
Extremiles: A new perspective on

asymmetric least squares

May 17, 2018

Abstract

Quantiles and expectiles of a distribution are found to be useful descriptors of

its tail in the same way as the median and mean are related to its central behavior.

This paper considers a valuable alternative class to expectiles, called extremiles,

which parallels the class of quantiles and includes the family of expected minima

and expected maxima. The new class is motivated via several angles, which reveals

its specific merits and strengths. Extremiles suggest better capability of fitting

both location and spread in data points and provide an appropriate theory that

better displays the interesting features of long-tailed distributions. We discuss their

estimation in the range of the data and beyond the sample maximum. A number

of motivating examples are given to illustrate the utility of estimated extremiles in

modeling noncentral behavior. There is in particular an interesting connection with

coherent measures of risk protection.
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1 Introduction

Given a data set from a random variable Y , quantiles and expectiles are found to be useful

descriptors of its extreme tails in the same way as the median and mean are related to

its central behavior. Both can be defined with the help of appropriate loss functions. For

a fixed τ in p0, 1q, the τth quantile of Y can be obtained by minimizing asymmetrically

weighted mean absolute deviations (Koenker and Bassett, 1978):

qτ P argminθE t|τ ´ 1IpY ď θq| ¨ |Y ´ θ| ´ |τ ´ 1IpY ď 0q| ¨ |Y |u , (1)

with 1Ip¨q being the indicator function. The τth expectile is obtained in a similar way

with absolute deviations replaced by squared deviations (Newey and Powell, 1987):

eτ “ argminθE
 

|τ ´ 1IpY ď θq| ¨ |Y ´ θ|2 ´ |τ ´ 1IpY ď 0q| ¨ |Y |2
(

. (2)

The special case τ “ 1
2

leads to the median and the mean of Y in (1) and (2), respec-

tively. Although different in their construction, both quantiles and expectiles have similar

properties. The reason for this, as proved by Jones (1994), is that expectiles are precisely

quantiles but for a transformation of the original distribution. Abdous and Remillard

(1995) showed that quantiles and expectiles of the same distribution coincide under the

hypothesis of weighted-symmetry.

Despite their strong intuitive appeal, quantiles are not always satisfactory. They can

be criticized for being somewhat difficult to compute as the corresponding loss function is

not continuously differentiable (though modern efficient linear programming algorithms

are available). Most importantly, they are relatively inefficient against long-tailed distri-

butions as they are based on absolute rather than squared loss minimization. Finally, the

asymptotic variance of the diverse known quantile estimators involves the so-called spar-

sity function (value of the density function at those quantiles) whose estimators converge

very slowly and depend heavily on the choice of the smoothing parameter (see, e.g., Cheng

and Parzen, 1997). The use of expectiles reduces some of these vexing inconveniences.

The key advantage of the expectile eτ over the quantile qτ is its efficiency and com-

puting expedience (using iteratively-reweighted least squares), although it does not have
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an interpretation as direct as qτ in terms of relative frequency. Its unique interpretation

is given by the equation E t|Y ´ eτ |1IpY ď eτ qu {E|Y ´ eτ | “ τ. Also, inference on eτ is

not governed by the estimation of the density function and it only requires that the sec-

ond moment of Y be bounded (see Corollary 4 in Holzmann and Klar, 2016). However,

the complicated cost function defining expectiles makes their use in statistics of extremes

and tail analysis a hard mathematical problem (see Daouia et al., 2018). Perhaps most

importantly, the expectile terminology coined for eτ is frustrated by the absence of any

closed form expression in terms of tail expectations in the same way that the quantile qτ

is explicitly determined by the generalized inverse of the distribution function.

The present paper proposes a new least squares analogue of quantiles, called extrem-

iles, which defines a valuable alternative option to both quantiles and expectiles for general

statistical diagnoses. As shown in the following section, the new class is a generalization

of the usual central moment EpY q, which summarizes the distribution of Y in the same

way as the expected values of extreme order statistics do. Extremiles are by construction

more alert/sensitive to the magnitude of extreme values than quantiles and make more

efficient use of the available data since they rely on both the distance to observations

and their probability, while quantiles only depend on the frequency of observations be-

low or above the predictor and not on their values. Unlike expectiles, extremiles benefit

from various equivalent explicit formulations and more intuitive interpretations. They

are proportional to specific probability-weighted moments (PWMs) and can be estimated

by L-statistics, M-statistics, linearized M-statistics and PWM-estimators. In addition,

inference on extremiles is much easier than inference on both expectiles and quantiles,

since their various estimators have closed form expressions and are computationally effi-

cient. Also, these estimators steer an advantageous middle course between the excessive

robustness of ordinary quantile estimators and severe sensitivity of extreme quantile esti-

mators in the sense that the extremile estimators of order τ tend to be more tail sensitive

than the τth quantile estimators for ordinary levels τ , but become more resistant for

extremely high/low levels τ . Finally, extremiles are very closely connected to quantiles

from an extreme-value perspective, and provide an appropriate theory that better dis-
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plays the interesting features of long-tailed population distributions. Although extremiles

have been used in Daouia and Gijbels (2011) in the context of estimating a frontier cost

function (involving a conditional expectation), the current paper is the first to introduce

the notion of extremiles as a new class of least squares analogues of quantiles, and to give

a full study of this class, including relationships with expectiles and quantiles, as well as

extensive statistical inference within this class.

The presented M- and L-estimates of extremiles, as well as their linearized M- and

PWM-estimates, may suffer from instability at very far tails due to data sparseness,

especially for heavy-tailed distributions. This motivated us to extend their estimation

and the underlying asymptotic theory far enough into the tails, which translates into

considering the level τ “ τn Ñ 1 as the sample size n goes to infinity. We show that these

high τnth extremiles enjoy a very interesting connection with the extreme τnth quantiles

and the tail index of the underlying distribution. Our first estimation method is based

on this asymptotic connection, so that modern extreme-value estimates of large quantiles

and of the tail index can be used for extrapolation beyond the range of the data. Our

second method relies directly on asymmetric least squares estimation. Although both

approaches work quite well and either might be used in practice, we have a particular

preference for the second due to some theoretical findings and simulation evidence.

The extremile and the quantile of Y with the same level τ are actually identical to the

mean and the median, respectively, of a common asymmetric distribution Kτ pF q, where

F stands for the distribution function of Y and Kτ is a well-specified power transforma-

tion. The use of extremiles appears then naturally in the context of any decision theory

where ‘optimistic’ and ‘pessimistic’ judgements are contrasted such as, for instance, ex-

treme risk analysis, survival analysis and medical decision making. In this paper, we

focus on risk management, where heavy-tailed distributions describe quite well the tail

structure of actuarial and financial data [see, e.g., Embrechts et al. (1997) and Resnick

(2007)]. Extremiles bear much better than quantiles the burden of representing an alert

risk measure to the magnitude of infrequent catastrophic losses. Although expectiles have

recently attracted a lot of interest as measures of risk [see Daouia et al. (2018) and the
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references therein], their absence of comonotonic additivity is a serious problem for a

regulatory risk standard [Acerbi and Szekely (2014)]. Theoretical and numerical results

indicate that extremiles are perfectly reasonable alternatives to both quantiles and expec-

tiles. In particular, they are comonotonically additive, coherent spectral risk measures

of law–invariant type. Also, they belong to the class of Wang (1996)’s distortion risk

measures with concave distortion function that acts to depress the likelihood of the most

favorable outcomes and to accentuate the likelihood of the least favorable ones, yielding

thus the desired form of pessimistic decision theory [Bassett et al. (2004)]. To illustrate

the discussed ideas, we consider data examples on Trended Hurricane Losses and Medical

Insurance Large Claims.

The paper is further organized as follows. Section 2 presents a detailed description

of the proposed new class, including its motivation, interpretation and basic properties.

Section 3 deals with estimation of extremiles in the range of the data and beyond the

sample maximum. Section 4 provides an interesting connection between extremiles and

coherent law-invariant measures of risk in actuarial and financial management. Section 5

concludes. All the necessary mathematical proofs are given in the supplementary file.

2 The class of extremiles

2.1 Definition and motivation

Given τ P p0, 1q, the quantile qτ can uniquely be defined as the generalized inverse qτ “

F´1pτq :“ infty : F pyq ě τu of the underlying cumulative distribution function F . For

ease of presentation, we assume throughout the paper that F is continuous. It is not hard

to verify that qτ is identical to the median of a random variable Zτ having cumulative

distribution function FZτ “ Kτ pF q, where

Kτ ptq “

$

&

%

1´ p1´ tqspτq if 0 ă τ ď 1{2

trpτq if 1{2 ď τ ă 1
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is a distribution function with support r0, 1s, and rpτq “ sp1 ´ τq “ logp1{2q{ logpτq.

Hence, the τth quantile can be derived from the alternative minimization problem

qτ P argminθE tJτ pF pY qq ¨ r|Y ´ θ| ´ |Y |su ,

with the special weight-generating function Jτ p¨q “ K 1
τ p¨q on p0, 1q. This does not seem

to have been appreciated in the literature before. The parallel concept to the quantile qτ

which we call extremile of order τ of Y is then defined in a similar way by substituting

the squared deviations in place of the absolute deviations:

ξτ “ argminθE
 

Jτ pF pY qq ¨ r|Y ´ θ|
2
´ |Y |2s

(

. (3)

As a matter of fact, while qτ coincides with the median of the transformation Zτ , it is

easily seen that, whenever E|Zτ | ă 8,

ξτ “ EpZτ q. (4)

We shall see in Proposition 2 that the condition E|Zτ | ă 8 is implied by E|Y | ă 8, and

therefore extremiles of any order exist as soon as Y has a finite first moment. Denote by

y` “ infty : F pyq ą 0u and yu “ supty : F pyq ă 1u the lower and, respectively, upper

endpoint of the support of F . One way of defining the extremile ξτ , for 0 ď τ ď 1, is as

the explicit quantity

ξτ “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

´

ż 0

y`

!

