Supplementary Material for
EXTREMILES: A NEW PERSPECTIVE ON

ASYMMETRIC LEAST SQUARES

Supplement A contains technical lemmas and the proofs of all theoretical results in

the main paper. Supplement B provides further simulation results.

A  Proofs

Proof of Proposition 1 Simply note that, for ¢ € (ys, yu.),

P(qp-1(pivy <t) = Plaggry <t) for U A U(0,1) (because F' is continuous)

1
= L H{K;l(u)gF(t)}dU

thus proving the desired result. [

Proof of Proposition 2 For part (i) we have clearly, by (7), |&| < s(T)E|Y]| if 7 €
(0,1/2], and |& | < r(T)E[Y] if 7 € [1/2,1). So E|Y| < oo implies |&;| < o0. Furthermore,
it is a clear consequence of the dominated convergence theorem that the function 7 — &,
is continuous on both of the intervals (0,1/2) and (1/2,1). Since r(1/2) = s(1/2) = 1,
we conclude by the dominated convergence theorem again that the function 7 — &, is
continuous at 7 = 1/2, and as such is continuous on the whole interval (0, 1). Note also
(from Equation (5)) that 7 — r(7) is increasing on (1/2,1) and 7 — s(7) is decreasing

on (0,1/2), and this implies that the function 7 +— &, is increasing on both the intervals
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(0,1/2) and (1/2,1), and therefore is also increasing on the whole interval (0,1) by its
continuity at 7 = 1/2. Finally, the fact that the extremile function maps (0,1) onto
the range of F' is an immediate consequence of its continuity together with the limits
lim; o & = ye and lim4; & = yy.

(ii) The necessary condition is trivial. For the sufficient condition, suppose &y, = S
for all 7€ (0,1). For every integer s > 1 and all independent copies Y!,... . Y* of Y, we
have E[min(Y'!, ..., Y*)] = &(s), where 7(s) = 1 — (1/2)V/*. Likewise, for s independent
copies Y1,...,Y* of Y, we have ]E[min(?l, o ,}N/S)] = &y ,(s)- Then by assumption

E[min(Y!,...,Y*)] = E[min(Y',...,Y*)] for s=1,2,...
This implies Fy = F} as established by Chan (1967).

1
(iii) Following (7), we have & = { J; t)dt. Also, J.(1—t) = Jy1_,(t). The assertion
0

follows then immediately from the locatlon and scale equivariance of quantiles

a+bFy (T if 6>0
FZ'(r) = v () (A1)
a+bFy N1 —7) if b<O.
(iv) Using a change of variables in the first equality in formula (7) in conjunction with

the facts that J.(1 —t) = J1_,(t) and ¢1_; = 2u — ¢, we easily get

1 1
= J JI—T(t>Qt dt = 2” - f JT(t)qt dt = 2:“’ - g’r
0
for either cases 7 < 1/2 and 7 > 1/2.

(v) The comonotonic additivity follows immediately from (7) in conjunction with the fact

that F;}r?(t) = F;'(t) + F};l(t) for comonotonic variables Y and Y.  []

Lemma A.1 For any s < 1, we have

(log2) LOO 277 dt = T(1 — s)(log 2)® =: G(s).

Proof This is a straightforward consequence of the use of the change of variables u =

tlog2. [



Lemma A.2 (i) For anyt > 0 it holds that
1—(1—7)t) D 527 a5 711
(i) For any T close enough to 1, we have
0< (1= (1 =787 Toaren 1y < (V2) ™

(#ii) For anyt > 0 it holds that

(1—7)1 [(1 (1= 24} Lot (t [1 + 10g2] - t210g2) as 711,

2 2

(iv) For any c € (0,1), there is a constant C > 0 such that for any T close enough to 1,

we have
(=771 = =t = 27 Tpcrcea oy < C(V2)

Proof Convergence (i) is immediate since r(7) = log(1/2)/log(T) is equivalent to (1 —
7)"tlog2 as 7 1 1. Statement (ii) is shown by recalling that log(l — x) < —x for all
x € [0, 1), implying in particular

1

< (1-7)" and Ya>1, Vte (0,(1—7)Y), (1—(1— 7))t 7 lesa < ot
—log(7)

Combining these two inequalities entails, for 7 close enough to 1 and ¢ € (0, (1 — 7)71),
Vae (1,2), (1—(1—m)t) D < (1= (1 —n)p)d lose < o (A.2)

as required. Convergence (iii) follows from a straightforward Taylor expansion. To prove

statement (iv), we first recall that a consequence of the mean value theorem is
Vo,y e R, [e¥ —e®| < |y — a|emex@y),

Pick then a € (v/2,2) and use (A.2) to obtain that eventually as 7 1 1 and for any
te(0,(1—71)7"):

1= =1 =)t =27 < (1=7)"|(r(r) = 1) log(1 — (1 — 7)) + tlog 2| a~*.
(A.3)



Now, the Taylor expansion (1) = (1 —7)(log 2) — (log 2)/2 + o(1) entails, together with
the triangle inequality, that eventually as 7 1 1 and for all £ € (0, (1 —7)71):

| log(1 — (1 —7)t)|

(1—7)" (r(r) — 1) log(l — (1 —7)t) + tlog2| < (1 + log?2)

1—71
+ (log 2) |1Og(1 B (1(11—)7122—’_ (1 B T)t| ]

The mean value theorem and Taylor’s theorem entail, for any ¢ € (0, 1):

log(1 — 1 log(1 — 1
o BO =) 1 gl =) | |
1 2(1 — ¢)?

