([T] fl_k/n>
__ Wk §1pn | 51—k/n) ( P Qi-p, ))
B log[k/(npn)] <log <Q1pn) log (QI—k/n + log [ k ] Q1—k/n

_ vk ! .
_0 <log[k ] lql_k/n + |A(n/k)\]) — o(1). (B.18)

Here, convergence (B.17) is a consequence of Theorem 4. Convergence (B.18) follows from a

) = O¢ (1/log[k/(np,)]) = 0s(1) (B.17)

combination of Proposition 1, Theorem 2.3.9 in de Haan and Ferreira (2006) and the regular
variation of |A|. Combining these convergences and using the delta-method leads to the desired

result. ]

Proof of Proposition 2. Statement (i) is a clear consequence of the fact that the expectile-based
ES at level 7 is an increasing linear functional of the restriction of the expectile function on the

interval [7,1], in the sense that
(1) (2) m._ 1 ' (1) 1 ' (2) g, _. (2)
& <&7 Ve r 1] = XESY = 1 & dt < 1 &7 dt = XESY.
-7J, -7 J;

To show statement (ii), note that, for 7 > 1/2, XTCE;, is clearly translation invariant and positive
homogeneous (because so are expectiles above level 7 > 1/2, and conditional expectations). A

simple counter-example to monotonicity and subadditivity is the following: set 7 = 1/2, so that
XTCE,(Z) = B(Z|Z > &p(2)) = B(Z| Z > E(Z)).
We then actually show that XTCE; j, is neither monotonic nor subadditive. For this, we consider
a uniform random variable U on [0, 1] and we set
X =21p<v<y and Y = Lyjpcu<ssey + 2 Lispe<v<iy-
Then clearly X <Y with probability 1, and X and Y are discrete variables taking values in the
set {0,1,2}, with E(X) = E(X1{x>0) = 1/3 and E(Y) = E(Y1{y~qy) = 2/3. As such
EX|X>EWX))=EX|X>0)=2

and E(YY>E(Y))=E(Y]Y>O)=%:§.
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This establishes that E(Y |Y > E(Y)) < E(X |X > E(X)): XTCE,;/, is not a monotonic risk
measure. Besides,
X +Y = Lpp<v<spe + 4 Lsp<u<y
so that E(X +Y) = E([X + Y]L{x;y-0;) = 1 and then
EX+Y|X+Y>EX+Y)=EX+Y|X+Y >1) =4

This shows that E(X + Y | X +Y > E(X +Y)) >E(X | X > E(X)) + E(Y |Y > E(Y)), proving

that XTCE; j; is not a subadditive risk measure either. [

Proof of Proposition 3. It follows from the asymptotic proportionality relationship &, /¢, ~
(y'—=1)77 as 7 — 1 (see Bellini and Di Bernardino, 2017) that

XES, - i f £odo = (v — 1) {L f Go(1+ r(a))da}

1—171J-

where r(a) — 0 as a — 1. It is then clear that

1 1
XES, ~ (v 1 -1)7" { ] J Qo da} =(y'=1)"QES, as 7 — 1.
This proves that
XES-, ey &
~ — 1)~ = — 1
QES. (v ) . as T ,

by asymptotic proportionality again. Besides, the equality ¢, = U((1 — a)™') and a change of

ES 1 ('qa © L U((1=7)"ty)d
Q T _ J q—da:J y—l (( 7—) _:ly)_y
q 1-7J); ¢ | U((L—=7)""
The condition 7 < 1 and a uniform convergence theorem such as Proposition B.1.10 in de Haan

and Ferreira (2006, p.360) entail

ES “ 1
QES, — f Y 2y = as T — 1.
qr 1

variables entail

T

l=n

Consequently

XES, QES. 1

~ - as 7 — L.
ff dr 1- Y
Let us now turn to the terms XTCE,/QTCE, and XTCE,/¢,. On the one hand, we have
E[(Y —& E|(Y —¢r
xTCE, = B —&)] | ¢ and QTCE, = ELY ~a)s] | o,
F(&) F(qr)

where y, = max(y,0). On the other hand, it follows from the proof of Theorem 11 in Bellini et
al. (2014) that

