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A Proofs

Proof of Proposition 1 Simply note that, for t P py`, yuq,

PpqK´1
τ pF pY qq ď tq “ PpqK´1

τ pUq ď tq for U
d
“ Up0, 1q (because F is continuous)

“

ż 1

0

ItK´1
τ puqďF ptqudu

“

ż 1

0

ItuďKτ pF ptqqudu

“ Kτ pF ptqq “ PpZτ ď tq,

thus proving the desired result. l

Proof of Proposition 2 For part (i) we have clearly, by (7), |ξτ | ď spτqE|Y | if τ P

p0, 1{2s, and |ξτ | ď rpτqE|Y | if τ P r1{2, 1q. So E|Y | ă 8 implies |ξτ | ă 8. Furthermore,

it is a clear consequence of the dominated convergence theorem that the function τ ÞÑ ξτ

is continuous on both of the intervals p0, 1{2q and p1{2, 1q. Since rp1{2q “ sp1{2q “ 1,

we conclude by the dominated convergence theorem again that the function τ ÞÑ ξτ is

continuous at τ “ 1{2, and as such is continuous on the whole interval p0, 1q. Note also

(from Equation (5)) that τ ÞÑ rpτq is increasing on p1{2, 1q and τ ÞÑ spτq is decreasing

on p0, 1{2q, and this implies that the function τ ÞÑ ξτ is increasing on both the intervals
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p0, 1{2q and p1{2, 1q, and therefore is also increasing on the whole interval p0, 1q by its

continuity at τ “ 1{2. Finally, the fact that the extremile function maps p0, 1q onto

the range of F is an immediate consequence of its continuity together with the limits

limτÓ0 ξτ “ y` and limτÒ1 ξτ “ yu.

(ii) The necessary condition is trivial. For the sufficient condition, suppose ξY,τ “ ξ
rY ,τ

for all τ P p0, 1q. For every integer s ě 1 and all independent copies Y 1, . . . , Y s of Y , we

have ErminpY 1, . . . , Y sqs ” ξY,τpsq, where τpsq “ 1´ p1{2q1{s. Likewise, for s independent

copies rY 1, . . . , rY s of rY , we have ErminprY 1, . . . , rY sqs ” ξ
rY ,τpsq. Then by assumption

ErminpY 1, . . . , Y s
qs “ ErminprY 1, . . . , rY s

qs for s “ 1, 2, . . .

This implies FY “ F
rY as established by Chan (1967).

(iii) Following (7), we have ξ
rY ,τ “

1
ş

0

Jτ ptqF
´1
rY
ptqdt. Also, Jτ p1´tq “ J1´τ ptq. The assertion

follows then immediately from the location and scale equivariance of quantiles

F´1
rY
pτq “

$

&

%

a` bF´1Y pτq if b ą 0

a` bF´1Y p1´ τq if b ď 0.
(A.1)

(iv) Using a change of variables in the first equality in formula (7) in conjunction with

the facts that Jτ p1´ tq “ J1´τ ptq and q1´t “ 2µ´ qt, we easily get

ξ1´τ “

ż 1

0

J1´τ ptqqt dt “ 2µ´

ż 1

0

Jτ ptqqt dt “ 2µ´ ξτ

for either cases τ ď 1{2 and τ ě 1{2.

(v) The comonotonic additivity follows immediately from (7) in conjunction with the fact

that F´1
Y`rY

ptq “ F´1Y ptq ` F´1
rY
ptq for comonotonic variables Y and rY . l

Lemma A.1 For any s ă 1, we have

plog 2q

ż 8

0

2´tt´s dt “ Γp1´ sqplog 2qs “: Gpsq.

Proof This is a straightforward consequence of the use of the change of variables u “

t log 2. l
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Lemma A.2 (i) For any t ą 0 it holds that

p1´ p1´ τqtqrpτq´1 Ñ 2´t as τ Ò 1.

(ii) For any τ close enough to 1, we have

0 ď p1´ p1´ τqtqrpτq´1 It0ătăp1´τq´1u ď p
?

2q´t.

(iii) For any t ą 0 it holds that

p1´ τq´1
”

p1´ p1´ τqtqrpτq´1 ´ 2´t
ı

Ñ 2´t
ˆ

t

„

1`
log 2

2



´ t2
log 2

2

˙

as τ Ò 1.

(iv) For any c P p0, 1q, there is a constant C ą 0 such that for any τ close enough to 1,

we have

p1´ τq´1
ˇ

ˇ

ˇ
p1´ p1´ τqtqrpτq´1 ´ 2´t

ˇ

ˇ

ˇ
It0ătăcp1´τq´1u ď Cp

?
2q´t.

Proof Convergence (i) is immediate since rpτq “ logp1{2q{ logpτq is equivalent to p1 ´

τq´1 log 2 as τ Ò 1. Statement (ii) is shown by recalling that logp1 ´ xq ď ´x for all

x P r0, 1q, implying in particular

1

´ logpτq
ď p1´ τq´1 and @a ą 1, @t P p0, p1´ τq´1q, p1´ p1´ τqtqp1´τq

´1 log a
ď a´t.

Combining these two inequalities entails, for τ close enough to 1 and t P p0, p1´ τq´1q,

@a P p1, 2q, p1´ p1´ τqtqrpτq´1 ď p1´ p1´ τqtqp1´τq
´1 log a

ď a´t (A.2)

as required. Convergence (iii) follows from a straightforward Taylor expansion. To prove

statement (iv), we first recall that a consequence of the mean value theorem is

@x, y P R, |ey ´ ex| ď |y ´ x|emaxpx,yq.

Pick then a P p
?

2, 2q and use (A.2) to obtain that eventually as τ Ò 1 and for any

t P p0, p1´ τq´1q:

p1´ τq´1
ˇ

ˇ

ˇ
p1´ p1´ τqtqrpτq´1 ´ 2´t

ˇ

ˇ

ˇ
ď p1´ τq´1 |prpτq ´ 1q logp1´ p1´ τqtq ` t log 2| a´t.

(A.3)
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Now, the Taylor expansion rpτq “ p1´ τq´1plog 2q´plog 2q{2`op1q entails, together with

the triangle inequality, that eventually as τ Ò 1 and for all t P p0, p1´ τq´1q:

p1´ τq´1 |prpτq ´ 1q logp1´ p1´ τqtq ` t log 2| ď p1` log 2q
| logp1´ p1´ τqtq|

1´ τ

` plog 2q
|logp1´ p1´ τqtq ` p1´ τqt|

p1´ τq2
.

The mean value theorem and Taylor’s theorem entail, for any c P p0, 1q:

sup
0ăxăc

| logp1´ xq|

x
ď

1

1´ c
and sup

0ăxăc

|logp1´ xq ` x|

x2
ď

1

2p1´ cq2
,

implying therefore that there is a constant C1 ą 0 with

p1´ τq´1 |prpτq ´ 1q logp1´ p1´ τqtq ` t log 2| It0ătăcp1´τq´1u ď C1tp1` tqIttą0u.

Recall now that since a ą
?

2, there is a constant C2 ą 0 with tp1` tqa´t ď C2p
?