~
O<z<c x —C O<z<c x?

implying therefore that there is a constant C; > 0 with
(L=7)""(r(r) = 1) log(1l — (1 — 7)t) + t1og 2| Ljp<t<c1—r)-1} < Cit(1 + t)Lj=0)-

Recall now that since a > +/2, there is a constant Cy > 0 with ¢(1+t)a~" < Cy(v/2)~* for

all ¢ > 0, and report the above inequality into (A.3) to complete the proof. []

Proof of Proposition 3 To prove (i), set 6 = inf{t € (0,1)|¢ > 0}. Then § € [0,1)
since we work in the heavy-tailed case. If 6 > 0, then for a sufficiently large 7 > 1/2, and

because g5 < 0 and ¢ is nondecreasing, we have

r(r)—1 6 r(r)—1
< r(7)d f g dt=0 <7‘(T)5 > '

qr 0 qr

Sg T(T)t’"(f)*lqt dt
qr

Recall that (1) = log(1/2)/log(t) ~ (1—7)"'log2 as 7 1 1, and use Proposition 1.3.6(v)
in Bingham et al. (1987, p.16) to get for any € € (0, 1):
r(T)en (-1
qr
As such

=0((1- 7) 720 exp(—(1 — 7) " (log(2) x log(1/2))/2)) = o(1). (A.4)

Sg r(T)t" (g, dt
qr

—o(1). (A.5)

This is of course also trivially true if § = 0. Furthermore, the condition F' € DA(®,) is

equivalent to

lim q1—(sx)—1

50 (151

=27 forall x>0 (A.6)



(see, e.g., de Haan and Ferreira (2006), Corollary 1.2.10). Therefore, it follows by Propo-
sition B.1.10 of de Haan and Ferreira (2006) that there is so > 0, which we may take to
be larger than (1 —§)~!, such that

q1—(sz)—1

< max(z(+7/2 1), (A.7)
q1—s-1

Vs >0, Ve >0, s,57 > 59 = —x’

Write then

1

é 1—551
& = f T(T)tr(T)_lqt dt + J T(T)tr(T)_lqt dt + f T(T)t’"(T)_lqt dt.

0 § 1-s5t

The second term above is controlled just like in (A.5), yielding

&

1
= f r(T)t’"(T)_lﬂdt + o(1). (A.8)
qr 1

—5q . qr
Use then the change of variables t = 1 — (1 — 7)/w to obtain that the integral on the
right-hand side of (A.8) is equivalent to

r(r)—1
R e
(1=7)s0

1—7)s w q1—[(1-7)-1]1 w?

A combination of Lemma A.2(i) and (ii), (A.6), (A.7) and of the dominated convergence
theorem shows that

o r(r)—1 oo
J 17 Bttt dw T s
( w qQ1—[(1-7)-1]-1 w? 0 w?

1-7)so
Report this into (A.8) and use the change of variables ¢ = 1/w together with Lemma A.1

to get the required result.

The proof of (ii) uses the fact that, for v < 0, F' € DA(V,) is equivalent to (de Haan and
Ferreira (2006), Corollary 1.2.10)

Yy, =sup{y : F(y) <1} <o and lim 2T BCDT v frall 2> 0

57200 Yy — (q1—g-1

and is entirely similar to the proof of (i).
Finally, the proof of (iii) is based on the fact that if £ € DA(A), then

limwzl forall >0
520 (g1



when y, = o0, and

Yu — q1—(sz)~

lim 1=1 forall >0

520 Yy — d1—s-1

when y,, < oo (see, e.g., de Haan and Ferreira (2006), Lemma 1.2.9). The same arguments

used to prove (i) yield once again the desired result, and so we omit the details.  []

Proof of Theorem 1 Write first

N 1o . 1
gf = _Zci,nY;,n with Cin =T {KT (i) - K’T (z )} .
nizl n n

Since K is continuously differentiable on (0, 1) with derivative J., we have

1
Vie{l,...,n}, ;€ [Z ,i] ; Cim = Jr(tin).

n n

Define then J,,(t) = ¢;,, for t € [(i—1)/n,i/n]. Note that J,, and J; are uniformly bounded

on [0, 1]. Besides, if E|Y'|" < oo then ¢ necessarily satisfies, for some M > 0,
] < Mt=V5(1 — )75 te(0,1), (A.9)

see Remark 1 in Shorack and Wellner (1986, p.663). Finally, note that the function
t— t(1 —t)J.(t) is clearly bounded on (0, 1).

(i) Here the constant x in (A.9) satisfies 1/k < 1. The result then follows directly from
Theorem 3 in Shorack and Wellner (1986, p.665).

(ii) Since now (A.9) holds with 1/x < 2, the result follows immediately from Theorem 1(ii)
of Shorack and Wellner (1986, p.664).

(iii) If J. is Lipschitz of order § > £ on (0,1), then the Berry-Esséen rate O(n~*/?) fol-
T) = 3 or

)3 in the

(
lows from Theorem C of Serfling (1980, p.287). This is clearly true when r(
equivalently 7 > (1)'/ in the right tail, and s() > 3 or equivalently 7 <1 — (3

left tail. [

Proof of Theorem 2 It is not hard to check the stated convergence by applying Theorem
4.2 of Shorack (2000, p.442). [



Recall the second-order condition

1 —(tz)~ r—1
lim {QI (tz)~? —xv} =22 for all z > 0. (A.10)

t=o A(t) (g1 p

Proof of Proposition 4 As in the proof of Proposition 3, set 6 = inf{t € (0,1)|¢ >
0} € (0,1). Apply then Theorem 2.3.9 in de Haan and Ferreira (2006) to get that there is
so > 0, which we may take to be larger than (1 — §)~!, such that

1 —(sxz)” P— 1 —
S, 8T = Sp = ‘ (Q1 (o)™ _ :c”) — 2 ) < max(z/2 g7ty (A1)
AO(S) qi—s—1 P