E _
[(z -] ~ as t — 0.
F(t) y -1
Therefore
XTCE;, 1 QTCE, 1
~ and ~ as 7T — 1.
§T 1- Y qr 1- v
Whence XTCE,/QTCE_ ~ £, /q. as 7 — 1, which completes the proof. [ ]
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Proof of Proposition 4. The starting point to show the first expansion is Proposition 1(i), which
yields

1 1
XES, = J éoda

1—7

= Ofl—1Y”<QEST+7671—1WEOﬂCP+OGD

+ {(7_1 i A ¢ Bt Rt 0(1)} S f GaA((1 - Oé)_l)da)-

L=v—p P L=7);

Use a change of variables to get

1 ey — (1 — )1 ey [, U =) A - 1)) dy
= | a1 =) e = U= A - |y S T

This entails, using a uniform convergence theorem such as Proposition B.1.10 in de Haan and

Ferreira (2006, p.360), that
1 1 0

T GA((1—a) Hda ~ U(1—-7)"HA((1 - T)l)f Y2y as T — 1
—TJr 1
¢ A((1—7)7")
L=y—p

Since QES, ~ ¢,/(1 — ), our earlier expansion yields

XE 1-— 1 _1)E(Y

S, W*—1V71+7( 7)(y JE(Y)
QES; dr

-1 _1)=» -1 1)1
N {W )" )
L—vy—p p

(1+0(1))

+ 0(1)} %A((l - T)—l)). (B.19)

Furthermore, it is a consequence of a uniform inequality such as Theorem 2.3.9 in de Haan and
Ferreira (2006) applied to the function U that

QES, Jw_ﬂmu—f>wn@
q- ! U((l=7)"1) y
= [ (- R )
- LOO Y~ 2dy + A((l%ﬂq) J:O (72 = y72) dy(1 + o(1))
1

1 -1
- = (1 Fp AT 0(1))) . (B.20)

Finally, Proposition 1(i) reads

q_T — (,y*l _ 1)7 (1 . ’Y(’y_l — 1>7E(Y) (1 + O(l))

& g-
e R G Vs B
R (1—7—p ’ P +WU>A«Y—ﬂ 0- (B.21)

21



A use of the identity
XES, XES, QES, ¢,

e aBs, ‘¢ Ve
and a combination of (B.19), (B.20) and (B.21) complete the proof after some straightforward

computations. ]

Proof of Theorem 6. By Theorem 2:

XES,_ LWL (Ot d) ST e d
S1 o _ ngmx&)(&) ()1 )87 61 ks ds
XESl_k/n \/% SO 51—ks/n ds

1 Sé S_l/z_agl—ks/n ds
+ op 7 X 1 .
k SO flfks/n ds

Using (B.11) and the fact that v < 1/2, we obtain:

XES: k/n 1 3/2 f <J . ) ds ( 1 )
N 1= (vl - W ()t dt ) = +op | —= | .
XESlfk/n \/E (’Y[ ’Y]) 0 0 ( ) s OIP \/%

Denoting by W a standard Brownian motion, we get, using an integration by parts, that:

XES) k/n g ao [ .
VE [ =" -1 =5 (y[1 =] J W(s)s™ 7" log(s)ds.
XESl—k/n 0

Since the rhs above is a centred Gaussian random variable, it only remains to compute its variance,
which is Lo
v="(1- 7)3J J min(s, t)s~7 "7 log(s) log(t) ds dt.
0 Jo
It then follows from straightforward but lengthy computations that
29°(1 —7)(3 — 4v)
(1—=27)

as required. -

v =

Proof of Theorem 7. The proof of this result is entirely similar to that of Theorem 5 (applying
Theorem 6 instead of Theorem 4, and Proposition 4 instead of Proposition 1). We omit the details.