2q´t for

all t ą 0, and report the above inequality into (A.3) to complete the proof. l

Proof of Proposition 3 To prove (i), set δ “ inftt P p0, 1q | qt ą 0u. Then δ P r0, 1q

since we work in the heavy-tailed case. If δ ą 0, then for a sufficiently large τ ą 1{2, and

because qδ ď 0 and q is nondecreasing, we have
ˇ

ˇ

ˇ

ˇ

ˇ

şδ

0
rpτqtrpτq´1qt dt

qτ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
rpτqδrpτq´1

qτ

ż δ

0

´qt dt “ O

ˆ

rpτqδrpτq´1

qτ

˙

.

Recall that rpτq “ logp1{2q{ logpτq „ p1´ τq´1 log 2 as τ Ò 1, and use Proposition 1.3.6(v)

in Bingham et al. (1987, p.16) to get for any ε P p0, 1q:

rpτqεrpτq´1

qτ
“ O

`

p1´ τq´2p1´γq expp´p1´ τq´1plogp2q ˆ logp1{εqq{2q
˘

“ op1q. (A.4)

As such
ˇ

ˇ

ˇ

ˇ

ˇ

şδ

0
rpτqtrpτq´1qt dt

qτ

ˇ

ˇ

ˇ

ˇ

ˇ

“ o p1q . (A.5)

This is of course also trivially true if δ “ 0. Furthermore, the condition F P DApΦγq is

equivalent to

lim
sÑ8

q1´psxq´1

q1´s´1

“ xγ for all x ą 0 (A.6)

4



(see, e.g., de Haan and Ferreira (2006), Corollary 1.2.10). Therefore, it follows by Propo-

sition B.1.10 of de Haan and Ferreira (2006) that there is s0 ą 0, which we may take to

be larger than p1´ δq´1, such that

@s ą 0, @x ą 0, s, sx ě s0 ñ

ˇ

ˇ

ˇ

ˇ

q1´psxq´1

q1´s´1

´ xγ
ˇ

ˇ

ˇ

ˇ

ď maxpxp1`γq{2, 1q. (A.7)

Write then

ξτ “

ż δ

0

rpτqtrpτq´1qt dt`

ż 1´s´1
0

δ

rpτqtrpτq´1qt dt`

ż 1

1´s´1
0

rpτqtrpτq´1qt dt.

The second term above is controlled just like in (A.5), yielding

ξτ
qτ
“

ż 1

1´s´1
0

rpτqtrpτq´1
qt
qτ
dt` op1q. (A.8)

Use then the change of variables t “ 1 ´ p1 ´ τq{w to obtain that the integral on the

right-hand side of (A.8) is equivalent to

plog 2q

ż 8

p1´τqs0

ˆ

1´
1´ τ

w

˙rpτq´1 q1´rp1´τq´1ws´1

q1´rp1´τq´1s´1

dw

w2
.

A combination of Lemma A.2(i) and (ii), (A.6), (A.7) and of the dominated convergence

theorem shows that

ż 8

p1´τqs0

ˆ

1´
1´ τ

w

˙rpτq´1 q1´rp1´τq´1ws´1

q1´rp1´τq´1s´1

dw

w2
Ñ

ż 8

0

2´1{wwγ
dw

w2
as τ Ò 1.

Report this into (A.8) and use the change of variables t “ 1{w together with Lemma A.1

to get the required result.

The proof of (ii) uses the fact that, for γ ă 0, F P DApΨγq is equivalent to (de Haan and

Ferreira (2006), Corollary 1.2.10)

yu “ supty : F pyq ă 1u ă 8 and lim
sÑ8

yu ´ q1´psxq´1

yu ´ q1´s´1

“ xγ for all x ą 0

and is entirely similar to the proof of (i).

Finally, the proof of (iii) is based on the fact that if F P DApΛq, then

lim
sÑ8

q1´psxq´1

q1´s´1

“ 1 for all x ą 0
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when yu “ 8, and

lim
sÑ8

yu ´ q1´psxq´1

yu ´ q1´s´1

“ 1 for all x ą 0

when yu ă 8 (see, e.g., de Haan and Ferreira (2006), Lemma 1.2.9). The same arguments

used to prove (i) yield once again the desired result, and so we omit the details. l

Proof of Theorem 1 Write first

pξLτ “
1

n

n
ÿ

i“1

ci,nYi,n with ci,n “ n

"

Kτ

ˆ

i

n

˙

´Kτ

ˆ

i´ 1

n

˙*

.

Since Kτ is continuously differentiable on p0, 1q with derivative Jτ , we have

@i P t1, . . . , nu, Dti,n P

„

i´ 1

n
,
i

n



, ci,n “ Jτ pti,nq.

Define then Jnptq “ ci,n for t P rpi´1q{n, i{ns. Note that Jn and Jτ are uniformly bounded

on r0, 1s. Besides, if E|Y |κ ă 8 then q necessarily satisfies, for some M ą 0,

|qt| ďMt´1{κp1´ tq´1{κ, t P p0, 1q, (A.9)

see Remark 1 in Shorack and Wellner (1986, p.663). Finally, note that the function

t ÞÑ tp1´ tqJ 1τ ptq is clearly bounded on p0, 1q.

(i) Here the constant κ in (A.9) satisfies 1{κ ă 1. The result then follows directly from

Theorem 3 in Shorack and Wellner (1986, p.665).

(ii) Since now (A.9) holds with 1{κ ă 2, the result follows immediately from Theorem 1(ii)

of Shorack and Wellner (1986, p.664).

(iii) If J 1τ is Lipschitz of order δ ą 1
3

on p0, 1q, then the Berry-Esséen rate Opn´1{2q fol-

lows from Theorem C of Serfling (1980, p.287). This is clearly true when rpτq ě 3 or

equivalently τ ě p1
2
q1{3 in the right tail, and spτq ě 3 or equivalently τ ď 1´p1

2
q1{3 in the

left tail. l

Proof of Theorem 2 It is not hard to check the stated convergence by applying Theorem

4.2 of Shorack (2000, p.442). l
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Recall the second-order condition

lim
tÑ8

1

Aptq

"

q1´ptxq´1

q1´t´1

´ xγ
*

“ xγ
xρ ´ 1

ρ
for all x ą 0. (A.10)

Proof of Proposition 4 As in the proof of Proposition 3, set δ “ inftt P p0, 1q | qt ą

0u P p0, 1q. Apply then Theorem 2.3.9 in de Haan and Ferreira (2006) to get that there is

s0 ą 0, which we may take to be larger than p1´ δq´1, such that

s, sx ě s0 ñ

ˇ

ˇ

ˇ

ˇ

1

A0psq

ˆ

q1´psxq´1

q1´s´1

´ xγ
˙

´ xγ
xρ ´ 1

ρ

ˇ

ˇ

ˇ

ˇ

ď maxpxp1`γq{2, xγ`ρ´1q. (A.11)

Here A0 is a function that is equivalent to A in a neighborhood of infinity. By (A.4) in

the proof of Proposition 3, it is then clear that there is C ą 0 with

ξτ
qτ
“

ż 1

1´s´1
0

rpτqtrpτq´1
qt
qτ
dt` o

`

expp´Cp1´ τq´1q
˘

. (A.12)

Use then the change of variables t “ 1 ´ p1 ´ τq{w to obtain that the integral on the

right-hand side above is

p1´ τqrpτq

ż 8

p1´τqs0

ˆ

1´
1´ τ

w

˙rpτq´1ˆq1´rp1´τq´1ws´1

q1´rp1´τq´1s´1

´ wγ
˙

dw

w2

` p1´ τqrpτq

ż 8

p1´τqs0

ˆ

1´
1´ τ

w

˙rpτq´1

wγ
dw

w2
“: I1pτq ` I2pτq. (A.13)

A combination of Lemma A.2(i) and (ii), condition (A.10), (A.11) and the dominated

convergence theorem entails that

I1pτq “ plog 2q

ż 8

0

2´1{wwγ
wρ ´ 1

ρ

dw

w2
ˆ App1´ τq´1q ` opApp1´ τq´1qq as τ Ò 1.

