
Supplement to ”A Geometric Approach to Inference in

Set-Identified Entry Games”

by Christian Bontemps and Rohit Kumar

Supplementary Appendix

This Supplementary Appendix contains the proofs and the algorithms of the paper ”A Geometric

Approach to Inference in Set-Identified Entry Games”.20 The three player example is detailed and

some additional Monte Carlo simulations are provided.

A.1 Proof of Proposition 1

First, observe that, by a revealed preference argument, the region of ε that corresponds to an

outcome y
(K)
j = (aj,1, . . . , aj,N)> with K active firms in equilibrium is included in the region:

R(y
(K)
j ) =

{
ε = (ε1, . . . , εN) :

εi ≤ −βi −Kαi if aj,i = 0
εi > −βi − (K − 1)αi if aj,i = 1

}
.

Following the last result, we show that there is no region of ε which predicts two outcomes with

different numbers of active firms. Let y
(K)
j and y

(K′)
j′ two outcomes with K < K ′. There is at least

one firm i which is not active in the first case and active in the second case , i.e., aj,i = 0 for y
(K)
j

and 1 for y
(K′)
j . The necessary conditions above imply that the profit shock for this firm is less or

equal to −βi−Kαi in the first case and strictly above −βi− (K ′−1)αi ≥ −βi−Kαi, in the second

case. Consequently, there is no intersection between R(y
(K)
j ) and R(y

(K′)
j′ ).

Now, assume, without loss of generality, that S = {y(K)
1 , . . . , y

(K)
m } is a collection of outcomes

in multiplicity. We first characterize the region of ε that generates this set of outcomes. First, we

define three subsets of {1, . . . , N}. N0 is the set of indices for which the action of player i is 0 for all

outcomes in S, and N1 is the set of indices i for which the action of player i is 1 for all outcomes in S.

The remaining set Ns corresponds to the players who play actions 0 or 1 across the outcomes of S.

Without loss of generality, we assume that N0 = {1, 2, . . . , n0}, N1 = {n0 + 1, n0 + 2, . . . , n0 + n1},

and Ns = {n0 + n1 + 1, . . . , N}. We now prove that R(K)
S (θ), the region of ε that predicts all

20https://doi.org/10.106/j.jeconom.2020.04.021

Supplementary Appendix - page 1



outcomes in S, is defined as follows:

R(K)
S (θ) =

ε =

 ε1
...
εN

 :

 εi ≤ −βi − (K − 1) · αi i ≤ n0

εi > −βi −K · αi n0 < i ≤ n0 + n1

−βi − (K − 1) · αi < εi ≤ −βi −K · αi i > n0 + n1


 .

First, take ε in the region defined by the right hand side. Each firm 1 to n0 is only profitable when

it has K − 2 competitors, each firm n0 + 1 to n0 + n1 is profitable with K competitors, and each of

the remaining firms is profitable with K− 1 competitors. In a situation with complete information,

firms n0 + 1 to n0 + n1 enter the market, firms 1 to n0 do not enter, and K − n1 firms out of the

last ns = N − n0 − n1 enter. There are therefore
(
N−n0−n1

K−n1

)
possibilities.

Conversely, consider ε in R(K)
S (θ), i.e. assume that there is a region which predicts all the

outcomes in S as possible equilibria. Obviously, this region is contained in
⋂

1≤j≤m

R(y
(K)
j ). If, for

i ≤ n0, one of the profit shocks εi were between −βi−(K−1) ·αi and −βi−K ·αi, the corresponding

firms could enter to replace one of the last ns firms, which is in contradiction with the fact that the

model predicts all the outcomes in S only. Thus, in fact, εi ≤ −βi− (K − 1) · αi, i ≤ n0. Similarly,

εi > −βi −K · αi for n0 < i ≤ n0 + n1. This proves the reverse inclusion. The cardinality of S is

therefore
(
N−n0−n1

K−n1

)
.

