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Abstract

The paper investigates endogeneity issues in nonparametric frontier models. It

considers a nonseparable model for a cost function C = ϕ(Y,U) where C and Y are

the cost and the output, U is uniform in [0, 1] and ϕ is increasing with respect to U .

The cost frontier corresponds to U = 0 and U can be interpreted as a normalized

level of inefficiency. The endogeneity issue arises when Y is dependent of U . For

identification and estimation, we use a nonparametric instrumental variables estimator

of the model for fixed value U = α, and obtain an estimate of the α-quantile cost

frontier ϕ(Y, α). This involves the solution of a non linear integral equation. If the

true frontier ϕ(Y, 0) is wanted, it is then estimated by estimating the bias correction

ϕ(Y, 0) − ϕ(Y, α) under additional regularity conditions. The procedure is illustrated

through a simulated sample and with an empirical application to the efficiency of post

offices.
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1 Introduction

The important literature on production efficiency and frontier analysis has been essentially

concentrated on the analysis of conditional distributions. Production models analyze the

conditional distribution of the production (the output) given the inputs levels and cost fron-

tier models consider the conditional distribution of the cost given the outputs. In these two

cases, environmental variables may also be introduced but there are always treated as addi-

tional conditioning variables. This attention to conditional models is verified for parametric

and nonparametric (DEA, FDH) models and for both deterministic and stochastic versions

of the frontier. Some models consider conditional model to a given value (cost distribution

given the output) and others are conditional to an inequality (the distribution of cost given

the fact that the outputs are larger than some values). Both are conditional models.

Conditioning to some information is equivalent in the econometric literature to consider

this information as exogenous information. Implicitly it is assumed that the process gener-

ating the conditioning elements does not contain any relevant information on the parameter

of interest and that the conditional model identifies this parameter of interest.

In frontier analysis the exogeneity assumption has a particular meaning. Consider the

case of a cost function, the exogeneity assumption means that the level of the outputs of

a given firm is generated independently (or mean independently or non correlated) of the

level of inefficiency of this firm. This property may be unrealistic in many situations. For

instance, consider the case where a manager has to assign the quantity of outputs to produce

to different production units. If the manager has some information on the level of inefficiency

of each unit this may influence his choice (see e.g. Marschak and Andrews, 1944). Even if the

manager is replaced by a population of consumers the demand may go to firms considered

as being more efficient by the consumers. We will see below that treatment models allow to

understand the mechanism driving endogeneity: in a cost model, the outputs are assigned

by randomization but may contain bias selection. The same argument applies in production

models where the quantity of inputs may suffer from bias selection. Our results will show

that even in models where only inefficiency is present (no noise), DEA and FDH estimators

can suffer from endogeneity.

The price to pay to relax the exogeneity assumption is that we need to extend the model.

Our strategy belongs to the class of instrumental variables models. We will replace the

conditioning of the cost to the outputs by conditioning to observed instruments. We also

assume that these instruments explain sufficiently the endogenous variables to guarantee

identifiability of the model.
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Alternative strategies may be used to address the endogeneity question: we may adopt

a control function approach where the introduction of a supplementary variable eliminates

the endogeneity or we may adopt a more structural approach by the introduction of an ex-

plicit link between endogenous variables and inefficiency (see Simar et al., 2014). However

the approach of the latter is quite different, Simar et al. analyze particular models where

the endogeneity is introduced by some missing (unobserved) variables characterizing hetero-

geneity. In separable models the endogeneity problem may be addressed in two ways; by

control functions (see Newey et al., 1999) or by instrumental variables (see Darolles et al.,

2011). But to the best of our knowledge, the theory for the control function approach is not

yet available for estimating quantile functions. In nonseparable models, which is our setup

here, identification and estimation may be achieved by using nonparametric instrumental

variables (IV) models.

So in this paper we will indeed concentrate our attention to nonseparable models satisfy-

ing some instrumental variables conditions. Basically if C is the cost and Y the outputs we

analyze models defined by an equation C = ϕ(Y, U) where U has a uniform in [0, 1] distribu-

tion independent from some instruments W and where ϕ is an increasing function of U . So

U may be interpreted as a normalized inefficiency and the frontier is then equal to ϕ(·, 0);
more generally the α-quantile of C is ϕ(·, α). As explained below, for identification reasons,

a direct estimation of ϕ(·, 0) is impossible. Then our strategy will be to estimate ϕ(·, α) for
some fixed values of α (this will require the solution of non linear integral equations), and

then in a final step, to correct the bias between this quantile and the frontier. To the best

of our knowledge, our paper is the first tentative to estimate a nonparametric frontier in the

presence of endogeneity by applying nonseparable instrumental models.

Traditionally, parametric cost frontier models have often used models for the expectation

of the cost and then by additional assumption on the error term, try to get estimates of the

frontier (e.g., COLS, MOLS, etc.). It seems much more natural to concentrate the model on

the full distribution of the cost described by its quantile function, small quantiles approaching

the cost frontier. In this perspective, nonseparable models are quite natural, because they are

based on the fact that a quantile function can be represented by a monotone transformation

of a uniform variable U on [0, 1]. In addition, in the frontier setup, U is directly interpretable

as the inefficiency. Separable models can be considered as a special cases of nonseparable

models.

The interest for our model is justified in Section 2 where the endogeneity in frontier

models is presented in terms of treatment model. This clarifies what are exactly the issues
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of endogeneity in this particular setup. Section 3 is devoted to the nonparametric estimation

of the α-quantile using the iterative resolution of a non linear integral equation. The bias

correction for the estimation of the true function is analyzed in Section 4. In Section 5 we

give some numerical illustrations of our method in a simulated example and in an empirical

application. This allows to understand how to implement the estimator and its various

components in practice. Section 6 concludes. Some technical details for the asymptotic

properties of our estimator are displayed in Appendix A.

2 A treatment model for frontier analysis

One of the difficulties for the econometric analysis of endogeneity and for the understanding

of its consequences is related to a correct definition of the parameter of interest. An important

progress in this formalization has been realized in the context of treatment models which is

based on the concept of counterfactual models, see e.g. Heckman and Vytlacil, (2006). This

concept allows the distinction between “fixing” the level of a variable and “conditioning” to

the observation of this variable. For example a demand equation considers the reaction of the

demand to any possible fixed level of price but we only observe a price generated by a market

equilibrium and conditioning the demand by the observed price does not characterize the

demand equation. The observation mechanism of the price creates endogeneity. Essentially

we will say that we have an endogeneity problem if the parameter or the function of interest

is not characterized by the assumed conditional distribution.

To simplify our presentation we consider a univariate cost model explained by a vector

of outputs of dimension p. Also for simplification the model does not introduce additional

environmental variables. The extensions to production functions is straightforward at least

for the case of a single output and multiple inputs. As illustrated below, the concepts of

exogeneity or endogeneity are easy to define if we adopt a presentation based on treatment

models where the distinction between a counterfactual model and an observed model is

introduced. This will be made in three steps: the counterfactual specification, an assignment

mechanism and a process generating the observations.