Here Ay is a function that is equivalent to A in a neighborhood of infinity. By (A.4) in
the proof of Proposition 3, it is then clear that there is C' > 0 with

&

= J; 7(T)ﬂﬁﬂ—1g£dt%_O(exp(_{j(l—-7)_3». (A.12)

—1
—s0 T

Use then the change of variables t = 1 — (1 — 7)/w to obtain that the integral on the

right-hand side above is

r(r)—1
(1—7’)7"(7')]00 <1—1_T) " (M_wv)d_w
(1-7)s0 w q1-[(1-7)-1]-1 w?

b - [ )O<1—1‘7)T(T)_1wvd_w L) 4 L. (A1)

2
(1—7)s w w

A combination of Lemma A.2(i) and (ii), condition (A.10), (A.11) and the dominated

convergence theorem entails that

L(7) = (log2) JOO 2_1/ww7wp — 1d_w x A(1=7) ) +o(A(1—7)"")) as 711

0 p w?

Using the change of variables t = 1/w and Lemma A.1 it is easy to see that this entails
Li(r) = A((1 = 7)7)Ci(v, p) +o(A((1 = 7)71)). (A.14)

We now work on I5(7): use the change of variables z = 1/w to get that

[2 T)

7)r(7)

(1—7’)’1551
a = J (1—(1=7)2)" D 2774z

0



A use of Lemma A.1 and of the bound 277277 = O(27%) as z — o entails

I 7') (1-m)"tsy !

BT

— T(1—9)(log2)” + (log2) L [(1 e 2—2] 2 Vdz

+ o(exp(=C(1—71)7")). (A.15)

Meanwhile, Lemma A.1, Lemma A .2(iii) and (iv) and the dominated convergence theorem

yield

o0]

(log 2) J(l_T)lsol [(1 —(1- T)Z)T(T)*l — 2—1 2 dz
- (1-m)og) |

0
log 2 log 2
277 (Z [1 + i] — z2£> 27 7dz+o(l—1)
. 2 2

_ _7){[1 ; 1052] Gy —1) - 10529(7—2)} Fo(l—7).

Using the Taylor expansion 7(7) = (1 — 7)7!(log2) — (log2)/2 + o(1), it is then clear
from (A.15) that
L(1t)=G(y) + (1 —71)Ca(y) +o(1 — 7). (A.16)

Combine finally (A.12), (A.13), (A.14), (A.16) and the regular variation of |A| (see The-
orem 2.3.3 in de Haan and Ferreira, 2006) to complete the proof. [

Proof of Theorem 3 Putting k = n(l —7,) and d,, = (1 — 71,)/(1 — 7)), we have

20,1 o
Vi (éa _1> Wk (qﬂ/@—l)qig(?wr k(G 3) - g ) &

logd, \ & logd, \ ¢r, & log dy, &
+ vk g(v) - i | O
log dn QT,Q f‘r,/l‘

Note that ¢, /& — 1/G () by Proposition 3 and vk (G (7) — G (7)) = Op(1) by the delta-
method; combining this with Theorem 4.3.8 in de Haan and Ferreira (2006), it follows that
the sum of the first two terms above converges in distribution to Z. Besides, Proposition 4

entails



due to the regular variation of |A| with negative index. It only remains to use the as-
sumptions that 4/n(1 — 7,)A((1—7,)"") = O(1) and log d,, — 0 to obtain that the third

term of the above decomposition converges to 0, which completes the proof. []

Lemma A.3 Suppose k = k(n) — o0 is a positive sequence with n/k — oo. Then:

(i) We have

log2 nlogn
Jl_k/n(l/n)zo(exp [— g X kg ])

(i) For any 6 € (0,1), we have
n
sup {t("s2/CR 1 (1)} =0 (E) .
0<t<d

Proof To show (i), note that

eanlin) = e (| 1 oen)

- %1og 2(1 +0(1)) x exp <—nlogn log 2(1 + 0(1)))

( ( log 2 anogn))
olexp|—
2 k

as required. To prove (ii), write

_ log 2 n log 2
¢ (niog2/@R) () = D log 2(1+o(1 —-1- - - log(t) ) .
Osigg{ 1-iyn(t)} = - log 2(1+0(1)) Sup exp g —F/m) & 2 og(t)

Now —(log2)/log(1 — k/n) — (nlog2)/(2k) — +0, and on (0,9), log(t) < log(d) < 0, so
that eventually

log 2 n log 2 log 2 nlog 2
-1- - — log(t) | < -1- - — log (o
Osiifg P ([ log(1—k/n) k 2 ] og( )) P ([ log(1—k/n) k 2 og(9)

and the upper bound in this inequality converges to 0, proving (ii). []

Lemma A.4 Suppose:

e the second-order reqular variation condition (A.10) holds, with v < 1/2;

9



o k=k(n) — o, n/k— o and vk A(n/k) = O(1) asn — .

Then there is a positive sequence (uy,), such that u, — 0, nu,/k — w0, 1/u, is an integer

for any n, and the following all hold:

(i) We have

e nu — A n
u:’—ql bmn) 1 and U, —(nu /k) —
q1—k/n A(n/k)

(i) There exist € € (0,1/2 — ), a sequence of Brownian motions (W,) and a function

Ao which is asymptotically equivalent to A, such that:

\/> Q1 ks/(nuy) ql—kS/(nun)) . ’}/S_’Y_IWn(S)
q1— k/(nuyn)

k nu
_ —y—p—€ e [V n —y—1/2—¢ €
s 0 <un unA ( ’ >> + s op(us,)

uniformly in s € (0,1].