Proof of Theorem 8. We examine first the convergence of XESI_pn(ﬂ). Define p,, = 1 — 7/, and

write
XES, .8\ . (€., (1= 3 pyn] ™! XES:_,,
10g< XES1, >_log( Eip. )“Og( ) e ()
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By Theorem 5 and the delta-method,
; 3 A
ng S1p,(P) _d>j\/’( L ’72) . (B.22)
log[k/(npn)] S 1—p
Using then Theorem 3.2.5 in de Haan and Ferreira (2006), the delta-method and the convergence

log[k/(np,)] — o0, we get
VR (BT e
log[k/(npa)] g( TR ) 0. (B.23)

Using finally a combination of Proposition 1(i), Proposition 4 and the regular variation of |A| and

Vk XES;_,, -
togle/(npn)] 8 ([1 - ﬂ—lsl_p) . (B.24)

Combining convergences (B.22), (B.23) and (B.24), it follows that

\/E X—ESI—pH(E) d )\1 2
log[k/(npy)] log( XES -, )ﬁN (1—#”)‘

Another use of the delta-method completes the proof of the convergence of XES;_pn (B).

t — q1_4—1, we obtain

We now show the convergence of fE\SI_pn (B). For this we write

log (XESI—pn (ﬁ)) _ log (51—37” (5)) + 10g (Q};\)Slk‘/n ) q1—k/n )

XESl_pn fl—pn q1—k/n QEsl—k/n
ES, ./ XES,
+1og(Q 1k/)_10g( 1pn>
ql—k/n gl_pn

where we set

. 1 1
QEsl—k/n = m ZYn—i+l,n = f al—[krjs/n ds.

; 0

1=

1
Q1—k/n, We have

/E:\S —k/n —k/n L4 — s/n ES —K/n
log QA 1—k/n  Qi—k/ ~log <f Q1-1k)s/ ds) log (Q 1—k/ )
q1—k/n QESpk/n 0 qi—|k|/n q1—k/n

Combine then Theorem 1, the delta-method, and (B.20) together with a Taylor expansion to obtain

L o QE\Sl—k/n  Qik/n B 1Ny )
log[k/(nps)] o < Q—k/n QESl_k/n> = Or (log[k/(npn)]> = op(1). (B.25)

Besides, a combination of Equation (B.20) and Proposition 4 with a Taylor expansion yields
\/E QEsl—k/n XESlfpn
——— |log| ———— ) —log | ——
log[k/(npn)] q1—k/n SE

:o< vk [ ! +|A(n/l<:)|]> _o(1). (B.26)

Remark now that, since g1 |xjm = Yok

log[k/(npn)] Q1—k/n
Finally, use together (B.22), (B.25) and (B.26) and the delta-method to complete the proof.  m
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Proof of Theorem 9. We only show the result for )/(Eg%(pn) as the proofs of the other conver-

gences are entirely similar. The key point is to write

1 _ 'AYT
XESS, () = (M) XES.

=7 (o) (B.27)

Tr(Pn)*

It is, moreover, shown as part of the proof of Theorem 6 in Daouia et al. (2018) that

1—7(p, 1

w =1+ O]P -

1- Tn(pn) Tl(l — Tn)
(combine (B.52), (B.53), (B.54) and (B.55) in the supplementary material document of [Daouia et
al., 2018], noting that the strict monotonicity of Fy is not required thanks to Proposition 1(i) in

the present paper; this also results in a corrected version of (B.51) in the former paper). Therefore,

by the 4/n(1 — 7,,)—convergence of 7, ,

-7 )\ " 1
(—1 — rg(pn)> =1+ Op <—n(1 — Tn)) : (B.28)

Furthermore, using Proposition 5, we conclude that the conditions of Theorem 7 are satisfied if

the parameter 7;, there is set equal to 7),(p,). By Theorem 7 then:
n(l—1,) XES. B 1\ 4, ( A 2)
log[(1 = 7)/(1 = 77.(pn))] \ XESz ) 1—p’

log [%] zlog[i:; ] +1o g[ll__—z();n)]

and in the right-hand side of this identity, the first term tends to infinity, while the second term

converges to a finite constant in view of Proposition 5. As a conclusion

| 1—m, | 1—m7,
(0] —— | ~ 10 .
s 1_T7lz(pn) s 1_pn

Hence the convergence

log[(1 —7,)/(1 — py)] XES pn) 1—p’
We conclude the proof by writing

XES, (., QES, !
XES; (p,) = QES,,, x {(1 ) ) )} X {(1 —7) p"}
Ert (o) p,,

(since & (p,) = Gp, by definition). By a combination of Propositions 4 and 5 with the regular

variation of the functions |A| and t — ¢;_;-1, one gets

XESqpn | <1og[<1 —1)/(1 - pn)]) |
T )

ng(Pn) n(]- — Tn

(1=7)
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Similarly and by (B.20),