2.1 The counterfactual specification

The first element of this model is the counterfactual specification. Let η ∈ R
p be a latent

vector of the levels of the outputs. This multivariate index is non random and takes its

value in all the possible values of the outputs which play here the role of the (continuous and
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multivariate) treatment. For each possible value of η there exists a cost, which is a random

variable Cη ≥ 0 and the (counterfactual) cost frontier is denoted by ϕη. It is defined as the

minimum possible value of Cη. If the distribution of the random Cη is characterized by its

cumulative distribution function Fη, or by its survivor function Sη = 1− Fη, both assumed

continuous, we have:

ϕη = inf{c|Fη(c) > 0} (2.1)

= inf{c|Sη(c) < 1}.

Let us underline that we have defined Cη as the cost corresponding to a value of the outputs

exactly equal to η and not larger or equal to η, as is often done in the frontier literature (see

Cazals et al., 2002). In the case of monotone frontier these two definitions are equivalent

but the first one is necessary for our construction below.

Many models are possible for the definition of the cost distribution. In general the family

{Cη}η may be viewed as a stochastic process indexed by η. We restrict the class of models

by considering a single noise model based on the following nonseparable specification

Cη = ϕη(U) (2.2)

where, for any η, ϕη(·) is a strictly increasing function of U and where, without loss of

generality, U has a uniform distribution between 0 and 1.

We would like to point that this specification can be seen as being restrictive because the

distribution of U is identical for any η, even if two units of production receiving two levels

of η will have two different drawings of U , but from the same uniform distribution. We

may imagine, as often the case in treatment models, more complex models with multivariate

source of heterogeneity, like Cη = ϕη(U0, U1, ..., Ur) for some r > 1, or models where U is

replaced by a process Uη indexed by η. For example if η only takes a value in some finite set

{1, ..., K} we may imagine a vector (U1, ...UK) of noises and a relation Cη = ϕη(Uη). We will

not pursue these extensions here and we will develop our approach on the simple model (2.2),

which stays in the usual framework of nonparametric frontiers, where the heterogeneity has

only one random component U .

The specification (2.2) implies obviously that the frontier is given by

ϕη = ϕη(0). (2.3)

We call this function the true frontier of the cost model. More generally we have

Fη(c) = ϕ−1
η (c), (2.4)
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and the function ϕη(α) is the α-quantile of the distribution of Cη. The frontier may be

view as an extreme quantile of order 0 and the random element U may be interpreted as

a normalized level of inefficiency. Indeed the value ϕ−1
η (c) is the percentage of firms more

efficient than the firm with a cost c among the firms producing the outputs η.

The parameter of interest is thus the frontier ϕη(0) but the α-quantile ϕη(α) has been

shown to be a robust approximation of the frontier, in particular in presence of outliers.

In many applications, one may wish to eliminate a percentage of extreme observations in

order to get “reasonable” results. This elimination corresponds to a specific choice of α. See

e.g. Aragon et al. (2005) and Daouia and Simar (2007) for similar concepts of α-quantile

frontiers and their properties from a robustness theory perspective. We will see below that

ϕη(0) is difficult to estimate in presence of endogeneity but that it may be recovered from

the ϕη(α) function by using an approach suggested in Daouia et al. (2010).

As a remark, in the particular case where the model is separable, we may decompose

(2.2) as

C = ϕη(0) + g(U), (2.5)

with g(·) ≥ 0. So, in this case C is decomposed into the true frontier plus a positive random

element which may be written as a transformation of the uniform distribution. The function

g is strictly increasing and such that g(0) = 0. Then the α-quantile is equal to ϕη(0) + g(α)

and the difference between this quantile and the true frontier is g(α).

2.2 The assignment mechanism

The second component of the model is an assignment mechanism. In the set up here of cost

efficiency, it is the allocation rule of the outputs to the units of production. We denote by

Y ∈ R
p the assigned level of outputs.

If the random element Y is independent of U , the outputs are exogenously assigned. We

will see below that in this case, the model reduces to the conditional distribution of C given

Y . If this property is no longer true we say that Y is endogenous. Since we address more

general nonseparable models, we will follow the IV approach. The IV model considers a

random vector W ∈ R
q called the instruments that is assumed to be fully independent of

U and we assume that Y is generated conditionally to W and U . We will see later that Y

should be sufficiently dependent of W given U to warrant the identification of ϕη(α). Note

that the full independence between W and U is indeed required in the case of nonseparable

models.
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As a remark we notice that in the particular case of separable models (2.5), the condition

E(g(U)|W ) = constant is sufficient to identify ϕη(0) (up to a constant identified by ϕη(0) = 0

for example) but if g is unknown and if we need to assume that this property holds for any

g, we actually assume the full independence.

2.3 The process generating the data

The last element of the construction of the model defines the observations. We assume that

we observe an iid sample of W,Y and CY (denoted C). This means that we cannot observe

Cη for any η but only for the assigned value Y . In the class of models we consider the

observations are related by the formulae:

C = CY = ϕY (U), (2.6)

For ease of notations and when necessary, we will also denote the latter as ϕ(Y, U), where

as above, ϕ(·, U) is monotone in U . In general, we assume that U and Y are dependent, so

Y is endogenous. Note that if Y is independent of U (the exogeneity case), ϕ(Y, U) is the

conditional quantile of C given Y at the level U and ϕ−1
Y (C) = F (C|Y ). The model reduces

then to a usual nonparametric nonseparable model as it has been studied by Chernozukov

and Hansen (2005).

Partial exogeneity or Boundary independence

We would like to mention that our concept of exogeneity (full independence between Y and

U) may be viewed as being too strong. Indeed let us consider a case where Y and U are not

independent but where the minimum value of the support of U given Y = η is equal to 0 for

any value of η (this may define a “boundary independence”). Then, due to the increasing

property of ϕ with respect to U we have

inf{C|Y = η} = inf{ϕ(η, U)|Y = η} = ϕ(η, inf{U |Y = η}) = ϕ(η, 0). (2.7)

So, the conditional frontier of C given Y = η is equal to ϕ(η, 0) even if the conditional

quantiles of C given Y = η at level α > 0 is not equal to ϕ(η, α). But this is enough to

identify the cost frontier and empirical versions of the inf{C|Y = η} (including e.g., FDH or

DEA estimators) will still provide consistent estimators of the cost frontier. But of course,

as soon as we want to estimate objects defined in the interior of the support of C|Y = η

(like the robust partial frontiers or the α-quantile frontier defined above), this is no more

the case. So, even if we have the boundary independence and (2.7), we need instrumental

techniques like the one derived in the next section if we want to estimate α-frontiers.
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3 Instrumental variables estimation of α-frontiers

As we have seen in the previous section the estimation problem of α-frontier under endo-

geneity may be treated by the estimation of a model C = ϕ(Y, U) where U is independent

of the instruments W . The function ϕ(η, α) then gives this α-frontier that we may also call

the α-instrumental quantile. If the true frontier ϕ(η, 0) is the parameter of interest a bias

correction will be necessary and this will be considered in the next section.