Proof Apply Proposition B.1.10 in de Haan and Ferreira (2006, p.369) to construct by

induction an increasing sequence (x,) tending to infinity such that for any positive integer

D:

1t Alt 1
vVt >0, Vo e (0,1), tr >z, = max (‘xﬂw — ‘ ‘a:_p (tz) _ 1D < —a V2

qi-1/t A(t) 2p

Use now Theorem 2.4.8 in de Haan and Ferreira (2006, p.52) to construct, for a suitably
small fixed € € (0,1/2—7y), and for any positive integer p, a sequence of Brownian motions
(VIN/M,) and a positive sequence of random variables (th) such that vap = op(1) asn — oo,

satisfying:

1/2 ~
S'y+/+a <Z

n7p

vk (2t ) T () - VA

L5 =1 '
q1—2rk/n

2Pk> p
for all s € (0,1]. Here Ay is a suitable function equivalent to A at infinity. An inspection
of the proof of Theorem 2.4.8 in de Haan and Ferreira (2006) shows that the interval of
possible choices of € and the choice of Ay only depend on the behaviour of Y in its right

tail, and as such these quantities can indeed be fixed independently of p. Since for any

10



~

P, Znp = op(l) as n — o0, we may construct an increasing sequence of integers (NNV,) such

- 1 1+¢ 1
Vp = 1, Vn = ]\/Yp7 P (anp > (5) ) < 2_p

Apply finally Theorem 2.3.9 in de Haan and Ferreira (2006, p.48) to construct by induction

that

an increasing sequence (t,) tending to infinity such that for any positive integer p:

R (ql—s/t B 37) B was_p — 1‘ _ (i)HE
Ao(t) \ g1t p 2v .

Define now two sequences (u,) and (u,) as follows:

Vt >0, Vse (0,1), t = t, = 7P

1 n ~
Uy = > if 2P max(z,,t,) < 7 < 2P max(wy11,tpr1) and T, =

1
% if Np =n< Np+1.
Note that (@, ) is indeed well-defined since n/k — oo, that @, — 0, @, — 0 and nu,/k — o

by construction, and that both 1/@, and 1/, are sequences of integers.

Set finally w,, = max(u,, u,). Then, as announced, (u,) is a positive sequence such that
u, — 0, nu,/k — oo and 1/u, is an integer for any n. Furthermore, if n and p are such
that u, = 1/2P, then u, < 1/2? and as such nu,/k > nu,/k > z,, by construction of @,.

We then get:

max (

This shows that the sequence (u,) satisfies (i). Define further W,, = I/IN/nyp and Z, = Zy,

—~ q1—k/(nuy)

Up,
q1—k/n

u;p% - 1‘) < (%)1/2 — V. (A.17)

_1',

if and only if u, = 1/2P. Then (W,) is a sequence of Brownian motions; besides, by

construction, if u, = 1/2P then @, < 1/2?, which entails n > N,, and thus

N 1 1+e 1
P(u;eZn>un) =P\ Z,, > <—) < — =Uy,.
, 9P 9

Since u,, — 0 this shows that u,_*Z, = op(1), or equivalently that Z,, = op(ug). And by

construction, for any s € (0, 1],

k q —ks/(nu k n -1
A — (—Q1 bs/(nun) _ 5_7) — s T W, (s) — A/ — A <nu ) s

< Z, = op(uy). (A.18)

8'y+1/2+a

11



Finally, if n is such that u,, = 1/2?, then %, < 1/2? and as such nu,/k > nu,/k > t,, by

construction of @,. Therefore, for any s € (0, 1],
_ 1+e
1 <q1ks/(nun) o 8_7) B 3_78 P 1' < (i) _ u111+€
AO (nun/k) d1—k/(nun) P 2p
which we rewrite as
/ﬁ (q1—ks/(nun) _ 3_7> _ ﬁAo <nun> s‘VS_p -1
Un \ Q1—k/(nun) U, k p

Rt =t () =

gytrte

Sw+p+€

for any s € (0,1]. Use the fact that Ay is asymptotically equivalent to A to get

/ﬁ <Q1—ks/(nun) - 3_7) - ﬁAo (nun) 5_75—0 -1 N ﬁA <nun)
(A.19)

uniformly in s € (0,1]. Combine (A.18) and (A.19) to obtain (ii). This ends the proof.
OJ

s’y+p+5

Proof of Theorem 4 Choose n so large that 1/2 < 7, < (n — 1)/n. Denote by k the
quantity n(1 — 7,), so that 7, = 1 — k/n. Our first main goal is to prove the desired
convergence for the estimator é\TLn = Ef_k n’ Observe that

S i i—1 o (i
gf = Z {K’T <_) - KT ( )}Y;,n = Yn,n + Z K’T (_> [Y;,n - Yvi-‘rl,n]-
i n n n

i=1

Since, for any ¢ € (0,1), K,(t) is a decreasing function of 7 € (1/2,1), we obtain that ETL
is a sample-wise nondecreasing function of 7 € (1/2,1), and as such

A~

& pam < EE < E g

Writing then, for n large enough:

n(l—7,) E—l = vk %—km—l
" ng 51—]4:/71

L
< Vk (M _ 1) SE Vi (fl—lkz]/n B 1) 7

§1-|k]/n §1—k/n §1—k/n

12



it comes as a straightforward consequence of Proposition 4 that

n(l—7,) (i - ) <k (QL‘M - 1) (1 +0(1)) + o(1).

Ern 1—|k]/n

A similar lower bound holds, and so it suffices to consider the convergence of Ef_k Jp D

the case when & = n(l — 7,,) is a sequence of integers with & — o0, n/k — o and

VEA(n/k) = O(1).

By Proposition 3(i),

gf,k/n B 1 g{ik/n —&1—k/n
\/E(——1>_m_7 <\/E )(1+0(1)).