Using the change of variables t “ 1{w and Lemma A.1 it is easy to see that this entails

I1pτq “ App1´ τq´1qC1pγ, ρq ` opApp1´ τq´1qq. (A.14)

We now work on I2pτq: use the change of variables z “ 1{w to get that

I2pτq

p1´ τqrpτq
“

ż p1´τq´1s´1
0

0

p1´ p1´ τqzqrpτq´1 z´γ dz.
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A use of Lemma A.1 and of the bound 2´zz´γ “ Op2´zq as z Ñ 8 entails

plog 2q
I2pτq

p1´ τqrpτq
“ Γp1´ γqplog 2qγ ` plog 2q

ż p1´τq´1s´1
0

0

”

p1´ p1´ τqzqrpτq´1 ´ 2´z
ı

z´γ dz

` o
`

expp´Cp1´ τq´1q
˘

. (A.15)

Meanwhile, Lemma A.1, Lemma A.2(iii) and (iv) and the dominated convergence theorem

yield

plog 2q

ż p1´τq´1s´1
0

0

”

p1´ p1´ τqzqrpτq´1 ´ 2´z
ı

z´γ dz

“ p1´ τqplog 2q

ż 8

0

2´z
ˆ

z

„

1`
log 2

2



´ z2
log 2

2

˙

z´γ dz ` op1´ τq

“ p1´ τq

"„

1`
log 2

2



Gpγ ´ 1q ´
log 2

2
Gpγ ´ 2q

*

` op1´ τq.

Using the Taylor expansion rpτq “ p1 ´ τq´1plog 2q ´ plog 2q{2 ` op1q, it is then clear

from (A.15) that

I2pτq “ Gpγq ` p1´ τqC2pγq ` op1´ τq. (A.16)

Combine finally (A.12), (A.13), (A.14), (A.16) and the regular variation of |A| (see The-

orem 2.3.3 in de Haan and Ferreira, 2006) to complete the proof. l

Proof of Theorem 3 Putting k “ np1´ τnq and dn “ p1´ τnq{p1´ τ
1
nq, we have

?
k

log dn

˜

pξQ,‹τ 1n

ξτ 1n
´ 1

¸

“

?
k

log dn

ˆ

pq‹τ 1n
qτ 1n

´ 1

˙

qτ 1n
ξτ 1n
G ppγq `

?
k

log dn
pG ppγq ´ G pγqq

qτ 1n
ξτ 1n

`

?
k

log dn

„

G pγq ´
ξτ 1n
qτ 1n



qτ 1n
ξτ 1n

.

Note that qτ{ξτ Ñ 1{G pγq by Proposition 3 and
?
k pG ppγq ´ G pγqq “ OPp1q by the delta-

method; combining this with Theorem 4.3.8 in de Haan and Ferreira (2006), it follows that

the sum of the first two terms above converges in distribution to Z. Besides, Proposition 4

entails

G pγq ´
ξτ 1n
qτ 1n

“ O
`

App1´ τ 1nq
´1
q
˘

`O p1´ τ 1nq “ O
`

App1´ τnq
´1
q
˘

`O

ˆ

1

n

˙
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due to the regular variation of |A| with negative index. It only remains to use the as-

sumptions that
a

np1´ τnqApp1´ τnq
´1q “ Op1q and log dn Ñ 8 to obtain that the third

term of the above decomposition converges to 0, which completes the proof. l

Lemma A.3 Suppose k “ kpnq Ñ 8 is a positive sequence with n{k Ñ 8. Then:

(i) We have

J1´k{np1{nq “ o

ˆ

exp

„

´
log 2

2
ˆ
n log n

k

˙

.

(ii) For any δ P p0, 1q, we have

sup
0ătăδ

 

t´pn log 2q{p2kqJ1´k{nptq
(

“ o
´n

k

¯

.

Proof To show (i), note that

J1´k{np1{nq “
log 2

´ logp1´ k{nq
exp

ˆ„

log 2

logp1´ k{nq
` 1



log n

˙

“
n

k
log 2p1` op1qq ˆ exp

ˆ

´
n log n

k
log 2p1` op1qq

˙

“ o

ˆ

exp

ˆ

´
log 2

2
ˆ
n log n

k

˙˙

as required. To prove (ii), write

sup
0ătăδ

tt´pn log 2q{p2kqJ1´k{nptqu “
n

k
log 2p1`op1qq sup

0ătăδ
exp

ˆ„

´1´
log 2

logp1´ k{nq
´
n

k

log 2

2



logptq

˙

.

Now ´plog 2q{ logp1 ´ k{nq ´ pn log 2q{p2kq Ñ `8, and on p0, δq, logptq ă logpδq ă 0, so

that eventually

sup
0ătăδ

exp

ˆ„

´1´
log 2

logp1´ k{nq
´
n

k

log 2

2



logptq

˙

ď exp

ˆ„

´1´
log 2

logp1´ k{nq
´
n

k

log 2

2



logpδq

˙

and the upper bound in this inequality converges to 0, proving (ii). l

Lemma A.4 Suppose:

• the second-order regular variation condition (A.10) holds, with γ ă 1{2;
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• k “ kpnq Ñ 8, n{k Ñ 8 and
?
k Apn{kq “ Op1q as nÑ 8.

Then there is a positive sequence punq, such that un Ñ 0, nun{k Ñ 8, 1{un is an integer

for any n, and the following all hold:

(i) We have

u´γn
q1´k{pnunq
q1´k{n

Ñ 1 and u´ρn
Apnun{kq

Apn{kq
Ñ 1.

(ii) There exist ε P p0, 1{2 ´ γq, a sequence of Brownian motions pWnq and a function

A0 which is asymptotically equivalent to A, such that:

ˇ

ˇ

ˇ

ˇ

ˇ

c

k

un

ˆ

pq1´ks{pnunq ´ q1´ks{pnunq
q1´k{pnunq

˙

´ γs´γ´1Wnpsq

ˇ

ˇ

ˇ

ˇ

ˇ

“ s´γ´ρ´ε o

˜

uεn

c

k

un
A
´nun
k

¯

¸

` s´γ´1{2´ε oPpu
ε
nq

uniformly in s P p0, 1s.

Proof Apply Proposition B.1.10 in de Haan and Ferreira (2006, p.369) to construct by

induction an increasing sequence pxpq tending to infinity such that for any positive integer

p:

@t ą 0, @x P p0, 1q, tx ě xp ñ max

ˆ
ˇ

ˇ

ˇ

ˇ

x´γ
q1´1{ptxq
q1´1{t

´ 1

ˇ

ˇ

ˇ

ˇ

,

ˇ

ˇ

ˇ

ˇ

x´ρ
Aptxq

Aptq
´ 1

ˇ

ˇ

ˇ

ˇ

˙

ď
1

2p
x´1{2.