Identification and estimation of the quantile function under endogeneity has been recently

treated in several papers, e.g. see Chernozukov et al. (2007), Horowitz and Lee (2007),

Gagliardini and Scaillet (2012) and Dunker et al. (2014) among others. We first recall

a local identification condition and we present an iterative regularization scheme for the

estimation.

3.1 Identification issues

We first need to show how the characterization of the function ϕ leads to the resolution a

non linear integral equation and then we will derive a local identification condition. We first

need to introduce some notations. Let us define

F (c, η|w) = P (C ≤ c|W = w, Y = η)fY |W (η|W = w), (3.1)

where fY |W (·|W = w) is the conditional density of Y given W = w. With some abuse of

notation we can interpret this function as F (c, η|w) = P (C ≤ c, Y = η|W = w) where

we understand P as a cumulative distribution for C but as a density for Y . Then we can

establish the following preliminary result.1

Lemma 3.1. For all α ∈ [0, 1] we have the integral equation
∫
F (ϕ(η, α), η|w)dη− α = 0 (3.2)

Proof. Since U and W are independent and U is uniform on [0, 1] we have P (U ≤ u|W =

w) = u. The left hand term is equal to
∫
P (U ≤ u, Y = η|W = w)dη. Since for all η, ϕ(η, U)

is strictly increasing in U we have
∫
P (U ≤ u, Y = η|W = w)dη =

∫
P (ϕ(η, U) ≤ ϕ(η, u), Y = η|W = w)dη

=

∫
P (C ≤ c, Y = η|W = w)dη,

1This is rather standard in the above literature but we prefer to be explicit for the unfamiliar reader.
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where the least equality is obtained since if Y = η, C = ϕ(η, U). This completes the

proof.

First note that the equation (3.2) restricted to α = 0 cannot identify ϕ(y, 0). Indeed

as F (c, η|w) = 0 for any c ≤ ϕ(η, 0) all the functions smaller or equal to the true ϕ(η, 0)

satisfy the condition. This is the reason why we consider (3.2) for any α even if it would be

sufficient to consider this equation for α ∈ [0, α0], with 0 < α0 ≤ 1.

In order to elaborate an identification condition, we have to define the functional spaces

involved in this relation. For each α we consider the space L2
Y (α) of square integrable

functions ϕ(η, α) relatively to the true conditional distribution of Y given U = α, i.e.

L2
Y (α) = {ϕ|

∫
ϕ(z)2fY |U(z|U = α)dz <∞}. (3.3)

Let us define the following operator T (ϕ)

T (ϕ)(α,w) =

∫
F (ϕ(η, α), η|w)dη (3.4)

So the integral equation (3.2) can be written for a given α as

T (ϕ)(α,w) = α. (3.5)

The operator T (ϕ) transforms a function ϕ ∈ L2
Y (α) into a function ψ(w, α) ∈ L2

W (α),

where L2
W (α) is the space of functions of W and α square integrable with respect to the

conditional distribution of W given U = α (actually the latter is equal to the marginal

distribution on W ). As T is not a conditional expectation operator this property is actually

an assumption on F , the joint conditional “distribution” of C, Y given W . We also assume

that this distribution has a continuous derivative with respect to C equal to fC,Y |W (c, η|w),
which is the joint density of (C, Y ) given W = w. In that case T has a Frechet derivative

for any ϕ̃ ∈ L2
Y (α) equal to

T ′
ϕ(ϕ̃) =

∫
ϕ̃(η, α)fC,Y |W (ϕ(η, α), η|w)dη (3.6)

computed at the function ϕ. We see that this is a linear operator as a function of ϕ̃ from

L2
Y (α) to L

2
W (α).

The function ϕ is locally identified if T ′
ϕ(ϕ̃) = 0 implies ϕ̃ = 0 (see Florens and Sbai,

2010 and Chen et al., 2014). This means that T ′
ϕ is one to one. Equivalently assuming that
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for the true value ϕ, ∂
∂α
ϕ(η, α) 6= 0 the Frechet derivative may be rewritten as:

T ′
ϕ(ϕ̃) =

∫
ϕ̃(η, α)
∂ϕ
∂α
(η, α)

fY,U |W (η, α|w)dη

=

∫
ϕ̃(η, α)
∂ϕ
∂α
(η, α)

fY |W,U(η|w, α)dη, (3.7)

where fY,U |W (η, α|w) = ∂ϕ
∂α
(η, α)fC,Y |W (ϕ(η, α), η|w) is indeed the density of Y, U given W =

w obtained from the density of C, Y given W = w by simple change of variable. It turns

out that this density is nothing else than fY |W,U(η|w, α), the conditional density of Y given

W = w and U = α, since U and W are independent and U is uniform on [0, 1]. So we have

the following proposition.

Lemma 3.2. A sufficient condition for local identification is given by the conditional strong

identification or conditional completness condition

∀λ ∈ L2
Y (α) E(λ(Y, U)|W = w,U = α) = 0 ⇒ λ = 0 a.s. (3.8)

Proof. By (3.7) we translated the condition that T ′
ϕ(ϕ̃) = 0 implies ϕ̃ = 0 in terms of the

conditional density of Y |W,U . A sufficient condition to get this property is indeed the

conditional strong identification (or completeness) (3.8) as described in Chapter 5 of Florens

et al. (1990).

Hereafter, we assume that condition (3.8) is satisfied. This assumption is actually a

dependence condition between Y andW (given U). There exists no function of Y orthogonal

to functions of W (for fixed α) except the zero function. The previous lemma shows in

particular that T ′
ϕ(ϕ̃) is the conditional expectation of ϕ̃

∂ϕ/∂α
given w and α. This remark

proves that T ′
ϕ is a bounded operator and then the problem is locally ill-posed.

3.2 Solving the integral equation

Since solving the integral equation (3.5) in ϕ is a locally ill-posed inverse problem, we need

a regularization method. We will use a regularized recursive method which involves the

adjoint operator of T ′
ϕ. In practice we will use estimators of T and of the adjoint operator

to provide an estimator of ϕ. The adjoint operator of T ′
ϕ is denoted T

′∗
ϕ and is the linear

operator from L2
W (α) to L2

Y (α) characterized by the following equation: for any ϕ̃ ∈ L2
Y (α)

and any ψ̃(w, α) ∈ L2
W (α) we have

∫ [
T ′
ϕ(ϕ̃)(w, α)

]
ψ̃(w, α)fW |U(w|U = α)dw =

∫
ϕ̃(η, x)

[
T

′∗
ϕ (ψ̃)(η, α)

]
fY |U(η|U = α)dη,
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where in our case fW |U(w|U = α) = fW (w). Then plugging (3.6) in the left hand side term

allows to identify the adjoint operator as

T
′∗
ϕ (ψ̃)(η, α) =

∫
ψ̃(w, α)

fC,Y,W (ϕ(η, α), η, w)

fY |U(η|U = α)
dw (3.9)

The Landweber algorithm (see Engl et al., 1996 or Kaltenbacher et al., 2008) to solve

equation (3.5) is as follows: we start with some starting point ϕ0(η, α) not too far from ϕ

and we form the recurrence relation

ϕk+1(η, α) = ϕk(η, α) + T
′∗
ϕk

(
α− T (ϕk)

)
. (3.10)

As the norm of T ′
ϕ may be not smaller or equal to 1, (3.10) should introduce a γ factor

multiplying T
′∗
ϕ . This factor is fixed and we dropout this factor to simplify the formulae.