§1—k/n )(log 2)" qQ1—k/n

It is then enough to show the following convergence:

1 ~ o
Vk f Jlk/n(t)(f; © gt 2 4(log 2)+1/? J e~ (s)ds (A.20)
0 1-k/n 0

where W is a standard Brownian motion. The idea for this is to control the process ¢; — ¢,
separately in the left tail of Y, in the center of the distribution of Y, and then in the right
tail of the distribution of Y. More precisely, we break the integral in the left-hand side
of (A.20) as follows:

A~

1 R
Vi f T =L = Ly 4 Ly + Tog + Loa + Lo
0

q1—k/n
rl/n a —q
with ]n,l = \/E‘J Jl—k’/n(t) qt /tdt,
0 1—k/n
ro ~
I, = \/%J Jl—k/n(t) & Qtdt7
1/n qQ1—k/n
\f ('° 4 — q
In,S = kj Jlfk/n(t) dt>
5 q1—k/n
rl1—k/(nuyn) ~
ILna = vk | A (a7
1-8 q1—k/n
! G —
and I,5 = Vk | J1_km(t) dt, (A.21)
1—k/(nun) q1—k/n
where § € (0,1/2) is chosen such that
1 2
WE=1-4,0< < -2 (A.22)
flar) —v1-t

13



(this is possible by the von Mises condition (14) in the main paper) and (u,,) is constructed

by applying Lemma A.4. We study each term separately.

Control of I, ;: Note that

1/n 1
f Ji—km ()@ dt| < Jlk/n(l/n)f |G| dt = Op(J1—k/m(1/n)),
0 0

by the law of large numbers. Furthermore

1/n 1
0 0

Because k/n — 0 and ¢1_x/, — o0, the following crude bound then applies:

[Tl = 0 (Vi Jigm(1/m)) -

Apply now Lemma A.3(i) to get

- log2 nlogn - 1 nlog2
|In71|—oﬂm<\/ﬁexp(— 5 X ))—o]p(exp<[2—k 5 ]logn))

which, since n/k — oo, translates into

| Lna| = op(1). (A.23)

Control of I, 5: Use the approximation of Theorem 6.2.1 in Csorgé and Horvath (1993)
(see also Proposition 2.4.9 in de Haan and Ferreira, 2006) to obtain that for any ¢ €

(0,1/2), there is a sequence of Brownian bridges (B,,) with

e B0 (]

uniformly in ¢ € [1/n, (n — 1)/n]. Report this into I,, 5 to get

Ji n n Ji n *6t*€+1/2 1—¢ —e+1/2
RN Y g SO L0 PRy (VI 1=y,
1/n  91—k/n f(a:) 1/n  Q1—k/n f(a)

Recall that any Brownian bridge B is such that B(t) L W(t) — tW(1) with W being a

standard Brownian motion. Because

V)

O<t<1—6 t1/2—

< o almost surely (A.25)
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(for instance as a consequence of the law of the iterated logarithm, see Theorem 1.9 and

Corollary 1.10 in Chapter IT of Revuz and Yor, 1999), we obtain in particular that

sup |Bn(t)] = Op(1). (A.26)

0<t<1—6 t1/2—

As such, and noting that 1/f(¢:) = ¢;, the derivative of t — ¢;, we obtain

Jiok/n(t)
q1—k/n

Set now ¢ = (log2)/4 > 0 and apply Lemma A.3(ii) to get
n 5cn/l~c
|I,,2] = op ( z J tq, dt>
A1—k/n J1/n

5 1 5
f tq,dt = qs — —n = f q dt.

1/n 1/n

Notice that

Since E|Y| < oo, the integral on the right-hand side is clearly bounded as n — oo, and it
is a simple consequence of the Markov inequality that n~'g,, must also stay bounded as

n — oo. Consequently

n 5cn/k n
_ v _ 'Y cen/k
Hnal = oe <\/;(J1—k/n) oF <\/;5 ) .

Since n/k — oo and § € (0,1), this gives

| In 2| = op(1). (A.27)

Control of I, 3: Use the previous Brownian bridge approximation together with (A.26),
and note that the function t — t=5+%/2(1 —¢)=*1/2/f(q,) is obviously bounded on [§,1—§]

1= Jl k/n
Ls] = O f Siown(®) 4y
q1—k/n

Now the function J;_j/, has unit integral, so that

k 1
|In,3| = OP ( — X ) .
n q1—k/n

15
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Finally, because the function t — t~%/2¢,_,-1 is regularly varying at infinity with index

v —1/2 <0, it follows by Proposition B.1.9.1 in de Haan and Ferreira (2006, p.366) that
|I,,.5] = op(1). (A.28)

Control of I, 4: Use again the Brownian bridge approximation together with the bound-

e+1/2

edness of the function t — ¢~ on a neighborhood of 1 to write

1—=k/(nun) Ji- k/n( )Bn(t)
\[L Dtfn S (ar) :

1—k/(nuyn) Jl k/n(t) nfs(l _ t)f£+1/2
<\/>J1 Q1—k/n f(ar) “ (4:29)

We control the two terms on the right-hand side separately. Recalling that the covariance

function of a Brownian bridge at times s and ¢ is min(s,t) — st (see p.37 of Revuz and

Yor, 1999), we get that the first term has variance

R n) Ty (8) Ba(t)
(\[J Gi—km (@) dt)

1-k/(nun) pl—k/(nun) min(s t) — st
- - J1_tm(8) 1 _pjn(t) ——————— ds dt.
[q1 k/n] L_g L_s 1ty (8)1tyn(?) flas)f(a)

Using (A.22), the fact that s — ¢, and s — (1 — s)~! are increasing functions, the

inequality min(s,t) — st < s(1 —¢) and the fact that the function J;_/, has unit integral,

we then have:

2
k 1—k/(nun) I (1 Bn ¢ 4 1—k/(nuy) 4
ar \/jf 1—k/ ( ) ( )dt < —Un f Jlfk/n(t)dt < —Up — 0.
nJi—s q1—k/n f(CJt) Y 1-6 Y

As the term whose variance we bound is a centered random variable, we finally obtain

\/Ejlk/(nun) Ji—km (1) B”(t)dt — op(1). (A.30)
nJi-s

q1—k/n f(%)

The control of the remainder term in I, 4 follows the same ideas:

1—k/(nun) Ji n —€(1 — ¢ —e+1/2 2 }/2"'5
\[ it n7E(1 — 1) dt| < =2 — — o(1). (A.31)
Qi—k/n fq) v ke
Combining (A.29), (A.30) and (A.31), we obtain
|I,.4] = op(1). (A.32)
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Control of I, 5: Use the change of variables ¢t = 1 — ks/(nu,) and then Lemma A.4(ii)

to obtain that there exist € € (0,1/2 — ) and a sequence of Brownian motions (W,,) such

that:

k Q1—ks/(nun) — Q1—ks/(nu )
I,5 = J 2(1 = ks/(nuy, — - “ | ds
? n\/un o /( >> Un, ( q1—k/n
1 QIk/(nun)J k o
= ——— 2| —Ji_pm(l —ks/(nu,))ys 7 W,(s)ds
T qim o 0 ( /(nug))y (s)
1 q1k/(nun) k Ny, f k e
Sa(BEY ] R s/ ()T d
e <u%/2_6 Q1—k/n Up, k o n M ( s/ (nin))s 5
1 k) [ K
+ op( = 1t/ (run) f —Jl_k/nu—ks/(nun»s—v—l/?—eds). (A.33)
wl* " Q-km Jom

To control the first term above, we use first the change of variables s = tu,, and the self-
similarity of the standard Brownian motion w.r.t. scaling to get, if W denotes a generic

Brownian motion,

1 q1—k/(nun) Jq k 1
— Y k(1 = ks/(nuy))ys T T W, (s)ds
T aam o nH ( /(nun))y (s)

n

1/up 2

A {u;vw} f = Tyl = Kt /)yt W (1) dt
q1—k/n 0 n

Using Lemma A 4(i) and the definition of the function J;_j/y, this entails
1 q1—k/(nun)

VUn  Q1—k/n

1/un
4 log2 J (1= kit /n) 1 =1 (1 de (1 + o(1)).
0

Note that, pointwise, the integrand in the right-hand side above converges to 277" W (t);

f (1 = ks/(nun))ys ™ Wi (s)ds

let us then consider

o0

1/un
S = J (1 — kt/n) HI W () dt and T, = J 2N (t)dt.
0 0

Remark that T, is indeed well-defined with probability 1, in virtue of the combination
of (A.25), the inequality v < 1/2 and the self-similarity of the Brownian motion w.r.t.
time-inversion. Write then, thanks to the equality E|W (t)| = VtE|W (1)| = 1/2t/,

E|S, \[ J — Jot/n) T omt g2yt
2 0
\/j J 2 M .
™ Jo

17



Since v < 1/2, we may use a conjunction of Lemma A.2(i) and (ii) and the dominated
convergence theorem to get E|S,, — T,,| — 0. In particular, S,, = T,, + op(1) and therefore
_L By fl EJl,k/n(l — ks/(nuy))ys T W, (s)ds < ylog?2 Joo 27N (t)dt.

VUn Qi—km Jo N 0
(A.34)
The second term in (A.33) is controlled by using the change of variables s = tu,, and then

by using Lemma A .4(i):

1 1—k/(nun) k nu,, Lk e
= —a(=") (1= ks () ds

Q1—k/n un
[un
_ _WQI—k/(nun) _pA(nun/k) A 2 J‘l E . o
{un Q1—k/n }{un A(n/k) {\/E <k>} 0 njl—k/n( kt/n)t dt

1/un
- 0 ( f (1 — kt/n) H/m=1 t‘”""%lt) .
0

Using Lemma A.2(i) and (ii) and the dominated convergence theorem, we get

1
: %_k/(nun){ ﬁ“‘(nu”>}f R a1 = ks /()57 ds = O(1).  (A.35)
k o n

u711/27€ q1—k/n Un

The third term in (A.33) is again controlled by using the change of variables s = tu,, and
then by using Lemma A .4(i):

112 k) Jl EJ1—k/n(1 — ks/(nun))sﬂfl/z%ds
W Giigm Jo m

1/up k
— {ung}f Ty (1 = ket /n)t =12

Q1—k/n 0 n

1/up
= 0 (J (1— kt/n)’"“"“/”)‘lt—W—I/Q—adt> .

0

Use again Lemma A.2(i) and (ii) and apply the dominated convergence theorem to obtain

I o) (MK
e “>J N w1 = ks/(nun))s~ Y2 =<ds = O(1). (A.36)
Un © q1—k/n o

Combining (A.33), (A.34), (A.35) and (A.36) yields
0 0]

Lis 5 vlogQJ 27 W (t)dt.

0
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The change of variables s = tlog 2 and the self-similarity of W w.r.t. scaling now clearly

entail
0

I,5 KR v(log 2)7“/2[ e S T (s)ds. (A.37)
0

It only remains to combine (A.21), (A.23), (A.27), (A.28), (A.32) and (A.37) to prove (A.20)

and therefore complete the proof of the stated convergence for éfn

We now prove that this convergence implies that of @LRM as well as that of éﬁf . Noting

that J,, has integral 1, we have

()5 - ()]

Since J., is an increasing function for n large enough, this entails

i () =z () ()] -5

3|>—‘

Because (1 — 7,)J5, (1) — log(2), this implies

In other words,

As a consequence,

gy - =4/n(l - ATL"M — 0 0
n(l—1,) <a 1) = (1—1,) ( e 1) (I+0(1)) +o0o(1)

and it is enough to prove the convergence of §ATLnM . Define then JP(t) = J,, ([nt]/n), and

notice that
2 1< i !
LM ste ~
= — E J. =Y, = JEP () a, dt.
ng n < n <n) ) J;) Tn ( )Qt

Then clearly

L

VST ) f | 2P (t) — T, (4)| |@] dt.