ES — —
(1— 7)Q Pn_ 140 log[(1 = 7.)/(1 — pn)] .
pn n(l—7,)
Therefore
XESr )y _ [ 1osl(t = 7)/(1 = pn)]
J— = O .
QESpn n(]' - Tn)
Together with (B.29), this entails
T XES., A
n(1 =) wen) ) 4, < . ,72) . (B.30)
log[(1 —7.)/(1 = pa)] \ QES,, 1—p
Combining (B.27), (B.28) and (B.30) completes the proof. u

Appendix: Preliminary results and their proofs

The first preliminary lemma, which we will use to show Proposition 1, is a technical result on
second-order regular variation that seems to be informally known in the literature. We prove it

for the sake of completeness.

Lemma 1. Assume that condition Ca(~y, p, A) holds. Then we have the following two convergences:

1 U/F®) .\
1/F<t>>< t 1)‘0’

o1 (1/F(U®)

t

(V) lim

Proof of Lemma 1. The proof of this lemma is based on that of Theorem B.3.19 in de Haan
and Ferreira (2006). We only show (i), the proof of (ii) being entirely similar. Recall that

U(t) = inf{z |1/F(z) >t}

so that U(1/F(t)) < t. Furthermore, condition Cs(v, p, A) is nothing but second-order extended
regular variation in the sense of convergence (B.3.3) in de Haan and Ferreira (2006), which is
known to be locally uniform in z € (0,00) (see Remark B.3.8.1 in de Haan and Ferreira, 2006).
Pick ¢ € R arbitrarily close to 0: by using condition Cy(7, p, A) with ¢ replaced by 1/F(t) and
v =1+cA(1/F(t)), t — o0, we get

! U([1+eA(/F(1)]/F(t) o1
[ U(1/F(t)) — (1 +eAQ/F(1)) ] -0

lim

i A(L/F(D)

or equivalently

lim

1 [U([l +eA(L/F@)]/F(t)
= A(L/F(1))

U(/E() - 1] -0
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Assume that A is positive and take € > 0; the proof in the other case is similar by taking ¢ < 0
instead. Using the definition of U again, we find that U([1 + eA(1/F(t))]/F(t)) = t, and thus

o t : 1 t
0 <t 57 () < e e (o ) <

Let € | 0 to complete the proof. [ |

The second lemma is a generalisation of the weighted approximation of the tail empirical quantile
process tailored to our purpose. Its main contribution is to give a precise representation of the
Gaussian term that is of independent interest, for example when evaluating the correlation between

two quantiles or expectiles at different orders.

Lemma 2. Suppose that condition Cy(~y, p, A) holds. Let k = k(n) — o0 be a positive sequence such
that k/n — 0 and VkA(n/k) = O(1). Then, subject to a potential enlargement of the underlying
probability space and to choosing a suitable version of the empirical process ﬁn, there exists a

sequence W,, = Wk of standard Brownian motions such that, for any ¢ > 0 sufficiently small:

(i) We have

sP—1

al—ks/n I 1 ( —v—1 -
— =574+ —|ns Wi (s) + VEA(n/k)s™
" 7\ (s) (n/k)

uniformly in s € (0,1].

RS op(1))

(ii) If Fo(u) = n= Y0 Lyyieyy i the empirical survival function of the Y;, we have

P —1

P

no _ 1 _ _
PP (atin) = (W) VRAG R

+ =12y Op(l))

uniformly on half-lines of the form [xq,0), for xq > 0.

Moreover, the sequence W,, can be chosen as W,(s) = Wék)(s) = \/n/kW,(ks/n), where W, is a

sequence of Brownian motions which is fixed across all possible choices of k.

Proof of Lemma 2. Note that (i) is exactly Theorem 2.4.8 in de Haan and Ferreira (2006),
recalling that the function Ag therein is asymptotically equivalent to A, in the case when k is a
sequence of integers. If the sequence k is not a sequence of integers, the result can easily be proven

by noting that

al—ks/n < Z]\I—[kjs/n (QI—[kJ/n . 1) + a\l—[kjs/n

q1—k/n h q1—|k|/n q1—k/n qi—|k)/n
for n sufficiently large and by using local uniformity of condition Ca(7y, p, A) (see e.g. Theorem 2.3.9

in de Haan and Ferreira, 2006) as well as the regular variation property of |A|. We omit the details.
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Besides, if the sequence k is made of integers, there is a sequence I/IN/n of (potentially different)

Brownian motions such that, for a suitable version of the empirical process F,:

L k)1
- (Wn( ) + VEA(n/E)

n-

/v
EF" (quik/n) e Vo M

12 OP(l))
TP
uniformly on half-lines of the form [z, c0). This follows from Theorem 5.1.4 in de Haan and Ferreira

(2006). The adaptation of this expansion to an arbitrary sequence k is then also straightforward.