In the simulation and in the estimations presented below, we keep γ = 1. The algorithm is

known to converge to a fixed point of (3.10) which is a solution of (3.5) . Since the operators

T and T
′∗
ϕ are unknown, they will be estimated, this introduce additional noise and so the

algorithm has to be stopped at some step k. These practical issues are discussed in details

in Fève and Florens (2014). We particularize now their presentation to our setup here.

The estimation of T and T
′∗
ϕ are done by usual kernel smoothing method. Let K a

standard kernel univariate density and denote K̄ the corresponding cumulative distribution

function and hC , hY and hW three bandwidths corresponding to the variables C, Y and W .

In order to simplify the presentation and the notations, we assume that W is uniformly

distributed in [0, 1] and that C, Y and W are univariate variables.2 Then:

T̂ (ϕ) =

∫
F̂ (ϕ(η, α), η|w)dη (3.11)

=

∫
1

n

n∑

i=1

K̄

(
ci − ϕ(η, α)

hC

)
1

hY
K

(
η − yi
hY

)
1

hW
K

(
w − wi

hW

)
dη.

Using standard kernels and bandwidths properties,3 the integral in η may be approximated

by

T̂ (ϕ) =
1

n

n∑

i=1

K̄

(
ci − ϕ(yi, α)

hC

)
1

hW
K

(
w − wi

hW

)
. (3.12)

2For multivariate Y and W , product kernels could be used with a vector of bandwidths for hY and hW .

If W is not uniform, when conditioning on W , we have to divide all the expressions by the kernel density

estimate of W .
3One standard argument in kernel estimation is that under regularity conditions of the function g,∫

h−1K((z − zi)/h)g(z)dz = g(zi) +O(h).
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A similar estimator of the adjoint of the derivative is obtained by

(T̂ ′∗
ϕ (ψ̃))(η, α) =

∫
ψ̃(w, α)

n∑

i=1

1

hC
K

(
ci − ϕ(η, α)

hC

)
1

hY
K

(
η − yi
hY

)
1

hW
K

(
w − wi

hW

)
dw

n∑

i=1

1

hU
K

(
ui − α

hU

)
1

hY
K

(
η − yi
hY

) ,

where hU is some appropriate bandwidth for U . We can use the same type of approximation

as above for the integral at the numerator. For the denominator we cannot use the kernel

in U since the ui are not observed. Here we use the following approximation as hU → 0,

1

hU
K

(
ui − α

hU

)
=

1

hC
K

(
ci − ϕ(yi, α)

hC

)
+ o(hU),

with hC = ϕ′
y(u)hU . This results can be viewed as a version of the delta method for kernels

where hU → 0, plays the usual role of σ2
n → 0 in the delta method (see e.g. Serfling, 1980,

Theorem A, Section 3.1). This leads to our final estimator of the adjoint operator

(T̂ ′∗
ϕ (ψ̃))(η, α) =

n∑

i=1

ψ̃(wi, α)K

(
ci − ϕ(η, α)

hC

)
K

(
η − yi
hY

)

n∑

i=1

K

(
ci − ϕ(yi, α)

hC

)
K

(
η − yi
hY

) (3.13)

Now for the estimation of ϕ, we can use the Landweber recursive scheme described above.

With our estimators, the algorithm can be written as

ϕ̂k+1 = ϕ̂k + T̂ ′∗
ϕk
(α− T̂ (ϕ̂k)). (3.14)

This algorithm needs a starting point ϕ0 and a stopping rule. As usual in nonparametric

estimation the stopping rule k has contradictory effects on the variance and on the bias:

increasing k increases the variance but decreases the bias. The regularization in that case

is coming from the stopping rule. The value of k should increase to ∞ with n but at a

“slow” rate in order to control the illposedness. The asymptotic properties of the resulting

estimator are described in the next section. They imply selection of bandwidths of optimal

order, which is the one obtained by using the usual rule of thumb (see below).

Practical implementation

The practical implementation of the algorithm is described in details in Fève and Florens

(2014). It is shown there that by discretizing the algorithm and computing the function
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ϕ(yi, α) at the observations y = (y1, . . . , yn)
t given by the sample, the iteration scheme can

be written very simply in matrix form. Denote ᾱ = αin, where in is a n-vector of ones, then

we have

ϕ̂k+1(y, α) = ϕ̂k(y, α) +B(ϕk)
(
ᾱ− b(ϕk)

)
, (3.15)

where b(ϕk) = T̂ (ϕ̂k)(α,w) is a (n × 1) column vector computed for each element wi, i =

1, . . . , n and B(ϕk) is a (n× n) matrix with element (i, j) given by

bi,j =

K

(
cj − ϕ̂k(yi, α)

hC

)
K

(
yi − yj
hY

)

n∑

r=1

K

(
cr − ϕ̂k(yr, α)

hC

)
K

(
yi − yr
hY

) .

As starting value, we suggest to start with the conditional quantile of order α of C given

Y characterized by F−1(α|Y = η) where F (c|η) is the conditional cumulative distribution

function of C given Y = η. Many estimators of the conditional quantile have been proposed

in the literature (see e.g. Van der Vaart, 1998, for the non conditional case). This choice for

the starting point is based on the hypothesis that the endogeneity bias is not “too big”. We

will see below in the numerical illustration that the algorithm is rather robust to the choice

of its starting value. As discussed in Section 5.1 the choice of this initial function seems not

essential in our simulation or estimation. As usual in optimization problem this sensitivity

to starting value may be checked.

For the estimation, in order to get consistent estimators of the operators, we select the

bandwidths to have the appropriate order. For sake of simplicity we fix all the bandwidths

to the one given by the usual rule of thumb (1.06 σ̂n−1/5 where σ̂ is the empirical standard

deviation of the corresponding variable). Here too, we have seen in our examples that the

results are robust to the particular choice of the bandwidths.

A more important tuning element to fix is the stopping rule, i.e. the number of iterations.

A data driven choice of the stopping rule has been suggested and motivated by Florens and

Racine (2013) and by Fève and Florens (2010, 2014). It is based on the analysis of the curve,

as a function of k, defined as

a(k) = k‖α− T̂ (ϕ̂k)‖2. (3.16)

This function first increases from 0 to a local maximum and then decreases to a minimum.

The argument is to define the selected value of k at this minimum. This argument is justified

by some intuitive argument explained in details in Fève and Florens (2014). It is also justified

by our simulations and we give in Appendix A theoretical justification of this rule.
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3.3 Asymptotic properties

The asymptotic properties of our estimator are difficult to establish. The literature on

numerical analysis has extensively analyzed estimation by iterated methods for nonlinear

inverse problems (see e.g. Kaltenbacher et al., 2008). However this has been done in a

slightly different setting where the basic equation to solve is of the type r = T (ϕ), but the

operator T is known and the error of estimation is only driven by r.