A.2 Proof of Proposition 2

Following Proposition 1, any set S = {y(K)
1 , . . . , y

(K)
m } of outcomes in multiplicity is such that there

are n0 firms that never enter, n1 firms that always enter and ns = N − n0 − n1 that enter in some

outcomes and do not in others, with there being in total K − n1 entering among these ns firms for

each outcome (thus, ns > K−n1). Obviously, n1 ≤ K− 1 because S contains at least two different

outcomes. There are
(
N
n1

)
choices for these n1 firms. Among the remaining N − n1, n0 never enter

and ns = N − n0 − n1 “switch” across outcomes. For each value of n0, there are
(
N−n1

n0

)
choices for

each choice of the n1 firms. As ns ≥ K −n1 + 1, n0 is therefore bounded above by N −K − 1. The

number of multiple equilibria regions is equal to:

sK =
K−1∑
n1=0

N−K−1∑
n0=0

(
N

n1

)(
N − n1

n0

)
.
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A.3 Proof of Proposition 3

The convexity of the set A(θ) can be easily proved from the expression of the P
(K)
j (θ, η)’s in Equation

(3) for any K = 0, . . . , N and any j = 1, . . . , dK . Let λ ∈ [0, 1], η1(·) and η2(·) two selection

mechanisms and P1 = P (θ, η1) and P2 = P (θ, η2), two vectors of choice probabilities. First, η(·) =

λη1(·) + (1 − λ)η2(·) is also a selection mechanism. Second, for any K = 0, . . . , N and any j =

1, . . . , dK ,

P
(K)
j (θ, η) = P

(K)
j (θ, λη1 + (1− λ)η2) = λP

(K)
j (θ, η1) + (1− λ)P

(K)
j (θ, η2).

Consequently, P (θ, η) = λP1 + (1− λ)P2.

For the cartesian product, consider two different ε1 and ε2 inR(K1)
S (θ) andR(K2)

S′ (θ), for K1 6= K2;

the equilibrium selection mechanism is equal to zero when y ∈ YK1 and ε = ε2 or when y ∈ YK2

and ε = ε1.

A.4 Proof of Proposition 4

We introduce some useful additional notation. For any S ∈ S(K) and any j ≤ dK , we define

uj(S) =

∫
R(K)
S (θ)

η(y
(K)
j |ε, θ)dF (ε; θ)∫

R(K)
S (θ)

dF (ε; θ)

and set uj(S) = 0 when S /∈ S(K). Note that for all j such that y
(K)
j /∈ S, uj(S) = 0 because a ε in

R(K)
S (θ) does not predict y

(K)
j as a potential outcome. By construction, 0 ≤ uj(S) ≤ 1 and

∑
j| y(K)

j ∈S

uj(S) = 1.

for any S ∈ S(K). We also define the possibility set for uj(S), j = 1, . . . , dK as

U (K)(S) =

uj(S) ∈ [0; 1], j = 1, . . . , dK , such that
∑

j| y(K)
j ∈S

uj(S) = 1 and uj(S) = 0, if y
(K)
j /∈ S

 ,

and

U (K) =
{
U (K)(S), S ∈ S(K)

}
.
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Based on this additional notation, we can define the set BK(θ) as

BK(θ) =

P (K) : P
(K)
j = ∆

(K)
j (θ) +

∑
S∈S(K)

j

uj(S)∆
(K)
S (θ), uj(S) ∈ U (K)(S), j = 1, . . . , dK , S ∈ S(K)

 .

(A.1)

Following the definition of the support function:

δ (qK ;BK(θ)) = sup
P (K)∈BK(θ)

q>KP
(K)

=

dK∑
j=1

qj,K∆
(K)
j (θ) + sup

uj(S)∈U(K)

dK∑
j=1

qj,K ∑
S∈S(K)

j

uj(S)∆
(K)
S (θ)


=

dK∑
j=1

qj,K∆
(K)
j (θ) + sup

uj(S)∈U(K)

dK∑
j=1

qj,K ∑
S∈S(K)

uj(S)∆
(K)
S (θ)

 .

The last equality (the sum is indexed by S ∈ S(K) instead of S ∈ S
(K)
j ) is true because uj(S) is

equal to zero when S /∈ S(K)
j .

Consequently,

sup
uj(S)∈U(K)

dK∑
j=1

qj,K ∑
S∈S(K)

uj(S)∆
(K)
S (θ)

 = sup
uj(S)∈U(K)

∑
S∈S(K)

∆
(K)
S (θ)

(
dK∑
j=1

qj,Kuj(S)

)

=
∑

S∈S(K)

∆
(K)
S (θ) sup

uj(·)∈U(K)(S)

(
dK∑
j=1

qj,Kuj(S)

)

=
∑

S∈S(K)

∆
(K)
S (θ)

(
max

j|y(K)
j ∈S

qj,K

)

Thus,

δ (q;BK(θ)) =

dK∑
j=1

qj,K∆
(K)
j (θ) +

∑
S∈S(K)

∆
(K)
S (θ)

(
max

j|y(K)
j ∈S

qj,K

)
We can therefore reorder according to the new partition O(K)

i1
,O(K)

i2
, . . . ,O(K)

idK
.