é}n
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We next let tg € (0,1) be such that ¢,, > 1 (this is possible, since Y has a heavy right
tail), and we rewrite the above bound as

1 — in to ~
—V”<§> () — 7, (016 dt
Tn 0

ﬁf | J2P(t) — T, ()| |@] dt.  (A.38)

n(l—1,)
&r

cLM  £L
57‘,1 - grn

~

To control the integrals in this upper bound, we note that for n large enough, by the

mean value theorem,

| TP (t) — J, (8)] < (M — t) J. (M) < %J;n (M> for all t € (0,1). (A.39)

n n n

to 1
f @) dt < f @) dt = Os(1)
0 0

by the law of large numbers, therefore yielding

\/7J | TP (t) — T, (0)] || dt = op (ﬁ% <[n;0]>> .

Recalling that J. (t) = r(7,)[r(7,) — 1]t"™) =2 and r(7,) = (1 — 7,) "' log(2)(1 + o(1)), we

Observe also that

easily obtain, thanks to the convergence [ntg]|/n — ty < 1, that

A (M> —o (1 =) EBE) o,

n

It follows that

- f JSteP n(t)‘ |q¢| dt = op(1). (A.40)
Besides, we have, on the 1nterval (to, 1) and for n large enough,

Ly <M) L1, (M> c2oe2 1, (aa

n ™\ n [nto] n to n(l—r1,)

Here, the upper bound

ol r(mn)—1

was used, together with the convergence

nto Nnig

(1 + L) AR ((1 ) log(2) log [1 + it] (1+ 0(1))) 1
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which is valid since n(1 — 7,,) — . Applying (A.39) and (A.41), we get, for n large

enough:

A/ N 1—7‘n f |Jstep

Jo. (O] |@] dt <

Ly ()

2log 2

1
S to . &/l — ) fto Il

Observe now that g, L qr, (this is a consequence of, for instance, Theorem 6.2.1 in

t)|q| dt.

Csorgé and Horvath, 1993). It follows that, with arbitrarily large probability as n — oo,
one has g;, > 1/2, and therefore

VAL Tnf ¢ ~ 2log2 J
JEP(t t dt < -
220 = O o < 0 ¢ s |

t)qy dt.

Writing

1 ~ to
j T (g dt = & — f o

to 0
it follows that

VI T f | TP (t) — J, ()] |@] dt = op <1+§—f Tn(t)|@|dt).

Finally, using the law of large numbers again, we get

fo ~ r(Tn)— 1,(1-7m) " log(2)/2
f o, (0@ dt < r(n)t; J]qt]dt—op (=77 ) =or(1).

0

Consequently

\/if | T3 (t) — Jn, ()] |G| dt = 0s(1). (A.42)

Combining (A.38), (A.40) and (A.42) results in

n(l—7) |2
&

n(l—m,) <£%n — 1> =+/n(l—1,) <i — ) + op(1)

which, by using the convergence of Efn , concludes the proof. []

L

— 0.

In particular,
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Proof of Theorem 5 Write

gy’* 1—7 eM 1—7 1" &
1 n = (v -1 - 1 ™ —1 nl )
o8 ( &t (=) Og(l_ﬂz> s ra Og([l_Tn] §Tn>

The convergence log[(1 — 7,)/(1 — 7},)] — 0 yields

n(l—1,) E _ 1 .
log[(1 —7)/(1 = 71)] log (é}n> Or (log[(l )/ = Té)]) p(1), (A.43)

”ﬁl%mjﬁggimf%(ﬁg%ygg

-yt () e ) e ([ 52)

_ Vil =7,) o vy e
_OQ%W—%memU n+ AL =7) )+ 1 =7, + A n)m)
B n(l—1,) o oy

-° <1og[<1 i) L >”>

= o(1). (A.44)

Convergence (A.43) is a consequence of our Theorem 4. Convergence (A.44) follows from
a combination of Proposition 4, Theorem 2.3.9 in de Haan and Ferreira (2006) and from
the regular variation of |A|. Combining these elements and using the Delta-method leads

to the desired conclusion. []

Proof of Proposition 5 We have for 7 < 1/2 that &, = Sé J(t)q: dt, where J.(-) is a
decreasing positive function satisfying the normalization condition S(l) J-(t)dt = 1. Then,

according to Acerbi (2002, Theorem 2.5), —¢, provides a coherent risk measure.  []

Proof of Proposition 6 Since F' € DA(®,) with v < 1, it follows from Theorem 11 in
Bellini et al. (2014) together with asymptotic inversion that

er~( =17 as 71
Hence & /e, ~ (v —1)7T(1 — y){log2}” as 7 — 1, in view of Proposition 3 (i). On the
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other hand, it follows from Hua and Joe (2011) that

EY]Y > ¢] 1
qr 1 -

as 7 — 1.

Hence, in view of Proposition 3 (i), &/E[Y|Y > ¢;] ~ (1 —4)T(1 — v){log2}” =
['(2 — y){log 2}" as 7 — 1. This completes the proof. []

B Additional simulations

When empirical extremiles are used to estimate the same quantity as empirical quantiles,
our simulation experiments provide Monte-Carlo evidence that the extremile estimators
are the most efficient in case of usual short and light-tailed distributions. This benefit in
terms of efficiency comes at the price of non-robustness against heavy-tailed distributions.
Yet, by considering trimmed extremiles, we recover smaller mean squared errors with

respect to sample quantiles that estimate the same quantity.