The econometric literature has been developed for estimating nonparametric instrumental

quantiles (see Horowitz and Lee, 2007, Gagliardini and Scaillet, 2012, and Dunker et al.,

2014). The type of estimator and the regularization technique are however different. To the

best of our knowledge, there are no existing results directly applicable to our setup and a

detailed proof for this case would be out of the scope of our paper. However we can give a

natural intuitive argument to obtain the desired results.

First we prove the consistency property of our estimator. As in all nonlinear model, the

asymptotic analysis is obtained through the approximated linear model, using appropriate

Taylor expansions. In our case, the derivations go as follows.4 Our model can be written as

in (3.5), α = T (ϕ) and can be linearized around the true value of ϕ we denote by ϕ†:

α− T (ϕ†) = T
′

ϕ†
(ψ), where ψ = ϕ− ϕ†. (3.17)

This approximation can be viewed a linear model r = Kψ where r and K have to be

estimated. We know (see e.g. Carrasco et al., 2006 or Carrasco, 2012) that under regularity

conditions, the Landweber estimation of the latter equation converges to ψ (or that for an

appropriate choice of k (function of n), ||ϕ̂k − ϕ†||
p→ 0). Moreover we have

||ϕ̂k − ϕ†||2 = O

(
k n− 2s

2s+q +
(1
k

)β
)
, (3.18)

where k is the number of iterations, s is the regularity of F (ϕ(η), α), η|w) (in practice, it is the

minimum of the order of the kernel used and the order of differentiability of F ). Then n
2s

2s+q is

the rate of convergence achieved for the estimation of
∫
F (ϕ(η), α), η|w)dη. This rate assume

the usual optimal choice of the bandwidths in the kernel estimates. The parameter β > 0

accounts for the regularity of ϕ which is formalized by the condition ϕ−ϕ† ∈ R
(
T

′∗
ϕ†
T

′

ϕ†

)β/2

(for details and discussion on this condition see Carrasco et al., 2006 or Darolles et al., 2011,

typically β is related to the smoothness of ϕ).

Furthermore, it is implicitly assumed that T
′∗
ϕ and T

′

ϕ have been optimally estimated

(see Darolles et al., 2011) and that the hypothesis allowing to neglect the estimation of

4A sketch of the proof with more details is given in Appendix A.
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these operators are satisfied. Then we know that the optimal speed for k is of the order(
n

2s
2s+q

)1/(β+1)

. This leads to ||ϕ̂k − ϕ†||2 = O
(
n− 2s

2s+q

)β/(β+1)

. This rate of convergence can

be interpreted as the rate achieved for the nonparametric estimation of α − T (ϕ†) reduced

by the factor β/(β + 1) due to the inversion (i.e. solving the integral equation).

4 Estimation of the Full frontier: Bias Correction

So far we have a consistent procedure for estimating the α-quantile frontier ϕη(α) , in a

nonseparable model with endogeneity. In most application, the researcher will be happy

with this because he could prefer a robust estimation of an object less extreme than the full

frontier, robust to outliers and extreme data points (see e.g. Aragon et al., 2005, Daouia

and Simar, 2007, Daouia et al., 2010, 2012, 2014 for a motivation in the study of quantile

frontiers).

However, the researcher may also estimate the full frontier ϕη(0) which, as explained

above, is not identified by the integral equation (3.2). The relation between ϕη(α) and ϕη(0)

is complex in general, but this can be simplified by assuming an additional assumption.

Assumption 4.1. We assume that the relation between the α-quantile frontier and the full

frontier has the form

ϕη(α) = ϕη(0) + aηα
bη , (4.1)

where aη and bη are function of the output levels η.

In fact we will see below that we only need this to be true for values of α in some

neighborhood of zero, but the assumption (4.1) will allow to derive consistent estimator of

the aη and bη for all η.

Note that the assumption (4.1) is compatible with nonseparable models. In the case

of separable models, like in (2.5), we have the additional assumptions that aη and bη are

constant with respect to η, which facilitates their estimation.

Remark 4.1. It should be pointed that the assumption (4.1) is not very restrictive, since

it can be viewed as the first element of a Taylor expansion of ϕη(α) around zero. But even

more, under the general assumption that, as c ↓ ϕη(0)

Fη(c) = ℓη(c− ϕη(0))
ρη + o(c− ϕn(0))

ρη , (4.2)

with ℓη > 0 and ρη > 0. It is easy to show that this implies

ϕη(α) = ϕη(0) + aηα
bη + o(αbη), (4.3)
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where aη = (ℓη)
−1/ρη and bη = 1/ρη. The regularity condition (4.2) is standard in Extreme

Value Theory (EVT) and is motivated in details in Daouia et al. (2010, 2012). To summa-

rize, in EVT, a necessary and sufficient condition under which a minimum of an iid sample

of a random variable C minus the lower boundary of the support of C, converges in distri-

bution to a non-degenerate distribution, is an extreme value regularity condition involving a

slowly varying function and a tail index (here ρη). A convenient way to characterize this

condition is to consider slowly varying function that can be approximated by a constant (here

ℓη). This leads to the condition (4.2), where the tail index measures the rate of decline to zero

of the cdf Fη(·) when it reaches its lower boundary (the frontier point ϕη(0)). In particular

if ρη = 1 the density fη has a jump at the frontier point, as is often assumed in most of the

nonparametric frontier models, while ℓη, ρη are assumed to be known in all the parametric

approaches.

The above remark motivates the assumption (4.1) and the estimation of ϕη(α) for several

small values of α may be used to correct the bias ϕη(α)−ϕη(0). We may adopt a Pickand’s

style estimation similar to what has been proposed in Daouia et al.(2010) and (2012).

From (4.1) it is easy to show that for any fixed value λ > 1

ϕη(λα)− ϕη(α)

ϕη(λ2α)− ϕη(λα)
= λ−bη ,

which leads to

bn = (log λ)−1 log

(
ϕη(λ

2α)− ϕη(λα)

ϕη(λα)− ϕη(α)

)
. (4.4)

Then it is easy to check that

aη =
ϕη(cα)− ϕη(α)

(cα)bη − αbη
. (4.5)

Under the assumption (4.1), we obtain consistent estimator of aη and bη by plugging in the

above formulae the consistent estimators of the corresponding quantile frontier ϕ̂η(·) (see

the argument in Daouia et al., 2012). So the resulting estimator of the full frontier is given

by

ϕ̂η(0) = ϕ̂η(α)− âηα
b̂η . (4.6)

As a final remark, it is well known from EVT, that the estimation of the tail index

ρη (or of bη = ρ−1
η ) is not easy and requires a large number of data. In our setup here

of frontier estimation we could make the assumption that the density of C given η has a

jump on the frontier, as in most nonparametric frontier models (implying that bη = 1). But

a much less restrictive assumption is that the behavior of this density near the frontier is
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homogeneous with respect to η, so bη would be a constant, say b. This implicitly assumes

that the α-quantile frontier obeys the equation

ϕη(α) = ϕη(0) + aηα
b, (4.7)

at least for small values of α. We come back to these issues in the numerical illustrations.