δ (q;BK(θ)) =

dK∑
j=1

qj,K∆
(K)
j (θ) +

dK∑
j=1

qij ,K


∑

S∈O(K)
ij

∆
(K)
S (θ)

 .
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A.5 Proof of Proposition 6

We only need to prove the following result:

∀K ∈ {0, 1, 2, . . . , N}, ∀qK ∈ QK , q>KP
(K)
0 ≤ δ∗(qK ;BK(θ)) =⇒ ∀q ∈ R2N , q>P0 ≤ δ∗(q;A(θ)).

Let qK be a direction of RdK and assume that its components are ranked in the following order

qi1,K ≥ qi2,K ≥ . . . ≥ qidK ,K .

Let the dK directions of RdK , e
(K)
i1

, e
(K)
i1,i2

,..., e
(K)
i1,i2,...,idK−1

, e
(K)
i1,i2,...,idK

, where the components are

equal to 1 when the indices are subscripts of e(K) and 0 otherwise. Obviously, these directions

belong to QK .21 We can write qK as a function of these directions with non-negative weights:

qK = (qi1,K − qi2,K)e
(K)
i1

+ (qi2,K − qi3,K)e
(K)
i1,i2

+ . . .+ (qidK−1,K − qidK ,K)e
(K)
i1,i2,...,idK−1

+ qidK ,Ke
(K)
1,2,...,dK

.

Assume that the inequalities q̃>KP
(K)
0 ≤ δ∗(q̃K ;BK(θ)) are satisfied for any direction q̃K ∈ QK .

We have:

q>KP
(K)
0 = (qi1,K − qi2,K)(e

(K)
i1

)>P
(K)
0 + (qi2,K − qi3,K)(e

(K)
i1,i2

)>P
(K)
0 + . . .+ qidK ,K(e

(K)
1,2,...,dK

)>P
(K)
0 (A.2)

≤ (qi1,K − qi2,K)δ∗(e
(K)
i1

;BK(θ)) + (qi2,K − qi3,K)δ∗(e
(K)
i1,i2

;BK(θ)) + . . .+ qidK ,Kδ
∗(e

(K)
1,2,...,dK

;BK(θ))

(A.3)

≤ δ∗((qi1,K − qi2,K)e
(K)
i1

;BK(θ)) + δ∗((qi2,K − qi3,K)e
(K)
i1,i2

;BK(θ)) + . . .+ δ∗(qidK ,Ke
(K)
1,2,...,dK

;BK(θ))

(A.4)

≤ δ∗((qi1,K − qi2,K)e
(K)
i1

+ (qi2,K − qi3,K)e
(K)
i1,i2

+ . . .+ qidK ,Ke
(K)
1,2,...,dK

;BK(θ)) = δ∗(qK ;BK(θ))

(A.5)

Inequality (A.3) comes from the fact that the directions e
(K)
i1,...

belong to QK ; inequality (A.4) holds

because the support function is positive homogeneous; inequality (A.5) is due to the subadditivity

of the support function. Consequently:

q>P0 =
N∑
K=0

q>KP
(K)
0 ≤

N∑
K=0

δ∗(qK ;BK(θ)) = δ∗(q;A(θ)).

21Observe that e
(K)
i1,i2,...,idK

= e
(K)
1,2,...,dK

.
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A.6 Proof of Proposition 7

Note that YK is well connected (the empty set is connected). Thus, YK ∈ ΩK for K = 0, 1, . . . , N .

If the inequality holds for all well-connected subsets, then

P(YK) ≤ L(YK) (A.6)

However, we also know that

L(YK ∪ YK′) = L(YK) + L(YK′)

because ΓYK is a component of ΓY , i.e., there is no multiplicity between YK and YK′ . As L(Y) = 1,

we have
N∑
K=0

L(YK) = 1 (A.7)

From Equations (A.6) and (A.7), we have

P(YK) = 1−
∑
i 6=K

P(Yi)

≥ 1−
∑
i 6=K

L(Yi) = L(YK),

where the second line uses Inequality (A.6) and the last equality comes from (A.7). Finally, we

have

P(YK) = L(YK), (A.8)

for K = 0, 1, . . . , N .

•We first show that if the inequality holds for all well connected subset, then for any subset C ⊂ Y ,

P(C) ≤ L(C).