B.1 Ordinary extremiles

For continuous distributions, extremiles are identical to quantiles but with different or-
ders. Indeed, & = q, implies a = «, := F(&;). Therefore, an empirical extremile ET
and quantile g,. estimate the same quantity &, = ... To evaluate finite-sample per-
formance of these two estimators we have undertaken some simple Monte Carlo experi-
ments. The simulation experiments all employ the levels 7 = 0.1, 0.3,..., 0.9. We have
considered 2,000 replications for samples of size n = 100, 200, . .., 3000, simulated from
various scenarios: Normal(0, 1), Exponential(1), Uniform(0, 1), Beta(2, 2), Chi-square(3),
Log-normal(0, 0.5), Weibull(1,7), and Gamma(a = 3, s = 1) whose density function is
F'(y:a,s) = y*te ¥/ (s*T(a)), y > 0. The evolution of the ratio MSE(£L)/MSE(Ga. )
between the Mean Squared Errors with respect to the sample size n, displayed in Fig-
ure 1, provides Monte-Carlo evidence that the empirical extremile estimator ETL is efficient

relative to the empirical quantile for all these usual short and light-tailed distributions.
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Figure 1: Some simulation evidence — Ordinary extremiles. The evolution of the ratio

MSE(gTL)/MSE(@aT) against the sample size n, at the levels T = 0.1,0.3,0.5,0.7 and 0.9.

B.2 Trimmed extremiles

We have undertaken some simulation experiments to evaluate the performance of the
empirical trimmed extremile E,(kn, k!) in comparison with the sample quantile ¢, when
they estimate the same quantity &.(k,,k)) = g.. We have considered the Burr(4,1),
Pareto(4) and Student(3) distributions, whose heavy tails are likely to affect the ordinary
sample extremile fATL Here, the Burr(k,c) and Pareto(a) distribution functions are, re-
spectively, F(y) =1— (1 +y°)7 %, y >0, and F(y) = 1 —y~ % y > 1. The Monte Carlo
ratios MSE(ET(kJn, k!))/MSE(q,), shown in Figure 2, were computed over 2,000 replica-

tions for n = 100, 200, ...,3000. The simulation experiments all employ the extremile
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levels 7 = 0.1, 0.3,..., 0.9, and the corresponding quantile levels a = F(&,(k,, kL)) so
that & (kn, k) = qo. We chose k!, = [(5/100) - n/[n%!]] in the left panels of the figure,
and k!, = [(10/100) - n/[n°!]] in the right panels. Note that &/, corresponds to [5% -n] for
n < 1024 and to [2.5% - n] for n = 1024. We also chose k,, = k!, only for the symmetric
Student distribution, otherwise k,, = 0. Our tentative conclusion from this exercise is
that the accuracy of the trimmed extremile estimator is quite respectable with respect to

the robust sample quantile, since the MSE ratios are overall smaller than one.

Burr(4, 1) Burr

VWS A IS

06 A~ ——— \—\_JW/\_\_,./
A —— N o~ R

1.0-

0.8-

0.4 -
0 1000 2000 3000 0 1000 2000 3000
) Pareto(4) Pareto
€ 1.0-
© .
S M_/\/\,M W/\-N variable
=
Ll 0.1
& os-
= — 0.3
E 0.6 - —/\M W’\—\/ 0.5
GE) W - —— NN Nt —— 0.7
-.>_<' 0.4 - = (.9
S o
% 1 ' ' ' ) ' ' '
= 0 1000 2000 3000 O 1000 2000 3000
Student(3) Student
1.0-
>, v’.
0.8- ~
—_-~ N S AVA\/'V
0.6 - —_A
0.4 -
(I) 10‘00 20‘00 30‘00 (I) ’IOIOO 20‘00 30‘00

Sample size n

Figure 2: Trimmed extremiles — From top to bottom, the Burr(4,1), Pareto(4) and
Student(3) distributions. From left to right, k!, = [(5%) - n/[n°1]] and Kk, = [(10%) -

n/[n™]].

25



References

Acerbi, C. (2002). Spectral measures of risk: A coherent representation of subjective

risk aversion. Journal of Banking & Finance, 26, 1505-1518.

Bellini, F., Klar, B., Miiller, A. and Gianina, E.R. (2014). Generalized quantiles as risk

measures. Insurance: Mathematics and Economics, 54, 41-48.

Bingham, N.H., Goldie, C.M. and Teugels, J.L. (1987). Regular Variation, Cambridge

University Press.

Chan, L.K. (1967). On a characterization of distribution by expected values of extreme

order statistics. The American Mathematical Monthly, 74, 950-951.

Csorgd, M. and Horvéth, L. (1993). Weighted Approzimations in Probability and Statis-
tics, John Wiley & Sons, Chichester.

de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction, Springer-
Verlag, New York.

Hua, L. and Joe, H. (2011). Second order regular variation and conditional tail expec-

tation of multiple risks. Insurance: Mathematics and Economics, 49, 537-546.

Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motions, 3rd

edition, Springer-Verlag, Berlin-Heidelberg.

Serfling, R.J. (1980). Approzimation Theorems of Mathematical Statistics, Wiley, New
York.

Shorack, G.R. (2000). Probability for Statisticians, Springer, New York.

Shorack, G.R. and Wellner, J.A. (1986). Empirical Processes with Applications in Statis-
tics. New York: John Wiley & Sons.

26



	Proofs
	Additional simulations
	Ordinary extremiles
	Trimmed extremiles