5 Numerical illustrations: a simulated example and a

real data application

We illustrate how our approach can be implemented through some examples. The first one is

a nonseparable simulated data set and the second uses data from post offices of an european

operator. Through all the applications in this paper we have chosen the bandwidths by the

usual rule of thumb since they give the appropriate orders for getting the desired asymptotic

properties. We have done for the simulated example some sensitivity analysis and compare

the results when all the chosen bandwidths are divided by a factor 2 and also when all the

bandwidths are multiplied by the same factor 2. To save place, we do not reproduce the

results, but the fact of using these different bandwidths had almost no consequences on the

resulting estimates of the α-quantile frontiers. So this choice seems to be less crucial in our

setup here than in the classical problem of density estimation. Of course, more elaborated

techniques could be used, e.g. based on least-squares cross validation, but in our numerical

examples, it was not necessary.

5.1 Simulated example

The data generating process to produce outputs and costs is constructed in a nonseparable

model of the type described in the paper. We generate first an i.i.d. sample of size n for

U and W from two independent uniform distributions in [0, 1]. The endogenous output

Y is thus generated for given U = u and W = w is drawn by a uniform distributions in

[u+ w, 0.75 u+ w + 1]. Finally we define C by the nonseparable model

C = Y a1 + a2 (
√
Y + a3)U,

where for the illustration we have chosen aj = 2, for j = 1, 2, 3. This DGP provides n values

of (Ci, Yi,Wi) and we fix n = 500.

Figure 1 displays the cloud of the n points generated according our model, the true

frontier, our frontier estimator for three different (bias corrected) quantiles and the FDH
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estimate. The figure gives a clear picture of what happens and we can clearly see the effect

of the endogeneity of Y if we use, e.g., traditional estimators, like the FDH. The FDH

estimate envelops the cloud of points whereas the true frontier is much more below the

cloud, mainly for larger values of the output Y . The endogeneity bias is illustrated by the

difference between the FDH and the true frontiers.

For the bias correction we used the simplified model (4.7) (the estimation of individual

values bη would require much more data). For the common b̂ we used the least-squares

estimator of the regression of the numerator on the denominator appearing in (4.4). With

c = 2 and α = 0.05 we obtain b̂ = 0.8427 (whereas the true value is 1). Then with this

value we computed the values âη at each of the data points by using (4.5). This leads to the

bias-corrected frontier estimates given by (4.6) and illustrated in Figure 1 for three particular

quantiles α = 0.05, 0.1, 0.2.

We will now discuss the sensitivity of the estimate of some α-quantile frontiers to various

elements needed for their practical implementation. First we could ask which quantile to

use, we expect having better estimates for large values of α, but then the bias correction will

be more important. For smaller values of α the bias correction will be easier, but estimating

extreme quantiles is always more difficult (by definition, less data are available near the

extrema). Figure 2 illustrates the quality of the estimation of the quantile functions for the

three particular quantiles α = 0.05, 0.1, 0.2, along with their corresponding true values. We

see indeed that we have better estimation with bigger αs.

Another important issue is the stopping rule in the Landweber algorithm (3.15). It has

been described in (3.16). Figure 3 illustrates the case α = 0.20 which leads to the optimal

value k = 110. To investigate the sensitivity of the final estimator of the α-frontier to the

number of iterations, Figure 4 displays (for α = 0.20) the starting value ϕ̂0(α) (the naive

conditional quantile) and the resulting estimators after k = 10, 110, 2500 iterations. The

true 0.20-quantile is also displayed for ease of comparison. We see that the optimal value

gives indeed the best choice.

It is also interesting to see if the choice of the starting value in the Landweber algorithm

has some importance in our problem. It seems that the final estimator is rather stable with

respect to this choice. We analyze this sensitivity for the α-frontier with α = 0.2 and Figure 5

provides some interesting pictures. We display there the final value of the resulting estimator

along with the value of the starting estimate. We suggest three different strategies, (i) theQC

corresponds to the choice suggested in the paper above, i.e. the empirical α-quantile of the

conditional of C, given Y (which would be the final solution in case Y would be exogenous)
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(ii) the HO choose as starting value the nonparametric α instrumental regression estimate

of C on Y and (iii), the strategy “0′′ is the choice a function equal to the zero, for all the

y’s. Interestingly, we can indeed see on Figure 5 that even if the three starting values are

quite different, the final estimator are rather similar, except for some minor divergences on

the right part of the display, due to some edge effect (no so much observations there). This

is rather good news.

A final point is somewhat different, it address the natural question if the instrumental

variable estimator introduce some spurious noise in the estimation process when in fact

there is no endogeneity. To investigate this issue we compare the results obtained for the

α-frontier by using the naive quantile estimator (which is biased in case of endogeneity)

with our instrumental variable estimator in two cases: where we have endogeneity (in the

simulated case described above) and in the case where in fact Y is exogenous (independent

of U). Here, for W = w, we simulate the values of Y as uniform on the interval [w,w + 1].

The results are displayed in the two panels of Figure 6 and are very encouraging. First, we

see in the left panel (Y is exogenous), that our instrumental estimator behaves very well

and is similar to the consistent naive quantile estimator. Second, the right panel, illustrates

again clearly the bias introduced by endogeneity: the naive quantile is inconsistent and the

instrumental estimator is as described above, quite similar to the true quantile function.

As a conclusion of this numerical illustration, we see that the implementation of the

procedure in not so complicated, the iterations are given in matrix notation in (3.15), that

the determination of an optimal value of k works rather well, and that the starting value of

the algorithm is not so crucial. We also have seen that the procedure does not introduce

spurious bias, in case the outputs Y are in fact exogenous. The more delicate part of the

process is when the full frontier ϕ(η, 0) is wanted. In this case, unless the sample size is

huge, we need some additional regularity condition on the model, like (4.7) to get sensible

estimator of the tail index.

5.2 Cost efficiency of Post Offices

We illustrate now our approach with the analysis of data on post offices (Delivery Offices,

DO) of a French operator. To facilitate the illustration we consider one output Y which is an

aggregate of the different activities of post offices. The cost C is measured by the number of

hours of work. We take as single instrument W , the population of the sector of post offices.

We discuss the endogeneity issue and the choice of the instruments below.

As in the previous simulated case, we have estimated the α-quantile for α = 0.05, 0.1
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and 0.2 by using our instrumental variable approach for nonseparable models. We used

for the illustration a random sample of n = 300 offices coming from a more complete data

set. Figure 7 displays the main results. To obtain the bias correction, we assume, as in

the simulated case, the hypothesis (4.7) getting estimates of b (b̂ = 0.3658) and of aη for

all η. The determination of the number of iterations in the Landweber algorithm provided

a similar picture as the one displayed for the simulated case leading for the three selected

quantiles to the optimal values k = 2854, 3180 and 3199 respectively.