1´ r1´ F pyqsspτq
)

dy `

ż yu

0

r1´ F pyqsspτq dy for 0 ď τ ď 1{2

´

ż 0

y`

rF pyqsrpτq dy `

ż yu

0

´

1´ rF pyqsrpτq
¯

dy for 1{2 ď τ ď 1.

(5)

This follows from a general property of expectations (see Shorack, 2000, p.117). Clearly,

FZτ reduces to F when τ “ 1{2, and ξ1{2 is just the expectation of Y , while the endpoints

y` and yu of the support of F coincide respectively with the lower and upper extremiles

ξ0 and ξ1, since sp0q “ rp1q “ 8 in (5). A thorough description of basic properties of ξτ

is given in Section 2.3.

Extremiles can be of considerable importance for modeling extremes of natural phe-

nomena. When τ ě 1{2 with rpτq “ 1, 2, . . . the τth extremile has a nice interpretation:
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it equals the expectation of the maximum of rpτq independent copies Y 1, . . . , Y rpτq of Y ,

i.e. ξτ “ ErmaxpY 1, . . . , Y rpτqqs. Of interest is the case τ Ò 1, or equivalently rpτq Ñ 8,

which leads to access the upper endpoint yu of the support of F . Likewise, if τ ď 1{2

with spτq “ 1, 2, . . . we have ξτ “ ErminpY 1, . . . , Y spτqqs, the expectation of the minimum

of spτq i.i.d. observations from Y . Of interest is also the case τ Ó 0, or equivalently

spτq Ñ 8, which leads to access the lower bound y` of the support of Y . For a general

order τ , we have

E
“

max
`

Y 1, . . . , Y trpτqu
˘‰

ď ξτ ď E
“

max
`

Y 1, . . . , Y trpτqu`1
˘‰

if
1

2
ď τ ă 1,

E
“

min
`

Y 1, . . . , Y tspτqu`1
˘‰

ď ξτ ď E
“

min
`

Y 1, . . . , Y tspτqu
˘‰

if 0 ă τ ď
1

2
,

where t¨u denotes the integer part (or floor function) and Y 1, Y 2, . . . are i.i.d. observations

from Y . The bracketing of ξτ becomes narrower when τ Ò 1 or τ Ó 0.

Yet, there is still another way of looking at ξτ for orders τ in p0, 1q. These extremiles

are likely to be most useful when the quantile function q can be written in closed form,

for then we have

ξτ “

ż 1

0

F´1Zτ
puqdu “

ż 1

0

qt dKτ ptq “

ż 1

0

Jτ ptqqt dt. (6)

These expressions are key when it comes to proposing an estimator for an extremile.

They clearly link the τth extremile of the random variable Y to its quantile function as

a weighted average of q, which is the most convenient way of evaluating ξτ .

2.2 Relating extremiles and PWMs

Extremiles are closely related to the concept of probability-weighted moments (PWMs)

introduced by Greenwood et al. (1979) and defined by the quantities

Mp,r,s “ E rY p
tF pY qurt1´ F pY quss ,

where p, r, s are nonnegative real numbers. These moments have been extensively uti-

lized in extreme-value procedures (see, e.g., Beirlant et al., 2004 and de Haan and Fer-

reira, 2006). Generally, a distribution is characterized either by the moments M1,0,s
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(s “ 0, 1, 2, . . .) or by the moments M1,r,0 (r “ 0, 1, 2, . . .). In our approach, the mo-

ments M1,0,s (with s P R`) are favored for describing the distribution of the population

in the left tail (i.e. for τ ď 1{2), but a more convenient definition for ξτ in the right tail

(τ ě 1{2) is formulated by considering the moments M1,r,0 (with r P R`). Indeed, for

0 ă τ ă 1, we can rewrite (6) as

ξτ “

ż 1

0

Jτ ptqqt dt “ E rY Jτ pF pY qqs , (7)

or equivalently

ξτ “

$

&

%

spτqM1,0,spτq´1 for 0 ă τ ď 1{2

rpτqM1,rpτq´1,0 for 1{2 ď τ ă 1.
(8)

Thus, extremiles are proportional to specific PWMs. The weight-generating function Jτ p¨q

being monotonically increasing for τ ě 1{2 and decreasing for τ ď 1{2, the extremile ξτ

(see equation (7)) depends by construction on all feasible values of Y , putting more weight

to the high values for τ ě 1{2 and more weight to the low values for τ ď 1{2. Therefore

ξτ is sensible to the magnitude of extreme values for any order τ P p0, 1q. In contrast, the

τth quantile qτ is determined solely by the probability level (relative frequency) τ , and so

it may be unaffected by extreme values whatever the shape of the tail distribution, unless

τ is very extreme. In addition, when sample quantiles break down at τ Ó 0 or τ Ò 1,

the various extremile estimators discussed below in Section 3 remain more resistant to

extreme values thanks to their formulation as L-functionals whose weighting function Jτ

converges to 0 pointwise on p1{2, 1q at a geometrically fast rate as τ Ò 1. Hence, the new

class steers an advantageous middle course between the robustness of ordinary quantiles

and the sensitivity of the extreme ones.

The interpretation in terms of expected minimum and expected maximum of a sample

from Y , the impact on the lower and upper tails of the underlying distribution, the

sensitivity and resistance properties to extremes and the proportionality to PWMs are

of particular interest in extreme-value theory. This inspired the name extremiles for this

class. As a matter of taste, we prefer to regard equation (7), or equivalently (6), as the

most convenient definition of extremiles from a mathematical perspective. It should be

clear that the first-order necessary condition for optimality related to the initial definition

8



(3) leads to

ξτ “
E rY Jτ pF pY qqs
E rJτ pF pY qqs

,

which in turn gives the identity (7), since E rJτ pF pY qqs “ 1 for all τ P p0, 1q by continuity

of F . Note also that the transformed random variable Zτ in (4) has the same expectation

ξτ as the random variable Y Jτ pF pY qq, but not necessarily the same continuous distribu-

tion. In the particular case where τ ě 1{2 and rpτq is an integer, it is easily seen that Zτ

is the maximum of rpτq independent copies of Y ; similarly, when τ ď 1{2 and spτq is an

integer, Zτ is the minimum of spτq independent copies of Y . In the general setting, we

have the following characterization of Zτ .

Proposition 1 For a random variable Y with continuous distribution function F and

quantile function q, and for τ P p0, 1q, define

φτ “ q ˝K´1
τ ˝ F i.e. φτ pyq “ qK´1

τ pF pyqq.

Then Zτ
d
“ φτ pY q.

2.3 Basic properties

An alternative justification for the use of extremiles to describe probability distributions

may be based on the following propositions. As established in Proposition 2, extremiles

have similar basic properties as quantiles and expectiles. The proofs of Proposition 2 and

of all further theoretical results are provided in the Supplementary Material document.

Proposition 2 (i) If E|Y | ă 8 then ξτ exists for any τ P p0, 1q and (if Y is not a

constant) defines a continuous increasing function which maps p0, 1q onto the set

ty P R | 0 ă F pyq ă 1u.

(ii) Two integrable random variables Y and rY have the same distribution if and only if

ξY,τ “ ξ
rY ,τ for every τ P p0, 1q.

(iii) The τ th extremile of the linear transformation rY “ a` bY , a, b P R, is given by

ξ
rY ,τ “

$

&

%

a` b ξY,τ if b ą 0,

a` b ξY,1´τ if b ď 0.
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(iv) If Y has a symmetric distribution with mean µ, then ξ1´τ “ 2µ´ξτ for any τ P p0, 1q.

(v) If Y and rY are comonotone ri.e. there exists a third random variable Ȳ and increas-

ing functions u and v such that Y “ upȲ q and rY “ vpȲ qs, then ξY`rY ,τ “ ξY,τ`ξrY ,τ .

The wide range of distributions covered by property (i) can be extended further by

relaxing the condition of finite “absolute” first moments. By (ii), a distribution with finite

absolute first moment is uniquely defined by its class of extremiles. Expectiles satisfy this

law invariance property as well, but only for distributions with continuous densities [see

Theorem 1 in Newey and Powell (1987)]. Extremiles are also location and scale equivariant

by property (iii) in the same way as quantiles and expectiles are [see equation (A.1) in

the Supplementary Material document for quantiles and Theorem 1 in Newey and Powell

(1987) for expectiles]. The desirable properties (iv) for symmetric distributions and (v) on

comonotonic additivity are also shared by quantiles. The implications of these properties

in regression analysis are clear. For example, the conditional extremile curves will be

parallel to each other if the conditional distributions of the response are homogeneous.