To prove the Lemma, it remains to show that Wn can be taken equal to IW,,, and that the latter
can be chosen as indicated in the final statement. Work throughout with the above version of
ﬁn, and denote by s — Gi_ks/, the related tail quantile process. Our goal is to show that for any
1,6 > 0, we have, for n large enough,

Vk (‘?1"“/" - s—v) — s TN, (s) — VEA(n/k)s T

q1—k/n

S_p —

P ( sup 87+1/2+e

0<s<1

L >n)<5.

First note that, by the triangle inequality and self-similarity of the Brownian motion WN/n, one can

choose a > 0 so small that

P < sup Sv+1/2+e
4

0<s<a

s W, (s) + \/EA(n/k)s_WSPp* 1| > ﬂ) < Z (B.31)

Using statement (i) together with the triangle inequality, and repeating exactly the same argument,
we obtain that we can choose a > 0 so small that

\/% (alks/n . S’Y)

P ( sup S'y+1/2+s
q1—k/n

0<s<a

n o

= -. B.32
> 4) <7 ( )
Combining (B.31) and (B.32) results, for such a choice of @ > 0, in the inequality

G —ks/n [ -1
Vk (QI ksfn _ s‘”) — s T, (s) — \/EA(n/k)s_Vs > 2) < é
Q1—k/n p 2 2

P ( sup S’y+1/2+a

O<s<a

Noting that s7+¥/2+¢ > q7+1/2+¢ on (0, a], it is therefore sufficient to show that for any a > 0

sup
a<s<l1

Vk <‘?1"“/" - 37) — s W (s) — \/EA(n/k)s”*S_pp_ 1‘ — op(1). (B.33)

q1—k/n

By statement (i), we have

qQ1—ks/n .
q1—k/n

Vk sup

a<s<l1

s

— Op(1).

Set then © = 2,(5) = Qi—ks/n/q1—k/n in the approximation of F, (:Uql_k/n) to get, uniformly in
s € [a, 1],

| ks

—_

= [za(s)]77

[2.(s)]" =1
VP

(qu:cn(s)]l/w VRAM/B) ()] + [an(s))E 12 oﬂ»<1>) |

Sl o]
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By the uniform convergence of x,(s) to s on [a, 1], as well as the continuity properties of

Brownian motion, this entails

@11_23//:)‘1” ()] = s \/LE (v“ms) + x/%A(n/k)sS;p_ Ly 0p(1>>

uniformly in s € [a, 1]. A Taylor expansion then shows (B.33).

That W, can be chosen as indicated in the final statement can be shown as follows. Proposition
2.4.9 in de Haan and Ferreira (or equivalently, Theorem 6.2.1 in Csorgé and Horvath, 1993) yields
that, for a suitable choice of an independent sequence (Z;);>1 of unit Pareto random variables,
there is a sequence of Brownian bridges B,, such that

\/ﬁ(l o t>7+1 (Zg%t],n -1 . (1-t)7 - 1) — By(t)

sup nsts—l/Q(l o t)5—1/2
1/(n+1)<t<n/(n+1)

v v

is stochastically bounded. Setting ¢t = 1 — ks/n and rearranging yields in particular that

Eansn’y_l -7 —
\/E<(” [ks).n) _S 1>_\/%3—7—1Bn(1—ks/n)

8’)/+1/2+s

sup
k—1<s<1

y ~ = Op(l).

Set now B,(t) = B,(1 —t), which makes B, a sequence of Brownian bridges as well, and let
W,, be any sequence of Brownian motions such that B, (t) = W,(t) — tW,(1) (for instance,
W,(t) = By,(t) + tV,, where for each n, V,, is a standard Gaussian random variable independent

of the process B,). Note that the sequence W, is constructed independently of k. We have

\/% s 1B, (1 — ks/n) = \/% s W, (ks/n) — \/g s x %Wn(l)
\/%s—v—l x %Wnu)‘ - ‘\/gwnu) = Op ( %) = op(1).