Use now Theorem 2.4.8 in de Haan and Ferreira (2006, p.52) to construct, for a suitably

small fixed ε P p0, 1{2´γq, and for any positive integer p, a sequence of Brownian motions

pĂWn,pq and a positive sequence of random variables p rZn,pq such that rZn,p “ oPp1q as nÑ 8,

satisfying:

sγ`1{2`ε
ˇ

ˇ

ˇ

ˇ

?
2pk

ˆ

pq1´2pks{n
q1´2pk{n

´ s´γ
˙

´ γs´γ´1ĂWn,ppsq ´
?

2pkA0

´ n

2pk

¯

s´γ
s´ρ ´ 1

ρ

ˇ

ˇ

ˇ

ˇ

ď rZn,p

for all s P p0, 1s. Here A0 is a suitable function equivalent to A at infinity. An inspection

of the proof of Theorem 2.4.8 in de Haan and Ferreira (2006) shows that the interval of

possible choices of ε and the choice of A0 only depend on the behaviour of Y in its right

tail, and as such these quantities can indeed be fixed independently of p. Since for any
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p, rZn,p “ oPp1q as nÑ 8, we may construct an increasing sequence of integers pNpq such

that

@p ě 1, @n ě Np, P

˜

rZn,p ą

ˆ

1

2p

˙1`ε
¸

ă
1

2p
.

Apply finally Theorem 2.3.9 in de Haan and Ferreira (2006, p.48) to construct by induction

an increasing sequence ptpq tending to infinity such that for any positive integer p:

@t ą 0, @s P p0, 1q, t ě tp ñ sγ`ρ`ε
ˇ

ˇ

ˇ

ˇ

1

A0ptq

ˆ

q1´s{t
q1´1{t

´ s´γ
˙

´ s´γ
s´ρ ´ 1

ρ

ˇ

ˇ

ˇ

ˇ

ď

ˆ

1

2p

˙1`ε

.

Define now two sequences punq and prunq as follows:

un “
1

2p
if 2p maxpxp, tpq ď

n

k
ă 2p`1 maxpxp`1, tp`1q and run “

1

2p
if Np ď n ă Np`1.

Note that punq is indeed well-defined since n{k Ñ 8, that un Ñ 0, run Ñ 0 and nun{k Ñ 8

by construction, and that both 1{un and 1{run are sequences of integers.

Set finally un “ maxpun, runq. Then, as announced, punq is a positive sequence such that

un Ñ 0, nun{k Ñ 8 and 1{un is an integer for any n. Furthermore, if n and p are such

that un “ 1{2p, then un ď 1{2p and as such nun{k ě nun{k ě xp, by construction of un.

We then get:

max

ˆ
ˇ

ˇ

ˇ

ˇ

u´γn
q1´k{pnunq
q1´k{n

´ 1

ˇ

ˇ

ˇ

ˇ

,

ˇ

ˇ

ˇ

ˇ

u´ρn
Apnun{kq

Apn{kq
´ 1

ˇ

ˇ

ˇ

ˇ

˙

ď

ˆ

1

2p

˙1{2

“
?
un. (A.17)

This shows that the sequence punq satisfies (i). Define further Wn “ ĂWn,p and Zn “ rZn,p

if and only if un “ 1{2p. Then pWnq is a sequence of Brownian motions; besides, by

construction, if un “ 1{2p then run ď 1{2p, which entails n ě Np and thus

P
`

u´εn Zn ą un
˘

“ P

˜

rZn,p ą

ˆ

1

2p

˙1`ε
¸

ă
1

2p
“ un.

Since un Ñ 0 this shows that u´εn Zn “ oPp1q, or equivalently that Zn “ oPpu
ε
nq. And by

construction, for any s P p0, 1s,

sγ`1{2`ε

ˇ

ˇ

ˇ

ˇ

ˇ

c

k

un

ˆ

pq1´ks{pnunq
q1´k{pnunq

´ s´γ
˙

´ γs´γ´1Wnpsq ´

c

k

un
A0

´nun
k

¯

s´γ
s´ρ ´ 1

ρ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Zn “ oPpu
ε
nq. (A.18)
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Finally, if n is such that un “ 1{2p, then un ď 1{2p and as such nun{k ě nun{k ě tp, by

construction of un. Therefore, for any s P p0, 1s,

sγ`ρ`ε
ˇ

ˇ

ˇ

ˇ

1

A0pnun{kq

ˆ

q1´ks{pnunq
q1´k{pnunq

´ s´γ
˙

´ s´γ
s´ρ ´ 1

ρ

ˇ

ˇ

ˇ

ˇ

ď

ˆ

1

2p

˙1`ε

“ u1`εn

which we rewrite as

sγ`ρ`ε

ˇ

ˇ

ˇ

ˇ

ˇ

c

k

un

ˆ

q1´ks{pnunq
q1´k{pnunq

´ s´γ
˙

´

c

k

un
A0

´nun
k

¯

s´γ
s´ρ ´ 1

ρ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

"

A0pnun{kq

Apnun{kq

*

ˆ

c

k

un
A
´nun
k

¯

ˆ u1`εn

for any s P p0, 1s. Use the fact that A0 is asymptotically equivalent to A to get

sγ`ρ`ε

ˇ

ˇ

ˇ

ˇ

ˇ

c

k

un

ˆ

q1´ks{pnunq
q1´k{pnunq

´ s´γ
˙

´

c

k

un
A0

´nun
k

¯

s´γ
s´ρ ´ 1

ρ

ˇ

ˇ

ˇ

ˇ

ˇ

“ o

˜

uεn

c

k

un
A
´nun
k

¯

¸

(A.19)

uniformly in s P p0, 1s. Combine (A.18) and (A.19) to obtain (ii). This ends the proof.

l

Proof of Theorem 4 Choose n so large that 1{2 ă τn ă pn ´ 1q{n. Denote by k the

quantity np1 ´ τnq, so that τn “ 1 ´ k{n. Our first main goal is to prove the desired

convergence for the estimator pξLτn “
pξL1´k{n. Observe that

pξLτ “
n
ÿ

i“1

"

Kτ

ˆ

i

n

˙

´Kτ

ˆ

i´ 1

n

˙*

Yi,n “ Yn,n `
n´1
ÿ

i“1

Kτ

ˆ

i

n

˙

rYi,n ´ Yi`1,ns.

Since, for any t P p0, 1q, Kτ ptq is a decreasing function of τ P p1{2, 1q, we obtain that pξLτ

is a sample-wise nondecreasing function of τ P p1{2, 1q, and as such

pξL1´rks{n ď
pξLτn ď

pξL1´tku{n.