Also, for any τ , the lower τth conditional extremile curve and the upper τth conditional

extremile curve will be symmetric about the mean curve if the conditional distributions

of the response are symmetric. Expectiles also satisfy property (iv) [Newey and Powell

(1987)], but they are not comonotonically additive [Acerbi and Szekely (2014)]. They

have recently attracted a lot of interest as risk measures, but absence of comonotonic

additivity is a serious problem for a regulatory risk standard, as justified by Acerbi and

Szekely (2014). We shall discuss further properties of extremiles as risk measures as well

as their relation to expectiles in Sections 4.1 and 4.2.

We now describe what happens for large extremiles ξτ and how they are linked to

extreme quantiles qτ when F is attracted to the Fisher-Tippett distributions of extreme-

value types:

(Fréchet) Φγpyq “ expt´y´1{γu with support r0,8q and γ ą 0;

(Weibull) Ψγpyq “ expt´p´yq´1{γu with support p´8, 0s and γ ă 0;

(Gumbel) Λpyq “ expt´e´yu with support R.
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Let DAp¨q denote the maximum domain of attraction of an extreme-value distribution,

i.e., the set of distribution functions whose asymptotic distributions of suitably normalized

maxima are of an extreme-value type. Let Γp¨q be the Gamma function.

Proposition 3 Suppose that E|Y | ă 8.

(i) If F P DApΦγq with γ ă 1, then

ξτ
qτ
„ Γp1´ γqtlog 2uγ as τ Ò 1.

(ii) If F P DApΨγq, then yu ă 8 and

yu ´ ξτ
yu ´ qτ

„ Γp1´ γqtlog 2uγ as τ Ò 1.

(iii) If F P DApΛq and yu “ 8, then ξτ „ qτ as τ Ò 1. If on the contrary yu ă 8, then

yu ´ ξτ „ yu ´ qτ as τ Ò 1.

Note that the moments of F P DApΦγq do not exist when γ ą 1. The index γ tunes

the tail heaviness of the distribution function F , with higher positive values indicating

heavier tails. A consequence of Proposition 3 is that the extremiles of distributions with

heavy tails of index γ ă 1 are asymptotically more spread than the quantiles since Γp1´

γqtlog 2uγ ą 1. Indeed, the function ϕ : y ÞÑ log pΓp1´ yqtlog 2uyq has derivative

ϕ1pyq “ ´zp1´ yq ` logplog 2q, for all y P p0, 1q,

where zpxq “ Γ1pxq{Γpxq denotes the digamma function. Because z is increasing and

zp1q « ´0.577 (see Formulae 6.3.2 and 6.3.21 in Abramovitz and Stegun, 1972), the

function ϕ is increasing. Hence, for any γ P p0, 1q, Γp1 ´ γqtlog 2uγ ą exppϕp0qq “ 1 as

announced. A similar property holds for short-tailed distributions F P DApΨγq depending

on the value of the extreme-value index: numerically, when ´0.2907 ă γ ă 0, extremiles

are asymptotically closer to the right endpoint than quantiles are. By contrast, when

γ ă ´0.2907, we rather have that quantiles are asymptotically closer to the right endpoint

than extremiles are. Finally, ξτ and qτ are asymptotically equivalent for light-tailed

distributions F P DApΛq. A similar proposition can of course be given when F is rather

in the minimum domain of attraction of a Fisher-Tippett extreme-value distribution.
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3 Estimation of extremiles

This section shows that results for ordinary and trimmed extremiles are easily obtained

by means of L-statistics theory. By contrast, asymmetric least squares estimation of high

extremiles leads to non-trivial developments from the perspective of extreme-value theory.

Our theorems are derived for independent and identically distributed random variables.

Although the time series case goes beyond the scope of the present paper, the recent

analysis of Daouia et al. (2017) suggests that it may be possible to extend the results

obtained here under appropriate mixing conditions on the underlying series.

3.1 Ordinary extremiles

Given a random sample Y1, Y2, . . . , Yn from Y, a natural estimator for the extremile of

fixed order τ P p0, 1q is easily obtained by replacing F with its empirical version pFn in

(5), or equivalently, by replacing qt with its empirical analogue pqt in (6), leading to an

L-statistic generated by the measure dKτ :

pξLτ “

ż 1

0

pqt dKτ ptq “
n
ÿ

i“1

"

Kτ

ˆ

i

n

˙

´Kτ

ˆ

i´ 1

n

˙*

Yi,n,

where Y1,n ď Y2,n ď ¨ ¨ ¨ ď Yn,n denotes the ordered sample. Thanks to this special closed-

form expression for pξLτ , we can rely for example on Serfling (1980) or Shorack (2000)

for proving its consistency, asymptotic normality, and deriving the Berry-Esséen rate of

uniform convergence O
`

n´1{2
˘

.

Theorem 1 For any index τ P p0, 1q,

(i) if E|Y |κ ă 8 for some κ ą 1, then pξLτ
a.s.
ÝÑ ξτ as nÑ 8.

(ii) if E|Y |κ ă 8 for some κ ą 2, then
?
n
´

pξLτ ´ ξτ

¯

has an asymptotic normal distribu-

tion with mean zero and variance σ2
τ “

ş1

0

ş1

0
ps^ t´ s tq Jτ psq Jτ ptq dF

´1psq dF´1ptq.

(iii) If E|Y |3 ă 8, then suptPR

ˇ

ˇ

ˇ
P
´?

n
στ

´

pξLτ ´ ξτ

¯

ď t
¯

´ Φptq
ˇ

ˇ

ˇ
“ O

`

n´1{2
˘

, for any τ P

r1´p1{2q1{3, p1{2q1{3s, where Φ stands for the standard normal distribution function.
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We note that, although mild moment assumptions suffice to ensure the validity of our

results, the central case τ “ 1{2 shows that the ordinary central limit theorem fails to be

a corollary to Theorem 1 piiq.

Alternatively, one may estimate ξτ from its formulation (7) as a probability-weighted

moment. Estimating the expectation by the empirical moment and replacing F by its

empirical version pFn leads to the τth sample extremile

pξLMτ “ ξτ p pFnq “
1

n

n
ÿ

i“1

Jτ

ˆ

i

n

˙

Yi,n.

This estimator is another L-statistic, whose asymptotic properties are closely linked to

those of pξLτ since the finite differences built on the function Kτ in the estimator pξLτ can be

approximated by the derivative Jτ when n is large. Note further that an M-estimator pξMτ

of ξτ is provided by solving the empirical least squares problem minθ
řn
i“1 Jτ

`

i
n

˘

|Yi,n´θ|
2,

which yields the closed form expression

pξMτ “

řn
i“1 Jτ

`

i
n

˘

Yi,n
řn
i“1 Jτ

`

i
n

˘ ”
pξLMτ

1
n

řn
i“1 Jτ

`

i
n

˘ .

Since the denominator 1
n

řn
i“1 Jτ

`

i
n

˘

in the last equality converges to 1 as n Ñ 8, the

L-statistic pξLMτ in the numerator can thus be viewed as a Linearized variant of the M-

estimator pξMτ . Both pξLMτ and pξMτ are first-order equivalent with pξLτ . It is also easily seen

that the asymptotic distributions of pξLτ , pξLMτ and pξMτ are identical (see Example A in

Serfling (1980), pp. 277–278, and Example 1 in Shorack (1972)).

Of particular interest are the expected minimum ξτ “ ErminpY 1, . . . , Y spτqqs and ex-

pected maximum ξτ “ ErmaxpY 1, . . . , Y rpτqqs which correspond respectively to the cases

where spτq and rpτq in (8) are positive integers. In these special cases, estimation of

ξτ might be most conveniently based on unbiased estimates of the probability-weighted

moments M1,0,s (s “ 0, 1, 2, . . .) and M1,r,0 (r “ 0, 1, 2, . . .) given respectively by (see

Landwehr et al., 1979)

xM1,0,s “
1

n

n´s
ÿ

i“1

˜

s
ź

j“1

n´ i` 1´ j

n´ j

¸

Yi,n and xM1,r,0 “
1

n

n
ÿ

i“r`1

˜

r
ź

j“1

i´ j

n´ j

¸

Yi,n.
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Then, when spτq and rpτq in (8) are positive integers, the statistic

pξPWM
τ “

$

&

%

spτqxM1,0,spτq´1 for 0 ă τ ď 1
2

rpτqxM1,rpτq´1,0 for 1
2
ď τ ă 1

is an unbiased estimate of the extremile ξτ . It is straightforward to see from the asymptotic

normality of xM1,0,spτq´1 and xM1,rpτq´1,0 (see Hosking et al., 1985) that pξPWM
τ converges to

the same normal distribution as the estimators pξLτ , pξLMτ and pξMτ do.

Note also that when these empirical extremiles are used to estimate the same quantity

as empirical quantiles, our simulation experiments in Supplement B.1 provide Monte-Carlo

evidence that the extremile estimators are the most efficient in the case of usual short

and light-tailed distributions. However, unlike sample quantiles (single order statistics),

ordinary extremile estimators are not robust against heavy-tailed distributions. Yet, they

can be ‘robustified’ by considering trimmed extremiles as discussed below.