Looking to Figure 7 we can compare our bias corrected frontier estimates with the tra-

ditional FDH estimate of the frontier, we see that there is a serious bias of the latter due to

the endogeneity. This endogeneity may be explained by a negative dependence between the

inefficiency level and the quantity of outputs. A delivery office which deliver an important

amount of mail may organize its production process in a more efficient way. The estimated

frontier corrected by instrumental variables shows the importance of fixed costs for small

units. The population of the corresponding sector is a natural instrument: it is related to the

level of the output and it is natural to assume that the inefficiency component is independent

of the population.

Table 1 gives the cost, output and the efficiency scores of 20 randomly chosen offices in

the sample. As can be seen from the table, the bias of endogeneity of the FDH estimator

gives too optimistic measures of efficiency defined for unit i as the ratio c∂i /ci, where c
∂
i

is the corresponding frontier estimate for the unit i. This is the case here because most

of FDH frontier estimates (which envelops the cloud of points), are much higher than our

instrumental estimator of the frontier, as seen in Figure 7.

As a final remark, we also estimated a separable model with the same data, i.e. assuming

the model (2.5). This model has the advantage of simplifying the estimation of the bias

correction, because the assumption (4.7) is still true but with aη = a, being a constant.

The corresponding results are displayed in Figure 8. We see that the results are reasonably

similar but still different. Are these differences significant? This advocates the need for

deriving some testing procedure for testing the separability assumption which facilitates the

estimation of the full frontier. This is kept for future researches.

6 Conclusion

The paper investigates endogeneity issues in nonparametric frontier models. We have chosen

an input orientation where we want to estimate a cost frontier. We show in a treatment effect
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model how endogeneity can be introduced, linking the output level Y and the inefficiency

term U .

We show that nonseparable models are natural in this framework, so we have the cost

function C = ϕ(Y, U) where C and Y are the cost and the output, U is uniform in [0, 1] and

ϕ is increasing with respect to U . The cost frontier corresponds to U = 0. The endogeneity

issue arises when Y is dependent of U and our results have shown that even in models where

only inefficiency is present (no noise), DEA and FDH estimators can suffer from endogeneity.

For identification and estimation, we use a nonparametric instrumental variables esti-

mator of the model for fixed value U = α, with an instrument W independent of U but

dependent of Y . We obtain an estimate of the α-quantile cost frontier ϕ(Y, α). This involves

the solution of a non linear integral equation, and we use the Landweber iteration method.

We provide the rates of convergence and practical guidelines for the implementation of the

algorithm.

If the true frontier ϕ(Y, 0) is wanted, we have to estimate the bias correction ϕ(Y, 0) −
ϕ(Y, α) and this can be achieved under an additional regularity condition. The procedure

is illustrated through a simulated sample and with an empirical application to the efficiency

of post offices.

Many complementary questions may be addressed. Among others we may quote the

asymptotic distribution of the quantile estimators and the properties of the bootstrap in

this case, deriving a test for separability and a test of the exogeneity assumption.

In particular, one may also ask if the full independence between U andW is really needed,

as we did in this paper. We wonder under which assumption, a boundary independence

between U and W , like

min{U |W = w} = 0, for any w,

would be sufficient for the estimation of the frontier. Some preliminary experiments in

a separable cost function example were encouraging and the idea would be an appealing

extension of our results here. The theory of the identification and of the estimation under

this weaker hypothesis is certainly on our research agenda.
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A Appendix: Asymptotics properties

In this appendix, we consider the problem

T (ϕ) = α, where T (ϕ) =

∫
F (ϕ(η, α), η|w)dη, (A.1)

and we have the two sequences of approximations defined as

ϕk = ϕk−1 + T ′
ϕk−1

(
α− T (ϕk)

)
(A.2)

ϕ̂k = ϕ̂k−1 + T̂ ′
ϕ̂k−1

(
α− T̂ (ϕ̂k)

)
(A.3)

The elements of (A.3) are all related to a sample of size n but they are not indexed by n to

simplify the notations. We can prove the following convergence result.

Proposition A.1. Under the assumptions

(i) There exists a unique solution to equation (A.1) and the algorithm (A.2) converge in

norm to ϕ, i.e., ||ϕk − ϕ|| → 0 if k → ∞.

(ii) F̂ and f̂ converge in probability in L2-norm to F and f respectively.

We have

||ϕ̂k − ϕ|| → 0, in probability. (A.4)

Proof. Let ε > 0. We have

||ϕ̂k − ϕ|| ≤ ||ϕ̂k − ϕk||+ ||ϕk − ϕ||.

Using (i), there exists k(ε) such that for k ≥ k(ε) we have ||ϕk − ϕ|| < ε.

For any k larger than k(ε) and for all ζ , there exists n(ε, k, ζ) such that for all n ≥
n(ε, k, ζ) we have Prob

(
||ϕ̂k − ϕk|| > ε/2

)
< ζ . This property is satisfied because for fixed

k, ϕ̂k is a continuous transformation of F̂ and f̂ assumed to be consistent.

Then we have ∀ε, ∃k(ε) such that ∀k > k(ε) and ∀ζ, ∃n(ε, k, ζ), Prob
(
||ϕ̂k−ϕ|| > ε

)
< ζ ,

which completes the proof.

We can discuss the assumption (i). It has been shown (see Kaltenbacher et al., 2008,

Theorem 2.4) that this property is true if for all ϕ, ϕ̄ in a neighborhood of the starting point

ϕ0 we have

||T (ϕ)− T (ϕ̄)− T ′
ϕ(ϕ− ϕ̄)|| ≤ θ||T (ϕ)− T (ϕ̄)||,
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where θ < 1/2 and if ||T ′
ϕ|| ≤ 1. As remarked in Section 3.2, this second property may be

obtained through a multiplication of T ′
ϕ by a suitable γ factor. So the assumption is quite

similar to the usual assumptions made for justifying Newton-Raphson iterations techniques.

We now give a sketch of the proof for the rate of convergence for the linearized version of

our model. Using the notations introduced in Section 3, the model to solve may be written

as α = T (ϕ). It can be linearized around the true value ϕ† as

α− T (ϕ†) = T
′

ϕ†
(ψ), where ψ = ϕ− ϕ†.

This approximation can be viewed as a linear model r = K ψ where r and K have to be

estimated. Denote r̂ and K̂ these estimators. The Landweber solution of the estimated

equation can be written as

ψ̂k =

k−1∑

j=0

(I − K̂∗K̂)jK̂∗r̂, (A.5)

where k is the number of iterations. We have the following result

Proposition A.2. Under regularity conditions given in the proof, we have

||ψ̂k − ψ||2 = O
((
n− 2s

2s+q

)β/(β+1)
)
, (A.6)

where q is the dimension ofW , s characterizes the regularity of F (c, y|w) and β, the regularity
of the function ϕ (more details on s and β are given in the proof).

Proof. Adding and subtracting terms from (A.5) we obtain

ψ̂k − ψ =

k−1∑

j=0

(I − K̂∗K̂)jK̂∗(r̂ − K̂ψ)

+[

k−1∑

j=0

(I − K̂∗K̂)jK̂∗K̂ −
k−1∑

j=0

(I −K∗K)jK∗K]ψ

+

k−1∑

j=0

(I −K∗K)jK∗K − ψ,

= J1n + J2n + J3n.