Assume that C = ∪NK=1CK , where CK ⊂ YK . Following Corollary 9, L(C) =
∑N

K=1 L(CK).

Thus, if the inequality holds for each CK , then it clearly holds for C. Without loss of generality,

we now assume that there is one K such that C ⊂ YK .

If C is not well connected, then YK \C is not connected in ΓYK\C . Therefore, YK \C is a disjoint

union of p components {Wi}pi=1 of the graph ΓYK\C . Define, for each i in 1, . . . , p

Bi = C ∪W1 ∪ . . . ∪Wi−1 ∪Wi+1 ∪ . . . ∪Wp

Supplementary Appendix - page 6



YK\Bi = Wi is connected in ΓYK\Bi = ΓWi
because Wi is a component of the graph ΓYK\C . Bi is

therefore well connected, and thus, Bi ∈ ΩK . Therefore, by definition,

P(Bi) ≤ L(Bi).

We can now impose a lower bound on P(Wi) using P(Wi) + P(Bi) = P(YK).

P(Wi) ≥ L(YK)− L(Bi),

because P(YK) = L(YK) from Equation (A.8) and the inequality above.

We can now impose an upper bound on P(C):

P(C) = P(YK)− P(YK\C)

= P(YK)−
k∑
i=1

P(Wi)

≤ L(YK)−
p∑
i=1

[
L(YK)− L(Bi)

]
We finally prove that the last term is L(C). For each i, following the definition of the Choquet

capacity, L(YK) − L(Bi) is the sum of probabilities of the unique regions of outcomes of Wi and

multiplicity regions only involving outcomes of Wi. Since Wi is not connected to Wj in ΓYK\C ,∑p
i=1

[
L(YK)−L(Bi)

]
is the probability of the unique region of outcomes of YK\C and multiplicities

only involving outcomes of YK\C. Hence, L(YK)−
∑p

i=1

[
L(YK)−L(Bi)

]
is the sum of probabilities

of unique regions of outcomes in C and multiplicity regions involving only outcomes in C. This is

L(C). We therefore have

P(C) ≤ L(C).

• We now prove that if a well-connected subset B of YK is not part of ΩK , we can define a DGP

where all inequalities P(C) ≤ L(C) hold except in B, thus violating the assumption that Ω is core

determining for L.

Assume that there are p elements in B, y1, . . . , yp. We omit in the proof the superscript (K)

for ease of exposition. For a given ε > 0, we consider the following probability outcome. It is an

outcome in which we reallocate some of the predictions in the multiple equilibria regions from the

first outcome y1 and yp+1 to the p− 1 outcomes y2, . . . , yp.
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P(y1) = L(y1)− (p− 2)ε

P(y2) = L({y1, y2})− L(y1) + ε

...

P(yp−1) = L({y1, . . . , yp−1})− L({y1, . . . , yp−2}) + ε

P(yp) = L({y1, . . . , yp})− L({y1, . . . , yp−1}) + ε

−−−−−−−−−−−−−−−−−−−−−

P(yp+1) = L({y1, . . . , yp+1})− L({y1, . . . , yp})− ε

P(yp+2) = L({y1, . . . , yp+2})− L({y1, . . . , yp+1})
...

P(y|YK |) = L({y1, . . . , y|YK |})− L({y1, . . . , y|YK |−1})

Our goal is to show that the inequalities P(C) ≤ L(C) are satisfied for all elements of YK but B for

some adequate choice of ε.

First, note that the violation of the inequality for B is obvious because:

P(B) =

p∑
i=1

P(yi)

=

p∑
i=2

[
L({y1, . . . , yi})− L({y1, . . . , yi−1}) + ε

]
+ L(y1)− (p− 2)ε

= L({y1, . . . , yp}) + ε

= L(B) + ε

Now, we show that no other inequality is violated for this constructed probability under some

condition on ε.