3.2 Trimmed extremiles

From a theoretical robustness point of view, extremiles have a similar behavior to expec-

tiles. Indeed, the influence function of the L-functional ξτ given by

x ÞÑ IFpx; ξτ , F q “

ż 8

´8

rF pyq ´ 1Ipx ď yqs Jτ pF pyqq dy

(see e.g. Serfling, 1980, p.265) is not bounded, indicating the non-robustness of extremiles

and their extreme sensitivity to the influence of isolated observations as is the case for

expectiles, whilst quantiles have a finite gross-error sensitivity (see e.g. Abdous and

Remillard, 1995, p.382). A robust alternative would be to use a trimmed L-functional in

the sense of Shorack (2000, p.442). Namely, suppose the statistician wants to robustify

the estimation procedure by specifying integer trimming numbers kn and k1n for which

kn ^ k1n Ñ 8, while kn
n
_

k1n
n
Ñ 0 with kn{k

1
n Ñ 1. The pkn, k

1
nq-trimmed population and

empirical τth extremiles can then be defined from (6) as, respectively:

ξτ pkn, k
1
nq “

ż 1´
k1n
n

kn
n

qt dKτ ptq,

and pξτ pkn, k
1
nq “

ż 1´
k1n
n

kn
n

pqt dKτ ptq “

n´k1n
ÿ

i“kn`1

"

Kτ

ˆ

i

n

˙

´Kτ

ˆ

i´ 1

n

˙*

Yi,n.
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The asymptotic normality of pξτ pkn, k
1
nq, stated in Theorem 2, requires the regular variation

of the function rVτ : t ÞÑ rVτ ptq :“ Vτ pt, tq at 0 with a non-positive exponent, where

Vτ pt, t
1
q “

ż 1´t1

t

ż 1´t1

t

pu^ v ´ u vq Jτ puq Jτ pvq dF
´1
puq dF´1pvq, t, t1 P r0, 1s.

Theorem 2 Let kn and k1n such that kn ^ k1n Ñ 8, kn
n
_

k1n
n
Ñ 0 and kn{k

1
n Ñ 1 as

nÑ 8. If, for some β ě 0,

lim
tÓ0

rVτ pctq{rVτ ptq “ c´β for each c ą 0,

then
?
n
´

pξτ pkn, k
1
nq ´ ξτ pkn, k

1
nq

¯

{στ pkn, k
1
nq has an asymptotic standard normal distribu-

tion, with σ2
τ pkn, k

1
nq “ Vτ pkn{n, k

1
n{nq.

We have undertaken some simulation experiments in Supplement B.2 to evaluate the

performance of the empirical trimmed extremile pξτ pkn, k
1
nq in comparison with the sample

quantile pqα when they estimate the same quantity ξτ pkn, k
1
nq ” qα. The accuracy of

pξτ pkn, k
1
nq appeared to be quite respectable with respect to the robust sample quantile.

3.3 Large extremiles

In the important maximum domain of attraction DApΦγq of Pareto-type distributions

with tail index γ ă 1, which plays in particular a crucial role in financial and actuarial

considerations (see e.g. Embrechts et al., 1997 and Resnick, 2007), extremiles ξτ are more

sensitive to the magnitude of heavy right tails than quantiles qτ are, as τ Ò 1. However,

the use of sample counterparts such as, for instance, pξLτ to estimate such large population

extremiles may not be appropriate in the extreme region τ “ τ 1n P r1´ 1{n, 1q for two

reasons. First, in contrast to their population counterparts ξτ 1n and qτ 1n , pξLτ 1n is not more

spread than pqτ 1n since pξLτ 1n ă Yn,n “ pqτ 1n . Second, pξLτ 1n is not consistent when estimating an

extremile ξτ 1n that is to the right of all observations, for a τ 1n larger than 1´ 1{n, which is

typically the setting of extreme-value theory and related fields of application: examples

include flood risk in Steenbergen et al. (2004), medical insurance large claims in Beirlant

et al. (2004), operational bank losses in Embrechts and Puccetti (2007), loss returns of

banks in the US market in Cai et al. (2015), the run-up height of ocean waves in de
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Valk (2016), excess-of-loss risk measures on automobile insurance data in El Methni and

Stupfler (2017), and fire risk for commercial firms in El Methni and Stupfler (2018), to

name just a few. To remedy these problems, we construct below two extreme-value type

estimators for ξτ 1n when τ 1n Ò 1 at an arbitrary rate as n Ñ 8. The first one is based on

the use of the asymptotic connection between extremiles and quantiles, while the second

one relies directly on asymmetric least squares estimation.

3.3.1 Estimation based on extreme quantiles

A first option to estimate the extremile ξτ 1n is by using its asymptotic equivalence ξτ 1n „

qτ 1n G pγq obtained in Proposition 3 (i), where Gpsq :“ Γp1´ sqtlog 2us, s ă 1, and γ is the

tail index of Y . This suggests to define the quantile-based estimator

pξQ,‹τ 1n
:“ pq‹τ 1n G ppγq (9)

by substituting in suitable estimators pq‹τ 1n of qτ 1n and pγ of γ. Thenceforth, pξQ,‹τ 1n
and pq‹τ 1n

inherit the same property about the spread of their population counterparts. On the other

hand, the naive sample maximum Yn,n will not be a consistent estimator of the extreme

quantile qτ 1n . In order to extrapolate outside the range of the available observations, it is

most efficient to use the traditional Weissman estimator (Weissman, 1978):

pq‹τ 1n ” pq‹τ 1npτnq :“

ˆ

1´ τ 1n
1´ τn

˙´pγ

pqτn , where pqτn :“ Yn´tnp1´τnqu,n (10)

with τn being an intermediate sequence, i.e., τn Ñ 1 such that np1´ τnq Ñ 8 as nÑ 8.

In practice, the intermediate quantile level τn is typically set to be τn “ 1 ´ k{n, where

k “ kpnq Ñ 8 is a sequence of integers with kpnq{nÑ 0 as nÑ 8. According to de Haan

and Ferreira (2006, Corollary 1.2.10), the model assumption F P DApΦγq is equivalent to

the first-order regular variation condition:

lim
tÑ8

q1´ptxq´1

q1´t´1

“ xγ for all x ą 0. (11)

Also, following de Haan and Ferreira (2006, Theorem 4.3.8), the asymptotic normality of

the normalized Weissman quantile estimator pq‹τ 1n{qτ 1n requires the extended regular varia-

tion assumption that for some second-order parameter ρ ď 0 and an auxiliary function
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A, with Aptq Ñ 0 as tÑ 8,

lim
tÑ8

1

Aptq

"

q1´ptxq´1

q1´t´1

´ xγ
*

“ xγ
xρ ´ 1

ρ
for all x ą 0. (12)

Here and in what follows, pxρ´1q{ρ is to be understood as log x when ρ “ 0. This classical

second-order condition controls the rate of convergence in (11). Thorough discussions on

the interpretation and the rationale behind this condition can be found in the monographs

of Beirlant et al. (2004) and de Haan and Ferreira (2006), along with abundant examples

of commonly used continuous distributions satisfying (12). Under this same extremal

value condition, we show that pξQ,‹τ 1n
{ξτ 1n converges in distribution as well, with the same

scaling and limit distribution as pq‹τ 1n{qτ 1n . Our first step to this aim is to analyse the bias

incurred by using the estimator pξQ,‹τ 1n
, i.e. the approximation error in Proposition 3 (i).

Proposition 4 Suppose that E|Y | ă 8, and that condition (12) holds with γ ă 1. Recall

the notation Gpsq “ Γp1´ sqtlog 2us, for s ă 1. Then, as τ Ò 1:

ξτ
qτ
´ Gpγq “ C1pγ, ρqApp1´ τq

´1
q ` C2pγqp1´ τq ` opApp1´ τq´1qq ` op1´ τq.

Here

C1pγ, ρq “

$

’

’

&

’

’

%

Gpγ ` ρq ´ Gpγq
ρ

if ρ ă 0

plog 2qγ
ş8

0
e´tt´γ plogplog 2q ´ logptqq dt otherwise,

and

C2pγq “ ´
1

2
Gpγq `

„

1`
log 2

2



Gpγ ´ 1q ´
log 2

2
Gpγ ´ 2q.

This result makes it possible to obtain the rate of convergence of the estimator pξQ,‹τ 1n
via

standard extrapolation arguments in the spirit of Theorem 4.3.8 in de Haan and Ferreira

(2006, p.138). The next result goes in this sense.

Theorem 3 Suppose that E|Y | ă 8 and:

(i) condition (12) holds with γ ă 1 and ρ ă 0;

(ii) τn Ñ 1, np1´ τnq Ñ 8 and
a

np1´ τnqApp1´ τnq
´1q Ñ λ P R as nÑ 8;
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(iii)
a

np1´ τnq ppγ ´ γq
d
ÝÑ Z, for a suitable estimator pγ of γ, where Z is a nondegen-

erate limiting random variable;

(iv) np1´ τ 1nq Ñ c ă 8 and
a

np1´ τnq{ logrp1´ τnq{p1´ τ
1
nqs Ñ 8.

Then
a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

pξQ,‹τ 1n

ξτ 1n
´ 1

¸

d
ÝÑ Z as nÑ 8.

A simple and popular estimator of the tail index γ is the Hill (1975) estimator

pγH “
1

k

k´1
ÿ

i“0

plog Yn´i,n ´ log Yn´k,nq , where k “ rnp1´ τnqs. (13)

Here, r¨s denotes the ceiling function. This is a natural estimator in the sense that it

is the maximum likelihood estimator for Pareto models above a high threshold; other

interpretations such as, for instance, pγH being the sample counterpart of the average log-

excess can be found in Beirlant et al. (2004). Under conditions (i) and (ii) of Theorem

3, condition (iii) holds for pγH with Z having a normal distribution with mean λ{p1 ´ ρq

and variance γ2, in view of Theorem 3.2.5 in de Haan and Ferreira (2006).