Writing then, for n large enough:

a

np1´ τnq

˜

pξLτn
ξτn

´ 1

¸

“
?
k

˜

pξL1´k{n
ξ1´k{n

´ 1

¸

ď
?
k

˜

pξL1´tku{n

ξ1´tku{n

´ 1

¸

ξ1´tku{n

ξ1´k{n
`
?
k

ˆ

ξ1´tku{n

ξ1´k{n
´ 1

˙

,

12



it comes as a straightforward consequence of Proposition 4 that

a

np1´ τnq

˜

pξLτn
ξτn

´ 1

¸

ď
?
k

˜

pξL1´tku{n

ξ1´tku{n

´ 1

¸

p1` op1qq ` op1q.

A similar lower bound holds, and so it suffices to consider the convergence of pξL1´k{n in

the case when k “ np1 ´ τnq is a sequence of integers with k Ñ 8, n{k Ñ 8 and
?
kApn{kq “ Op1q.

By Proposition 3(i),

?
k

˜

pξL1´k{n
ξ1´k{n

´ 1

¸

“
1

Γp1´ γqplog 2qγ

˜

?
k
pξL1´k{n ´ ξ1´k{n

q1´k{n

¸

p1` op1qq.

It is then enough to show the following convergence:

?
k

ż 1

0

J1´k{nptq
pqt ´ qt
q1´k{n

dt
d
Ñ γplog 2qγ`1{2

ż 8

0

e´ss´γ´1W psqds (A.20)

where W is a standard Brownian motion. The idea for this is to control the process pqt´qt

separately in the left tail of Y , in the center of the distribution of Y , and then in the right

tail of the distribution of Y . More precisely, we break the integral in the left-hand side

of (A.20) as follows:

?
k

ż 1

0

J1´k{nptq
pqt ´ qt
q1´k{n

dt “ In,1 ` In,2 ` In,3 ` In,4 ` In,5

with In,1 “
?
k

ż 1{n

0

J1´k{nptq
pqt ´ qt
q1´k{n

dt,

In,2 “
?
k

ż δ

1{n

J1´k{nptq
pqt ´ qt
q1´k{n

dt,

In,3 “
?
k

ż 1´δ

δ

J1´k{nptq
pqt ´ qt
q1´k{n

dt,

In,4 “
?
k

ż 1´k{pnunq

1´δ

J1´k{nptq
pqt ´ qt
q1´k{n

dt,

and In,5 “
?
k

ż 1

1´k{pnunq

J1´k{nptq
pqt ´ qt
q1´k{n

dt, (A.21)

where δ P p0, 1{2q is chosen such that

@t ě 1´ δ, 0 ă
1

fpqtq
ď

2

γ

qt
1´ t

(A.22)
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(this is possible by the von Mises condition (14) in the main paper) and punq is constructed

by applying Lemma A.4. We study each term separately.

Control of In,1: Note that
ˇ

ˇ

ˇ

ˇ

ˇ

ż 1{n

0

J1´k{nptqpqt dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď J1´k{np1{nq

ż 1

0

|pqt| dt “ OPpJ1´k{np1{nqq,

by the law of large numbers. Furthermore
ˇ

ˇ

ˇ

ˇ

ˇ

ż 1{n

0

J1´k{nptqqt dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď J1´k{np1{nq

ż 1

0

|qt| dt “ J1´k{np1{nqE|Y |.

Because k{nÑ 0 and q1´k{n Ñ 8, the following crude bound then applies:

|In,1| “ oP
`?

nJ1´k{np1{nq
˘

.

Apply now Lemma A.3(i) to get

|In,1| “ oP

ˆ

?
n exp

ˆ

´
log 2

2
ˆ
n log n

k

˙˙

“ oP

ˆ

exp

ˆ„

1

2
´
n

k

log 2

2



log n

˙˙

which, since n{k Ñ 8, translates into

|In,1| “ oPp1q. (A.23)

Control of In,2: Use the approximation of Theorem 6.2.1 in Csörgő and Horváth (1993)

(see also Proposition 2.4.9 in de Haan and Ferreira, 2006) to obtain that for any ε P

p0, 1{2q, there is a sequence of Brownian bridges pBnq with

pqt ´ qt “
1
?
n

„

Bnptq

fpqtq
`OP

ˆ

n´εt´ε`1{2p1´ tq´ε`1{2

fpqtq

˙

(A.24)

uniformly in t P r1{n, pn´ 1q{ns. Report this into In,2 to get

In,2 “

c

k

n

ż δ

1{n

J1´k{nptq

q1´k{n

Bnptq

fpqtq
dt`OP

˜

c

k

n

ż δ

1{n

J1´k{nptq

q1´k{n

n´εt´ε`1{2p1´ tq´ε`1{2

fpqtq
dt

¸

.

Recall that any Brownian bridge B is such that Bptq
d
“ W ptq ´ tW p1q with W being a

standard Brownian motion. Because

sup
0ătă1´δ

|W ptq|

t1{2´ε
ă 8 almost surely (A.25)
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(for instance as a consequence of the law of the iterated logarithm, see Theorem 1.9 and

Corollary 1.10 in Chapter II of Revuz and Yor, 1999), we obtain in particular that

sup
0ătă1´δ

|Bnptq|

t1{2´ε
“ OPp1q. (A.26)

As such, and noting that 1{fpqtq “ q1t, the derivative of t ÞÑ qt, we obtain

|In,2| “ OP

˜

c

k

n

ż δ

1{n

J1´k{nptq

q1´k{n
t´ε`1{2q1t dt

¸

.

Set now c “ plog 2q{4 ą 0 and apply Lemma A.3(ii) to get

|In,2| “ oP

ˆ
c

n

k

δcn{k

q1´k{n

ż δ

1{n

tq1t dt

˙

.

Notice that
ż δ

1{n

tq1t dt “ δqδ ´
1

n
q1{n ´

ż δ

1{n

qt dt.

Since E|Y | ă 8, the integral on the right-hand side is clearly bounded as nÑ 8, and it

is a simple consequence of the Markov inequality that n´1q1{n must also stay bounded as

nÑ 8. Consequently

|In,2| “ oP

ˆ
c

n

k

δcn{k

q1´k{n

˙

“ oP

ˆ
c

n

k
δcn{k

˙

.

Since n{k Ñ 8 and δ P p0, 1q, this gives

|In,2| “ oPp1q. (A.27)

Control of In,3: Use the previous Brownian bridge approximation together with (A.26),

and note that the function t ÞÑ t´ε`1{2p1´ tq´ε`1{2{fpqtq is obviously bounded on rδ, 1´δs

to get

|In,3| “ OP

˜

c

k

n

ż 1´δ

δ

J1´k{nptq

q1´k{n
dt

¸

.

Now the function J1´k{n has unit integral, so that

|In,3| “ OP

˜

c

k

n
ˆ

1

q1´k{n

¸

.

15



Finally, because the function t ÞÑ t´1{2q1´t´1 is regularly varying at infinity with index

γ ´ 1{2 ă 0, it follows by Proposition B.1.9.1 in de Haan and Ferreira (2006, p.366) that

|In,3| “ oPp1q. (A.28)

Control of In,4: Use again the Brownian bridge approximation together with the bound-

edness of the function t ÞÑ t´ε`1{2 on a neighborhood of 1 to write

In,4 “

c

k

n

ż 1´k{pnunq

1´δ

J1´k{nptq

q1´k{n

Bnptq

fpqtq
dt

` OP

˜

c

k

n

ż 1´k{pnunq

1´δ

J1´k{nptq

q1´k{n

n´εp1´ tq´ε`1{2

fpqtq
dt

¸

. (A.29)

We control the two terms on the right-hand side separately. Recalling that the covariance

function of a Brownian bridge at times s and t is minps, tq ´ st (see p.37 of Revuz and

Yor, 1999), we get that the first term has variance

Var

˜

c

k

n

ż 1´k{pnunq

1´δ

J1´k{nptq

q1´k{n

Bnptq

fpqtq
dt

¸

“
k

n

1

rq1´k{ns2

ż 1´k{pnunq

1´δ

ż 1´k{pnunq

1´δ

J1´k{npsqJ1´k{nptq
minps, tq ´ st

fpqsqfpqtq
ds dt.