(i) Find r such that y2, . . . , yr ∈ B are directly connected to y1 in the graph ΓYK (this is pos-

sible because ΓYK is connected). y2, . . . , yr can be divided into two subgroups: the subgroup

y2, . . . , yr1 of elements such that each element of yr+1, . . . , yp is directly connected to some

element of this subgroup and subgroup y1+r1 , . . . , yr, which is not connected to any element
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from y1+r, . . . , yp as shown in Figure 2. Note that y2, . . . , yr1 and y1+r1 , . . . , yr may have some

connections. Henceforth, we assume that r > r1. It is easy to adapt the proof to the case in

which r = r1. Note further that it may be the case that some elements of yr+1, . . . , yp are not

directly connected to any element of y2, . . . , yr1 . As B is well connected, they are connected to

some elements of yr+1, . . . , yp, and we can also adapt the proof to this case by adding a layer

on our tree, as shown in the right part of Figure 2. We assume henceforth that this is not the

case, but again, the proof is similar.

y1

y2, . . . , yr1 y1+r1 , . . . , yr

y1+r, . . . , yp

y1

y2, . . . , yr1 y1+r1 , . . . , yr

y1+r, . . . , yr2 y1+r2 , . . . , yr3

y1+r3 , . . . , yp

Figure 2: Construction of a tree from elements of B starting from y1 and an additional layer in the
tree if all y1+r, . . . , yp may not be connected directly to some element y2, . . . , y1+r1 .

(ii) If S contains y1, it is easy to prove that P(S) ≤ L(S) because we simply subtract some ε.

(iii) We have to prove it now for the subset S that does not contain y1.

Let z2 be an element of {y2, . . . , yr1}, z3 be an element of {y1+r1 , . . . , yr} and z4 be an element

of {y1+r, . . . , yp}. First, y1 and z2 are connected. This means that there is at least one region of

multiple equilibria that predicts y1 and z2 among other outcomes. We call ∆2 the area of this

region. Obviously, we have ∆2 > 0. Similarly, we have L({y1, z2}) ≤ L({y1}) + L({z2})−∆2

because ∆2 is counted in both L({y1}) and L({z2}) (and there may be other regions of multiple

equilibria than the one considered here that predict these outcomes). We do the same for y1

and z3 with ∆3 and the same for z4 and one element of {y2, . . . , yr1} that we call z′2 with ∆4.
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z′2 may be z2 or not. The construction is described in Figure 3.

(a) We have

P(z2) ≤ L({z2})−∆2 + ε.

If z2 = y2, the inequality expressed above yields the following:

P({y2}) = L({y1, y2})− L({y1}) + ε

≤ L({y1}) + L({y2})−∆2 − L(y1) + ε.

If z2 = y3, we can prove it similarly:

P(y3) = L({y1, y2, y3})− L({y1, y2}) + ε

≤ L({y1, y2}) + L({y3})−∆2 − L({y1, y2}) + ε.

and so forth (the last inequality holds because there is at least the region of area ∆2 in

multiplicity between z2 = y3 and y1 ∈ {y1, y2}).

(b) Similarly, P(z3) ≤ L({z3})−∆3 + ε and P(z4) ≤ L({z4})−∆4 + ε

(c) Again P(z2, z3) ≤ L({z2, z3})−min(∆2,∆3)+2ε, P(z3, z4) ≤ L({z3, z4})−min(∆3,∆4)+

2ε, P(z2, z4) ≤ L({z2, z4})−min(∆2,∆4)+2ε and P(z2, z3, z4) ≤ L({z2, z3, z4})−min(∆2,∆3,∆4)+

3ε.

(d) Therefore, if 3ε < mini∈{2,3,4}∆i, then P(S) ≤ L(S) for every S ⊂
{
z2, z3, z4

}
.

It is straightforward to extend the argument for any subset that contains elements of the type

(z2, z3, z4). We need to choose ε such that (p− 1)ε < minS∈S(K) ∆
(K)
S (θ).

We therefore have P(S) ≤ L(S) for every S ⊂ B.

(iv) As P(S) ≤ L(S) for every S ⊂ B, it is easy to see that this is also satisfies for any union S∪C,

where C ⊆ YK\B. We still have to prove that the inequalities P(S) ≤ L(S) are satisfied for

S = B ∪C, where C ⊆ YK\B. We will build a similar tree for YK\B. Select yp+1 ∈ YK\B. If

C contains yp+1, checking the inequality is straightforward. Now, we have to prove this when

C does not contain yp+1. The proof is similar to that above.
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(v) Find s such that yp+1 is directly connected to each yp+2, . . . , ys ∈ YK\B in graph ΓYK\B (this is

possible because YK\B is connected in ΓYK\B). yp+2, . . . , ys can be divided into two subgroups:

the subgroup yp+2, . . . , ys1 such that each outcome y1+s, . . . , ydK is directly connected to some

element of this subgroup and the subgroup y1+s1 , . . . , ys, which is not connected to any element

from y1+s, . . . , ydK . Note further that not all y1+s, . . . , y|YK | may be connected directly to some

element yp+2, . . . , ys1 , but if not, then we will only have an additional layer in the tree, and

the proof can easily be modified to any additional layer. Two alternative, simplified trees are

also built similar to the construction above (see Figure 4). If ε < minS∈S(K) ∆
(K)
S (θ), a similar

argument to that above proves that the inequalities are satisfied for any C.