We shall discuss in Section 4.4.2 below a concrete application to medical insurance data

using pξQ,‹τ 1n
in conjunction with the Hill estimator pγH of γ and the Weissman estimator pq‹τ 1n

of qτ 1n . Other efficient estimation methods of qτ 1n and γ, such as the Peaks-Over-Threshold

approach and maximum likelihood techniques, can be used as well in (9) to define pξQ,‹τ 1n
.

Beirlant et al. (2004) and de Haan and Ferreira (2006) give a nice review of these methods

and an extensive bibliography.

3.3.2 Estimation based on intermediate extremiles

Here, we first consider estimating a high extremile ξτn of intermediate level τn satisfying

τn Ñ 1 and np1 ´ τnq Ñ 8 as n Ñ 8. Then, we extrapolate the resulting estimate to

the very extreme level τ 1n which approaches 1 at an arbitrarily fast rate in the sense that

np1´ τ 1nq Ñ c, for some nonnegative constant c.
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A natural estimator of the intermediate extremile ξτn follows from the solution of the

asymmetric least squares problem as

pξMτn “

řn
i“1 Jτn

`

i
n

˘

Yi,n
řn
i“1 Jτn

`

i
n

˘ “

ş1

0
Jτn

´

rnts
n

¯

Yrnts,n dt

1
n

řn
i“1 Jτn

`

i
n

˘ .

This is the M-estimator pξMτ presented in Section 3.1 when τ “ τn. Alternative estimators

can be defined by plugging τ “ τn in our L-estimator and LM-estimator, resulting in the

following estimators:

pξLτn “

n
ÿ

i“1

"

Kτn

ˆ

i

n

˙

´Kτn

ˆ

i´ 1

n

˙*

Yi,n “

ż 1

0

JτnptqYrnts,n dt

and pξLMτn “
1

n

n
ÿ

i“1

Jτn

ˆ

i

n

˙

Yi,n “

ż 1

0

Jτn

ˆ

rnts

n

˙

Yrnts,n dt.

The asymptotic normality of these estimators requires, in addition to (12), to control the

empirical quantile function t ÞÑ Yrnts,n in the central part of the distribution of Y . This is

why we introduce the following extra condition:

(H) The support of Y is an interval, and on its interior F is twice differentiable with

positive probability density function f and

sup
0ătă1

tp1´ tq
f 1pqtq

rfpqtqs2
ă 8.

Condition (H) makes it possible to approximate efficiently the empirical quantile process

t ÞÑ Yrnts,n by a sequence of standard Brownian bridges in the central part of the interval

p0, 1q, as well as in the far left tail due to the geometrically strong penalization of left

tail quantiles by the weighting function Jτn . It can be found in Theorem 6.2.1 of Csörgő

and Horváth (1993) and Proposition 2.4.9 in de Haan and Ferreira (2006), among others.

Finally, to elaborate our asymmetric least squares estimation based on the highest values

in the sample, we shall slightly strengthen the condition that F P DApΦγq by assuming:

lim
tÑ`8

t
fptq

1´ F ptq
“ γ. (14)

This von Mises condition indeed implies the model assumption F P DApΦγq as shown

in Theorem 1.11 of de Haan and Ferreira (2006, p.17) and Proposition 2.1 of Beirlant
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et al. (2004, p.60). While the necessary and sufficient condition F P DApΦγq for F

to be a Pareto-type distribution is sometimes difficult to verify, the sufficient von Mises

condition (14) may be more helpful for absolutely continuous distributions. All commonly

used Pareto-type distributions satisfy (14), see Beirlant et al. (2004, p.60). Next, under

these assumptions, we unravel the common limit distribution of the normalized estimators

pξLτn{ξτn , pξLMτn {ξτn and pξMτn {ξτn .

Theorem 4 Suppose that E|Y | ă 8 and:

• conditions (12), (H) and (14) hold with γ ă 1{2;

• the sequence τn Ò 1 is such that np1´τnq Ñ 8 and
a

np1´ τnqApp1´τnq
´1q “ Op1q.

Then, if pξτn is either pξLτn, pξLMτn or pξMτn , we have

a

np1´ τnq

˜

pξτn
ξτn

´ 1

¸

d
ÝÑ

γ
?

log 2

Γp1´ γq

ż 8

0

e´ss´γ´1W psqds

where W is a standard Brownian motion. In other words, the above limit distribution is

Gaussian centered with variance

V pγq “

ˆ

γ

Γp1´ γq

˙2

plog 2q

ż 8

0

ż 8

0

e´s´tpstq´γ´1ps^ tq ds dt.

Turning now to the extreme level τ 1n, we have under the model assumption of heavy-

tailed distributions F P DApΦγq that

ξτ 1n
qτ 1n

„ G pγq „ ξτn
qτn

and hence
ξτ 1n
ξτn

„
qτ 1n
qτn

as nÑ 8,

in view of Proposition 3 (i). On the other hand, the assumption F P DApΦγq or equiva-

lently the first-order regular variation condition (11) leads to the quantile approximation

qτ 1n
qτn

«

ˆ

1´ τ 1n
1´ τn

˙´γ

and thus
ξτ 1n
ξτn

«

ˆ

1´ τ 1n
1´ τn

˙´γ

.

This final extrapolation motivates the alternative purely extremile-based estimator

pξM,‹
τ 1n

:“

ˆ

1´ τ 1n
1´ τn

˙´pγ

pξMτn . (15)
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This is still a Weissman-type device which, in contrast to pξQ,‹τ 1n
in (9), relies crucially on our

intermediate asymmetric least squares estimator pξMτn . Another option would be to replace

the intermediate M-estimator pξMτn in (15) by either the L-estimator pξLτn or the LM-estimator

pξLMτn . The resulting extrapolated L- and LM-estimators can easily be shown to share the

asymptotic properties of pξM,‹
τ 1n

stated below. However, experiments with simulated data

indicate that these estimators perform no better than pξM,‹
τ 1n

. We therefore restrict our

attention to the latter estimator.

Theorem 5 Suppose that E|Y | ă 8 and:

• conditions (12), (H) and (14) hold with γ ă 1{2 and ρ ă 0;

• the sequence τn Ò 1 is such that np1´ τnq Ñ 8 and

a

np1´ τnqmaxpApp1´ τnq
´1
q, 1´ τnq “ Op1q;

•
a

np1´ τnq ppγ ´ γq
d
ÝÑ Z, for a suitable estimator pγ of γ, where Z is a nondegen-

erate limiting random variable;

• np1´ τ 1nq Ñ c ă 8 and
a

np1´ τnq{ logrp1´ τnq{p1´ τ
1
nqs Ñ 8.

Then
a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

pξM,‹
τ 1n

ξτ 1n
´ 1

¸

d
ÝÑ Z as nÑ 8.

Like the quantile-based estimator pξQ,‹τ 1n
, the extrapolated M-estimator pξM,‹

τ 1n
inherits the

limit distribution of pγ with a slightly slower rate of convergence.

3.3.3 Some simulation evidence

To investigate the finite sample performance of the two rival estimators pξQ,‹τ 1n
in (9) and

pξM,‹
τ 1n

in (15), we have considered simulated samples from the Student t1{γ distribution,

the Pareto distribution F pyq “ 1 ´ y´1{γ, y ě 1, and the Fréchet distribution F pyq “

e´y
´1{γ

, y ą 0. All the experiments have tail index γ P t1{4, 1{3, 2{5u, sample size

n “ 1000, extreme level τ 1n “ 1 ´ 1{n, and intermediate level τn “ 1 ´ k{n, where the
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integer k can actually be viewed as the effective sample size for tail extrapolation. We

used in all our simulations the Hill estimator pγH described in (13) to estimate γ.

Figures 1, 2 and 3 give the relative Mean-Squared Error (MSE) in top panels and bias

in bottom panels of the estimators pξQ,‹τ 1n
and pξM,‹

τ 1n
, computed over 10, 000 replications, for

γ “ 1{4, 1{3 and 2{5, respectively. In terms of MSE, it may be seen that pξM,‹
τ 1n

has a very

similar behavior to pξQ,‹τ 1n
in the Fréchet model, but is clearly the winner in both Pareto

and Student models, for all values of γ. It may also be seen that pξM,‹
τ 1n

is superior in terms

of bias in all scenarios. Although either might be used in practice, we would therefore

have a particular preference for the purely extremile-based estimator pξM,‹
τ 1n

.
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Figure 1: Results for γ “ 1{4 – MSE estimates (top panels) and bias estimates (bottom

panels) of pξM,‹
τ 1n
{ξτ 1n (solid line) and pξQ,‹τ 1n

{ξτ 1n (dashed line) as functions of k, for the Fréchet,

Pareto and Student distributions, respectively, from left to right.
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Figure 2: As in Figure 1 with γ “ 1{3.
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Figure 3: As in Figure 1 with γ “ 2{5.
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4 Extremiles as risk measures

A very important actuarial and financial problem involves quantifying the “riskiness”

implied by the distribution of a non-negative loss variable or a real-valued profit-loss

variable. Greater variability of the random variable under consideration and particularly

a heavier tail of its distribution necessitate a higher capital reserve for portfolios or price

of the insurance risk. A leading risk measure in banking and other financial institutions

is Value at Risk (VaR) with a confidence level τ P p0, 1q. It is defined as the τth quantile

qτ of the non-negative loss distribution with τ being close to one, and as ´qτ for the

real-valued profit-loss distribution with τ being close to zero. An undesirable property of

the VaR measure is that it is insensitive to the magnitude of extreme losses since it only

depends on the frequency of tail losses and not on their values. A solution to this problem

is to use the conditional tail mean ντ “ ErY |Y ą qτ s, for non-negative loss distributions,

and ντ “ ´ErY |Y ă qτ s for real-valued profit-loss distributions [Rockafellar and Uryasev

(2002)]. An often convenient, equivalent definition of ντ is as a spectral risk measure called

Expected Shortfall (ES) [Acerbi (2002)]. Practitioners who are more concerned with the

risk exposure to a catastrophic event, that may wipe out an investment in terms of the

size of potential losses, favor the use of the ES ντ . The latter may, however, be criticized

for being too pessimistic since it only depends on the tail event. The quantile-based

VaR and ES may therefore be considered as too liberal or too conservative, depending

on the tail shape of the underlying distribution. The use of expectiles as an alternative

measure of risk has recently attracted a lot of interest thanks to their asymmetric least

squares nature [see, e.g., Kuan et al. (2009) and Daouia et al. (2018)]. This proposal was

criticized though for its lack of comonotonic additivity [Acerbi and Szekely (2014)].