Clearly, for the first term we have

||J1n|| ≤ ||
k−1∑

j=0

(I − K̂∗K̂)jK̂∗|| × ||r̂ − K̂ψ||,

where we know (see Engl et al., 1996) that ||
∑k−1

j=0(I − K̂∗K̂)jK̂∗|| = O(
√
k). Since

||r̂ − K̂ψ|| = ||T̂ (ϕ) − T (ϕ)|| and the last difference is given by
∫ (

F̂ (ϕ(η, α), η|w) −
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F (ϕ(η, α), η|w)
)
dη, under suitable choice of the order of bandwidths (like the one we use

in practice), we have ||r̂ − K̂ψ|| = O
(
n−s/(2s+q)

)
, where s is the minimum between the

order of the kernel (generally, 2) and the regularity of F (order of differentiability). So

||J1n|| = O
(√

kn−s/(2s+q)
)
.

From Carrasco et al. (2006), Proposition 3.14, it is seen that ||J2n|| = O
(
k)||K̂∗K̂ −

K∗K||(1/k)β/2
)
, where β > 0 characterize the regularity of the function ϕ. More precisely,

it is formalized by the “source condition” ϕ−ϕ† ∈ R
(
T

′∗
ϕ†
T

′

ϕ†

)β/2
(for details and discussion

on this condition see Carasco et al., 2006 or Darolles et al., 2011). Since ||K̂∗K̂ − K∗K||
has a rate given by the rate of convergence of the density estimate of fC,Y,W (ϕ(η, α), η, w),

we obtain, again under suitable choice of the bandwidths, an order O
(
n−s/(2s+p+q+1)

)
. So

we end up with ||J2n|| = O
(
(1/k)β/2−1n−s/(2s+p+q+1)

)
.

Finally, the third term has an order given by ||J3n|| = O
(
(1/

√
k)β
)
(see Engl et al., 1996

or Proposition 3.11 in Carrasco et al., 2006).

Putting all these results together and considering the squares of the norms we have

||ψ̂ − ψ||2 = O
(
kn−2s/(2s+q) + (1/k)β−2n−2s/(2s+p+q+1) + (1/k)β

)
. (A.7)

Now, the approach is rather standard, we first define k0, the value of k that balances the

first and the third term of (A.7). After simple analytical manipulations, we find that k0 =

O
((
n2s/(2s+q)

)1/(β+1)
)
. Now we have to check that with this value k0 the central term of

(A.7) is negligible. This will provide an additional condition on β: we must have β + 1 ≥
2×
(
2s+p+q+1

2s+q

)
, which assumes that ϕ is smooth enough to control the term J2n and is rather

standard in this literature (see e.g. Darolles et al., 2011). With this k0 we obtain the final

order O
((
n−2s/2s+q

)β/(β+1))
which completes the proof.

Finally, we can prove the properties of our stopping rule for the linearized version of

our model. We minimize k||α − T̂ (ϕ̂k)||2 but we consider the linear approximation of our

criterion, given by k||(α − T̂ (ϕ†)) − T̂ ′∗
ϕ†
(ψk)||2 where as above ψ = ϕ − ϕ†. This can be

denoted as in the preceding proof as k||r̂ − K̂ψk||2, or equivalently

k||r̂ − K̂

k−1∑

j=0

(I − K̂∗K̂)jK̂∗r̂||2 = k||(r̂ − K̂ψ) + K̂
(
I −

k−1∑

j=0

(I − K̂∗K̂)jK̂∗
)
K̂ψ||2

= O

(
k||r̂ − K̂ψ||2 + k||

(
K̂
(
I −

k−1∑

j=0

(I − K̂∗K̂)jK̂∗K̂
)
−K

(
I −

k−1∑

j=0

(I −K∗K)jK∗K
))
ψ||2

+ k||K
(
I −

k−1∑

j=0

(I −K∗K)jK∗
)
Kψ||2

)
.
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Under the assumptions of Proposition A.2 and under the conditions given after (A.7) this

term is

O
(
k
(
n

−2s
2s+q + (1/k)β+1

))
.

The last term is the regularization bias of Kψ which belongs to
(
T

′∗
ϕ†
T

′

ϕ†

)(β+1)/2
. The mini-

mum of this function gives k proportional to the optimal rate.
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Office Cost Output IV-eff FDH

1 1.00 1.00 0.0998 0.6091

2 0.20 0.38 0.4560 0.8299

3 0.86 2.36 0.2443 0.6304

4 0.72 1.36 0.1599 0.7356

5 0.46 0.62 0.2037 0.7267

6 0.42 0.58 0.2209 0.6830

7 1.48 2.46 0.1522 0.6806

8 1.05 1.65 0.1273 0.5819

9 0.40 0.74 0.2380 0.7232

10 1.22 3.05 0.3045 0.5107

11 0.30 0.55 0.3039 0.6757

12 0.92 2.04 0.1825 0.5982

13 3.66 8.81 0.7132 0.7486

14 1.23 1.54 0.1022 0.5067

15 0.37 0.62 0.2485 0.7656

16 0.15 0.13 0.6288 1.0000

17 1.15 3.14 0.3525 0.5411

18 2.06 3.92 0.3523 0.6562

19 0.97 1.91 0.1597 0.6262

20 0.71 1.48 0.1699 0.7385

Table 1: Cost efficiency scores for 20 randomly selected offices. A value “1” indicates a unit

on the cost frontier. In order to keep the confidentiality of the data, cost and output are

normalized to 1 for the first office.
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Figure 1: Simulated example. Final results and FDH estimate. The true is the convex curve

in black dots. The FDH is the stair case function and the bias-corrected quantiles are the

wiggled curves. The results for α = 0.1 are hidden by the curve for α = 0.05. The estimator

for α = 0.05 is in red dots staying below the one corresponding to α = 0.2 (green dots) for

the first left part of the picture, then passing above at the right part.
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Figure 2: Simulated example. Estimation of α-frontiers with the true ones.
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Figure 3: Simulated example. Criterion for the stopping rule for α = 0.2. The optimal value

is selected as k = 110.
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Figure 4: Simulated example. Sensitivity of the results to k for α = 0.2, the number of

iterations in the Landweber algorithm. The optimal value is k = 110.
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Figure 5: Simulated example. Sensitivity of the results to the starting value for α = 0.2.

Starting values for HO is the nonparametric instrumental regression estimate, for QC is the

conditional quantile of C|Y and “0′′ is the value zero.
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Figure 6: Estimation of the α-frontier for α = 0.2 by using the instrumental variable esti-

mator and by using the empirical quantile of C|Y . Left panel, Y exogenous, right panel Y

endogenous.
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Figure 7: Data on post offices. Final results for the nonseparable model and the FDH esti-

mate. The bias-corrected quantiles are for α = 0.05, 0.1 and 0.2.
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Figure 8: Data on post offices. Final results for the separable model and the FDH estimate.

The bias-corrected quantiles are for α = 0.05, 0.1 and 0.2.
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