y1

z2z′2 z3

z4

∆2 ∆3

∆4

y1

z2 z3

z4

∆2 ∆3

∆4

Figure 3: Two simplified trees.

yp+1

yp+2, . . . , ys1 y1+s1 , . . . , ys

y1+s, . . . , y|YK |

yk+1

z5 z6

z7

∆5 ∆6

∆7

yp+1

z5z′5 z6

z7

∆5 ∆6

∆7

Figure 4: Construction of a tree from elements of YK\B starting from yp+1 and two simplified trees.
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A.7 Constructing the Core Determining Class

Proposition 7 permits to build an algorithm to construct the core determining class. The algorithm

is decomposed in four steps:

1. First, we collect the subsets B ⊆ YK such that B is not connected in ΓB. We call this

collection DK .

2. Second, we define D∗K =
{
YK\C : C ∈ DK

}
, which is the collection of non well connected

subsets of YK . As a matter of fact, for any B ∈ D∗K , there exists C ∈ DK , such that B = YK\C

and C, due to the first step, is not connected in ΓC .

3. Third, we define ΩK = P∗(YK)\D∗K , which gathers all well connected subsets of YK .

4. Finally, we define Ω =
{

ΩK : K = 1, . . . , N
}

, the well connected subsets of Y .

A.7.1 The algorithm details of the first step.

The first step is the one which needs more details.

Find DK =
{
B ⊆ YK : B is not connected in ΓB

}
. For simplification, we denote by P∗(C),

for any set C, the collection of all non empty subsets of C and by an abuse of notation P∗(C),

for any collection of sets C, the collection of P∗(C) for all the elements of C. We also define the

concatenation ⊕ of two collections C and B is defined as

C ⊕B =
⋃
c∈C

{
c ∪ b : b ∈ B

}
For example,

{{
y

(K)
1

}
;
{
y

(K)
2

}}
⊕
{{
y

(K)
3

}
;
{
y

(K)
4

}}
=
{{
y

(K)
1 , y

(K)
3

}
;
{
y

(K)
1 , y

(K)
4

}
;
{
y

(K)
2 , y

(K)
3

}
;
{
y

(K)
2 , y

(K)
4

}}
.

We denote by S(K)(h), the elements of S(K) with h outcomes. The intuition behind the algorithm

is to start from the pairs which are not in multiple equilibria and to extend the sequence by

sequentially increasing the set with k tuples k increasing from 3 to dK .
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• For any j, consider the set C
(K)
j of outcomes which are not in multiple equilibria with y

(K)
j

and call C+
j

(K)
the union of {y(K)

j } and C
(K)
j . We now prove that C+

j
(k)

is the largest subset

of YK such that y
(K)
j is an isolated node in the graph generated by itself.

Proof. If y
(K)
j would be connected to one another node in the graph generated by C+

j
(k)

, there

would exist outcomes y
(K)
i1
, . . . , y

(K)
im
∈ C

(K)
j such that y

(K),
j y

(K)
i1
, . . . , y

(K)
im

are in multiplicity.

Following the characterization of the multiple equilibria in Proposition 1, we define the values

n1 of indices where firms always play 1 across all the outcomes, n0 the indices of the firms which

always play 0, and ns the indices of firms which switch. The series of outcomes gathering all the

possible switching values, there exist at least one outcome y
(K)
ip

among y
(K)
i1
, . . . , y

(K)
im
∈ C(K)

j

which differentiate from y
(K)
j only from two switcher firms, one switching from 0 to 1 and

one switching from 1 to 0 when going from y
(K)
j to y

(K)
ip

. This is in contradiction with the

definition of C
(K)
k which collects all outcomes which can’t be in multiplicity with y

(K)
j .

There y
(K)
j is isolated in C+

j
(k)

and any other outcome outside this set being in multiple

equilibria with y
(K)
j can’t be added to this set.

Therefore, we initialize our construction of the set DK by collecting across j all subsets of YK
which contain y

(K)
j and any part of C

(K)
j :

SK,1 =

dK⋃
j=1

{
y

(K)
j ⊕ P∗

(
C

(K)
j

)}
.