We will investigate in the sequel the properties of the extremile functional from the

point of view of the axiomatic theory of risk measures. The discussion in Section 4.1

pertains to non-negative loss distributions, while Section 4.2 is concerned with real-valued

profit-loss random variables. Section 4.3 examines the connection between tail extremiles,

expectiles and ES. Section 4.4 considers two motivating examples on inflation-adjusted

hurricanes and medical insurance data.
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4.1 Coherency, regularity and pessimism

Given that extremiles depend on both the tail losses and their probability, they steer an

advantageous middle course between the potential excessive optimism or pessimism of the

VaR and ES. Taking ξτ as a margin (amount of capital as a hedge against extreme risks),

a larger ξτ is then a more prudential margin requirement and results in larger τ . As such,

the index τ reflects the level of prudentiality to be typically set by regulators and/or the

management level. When τ “ 1{2, ξτ is the net expected loss. When τ ă 1{2, the values

of the risk measure ξτ are less than EpY q, which is not appropriate when Y ě 0 is a

loss random variable. Hence, a natural range for the security level τ is given by r1{2, 1s.

The use of ξτ as a proper risk measure can be justified further as follows. In actuarial

terms, a risk measure Πr¨s is defined as a mapping from the set of all bounded loss random

variables to the set of all non-negative real numbers, with ΠrY s being the price associated

with a loss variable Y ě 0. A variety of coherent risk measures have been specified in the

literature as the expected value of Y with respect to a distortion function gp¨q, that is,

ΠrY s “

ż 8

0

g p1´ F pyqq dy, (16)

where g is a nondecreasing and concave function with gp0q “ 0 and gp1q “ 1. The class

of such measures is referred to as Wang’s (1996) class of distortion risk measures. The

review article by Wirch and Hardy (1999) discusses a number of important distortion

functions including the Proportional Hazard transform gptq “ PHλptq :“ tλ, for the so-

called risk-aversion index λ P p0, 1s, and the Dual Power transform gptq “ DPrptq :“

1 ´ p1 ´ tqr for r ě 1. The ES can be expressed in terms of the distortion function

ESτ ptq :“ pt{p1 ´ τqq1Ip0 ď t ă 1 ´ τq ` 1Ip1 ´ τ ď t ď 1q. While the quantile-VaR and

ES use only a small part of the loss distribution, both PH and DP distortion functions

utilize the whole loss distribution and are more reliable for the purpose of differentiating

between more and less risky distributions.

Extremiles clearly belong to the class of risk measures of the form (16), with the

alternative concave distortion function

gτ ptq :“ 1´Kτ p1´ tq “ 1´ p1´ tqrpτq,
1

2
ď τ ď 1.
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It turns out that this function is very closely related to the DP transform in the sense

that gτ “ DPrpτq. Its formulation in terms of the asymmetry parameter τ P r1{2, 1s

allows, like the tail probability τ in the VaR qτ and ES ντ “ ErY |Y ą qτ s, for better

interpretability compared to the distortion parameter r P r1,8q in the DP transform.

Let us highlight in particular that the asymmetric least squares formulation makes the

comparison of extremiles (and, incidentally, of DP transforms) with both VaR and ES

easier and more insightful than the purely distortion-based interpretation: being least

squares analogues of quantiles, extremiles rely on the distance to observations, making

thus more efficient use of the available data, whereas quantiles only use the information

on whether an observation is below or above the predictor. Also, extremiles depend by

construction on both the tail losses and their probability, while VaR only depends on the

frequency of tail losses and ES only depends on the tail event.

On the other hand, the extremile distortion function gτ results in a more widely

applicable risk measure than the popular PH-measure, at least in the following respect: the

empirical estimators of both measures allow one to determine the price of an insurance risk

without recourse to any fitting of a parametric model. However, as shown by Jones and

Zitikis (2003), the asymptotic normality of the empirical PH-measure,
ş8

0
p1´ pFY pyqq

λdy,

does not cover the range 0 ă λ ď 1{2, and necessitates the assumption that E|Y |κ ă 8,

for some κ ą 1{pλ ´ 1{2q, when 1{2 ă λ ď 1. Hence, the number κ of required finite

moments tends to `8 as λ Ó 1{2. By contrast, as shown in Theorem 1, inference on ξτ is

applicable for any index τ , under the weaker assumption that E|Y |κ ă 8 for some κ ą 2.

It is straightforward to see that the extremile-based risk measure Πτ rY s :“ ξY,τ , for

τ P p1{2, 1q, satisfies the following two natural properties related to risk loading:

(A1) Positive loading and no ripoff: EpY q ă Πτ rY s ă yu, limτÑ1{2 Πτ rY s “ EpY q, and

limτÑ1 Πτ rY s “ yu.

(A2) No unjustified risk-loading: if P pY “ bq “ 1 for some constant b then Πτ rY s “ b.

More importantly, the extremile risk measure also satisfies the requirements for being a

coherent risk measure, in the sense of the influential paper by Artzner et al. (1999):

(A3) Translation and scale invariance: Πτ ra` bY s “ a`bΠτ rY s, for any a P R and b ą 0.

(A4) Subadditivity: Πτ rY ` rY s ď Πτ rY s ` Πτ rrY s, for any loss variables Y and rY .
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(A5) Preserving of stochastic order: Πτ rY s ď Πτ rrY s if Y ď rY with probability 1.

Finally, Πτ r¨s is a regular risk measure since it fulfills the following additional fundamental

conditions [as imposed e.g. in Definition 5 of Bassett et al. (2004)]:

(A6) Law invariance: Πτ rY s “ Πτ rrY s if Y and rY have the same distribution.

(A7) Comonotonic additivity: Πτ rY ` rY s “ Πτ rY s `Πτ rrY s if Y and rY are comonotone.

According to Bassett et al. (2004, Theorem 1), being coherent and regular, Πτ r¨s is

then a pessimistic risk measure in the sense that the corresponding distortion function gτ

acts to depress the implicit likelihood of the most favorable outcomes, and to accentuate

the likelihood of the least favorable ones (see Definition 4 in Bassett et al. (2004) for

a formal characterization of pessimistic risk measures). As such, the index τ becomes a

natural measure of the degree of pessimism. Note also that equation (6) makes Πτ r¨s a

spectral risk measure [Acerbi (2002)].

4.2 Real-valued profit-loss random variables

The extremile-based risk measure Πτ rY s can still be defined when Y is an asset return,

which can take any real value, by using the more general expression (5), that is,

ξτ “

ż 0

´8

rgτ p1´ F pyqq ´ 1s dy `

ż 8

0

gτ p1´ F pyqq dy,

or its various equivalent formulations described in Sections 2.1-2.2, where

gτ ptq :“ tspτq1Ip0 ď τ ă 1{2q ` r1´ p1´ tqrpτqs1Ip1{2 ď τ ď 1q.

A number of studies, including Jones and Zitikis (2003), Bassett et al. (2004) and the

references therein, have recognized the usefulness of such Choquet integrals in actuarial

and financial applications as well as in the area of measuring economic inequality. The

coherency axioms [Translation invariance, Monotonicity, Subadditivity, and Positive ho-

mogeneity] of the risk measure Πτ rY s :“ ´ξY,τ for asset returns can easily be checked

by making use of the alternative formulation (7) of ξτ as a probability-weighted moment.

The key argument is that the special weight-generating function Jτ p¨q is an admissible

risk spectrum [Acerbi (2002)].
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Proposition 5 For the profit-loss Y of a given portfolio and for any 0 ă τ ă 1{2,

Πτ rY s “ ´ξY,τ ” ´E rY Jτ pF pY qqs

is a coherent spectral risk measure.

In the special case where the power spτq in the distortion function gτ is an integer,

we recover the particularly attractive and very intuitive interpretation of the so-called

MINVAR risk measure introduced in Cherny and Madan (2009), namely the negative of

the expected minimum Πτ rY s ” ´ErminpY 1, . . . , Y spτqqs of spτq independent observations

from Y (see also Föllmer and Knispel, 2013).

