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B Robustness checks

In this section, we document some robustness checks. We discuss the choice of instruments then, the
scenario for imputing the values in the counterfactual analysis. In the main text, we have selected
our set of instruments in order to have a minimum degree of overidenti�cation to get optimal and
stable estimates, while not rejecting the overidenti�cation test. In this robustness analysis, we
report the demand side estimates and some estimates for other choices of sets of instruments. We
use the following sets:

IV 1: Instrument set for 2011 used in the main speci�cation

IV 2: Instrument set for 2011 without interaction variables

IV 3: The three instruments which are used in common for both 2011 and 2016

IV 4: Instrument set for 2016 used in the main speci�cation

IV 5: Instrument set for 2016 without interaction variables

We build these �ve instrument sets for both year's data. The results are reported in Tables 16 and
17. We also display the estimated elasticities as well as the overall price changes calculated from
the counterfactual analysis of Scenario 1.

We also add a column of results where we omit the distance squared in the product attributes,
combining this speci�cation with the optimal set of instruments chosen in the paper (IV1 for 2011
and IV4 for 2016). Indeed, we observe that the utility to �y is an increasing function of the distance
for most of the products of our sample. It seems natural to check whether introducing the distance
linearly in the utility function changes the results.

The �rst column (OLS) holds estimates from a nested logit model where we do not instrument
for price nor the within-group share of products. For these non consistent estimates, we notice that
the price coe�cient is biased towards zero, which is expected as the true coe�cient is negative and
the correlation between the unobserved product attribute and the price positive (more demanded
products are higher priced).

For 2011, we see that the estimates are relatively robust for the �rst three columns. Then, the
estimates become very unprecise, especially with IV3 (only one degree of overidenti�cation). IV4
is rejected by the J-test. IV5 is not but gives very large con�dence intervals for the parameters.
Overall, the estimates of elasticities and counterfactual are relatively robust.

For 2016, the estimates are also sensitive to changes in the instrument sets. Note that here, the
column "IV 4" is the default speci�cation used in the main part of the paper and provide the more
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accurate estimates. However, the estimates using the sets "IV 1" and "IV 2" does not seem to be
be admissible from an economic point of view. Also, we reject the J test for these two cases.

We see that for 2011 and 2016, we recover a U-shaped dependence of utility on distance and
that not including the square slightly changes the estimates but not the outcomes of the model.

C Details on the estimation procedure

C.1 Details on the supply-side + scenario 2

The �rst-order conditions with respect to the prices of the products o�ered in market t are given by
equation (8), for all j ∈ Jt. We can stack the �rst order conditions to get the following matrix/vector
equality:

st + ∆t[pt −mct] = 0Jt , (C.1)

where st and mct are vectors collecting the market shares and marginal costs, respectively, of
products o�ered in market t. The matrix ∆t is of dimension Jt×Jt and holds own- and cross-price
derivatives, with

∆kl,t =


∂slt
∂pkt

if k, l ∈ Jft,

0 otherwise.

(C.2)

Observe that st, ∆t depend on the product attributes of all products proposed in the market,
including the prices and the marginal cost of each product depends on its attributes.

When one knows the demand function and the marginal cost, the price can be derived from
looking at the �xed point of equation (C.1). For example, assume that in market t, one �rm o�ers
products 1 and 2 and another �rm o�ers product 3, the prices of these three products solve the
following FOC system (omitting the product attributes): s1(p1, p2, p3)

s2(p1, p2, p3)
s3(p1, p2, p3)

+


∂s1
∂p1

(p1, p2, p3) ∂s2
∂p1

(p1, p2, p3) 0
∂s1
∂p2

(p1, p2, p3) ∂s2
∂p2

(p1, p2, p3) 0

0 0 ∂s3
∂p3

(p1, p2, p3)


 p1 −mc1

p2 −mc2

p3 −mc3

 =

 0
0
0


When setting the prices of its products, �rm 1 takes p3 as "given" and endogeneizes the impact of a
change in p1 on both s1 and s2. It does not take into account the impact of p1 on s3. When setting
the price of product 3, �rm 2 only solves one equation:

s3 +
∂s3

∂p3

(p3 −mc3) = 0.
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Table 16: Demand-side variables with di�erent instruments: year 2011

OLS IV 1 IV 1 IV 2 IV 3 IV 4 IV 5

Mean utility

Intercept -5.137 -3.332 -4.184 -3.306 -3.004 -3.357 -2.597
(0.037) (0.187) (0.117) (0.190) (0.685) (0.196) (0.320)