• Now, we extend the construction. We first consider any pair
{
y

(K)
i , y

(K)
j

}
in multiplicity. We

can show that C =
{
y

(K)
i , y

(K)
j

}
∪
{
C

(K)
i ∩C(K)

j

}
, is not connected in ΓC . The proof is similar

than above. We can therefore augment SK,1 by all the possible combinations of the previous

type:

SK,2 = SK,1 ∪


⋃

i,j s.t. {y(K)
i ,y

(K)
j }∈SK(2) and C

(K)
i ∩C(K)

j 6=∅

{
{y(K)

i , y
(K)
j } ⊕ P∗

(
C

(K)
i ∩ C(K)

j

)} .

• and so on, with triples, ...until h = dK .
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SK,h = SK,h−1 ∪


⋃

{
a∈P∗(SK(h))\P∗(SK(h−1)):

⋂
j,y

(K)
j
∈a
C

(K)
j 6=∅

}
a⊕ P∗

 ⋂
j,y

(K)
j ∈a

C
(K)
j



 .

Now SK,dK = DK . Take any set B not connected in ΓB. There exists a component C of B in

ΓB. Define n1, n0 and ns like above (see Proposition 1), this set is picked in step h =
(

ns
K−n1

)
.

A.7.2 The Core Determining Class for N = 4

We now apply the previous construction for the entry game with four players. First, for K 6= 2,

any subset of YK is in the core determining class because all series of outcomes are in multiplicity.

Therefore, we only detail the case K = 2. There are six outcomes in B2(θ).

y
(2)
1 = (1, 1, 0, 0)>,

y
(2)
2 = (1, 0, 1, 0)>,

y
(2)
3 = (1, 0, 0, 1)>,

y
(2)
4 = (0, 1, 1, 0)>,

y
(2)
5 = (0, 1, 0, 1)>,

y
(2)
6 = (0, 0, 1, 1)>.

First, we apply proposition 1 to find all the elements of S(2), the outcomes in multiple equilibria

S(2) =
{{
y

(2)
1 , y

(2)
2

}
,
{
y

(2)
1 , y

(2)
3

}
,
{
y

(2)
1 , y

(2)
4

}
,
{
y

(2)
1 , y

(2)
5

}
,
{
y

(2)
2 , y

(2)
3

}
,
{
y

(2)
2 , y

(2)
4

}
,
{
y

(2)
2 , y

(2)
6

}
,
{
y

(2)
3 , y

(2)
5

}
,{

y
(2)
3 , y

(2)
6

}
,
{
y

(2)
4 , y

(2)
5

}
,
{
y

(2)
4 , y

(2)
6

}
,
{
y

(2)
5 , y

(2)
6

}
,
{
y

(2)
1 , y

(2)
2 , y

(2)
3

}
,
{
y

(2)
1 , y

(2)
2 , y

(2)
4

}
,
{
y

(2)
1 , y

(2)
3 , y

(2)
5

}
,{

y
(2)
1 , y

(2)
4 , y

(2)
5

}
,
{
y

(2)
2 , y

(2)
3 , y

(2)
6

}
,
{
y

(2)
2 , y

(2)
4 , y

(2)
6

}
,
{
y

(2)
3 , y

(2)
5 , y

(2)
6

}
,
{
y

(2)
4 , y

(2)
5 , y

(2)
6

}
,{

y
(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4 , y

(2)
5 , y

(2)
6

}}

• It happens that, for any j, y
(2)
j and y

(2)
7−j are never in multiplicity. So, following our algorithm,

we have

S2,1 =
6⋃
j=1

{
y

(2)
j ⊕ P∗

(
y

(2)
7−j

)}
=
{{
y

(2)
1 , y

(2)
6

}
,
{
y

(2)
2 , y

(2)
5

}
,
{
y

(2)
3 , y

(2)
4

}}
.

Supplementary Appendix - page 14



• For h = 2, there is no pair
{
y

(2)
i , y

(2)
j

}
in S(2)(2) such that

{
C

(2)
i ∩ C

(2)
j

}
6= ∅.

• For h = 3, this is the same ; there is no 3-tuple
{
y

(2)
i , y

(2)
j , y

(2)
l

}
in S(2)(3) such that

{
C

(2)
i ∩

C
(2)
j ∩ C

(2)
l

}
6= ∅.

• For h = 4 or 5, there is no element in S(2)(h).