Despite their statistical virtues and all their nice axiomatic properties as spectral risk

measures and concave distortion risk measures, extremiles have an apparent limitation

when applied to distributions with infinite mean. This should not be considered to be

a serious disadvantage however, at least in financial and actuarial applications, since the

definition of a coherent risk measure for distributions with an infinite first moment is not

clear, see the discussion in Section 3 of Nešlehová et al. (2006). Whether operational

risk models in which losses have an infinite mean make sense in the first place has also

recently been questioned by Cirillo and Taleb (2016).

4.3 Connection between extremiles, expectiles and ES

We consider both cases of non-negative loss distributions and real-valued profit-loss dis-

tributions with heavy right tails. In the case of a profit-loss distribution, the financial

position Y stands for the negative of the asset return so that the right-tail of F corre-

sponds to the negative of extreme losses. For most studies in risk management, it has

been found that Pareto-type distributions F P DApΦγq, with γ ă 1{2, describe quite well

the tail structure of actuarial and financial data. We refer for instance to the R package

‘CASdatasets’ which contains a large variety of data examples where realized values of γ

often vary between 1{4 and 1{2. Accordingly, as established in Proposition 3, the corre-

sponding extremile-based risk measure ξτ is more pessimistic, from the risk management

viewpoint, than the traditional quantile-VaR qτ for large values of τ . Next, we show that
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ξτ is more pessimistic than the expectile-based VaR eτ as well, in the standard case of

finite-variance distributions, but it is always less pessimistic than the ES ντ , for large τ .

The key ingredients to show this are the following asymptotic connections.

Proposition 6 Suppose that E|Y | ă 8 and F P DApΦγq with 0 ă γ ă 1. Then, as

τ Ñ 1,

ξτ
eτ
„ Γp1´ γqtpγ´1 ´ 1q log 2uγ and

ξτ
ντ
„ Γp2´ γqtlog 2uγ.

We now show how Proposition 6 entails that high extremiles are more conservative

than high expectiles at the same level, when γ P p0, 1{2q. The idea is simply to note

that for γ P p0, 1{2q, we have γ´1 ´ 1 ą 1, and therefore Γp1 ´ γqtpγ´1 ´ 1q log 2uγ ą

Γp1 ´ γqtlog 2uγ ą 1, establishing thus that ξτ ą eτ for τ large enough provided the

underlying distribution has a finite variance. This is, however, no longer valid for the

heaviest tails since the proportionality constant Γp1´γqtpγ´1´1q log 2uγ tends to log 2 ă 1

as γ Ñ 1. More precisely, a numerical study shows that high extremiles shall be more

conservative than high expectiles if and only if 0 ă γ ă γ0, with γ0 « 0.8729. By contrast,

that high extremiles are always less conservative than their ES analogues is a consequence

of the inequality Γp2´ γqtlog 2uγ ă tlog 2uγ ă 1, for all γ P p0, 1q.

Finally, we would like to stress why our finding in Proposition 6 that qτ ă ξτ ă ντ , as

τ Ñ 1, is not a contradiction to Theorem 13 in Delbaen (2002). This theorem states that

any coherent, law-invariant risk measure satisfying the Fatou property and greater than

or equal to qτ (for every Y P L8) must also be greater than or equal to ντ . The extremile

ξτ defines a law-invariant coherent, and hence convex risk measure, satisfying thus the

Fatou property [see Theorem 2.1 in Jouini et al. (2006) and Theorem 2.2 in Tsukahara

(2009)]. However, the key condition of Delbaen’s theorem that qτ ď ξτ is not fulfilled for

short-tailed distributions with a large |γ|, as discussed below our Proposition 3.

4.4 Data examples

To illustrate the ideas discussed above, we explore in this section two real data examples.
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4.4.1 Trended hurricane losses

We first consider a dataset on trended or, equivalently, inflation-adjusted (to 1981 using

the U.S. Residential Construction Index) hurricane losses that occurred between 1949 and

1980. Figure 4 (left panel) displays the histogram and scatterplot of the recorded n “ 35

trended hurricane losses in excess of $5 Million (in units of $1, 000). An analysis of this

data set conducted from a central point of view is presented in Jones and Zitikis (2003);

our focus here is rather on the right tail of the observations. We treat the 35 amounts as

the outcomes of i.i.d. non-negative loss random variables Y1, . . . , Y35. The corresponding

sample mean and standard deviation are 199,900 and 325,807, respectively. The empirical

estimates of the expected shortfall, quantile, expectile and extremile risk measures are

graphed in Figure 4 (right panel) against the security level τ . The first impression to be

gained from this figure is the lack of smoothness and stability of both sample quantile-

VaR pqτ (blue) and ES pντ (orange): their discreteness as piecewise constant functions of

the argument τ is a serious defect, especially in the important upper tail. Indeed, a

small change in τ can trigger a (severe) jump in the values of the estimated VaR and ES.

Moreover, the fact that the “steps” result in the same or similar measures for significantly

different risk levels is itself risky. By contrast, the sample extremile pξτ “ pξLτ (red) and

expectile peτ (green) have the benefit to be very stable and to change continuously and

increasingly without recourse to any smoothness procedure.

When comparing the four estimated risk measures at the same level τ , it can be

seen that the ES pντ , in orange, is much larger and hence is more conservative than the

extremile pξτ in red. In contrast, the quantile pqτ , in blue, remains less alert to extreme

risks than pξτ until it breaks down at τ “ pn ´ 1q{n “ 0.9714. Thenceforth, for all τ ą

0.9714, pqτ becomes identical to pντ which in turn coincides with the maximum catastrophic

loss Yn,n “ 1,633,000, whereas pξτ provides less pessimistic risk measure values. Finally,

although the expectile peτ , in green, exhibits a smooth evolution, it diverges from pξτ in the

region τ P r0.8, 0.975s and becomes less alert to infrequent disasters. The extremile in red

seems to afford a middle course between the pessimistic ES in orange and the optimistic

expectile in green.
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Figure 4: Trended Hurricane Losses data. (Left) Histogram and scatterplot; (Right) Em-

pirical expected-shortfall, extremile, expectile and quantile τ -risk measures.

Of particular interest is the deviation between the estimated extremile pξτ and quantile

pqτ . Being the estimates, respectively, of the mean and the median of the same asymmetric

distribution Kτ pF q of the transformation φτ pY q, a significant deviation between their

values diagnoses a heavier right tail of Y . Thereby the comparison above with the same

level τ may be viewed as an explanatory tool for quantifying the “riskiness” implied by

the distribution of Y , rather than as a method for final analysis, especially since we know

that non-extrapolated sample extremiles and quantiles will be inconsistent in the typical

extreme range τ ě 1 ´ 1{n. Moreover, moving from the standard quantile-based VaR

to the extremile-based risk measure requires in practice the use of different asymmetry

levels τ , say, τq and τξ. For example, if we consider a pre-specified extremile level τξ, then

for the comparison between the two estimators pξτξ and pqτq to be insightful, they must

estimate the same theoretical risk measure ξτξ ” qτq . This latter equality implies that

τq “ F pξτξq, whose empirical counterpart is pτq “ pFnppξτξq. This leads to a rival composite

quantile estimator pq
pτq of the direct extremile estimator pξτξ . As is to be expected, the latter

estimator of an L2-nature appears to be more alert to big losses than its L1 antecedent

pq
pτq , for any pre-specified level τξ.
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4.4.2 Medical insurance data

The Society of Actuaries Group Medical Insurance Large Claims Database records all

the claim amounts exceeding 25,000 USD over the period 1991-92. As in Beirlant et al.

(2004) and Daouia et al. (2018), we deal here only with the 75,789 claims for 1991. The

scatterplot and histogram shown in Figure 5 (a) give evidence of a considerable right-

skewness. Also, it has been found in both Beirlant et al. (2004, p.123) and Daouia et al.

(2018) that the loss severity distribution is heavy-tailed with Hill’s estimates pγH around

0.359, where pγH “
1
k

řk´1
i“0 plog Yn´i,n ´ log Yn´k,nq as described in (13) with k “ rnp1´τnqs

being an intermediate sequence of integers. Then nothing guarantees that the future does

not hold some unexpected higher claim amounts. A usual way to assess the magnitude

of such infrequent claim amounts from the extreme-value perspective is by using the

Weissman quantile estimate pq‹τ 1n “ Yn´k,n pk{npnq
pγH , as described in (10) with τ 1n “ 1´pn.

By construction, this tail estimate is expected to be capable of extrapolating outside the

range of the available observations when pn ă 1{n. Following Beirlant et al. (2004,

p.123), insurance companies typically are interested in pn “ 1{100,000 ă 1{n, that is, in

an estimate of the claim amount that will be exceeded (on average) only once in 100,000

cases. Figure 5 (b) shows the estimate pq‹τ 1n against the sample fraction k (solid black curve).

In practice, a commonly used heuristic approach for choosing an appropriate estimate is to

pick out a suitable k corresponding to the first stable part of the plot [see, e.g., Section 3

in de Haan and Ferreira (2006)]. A stable region appears for k from 150 up to 500,

leading to estimates between 3.73 and 4.12 million, with an averaged estimate around

3.90 million. This tail risk estimate does not exceed the sample maximum Yn,n “ 4.51

million (indicated by the horizontal pink line).

A more conservative estimator of the same extreme quantile-VaR qτ 1n has been recently

derived by Daouia et al. (2018) as

pe‹
pτ 1n
“

ˆ

1´ pτ 1n
1´ τn

˙´pγH

peτn where pτ 1n “ 1´
1´ τ 1n
pγ´1H ´ 1

“ 1´
pn

pγ´1H ´ 1

and peτn stands for the empirical counterpart of the expectile eτn , with τn “ 1 ´ k{n.