7 ( (EZuppga) =1 57 1) SR W (k)

and clearly

sup 8’y+1/2+a

k—1<s<1

It follows that

sup S'y+1/2+s

k—1<s<1

~ ~ = Oﬂm(1>.

The sequence of Brownian motions Wék)(s) = +/n/kW,(ks/n) can then be shown to be the
sequence W, in the statement of our Lemma, by noting that (Y;);>1 L (U(Z;))i=1 and combining

(2.4.23), (2.4.24) and (2.4.25) on p.59 of de Haan and Ferreira (2006). m

The third lemma is a preliminary consistency result for intermediate sample expectiles, under a

weaker moment condition than that of Theorem 2 in Daouia et al. (2018).
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Lemma 3. Let k = k(n) — o be a positive sequence such that k/n — 0. Suppose further that the
distribution of Y is heavy-tailed with tail index v € (0,1/2), and assume that E|Y_|> < oo. Then

gl—k/n P
_l

1 as n — oo.
glfk/n

Proof of Lemma 3. We adapt the proof of Theorem 2 in Daouia et al. (2018), which was an
asymptotic normality result formulated using the parametrisation 7,, = 1 — k/n, where 7, — 1 is
such that n(1 — 7,,) — o0. To make it easier for the reader to relate the present proof with the
one of Daouia et al. (2018), we adopt this parametrisation here. We shall therefore show that
gm /& LN 1, and we will actually prove the stronger statement

Un, <§# — 1) 50 provided v, — o and v, =0 ( n(l— Tn)) :

Note that

Un, (gi - 1) = arg min v, (u)

f,rn ueR

2 n

1 T
with ¢n(u> = n<1vj T ) Z 252 [nm (3/1 - grn - uf =

i=1

>—mﬁﬁ—&ﬁ}

Denoting the derivative of y — 1-(y)/2 by ¢-(y) := |7 — Ly<oy|y, it is straightforward to get (e.g.

using Lemma 2 in Daouia et al., 2018):

Yp(u) = —uly, + Thn(u) (B.34)
v G| -
with Ty, = ——— ) — W (Vi — &ry) =t Shi
L n(l—fn);@f ( ) Z;
'U2 n ury, /Un
dTn = T}/;'_T_t_ TY;_T dt.
d Tpolw) = e D 06 0 ()

The random variables S,,; are independent, identically distributed, and also centred, by differen-

tiating the expectile minimisation criterion under the expectation sign. Now note that
2

WMEM:O<R£%5)ﬁO

by Lemma 4 in Daouia et al. (2018). Because E(7},) = 0, Chebyshev’s inequality then yields

Ty, — 0. (B.35)

It is, meanwhile, readily shown by following the proof of Theorem 2 in Daouia et al. (2018) that

P u?
VueR, To,(u) — — (B.36)

2y
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(the only change to make is, with their notation, to re-define I,,(u) = (0, |u|&,, /v,) and note that
t/¢;, — 0 uniformly in ¢ such that |¢t| € [,(u)). Combining (B.34), (B.35) and (B.36) entails

P u?
Vu € R, wn(u)—>2— as n — 0.

We conclude by noting that (¢,) is a random sequence of continuous convex functions and its
pointwise limit defines a nonrandom continuous convex function of u which has a unique minimum

at u* = 0. Applying Theorem 5 in Knight (1999) completes the proof. [ |

The fourth lemma is the key to the computation of the various terms appearing in the implicit

relationship linking the tail expectile process to the tail parameters.

Lemma 4. Suppose that E|Y_| < co. Assume further that condition Cy(7y,p, A) holds for some
0<v<1/2. Let k = k(n) — oo be such that k/n — 0 and VkA(n/k) = O(1). Then we have, for
any 6 > 0 sufficiently small:

glfks/n (-1

sup 7 —1)77s77| 5 0.