Price -0.299 -1.723 -1.484 -1.742 -1.938 -1.703 -2.203
(0.008) (0.120) (0.094) (0.121) (0.469) (0.124) (0.211)

Stops -0.959 -1.397 -1.620 -1.369 -1.218 -1.320 -1.015
(0.023) (0.056) (0.047) (0.056) (0.163) (0.056) (0.082)

OriginConn 2.206 3.721 3.154 3.807 4.379 3.878 5.152
(0.062) (0.289) (0.238) (0.292) (1.024) (0.296) (0.478)

Distance -0.189 -0.293 0.434 -0.291 -0.301 -0.307 -0.315
(0.028) (0.060) (0.048) (0.060) (0.069) (0.059) (0.072)

Distance2 0.057 0.224 0.226 0.258 0.228 0.300
(0.007) (0.024) (0.024) (0.069) (0.024) (0.037)

Nesting 0.637 0.711 0.734 0.704 0.675 0.686 0.635
Parameter (λ) (0.003) (0.014) (0.012) (0.014) (0.071) (0.024) (0.035)

Carrier FEs

AA 0.305 0.356 0.313 0.358 0.383 0.364 0.416
(0.024) (0.047) (0.043) (0.048) (0.063) (0.047) (0.058)

DL 0.125 0.150 0.144 0.154 0.156 0.154 0.159
(0.020) (0.039) (0.036) (0.040) (0.043) (0.039) (0.048)

US 0.203 0.620 0.591 0.623 0.661 0.605 0.711
(0.023) (0.049) (0.044) (0.049) (0.110) (0.049) (0.066)

WN -0.342 -0.896 -0.802 -0.910 -1.030 -0.917 -1.190
(0.021) (0.073) (0.063) (0.074) (0.246) (0.075) (0.118)

LCC 0.662 -0.030 0.040 -0.026 -0.058 0.020 -0.098
(0.026) (0.056) (0.049) (0.056) (0.141) (0.058) (0.084)

Statistics

J-statistic N/A 4.433 8.8314 0.410 0.0379 45.480 0.359

Degree of overidenti�cation N/A 5 5 3 1 4 2

Ftest Price N/A 54.8 66.8 76.7 105.0 84.7 93.5

Ftest Nest share N/A 847.12 853.5 1098.8 938.1 505.9 715.5

Elasticities

Own-price elasticity 4.17 3.510 4.24 4.86 4.22 5.78
95% CI (3.56,4.80) (3.07,3.98) (3.63,4.87) (2.19,8.42) (3.45,4.99) (4.41,7.39)

Con. semi-elasticity 0.615 0.656 0.608 0.573 0.597 0.517
95% CI (0.584,0.639) (0.634,0.674) (0.577,0.634) (0.472,0.611) (0.567,0.623) (0.456,0.558)

Scenario 1

∆ Price -6.73% -6.64% -6.65% -5.55% -7.01% -4.33%

Supplementary Appendix - page 3



Table 17: Demand-side variables with di�erent instruments: year 2016

OLS IV 1 IV 2 IV 3 IV 4 IV 4 IV 5

Mean utility

Intercept -4.605 -1.596 -1.559 -2.725 -2.690 -3.413 -2.692
(0.036) (0.250) (0.255) (0.259) (0.188) (0.126) (0.260)

Price -0.421 -2.336 -2.360 -1.558 -1.582 -1.416 -1.580
(0.008) (0.154) (0.156) (0.156) (0.109) (0.092) (0.157)

Stops -1.208 -0.505 -0.484 -1.858 -1.845 -2.072 -1.840
(0.024) (0.085) (0.086) (0.082) (0.063) (0.053) (0.082)

OriginConn 2.301 5.064 5.126 2.069 2.111 1.752 2.119
(0.058) (0.286) (0.288) (0.273) (0.200) (0.176) (0.273)

Distance -0.197 -0.603 -0.613 -0.463 -0.463 0.244 -0.465
(0.028) (0.073) (0.074) (0.058) (0.055) (0.037) (0.059)

Distance2 0.060 0.348 0.354 0.199 0.201 0.202
(0.007) (0.030) (0.031) (0.027) (0.021) (0.027)

Nesting 0.610 0.469 0.467 0.742 0.741 0.75995 0.740
Parameter (λ) (0.003) (0.028) (0.028) (0.037) (0.028) (0.026) (0.038)