Using (A.22), the fact that s ÞÑ qs and s ÞÑ p1 ´ sq´1 are increasing functions, the

inequality minps, tq´ st ď sp1´ tq and the fact that the function J1´k{n has unit integral,

we then have:

Var

˜

c

k

n

ż 1´k{pnunq

1´δ

J1´k{nptq

q1´k{n

Bnptq

fpqtq
dt

¸

ď
4

γ2
un

˜

ż 1´k{pnunq

1´δ

J1´k{nptqdt

¸2

ď
4

γ2
un Ñ 0.

As the term whose variance we bound is a centered random variable, we finally obtain
c

k

n

ż 1´k{pnunq

1´δ

J1´k{nptq

q1´k{n

Bnptq

fpqtq
dt “ oPp1q. (A.30)

The control of the remainder term in In,4 follows the same ideas:
ˇ

ˇ

ˇ

ˇ

ˇ

c

k

n

ż 1´k{pnunq

1´δ

J1´k{nptq

q1´k{n

n´εp1´ tq´ε`1{2

fpqtq
dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď
2

γ

u
1{2`ε
n

kε
“ op1q. (A.31)

Combining (A.29), (A.30) and (A.31), we obtain

|In,4| “ oPp1q. (A.32)
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Control of In,5: Use the change of variables t “ 1 ´ ks{pnunq and then Lemma A.4(ii)

to obtain that there exist ε P p0, 1{2´ γq and a sequence of Brownian motions pWnq such

that:

In,5 “
k

n
?
un

ż 1

0

J1´k{np1´ ks{pnunqq

c

k

un

ˆ

pq1´ks{pnunq ´ q1´ks{pnunq
q1´k{n

˙

ds

“
1
?
un

q1´k{pnunq
q1´k{n

ż 1

0

k

n
J1´k{np1´ ks{pnunqqγs

´γ´1Wnpsqds

` o

˜

1

u
1{2´ε
n

q1´k{pnunq
q1´k{n

#

c

k

un
A
´nun
k

¯

+

ż 1

0

k

n
J1´k{np1´ ks{pnunqqs

´γ´ρ´εds

¸

` oP

ˆ

1

u
1{2´ε
n

q1´k{pnunq
q1´k{n

ż 1

0

k

n
J1´k{np1´ ks{pnunqqs

´γ´1{2´εds

˙

. (A.33)

To control the first term above, we use first the change of variables s “ tun and the self-

similarity of the standard Brownian motion w.r.t. scaling to get, if W denotes a generic

Brownian motion,

1
?
un

q1´k{pnunq
q1´k{n

ż 1

0

k

n
J1´k{np1´ ks{pnunqqγs

´γ´1Wnpsqds

d
“

"

u´γn
q1´k{pnunq
q1´k{n

*
ż 1{un

0

k

n
J1´k{np1´ kt{nqγt

´γ´1W ptqdt.

Using Lemma A.4(i) and the definition of the function J1´k{n, this entails

1
?
un

q1´k{pnunq
q1´k{n

ż 1

0

k

n
J1´k{np1´ ks{pnunqqγs

´γ´1Wnpsqds

d
“ γ log 2

ż 1{un

0

p1´ kt{nqrp1´k{nq´1 t´γ´1W ptqdtp1` op1qq.

Note that, pointwise, the integrand in the right-hand side above converges to 2´tt´γ´1W ptq;

let us then consider

Sn :“

ż 1{un

0

p1´ kt{nqrp1´k{nq´1 t´γ´1W ptqdt and Tn :“

ż 8

0

2´tt´γ´1W ptqdt.

Remark that Tn is indeed well-defined with probability 1, in virtue of the combination

of (A.25), the inequality γ ă 1{2 and the self-similarity of the Brownian motion w.r.t.

time-inversion. Write then, thanks to the equality E|W ptq| “
?
tE|W p1q| “

a

2t{π,

E|Sn ´ Tn| ď
c

2

π

ż 8

0

ˇ

ˇ

ˇ
p1´ kt{nqrp1´k{nq´1 ´ 2´t

ˇ

ˇ

ˇ
t´γ´1{2Ittď1{unudt

`

c

2

π

ż 8

0

2´tt´γ´1{2Ittą1{unudt.
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Since γ ă 1{2, we may use a conjunction of Lemma A.2(i) and (ii) and the dominated

convergence theorem to get E|Sn ´ Tn| Ñ 0. In particular, Sn “ Tn ` oPp1q and therefore

1
?
un

q1´k{pnunq
q1´k{n

ż 1

0

k

n
J1´k{np1´ ks{pnunqqγs

´γ´1Wnpsqds
d
Ñ γ log 2

ż 8

0

2´tt´γ´1W ptqdt.

(A.34)

The second term in (A.33) is controlled by using the change of variables s “ tun and then

by using Lemma A.4(i):

1

u
1{2´ε
n

q1´k{pnunq
q1´k{n

#

c

k

un
A
´nun
k

¯

+

ż 1

0

k

n
J1´k{np1´ ks{pnunqqs

´γ´ρ´εds

“

"

u´γn
q1´k{pnunq
q1´k{n

*"

u´ρn
A pnun{kq

A pn{kq

*

!?
kA

´n

k

¯)

ż 1{un

0

k

n
J1´k{np1´ kt{nqt

´γ´ρ´εdt

“ O

˜

ż 1{un

0

p1´ kt{nqrp1´k{nq´1 t´γ´ρ´εdt

¸

.

Using Lemma A.2(i) and (ii) and the dominated convergence theorem, we get

1

u
1{2´ε
n

q1´k{pnunq
q1´k{n

#

c

k

un
A
´nun
k

¯

+

ż 1

0

k

n
J1´k{np1´ ks{pnunqqs

´γ´ρ´εds “ Op1q. (A.35)

The third term in (A.33) is again controlled by using the change of variables s “ tun and

then by using Lemma A.4(i):

1

u
1{2´ε
n

q1´k{pnunq
q1´k{n

ż 1

0

k

n
J1´k{np1´ ks{pnunqqs

´γ´1{2´εds

“

"

u´γn
q1´k{pnunq
q1´k{n

*
ż 1{un

0

k

n
J1´k{np1´ kt{nqt

´γ´1{2´εdt

“ O

˜

ż 1{un

0

p1´ kt{nqrp1´k{nq´1 t´γ´1{2´εdt

¸

.