E—1+5<s<1 Q1—k’/n

Proof of Lemma 4. All the op and Op terms in the present proof should be understood as
uniform in s € [k~1*° 1]; moreover, we work throughout this proof with the version of the tail
expectile process induced by the version of the empirical process ﬁn leading to (B.5). Recall that

any Brownian motion W satisfies, for any n > 0:

Ve >0, sup t /MW (t)] < o almost surely.
O<t<c

It then comes as a consequence of (B.4) that

0 0
J W, (z7Y7) dz = Op f YD g |
glfks/n/qlfk/n glfks/n/(hfk/n

Moreover, since v/kA(n/k) remains bounded:

o0
YA P — 1

1 o0}
A(n/k) f ———dz =0p | — el I
glfks/n/qlfk/n ,yp \/E glfks/n/(hfk/n

All in all, combining these two bounds with (B.5) gives:

0 ~ L 0 ] -
ﬁ n(u)du = —qi-g/m ﬁ Y dr 4+ Op | — . 2= g
§1—ks/n n E1—ks/n/T—k/n Vk &1 ka/m/d1—k/n

or equivalently

!

~ ] 1-(1/2—n)/vy

~ 1-1/~
* = k —ks/n 1 —ks/n
f Fuw)du = Zgu x 1 [ | Sk fop | | St
n Y q1—k/n \/E q1—k/n
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Plugging this back into (B.2) entails
- o ~ 1-1/y ~ 1-(1/2—m)/~
S gl—ks/n . Yn _ 7 gl—ks/n T O]P’ L gl—ks/n
1- 2]€S/TL qQ1—k/n d1—k/n 11— Y| A1—k/n \/E d1—k/n

Note that Y, — E(Y) < o by the law of large numbers, and é_ks/n > El_k/n L, 4o by

Lemma 3. Therefore

E —1/y 1 g —=(1/2=n)/y
i 1—ks/n 1—ks/n
s(1+op(l)) = +0p | —

( P( )) 1- v ’ q1—k/n ] g \/E [ q1—k/n ]

Define now a random process s — R, (s) by the equality

Sickn _ (7" = 1)V (1 + Ry(s)).
d1—k/n
In particular, 1 + R,(s) > 0 for any s € (0, 1], and
1
1+o0p(1) = (1 + Ry(s)) ™7 + Op (\/—Es_m_"(l + Rn(s))_(m_")h) .

We infer from this equality that, uniformly in s € [k=19 1] for § = 6(n) = 4n/(4n+ 1) > 0,
1+ o0p(1) = (1 + Ru(s)) ™7 + 0p (1 + Ru(s)) "2 .

It directly follows from this last identity, whose left-hand side should remain bounded uniformly
in s, that 1+ R,(s) must remain bounded away from 0, uniformly in s € [k~ 1] with arbitrarily
large probability as n — co. The fact that the left-hand side converges in probability to 1 uniformly
in s now entails that 1 + R, (s) should do so as well, which yields
sup  |R,(s)] 2,0 as n— w.
kE1+0<s<1
Equivalently

fl—ks/n (a1

sup §” —1)77s77 =0. (B.37)

k=19 <s<1 Q—k/n
And since n was arbitrarily small, 6 = 4n/(4n + 1) was arbitrarily small as well, concluding the

proof. [ ]

The final lemma is a technical result on second-order regular variation which will be used several

times in the proofs of Theorems 1 and 2.

Lemma 5. Assume that condition Cy(7y, p, A) holds with -y > 0. Then one can find a function B,

asymptotically equivalent to t — A(1/F(t)) in a neighbourhood of infinity, satisfying the following:
,0) > 0 such that fort, tx > to,

1 (F_’(tﬂj) _ I_l/,y) _ x—l/’yl'p/’y —1
F(t) VP

for any e, 6 > 0 there exists tg = to(e

< ex” 17/ max (x_‘s, :v‘s) )

B(t)

31



Proof of Lemma 5. Note that, according to Theorem 2.3.9 in de Haan and Ferreira (2006),
condition Cy(7, p, A) is equivalent to

In o/ _
Vo >0, lim 1_ <F_(t“’> _ xl/v) S 1.
=o A(L/F(t)) \ F(t) P

Define f(z) = 2Y/7F(x); it is straightforward to show that this condition entails

flt) —f() a1

N R mAF®) T ok

The conclusion then follows by applying Theorem B.2.18 in de Haan and Ferreira (2006). ]
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