Carrier FEs

AA 0.001 0.243 0.241 0.257 0.261 0.253 0.259
(0.019) (0.044) (0.044) (0.035) (0.033) (0.032) (0.036)

DL 0.246 0.434 0.437 0.384 0.387 0.368 0.385
(0.020) (0.045) (0.045) (0.035) (0.035) (0.033) (0.036)

WN -0.474 -1.200 -1.212 -0.724 -0.732 -0.698 -0.734
(0.021) (0.075) (0.076) (0.071) (0.055) (0.051) (0.071)

LCC 0.250 -1.168 -1.178 -1.051 -1.065 -0.973 -1.064
(0.026) (0.115) (0.117) (0.115) (0.086) (0.075) (0.115)

Statistics

J-statistic N/A 58.6 51.9 0.17 5.69 2.04 2.09

Degree of overidenti�cation N/A 5 3 1 4 4 2

First stage: Price N/A 173.6 234.5 297.3 161.8 186.7 210.7

First stage: Nest share N/A 1165.5 1565.7 884.3 469.7 459.5 692.6

Elasticities

Own-price elasticity N/A 7.32 7.42 3.43 3.49 3.06 3.49
95% CI (5.87,9.06) (5.96,9.13) (2.58,4.40) (2.88,4.20) (2.53,3.61) (2.56,4.47)

Con. semi-elasticity N/A 0.327 0.317 0.711 0.709 0.738 0.709
95% CI (0.240,0.397) (0.220,0.388) (0.685,0.731) (0.688,0.729) (0.722,0.753) (0.680,0.729)
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However, its market share, s3, depends on the prices of all the products proposed in the market
(here p1, p2 and p3).

In Scenario 2, we simulate the case were both AA and US are merging. Imagine AA is �rm
1 in the example above and US is �rm 2, the new entity needs to take into account that, when
it changes p1, it impacts s1, s2, like before, but, also s3. The new equilibrium prices satisfy the
following system:

 s1(p1, p2, p3)
s2(p1, p2, p3)
s3(p1, p2, p3)

+


∂s1
∂p1

(p1, p2, p3) ∂s2
∂p1

(p1, p2, p3) ∂s3
∂p1

(p1, p2, p3)
∂s1
∂p2

(p1, p2, p3) ∂s2
∂p2

(p1, p2, p3) ∂s3
∂p2

(p1, p2, p3)
∂s1
∂p3

(p1, p2, p3) ∂s2
∂p3

(p1, p2, p3) ∂s3
∂p3

(p1, p2, p3)


 p1 −mc1

p2 −mc2

p3 −mc3

 =

 0
0
0

 .
Therefore, for this counterfactual, we need to update the matrices ∆t for all markets and solve

for the new equilibrium prices using �xed-point algorithms.

C.2 Estimation procedure

We estimate the demand and supply-side jointly using the Generalized Method of Moments (see
Hansen, 1982). Since we employ a nested logit model on the demand side, estimating both sides
jointly comes at a negligible computational burden. We form moments that are interactions of the
demand-and supply-side shocks with exogenous instruments introduced above.

On the demand side (see equation (6)), the linearity of the system allows us to express the
unobservable ξjt as a function of the demand parameters θd and the explanatory variables. We
then obtain the moment conditions by interacting the resulting demand-side unobservables with
instruments:

E[zdjtξjt] = 0,

where zdjt is a k1 × 1 vector of instruments. On the supply-side (see equation (9)), the supply-side
unobservable ζjt, is the di�erence between the implied marginal costs from equation (8) and their
deterministic part, wjtθs. We can then form moment conditions in the same way we did on the
demand side:

E[zsjtζjt] = 0,

where zsjt is a k2 × 1 vector of instruments, in fact the product attributes.
We build sample analogs of the moment conditions by averaging �rst across products within a

given market and then across markets:

ḡ(θ) =

( 1
T

∑
t∈T

1
Jt

∑Jt

j=1 z
d
jtξjt

1
T

∑
t∈T

1
Jt

∑Jt

j=1 z
s
jtζjt

)
,
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with θ = (θd, θs). ḡ(θ) is a (k1 + k2) × 1 vector of means. The GMM objective function to be
minimized (with respect to θ) is a distance of ḡ(θ) to 0, i.e.:

f(θ) = ḡ(θ)>Ωḡ(θ),

with Ω a positive de�nite weighting matrix.
We employ a two-step procedure in which we obtain a �rst set of estimates using an initial

weighting matrix (the identity) before getting the �nal set of estimates using an estimate of the
optimal GMM weighting matrix.
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