Use again Lemma A.2(i) and (ii) and apply the dominated convergence theorem to obtain

1

u
1{2´ε
n

q1´k{pnunq
q1´k{n

ż 1

0

k

n
J1´k{np1´ ks{pnunqqs

´γ´1{2´εds “ Op1q. (A.36)

Combining (A.33), (A.34), (A.35) and (A.36) yields

In,5
d
Ñ γ log 2

ż 8

0

2´tt´γ´1W ptqdt.
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The change of variables s “ t log 2 and the self-similarity of W w.r.t. scaling now clearly

entail

In,5
d
Ñ γplog 2qγ`1{2

ż 8

0

e´ss´γ´1W psqds. (A.37)

It only remains to combine (A.21), (A.23), (A.27), (A.28), (A.32) and (A.37) to prove (A.20)

and therefore complete the proof of the stated convergence for pξLτn .

We now prove that this convergence implies that of pξLMτn as well as that of pξMτn . Noting

that Jτn has integral 1, we have

1

n

n
ÿ

i“1

Jτn

ˆ

i

n

˙

´ 1 “
n
ÿ

i“1

ż i{n

pi´1q{n

„

Jτn

ˆ

i

n

˙

´ Jτnptq



dt.

Since Jτn is an increasing function for n large enough, this entails

0 ď
1

n

n
ÿ

i“1

Jτn

ˆ

i

n

˙

´ 1 ď
1

n

n
ÿ

i“1

„

Jτn

ˆ

i

n

˙

´ Jτn

ˆ

i´ 1

n

˙

“
Jτnp1q

n
.

Because p1´ τnqJτnp1q Ñ logp2q, this implies

a

np1´ τnq

˜

1

n

n
ÿ

i“1

Jτn

ˆ

i

n

˙

´ 1

¸

“ O

˜

1
a

np1´ τnq

¸

Ñ 0.

In other words,

pξMτn “
pξLMτn

˜

1` o

˜

1
a

np1´ τnq

¸¸

.

As a consequence,

a

np1´ τnq

˜

pξMτn
ξτn

´ 1

¸

“
a

np1´ τnq

˜

pξLMτn
ξτn

´ 1

¸

p1` op1qq ` op1q

and it is enough to prove the convergence of pξLMτn . Define then J step
τn ptq “ Jτnprnts{nq, and

notice that

pξLMτn “
1

n

n
ÿ

i“1

Jτn

ˆ

i

n

˙

Yi,n “

ż 1

0

J step
τn ptqpqt dt.

Then clearly

a

np1´ τnq

ξτn

ˇ

ˇ

ˇ

pξLMτn ´ pξLτn

ˇ

ˇ

ˇ
ď

a

np1´ τnq

ξτn

ż 1

0

ˇ

ˇJ step
τn ptq ´ Jτnptq

ˇ

ˇ |pqt| dt.
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We next let t0 P p0, 1q be such that qt0 ą 1 (this is possible, since Y has a heavy right

tail), and we rewrite the above bound as
a

np1´ τnq

ξτn

ˇ

ˇ

ˇ

pξLMτn ´ pξLτn

ˇ

ˇ

ˇ
ď

a

np1´ τnq

ξτn

ż t0

0

ˇ

ˇJ step
τn ptq ´ Jτnptq

ˇ

ˇ |pqt| dt

`

a

np1´ τnq

ξτn

ż 1

t0

ˇ

ˇJ step
τn ptq ´ Jτnptq

ˇ

ˇ |pqt| dt. (A.38)

To control the integrals in this upper bound, we note that for n large enough, by the

mean value theorem,

ˇ

ˇJ step
τn ptq ´ Jτnptq

ˇ

ˇ ď

ˆ

rnts

n
´ t

˙

J 1τn

ˆ

rnts

n

˙

ď
1

n
J 1τn

ˆ

rnts

n

˙

for all t P p0, 1q. (A.39)

Observe also that
ż t0

0

|pqt| dt ď

ż 1

0

|pqt| dt “ OPp1q

by the law of large numbers, therefore yielding

a

np1´ τnq

ξτn

ż t0

0

ˇ

ˇJ step
τn ptq ´ Jτnptq

ˇ

ˇ |pqt| dt “ oP

˜

c

1´ τn
n

J 1τn

ˆ

rnt0s

n

˙

¸

.

Recalling that J 1τnptq “ rpτnqrrpτnq ´ 1strpτnq´2 and rpτnq “ p1´ τnq
´1 logp2qp1` op1qq, we

easily obtain, thanks to the convergence rnt0s{nÑ t0 ă 1, that
c

1´ τn
n

J 1τn

ˆ

rnt0s

n

˙

“ o
´

p1´ τnq
´1 t

p1´τnq´1 logp2q{2
0

¯

Ñ 0.

It follows that
a

np1´ τnq

ξτn

ż t0

0

ˇ

ˇJ step
τn ptq ´ Jτnptq

ˇ

ˇ |pqt| dt “ oPp1q. (A.40)

Besides, we have, on the interval pt0, 1q and for n large enough,

1

n
J 1τn

ˆ

rnts

n

˙

ď
rpτnq ´ 1

rnt0s
Jτn

ˆ

rnts

n

˙

ď
2 log 2

t0

1

np1´ τnq
Jτnptq. (A.41)

Here, the upper bound

Jτnprnts{nq

Jτnptq
ď

ˆ

1`
1

nt0

˙rpτnq´1

, t P pt0, 1q

was used, together with the convergence

ˆ

1`
1

nt0

˙rpτnq´1

“ exp

ˆ

p1´ τnq
´1 logp2q log

„

1`
1

nt0



p1` op1qq

˙

Ñ 1
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which is valid since np1 ´ τnq Ñ 8. Applying (A.39) and (A.41), we get, for n large

enough:
a

np1´ τnq

ξτn

ż 1

t0

ˇ

ˇJ step
τn ptq ´ Jτnptq

ˇ

ˇ |pqt| dt ď

a

np1´ τnq

ξτn

ż 1

t0

1

n
J 1τn

ˆ

rnts

n

˙

|pqt| dt

ď
2 log 2

t0
ˆ

1

ξτn
a

np1´ τnq

ż 1

t0

Jτnptq |pqt| dt.

Observe now that pqt0
P
Ñ qt0 (this is a consequence of, for instance, Theorem 6.2.1 in

Csörgő and Horváth, 1993). It follows that, with arbitrarily large probability as nÑ 8,

one has pqt0 ą 1{2, and therefore
a

np1´ τnq

ξτn

ż 1

t0

ˇ

ˇJ step
τn ptq ´ Jτnptq

ˇ

ˇ |pqt| dt ď
2 log 2

t0
ˆ

1

ξτn
a

np1´ τnq

ż 1

t0

Jτnptqpqt dt.

Writing
ż 1

t0

Jτnptqpqt dt “ pξLτn ´

ż t0

0

Jτnptqpqt dt,

it follows that
a

np1´ τnq

ξτn

ż 1

t0

ˇ

ˇJ step
τn ptq ´ Jτnptq

ˇ

ˇ |pqt| dt “ oP

ˆ

1`
1

ξτn

ż t0

0

Jτnptq|pqt| dt

˙

.

Finally, using the law of large numbers again, we get

ż t0

0

Jτnptq|pqt| dt ď rpτnqt
rpτnq´1
0

ż 1

0

|pqt| dt “ OP

´

p1´ τnq
´1t

p1´τnq´1 logp2q{2
0

¯

“ oPp1q.