The plot of the composite expectile estimator pe‹
pτ 1n

against k (dashed gray curve) indicates
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Figure 5: SOA Group Medical Insurance data. (a) Histogram and scatterplot of the log-

claim amounts; (b) Using the Weissman extrapolation method and the Hill estimator: The

extremile plots k ÞÑ pξQ,‹τ 1n
(rainbow) and k ÞÑ pξM,‹

τ 1n
(dotted black), along with the quantile

plot k ÞÑ pq‹τ 1n (solid black), the expectile plot k ÞÑ pe‹
pτ 1n

(dashed gray) and the sample

maximum Yn,n (pink line); (c) Using the POT approach and the maximum likelihood

estimator of γ: The extremile plots k ÞÑ rξQ,‹τ 1n
(rainbow) and k ÞÑ rξM,‹

τ 1n
(dotted black),

along with the quantile plot k ÞÑ rq‹τ 1n (solid black), the expectile plot k ÞÑ re‹
rτ 1n

(dashed gray)

and the maximum Yn,n (pink line).
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an averaged estimate of around 4.13 million for k P r150, 500s. In contrast to pq‹τ 1n which

relies on a single order statistic Yn´k,n, the extrapolated expectile estimator pe‹
pτ 1n

is based

on the least asymmetrically weighted squares estimator peτn , and hence is more sensitive

to the magnitude of infrequent large claims. Yet, both pe‹
pτ 1n

and pq‹τ 1n actually estimate

the median qτ 1n of the asymmetric heavy-tailed distribution Kτ 1npF q of Zτ 1n
d
“ φτ 1npY q,

see Proposition 1. Accordingly, when faced with very long tails of Zτ 1n , the burden of

representing a pessimistic risk measure is thwarted by the robustness properties of the

median. The mean of Zτ 1n , which is nothing but the extremile ξτ 1n , bears naturally much

better this burden. The plots of its two estimators pξQ,‹τ 1n
(rainbow curve) and pξM,‹

τ 1n
(dotted

black curve), defined respectively in (9) and (15), clearly afford more pessimistic risk

information than the plots of pq‹τ 1n and pe‹
pτ 1n

. The final results based on averaging these

extremile estimates from the stable region k P r150, 500s are 4.83 million for pξQ,‹τ 1n
and

4.78 million for pξM,‹
τ 1n

. These estimates deserve indeed to be qualified as ‘pessimistic’ since

they do lie beyond the range of the data, but not by much. This might be good news to

practitioners whose concern is to contrast ‘pessimistic’ and ‘optimistic’ judgments as in the

duality between the mean and the median. Besides this duality, it should also be clear

that the resulting extremile estimates have their own intuitive interpretation. Indeed,

since τ 1n “ p1{2q
1{r with r « 69,314, then ξτ 1n ” ErmaxpY 1, . . . , Y rqs gives the expected

maximum claim amount among a fixed number of 69,314 potential claims. Finally, note

that the effect of Hill’s estimator pγH of the tail index γ on pξQ,‹τ 1n
is highlighted by a color-

scheme, ranging from dark red (high pγH) to dark violet (low pγH). This effect closely

parallels the influence of pγH on the other extrapolated risk estimates pξM,‹
τ 1n

, pq‹τ 1n and pe‹
pτ 1n

.

The risk estimates pq‹τ 1n , pe‹
pτ 1n

, pξM,‹
τ 1n

and pξQ,‹τ 1n
, graphed in Figure 5 (b), are all based on the

Hill estimator pγH of γ and the Weissman estimator pq‹τ 1n of qτ 1n . Instead, one may choose

to use the maximum likelihood (ML) and Peaks-Over-Threshold (POT) estimators of γ

and qτ 1n . The POT estimator of qτ 1n has the form

rq‹τ 1n “ Yn´k,n `
rσML

rγML

ˆ

´npn
k

¯´rγML

´ 1

˙

,

where rσML and rγML are chosen here to be the ML estimates for the parameters σ and γ of

the Generalized Pareto approximation [see, e.g., Beirlant et al. (2004), p.158]. Replacing
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pγH and pq‹τ 1n by their respective analogues rγML and rq‹τ 1n in the expectile and extremile risk

estimates pe‹
pτ 1n

, pξM,‹
τ 1n

and pξQ,‹τ 1n
, we get the alternative versions

re‹
rτ 1n

:“

ˆ

1´ rτ 1n
1´ τn

˙´rγML

peτn where rτ 1n “ 1´
1´ τ 1n
rγ´1ML ´ 1

“ 1´
pn

rγ´1ML ´ 1
,

rξM,‹
τ 1n

:“

ˆ

1´ τ 1n
1´ τn

˙´rγML

pξMτn and rξQ,‹τ 1n
:“ rq‹τ 1n G prγMLq .

The plots of the alternative risk estimates rq‹τ 1n , re‹
rτ 1n

, rξM,‹
τ 1n

and rξQ,‹τ 1n
are graphed in Fig-

ure 5 (c). These plots seem to be more volatile than those obtained via the Weissman

extrapolation method in Figure 5 (b). A stable region appears, however, for k from

200 up to 500, leading to the averaged estimates rq‹τ 1n “ 4.10 million, re‹
rτ 1n
“ 4.52 mil-

lion, rξM,‹
τ 1n

“ 5.32 million and rξQ,‹τ 1n
“ 5.17 million. These POT and ML-based risk values

are larger and hence more conservative than their Weissman and Hill-based analogues

pq‹τ 1n “ 3.90 million, pe‹
pτ 1n
“ 4.13 million, pξM,‹

τ 1n
“ 4.78 million and pξQ,‹τ 1n

“ 4.83 million. The

most substantial difference is 0.54 million, between the rival extremile estimators rξM,‹
τ 1n

and pξM,‹
τ 1n

, followed by a difference of 0.39 million between the expectile estimators re‹
rτ 1n

and

pe‹
pτ 1n

. Taking a closer look to the construction of these competing asymmetric least squares

estimators, we see that their substantial deviation is mainly due to the use of the Hill

estimator pγH in the Weissman extrapolation method and the ML estimator rγML in the

POT method. The volatility of the POT plots can thus be explained, on the one hand,

by an averaged estimate rγML “ 0.38 slightly higher than pγH “ 0.36 (these estimates were

averaged over k P r200, 500s and k P r150, 500s, respectively), and most importantly, on

the other hand, by ML estimates of γ being far more volatile than their Hill counterparts

as functions of k. The advantageous stability of pγH relative to rγML becomes clear by com-

paring the color-schemes in Figures 5 (b) and (c). Thanks to the POT method however,

one may be able to obtain profile likelihood confidence intervals by applying the elegant

device in Chapter 5 of McNeil et al. (2015).
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5 Discussion

Extremiles have several merits which deserve to be studied in more detail. They are

attractive because of their conceptual simplicity, the easy implementation of their esti-

mators and their good properties. They can be defined for a wide range of distributions

and summarize a distribution in a similar way as quantiles and expectiles do. They are

specified as a least squares analogue of quantiles but, unlike expectiles, they benefit from

various equivalent explicit formulations and straightforward interpretations.

As is the case in the duality between the mean and the median, the choice between

extremiles and quantiles will usually depend on the application at hand. Quantiles are

appealing because of their conventional probabilistic interpretation in terms of relative

frequency and their inherent robustness to extreme observations. By contrast, extremiles

are more appropriate in any tail analysis where sensitivity to the magnitude of extremes

is of prime importance. They afford more valuable information about how spread a

distribution is and can serve as a more efficient instrument of risk protection than quantiles

and expectiles in actuarial and portfolio allocation problems. Their use could be of genuine

interest in any other decision problem where “realistic” and “optimistic” judgments are

contrasted such as, for instance, in survival analysis and medical decision making where

pessimistic patients might favor the consideration of extremiles rather than quantiles to

measure the realistic performance of a hypothetical medical treatment.

In risk management, quantiles do not provide a coherent risk measure because they are

not subadditive. By contrast, extremiles define a coherent spectral risk measure thanks

to the nice attributes of the special weight-generating function Jτ . Expectiles and the Ex-

pected Shortfall are coherent as well, but they have serious disadvantages, related to the

absence of comonotonic additivity for expectiles and to the dependency of the Expected

Shortfall solely on the tail event. By contrast, extremiles are comonotonically additive

and depend on both the tail realizations and their probability. The key advantage of

expectiles over extremiles and Expected Shortfall is their property of elicitability that

corresponds to the existence of a natural forecast verification and comparison method-

ology (see e.g. Ziegel, 2016). Yet, it is known that competing forecasting methods of
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Expected Shortfall may be compared and assessed thanks to Fissler and Ziegel’s (2016)

important result that certain spectral risk measures are jointly elicitable with quantiles.

Although this result does not apply automatically to extremiles, these special spectral risk

measures can already be recognized as reasonable alternatives to expectiles and traditional

quantile-based risk measures. Further comparisons and practical experimentations will

undoubtedly yield new refinements.

Supplementary Material

The supplement to this article contains additional simulations and the proofs of all theo-

retical results in the main article.
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Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events for

Insurance and Finance, Springer.

Embrechts, P. and Puccetti, G. (2007). Aggregating risk across matrix structured loss

data: the case of operational risk. Journal of Operational Risk, 3, 29–44.
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