Consequently
a

np1´ τnq

ξτn

ż 1

t0

ˇ

ˇJ step
τn ptq ´ Jτnptq

ˇ

ˇ |pqt| dt “ oPp1q. (A.42)

Combining (A.38), (A.40) and (A.42) results in
a

np1´ τnq

ξτn

ˇ

ˇ

ˇ

pξLMτn ´ pξLτn

ˇ

ˇ

ˇ

P
Ñ 0.

In particular,

a

np1´ τnq

˜

pξLMτn
ξτn

´ 1

¸

“
a

np1´ τnq

˜

pξLτn
ξτn

´ 1

¸

` oPp1q

which, by using the convergence of pξLτn , concludes the proof. l
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Proof of Theorem 5 Write

log

˜

pξM,‹
τ 1n

ξτ 1n

¸

“ ppγ ´ γq log

ˆ

1´ τn
1´ τ 1n

˙

` log

˜

pξMτn
ξτn

¸

´ log

ˆ„

1´ τ 1n
1´ τn

γ ξτ 1n
ξτn

˙

.

The convergence logrp1´ τnq{p1´ τ
1
nqs Ñ 8 yields

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs
log

˜

pξMτn
ξτn

¸

“ OP

ˆ

1

logrp1´ τnq{p1´ τ 1nqs

˙

“ oPp1q, (A.43)

and

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs
log

ˆ„

1´ τ 1n
1´ τn

γ ξτ 1n
ξτn

˙

“

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

ˆ

log

ˆ

ξτ 1n
qτ 1n

˙

´ log

ˆ

ξτn
qτn

˙

` log

ˆ„

1´ τ 1n
1´ τn

γ qτ 1n
qτn

˙˙

“ O

˜

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs
r1´ τn ` |App1´ τnq

´1
q| ` 1´ τ 1n ` |App1´ τ

1
nq
´1
q|s

¸

“ O

˜

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs
r1´ τn ` |App1´ τnq

´1
q|s

¸

“ op1q. (A.44)

Convergence (A.43) is a consequence of our Theorem 4. Convergence (A.44) follows from

a combination of Proposition 4, Theorem 2.3.9 in de Haan and Ferreira (2006) and from

the regular variation of |A|. Combining these elements and using the Delta-method leads

to the desired conclusion. l

Proof of Proposition 5 We have for τ ă 1{2 that ξτ “
ş1

0
Jτ ptqqt dt, where Jτ p¨q is a

decreasing positive function satisfying the normalization condition
ş1

0
Jτ ptqdt “ 1. Then,

according to Acerbi (2002, Theorem 2.5), ´ξτ provides a coherent risk measure. l

Proof of Proposition 6 Since F P DApΦγq with γ ă 1, it follows from Theorem 11 in

Bellini et al. (2014) together with asymptotic inversion that

eτ „ pγ
´1
´ 1q´γqτ as τ Ñ 1.

Hence ξτ{eτ „ pγ
´1 ´ 1qγ Γp1´ γqtlog 2uγ as τ Ñ 1, in view of Proposition 3 (i). On the
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other hand, it follows from Hua and Joe (2011) that

ErY |Y ą qτ s

qτ
„

1

1´ γ
as τ Ñ 1.

Hence, in view of Proposition 3 (i), ξτ{ErY |Y ą qτ s „ p1 ´ γqΓp1 ´ γqtlog 2uγ “

Γp2´ γqtlog 2uγ as τ Ñ 1. This completes the proof. l

B Additional simulations

When empirical extremiles are used to estimate the same quantity as empirical quantiles,

our simulation experiments provide Monte-Carlo evidence that the extremile estimators

are the most efficient in case of usual short and light-tailed distributions. This benefit in

terms of efficiency comes at the price of non-robustness against heavy-tailed distributions.

Yet, by considering trimmed extremiles, we recover smaller mean squared errors with

respect to sample quantiles that estimate the same quantity.

B.1 Ordinary extremiles

For continuous distributions, extremiles are identical to quantiles but with different or-

ders. Indeed, ξτ “ qα implies α “ ατ :“ F pξτ q. Therefore, an empirical extremile pξτ

and quantile pqατ estimate the same quantity ξτ ” qατ . To evaluate finite-sample per-

formance of these two estimators we have undertaken some simple Monte Carlo experi-

ments. The simulation experiments all employ the levels τ “ 0.1, 0.3, . . . , 0.9. We have

considered 2, 000 replications for samples of size n “ 100, 200, . . . , 3000, simulated from

various scenarios: Normalp0, 1q, Exponentialp1q, Uniformp0, 1q, Betap2, 2q, Chi-squarep3q,

Log-normalp0, 0.5q, Weibullp1, πq, and Gammapa “ 3, s “ 1q whose density function is

F 1py; a, sq “ ya´1e´y{s{ psaΓpaqq, y ą 0. The evolution of the ratio MSEppξLτ q{MSEppqατ q

between the Mean Squared Errors with respect to the sample size n, displayed in Fig-

ure 1, provides Monte-Carlo evidence that the empirical extremile estimator pξLτ is efficient

relative to the empirical quantile for all these usual short and light-tailed distributions.
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Figure 1: Some simulation evidence – Ordinary extremiles. The evolution of the ratio

MSEppξLτ q{MSEppqατ q against the sample size n, at the levels τ “ 0.1, 0.3, 0.5, 0.7 and 0.9.

B.2 Trimmed extremiles

We have undertaken some simulation experiments to evaluate the performance of the

empirical trimmed extremile pξτ pkn, k
1
nq in comparison with the sample quantile pqα when

they estimate the same quantity ξτ pkn, k
1
nq ” qα. We have considered the Burrp4, 1q,

Paretop4q and Studentp3q distributions, whose heavy tails are likely to affect the ordinary

sample extremile pξLτ . Here, the Burrpk, cq and Paretopaq distribution functions are, re-

spectively, F pyq “ 1 ´ p1 ` ycq´k, y ą 0, and F pyq “ 1 ´ y´a, y ě 1. The Monte Carlo

ratios MSEppξτ pkn, k
1
nqq{MSEppqαq, shown in Figure 2, were computed over 2, 000 replica-

tions for n “ 100, 200, . . . , 3000. The simulation experiments all employ the extremile
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levels τ “ 0.1, 0.3, . . . , 0.9, and the corresponding quantile levels α “ F pξτ pkn, k
1
nqq so

that ξτ pkn, k
1
nq ” qα. We chose k1n “ rp5{100q ¨ n{rn0.1ss in the left panels of the figure,

and k1n “ rp10{100q ¨n{rn0.1ss in the right panels. Note that k1n corresponds to r5% ¨ns for

n ă 1024 and to r2.5% ¨ ns for n ě 1024. We also chose kn “ k1n only for the symmetric

Student distribution, otherwise kn “ 0. Our tentative conclusion from this exercise is

that the accuracy of the trimmed extremile estimator is quite respectable with respect to

the robust sample quantile, since the MSE ratios are overall smaller than one.
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Figure 2: Trimmed extremiles – From top to bottom, the Burrp4, 1q, Paretop4q and

Studentp3q distributions. From left to right, k1n “ rp5%q ¨ n{rn0.1ss and k1n “ rp10%q ¨

n{rn0.1ss.
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