• Finally for h = 6, there is only one element,
{
y

(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4 , y

(2)
5 , y

(2)
6

}
. But the intersection

of the C
(2)
j for all these elements is empty.

Therefore

D2 =
{{
y

(2)
1 , y

(2)
6

}
,
{
y

(2)
2 , y

(2)
5

}
,
{
y

(2)
3 , y

(2)
4

}}
and

D∗2 =
{{
y

(2)
1 , y

(2)
6

}
,
{
y

(2)
2 , y

(2)
5

}
,
{
y

(2)
3 , y

(2)
4

}
\D,D ∈ D2

}
,

=
{{
y

(2)
2 , y

(2)
3 , y

(2)
4 , y

(2)
5

}
,
{
y

(2)
1 , y

(2)
3 , y

(2)
4 , y

(2)
6

}
,
{
y

(2)
1 , y

(2)
2 , y

(2)
5 , y

(2)
6

}}
.

Among all the non empty subparts of Y2, i.e. 63 sets, only 3 are not in the core determining class.

For example, Figure 5 draws the graph (V{
y
(2)
3 ,y

(2)
4 ,y

(2)
5 ,y

(2)
6

}, E{
y
(2)
3 ,y

(2)
4 ,y

(2)
5 ,y

(2)
6

}) from the knowledge

of S2 (there is no link between y
(2)
3 and y

(2)
4 because they don’t occur in multiplicity involving only

outcomes
{
y

(2)
3 , y

(2)
4 , y

(2)
5 , y

(2)
6

}
). This graph is clearly connected, so

{
y

(2)
1 , y

(2)
2

}
is well connected

and is part of the core determining class. A contrario,
{
y

(2)
3 , y

(2)
4

}
is not connected in Γ{

y
(2)
3 ,y

(2)
4

}
because these outcomes are not in multiplicity. Therefore

{
y

(2)
1 , y

(2)
2 , y

(2)
5 , y

(2)
6

}
is not well connected

and is not part of the core determining class.

y
(2)
3 y

(2)
4

y
(2)
5 y

(2)
6

Figure 5: Graph (V{
y
(2)
3 ,y

(2)
4 ,y

(2)
5 ,y

(2)
6

}, E{
y
(2)
3 ,y

(2)
4 ,y

(2)
5 ,y

(2)
6

}) from the multiplicity.

Supplementary Appendix - page 15



The core determining class is{{
y
(2)
1

}
,
{
y
(2)
2

}
,
{
y
(2)
3

}
,
{
y
(2)
4

}
,
{
y
(2)
5

}
,
{
y
(2)
6

}
,
{
y
(2)
1 , y

(2)
2

}
,
{
y
(2)
1 , y

(2)
3

}
,
{
y
(2)
1 , y

(2)
4

}
,
{
y
(2)
1 , y

(2)
5

}
,
{
y
(2)
1 , y

(2)
6

}
{
y
(2)
2 , y

(2)
3

}
,
{
y
(2)
2 , y

(2)
4

}
,
{
y
(2)
2 , y

(2)
5

}
,
{
y
(2)
2 , y

(2)
6

}
,
{
y
(2)
3 , y

(2)
4

}
,
{
y
(2)
3 , y

(2)
5

}
,
{
y
(2)
3 , y

(2)
6

}
,
{
y
(2)
4 , y

(2)
5

}
,
{
y
(2)
4 , y

(2)
6

}{
y
(2)
5 , y

(2)
6

}
,
{
y
(2)
1 , y

(2)
2 , y

(2)
3

}
,
{
y
(2)
1 , y

(2)
2 , y

(2)
4

}
,
{
y
(2)
1 , y

(2)
2 , y

(2)
5

}
,
{
y
(2)
1 , y

(2)
2 , y

(2)
6

}
,
{
y
(2)
1 , y

(2)
3 , y

(2)
4

}
,
{
y
(2)
1 , y

(2)
3 , y

(2)
5

}{
y
(2)
1 , y

(2)
3 , y

(2)
6

}
,
{
y
(2)
1 , y

(2)
4 , y

(2)
5

}
,
{
y
(2)
1 , y

(2)
4 , y

(2)
6

}
,
{
y
(2)
1 , y

(2)
5 , y

(2)
6

}
,
{
y
(2)
2 , y

(2)
3 , y

(2)
4

}
,
{
y
(2)
2 , y

(2)
3 , y

(2)
5

}
,
{
y
(2)
2 , y

(2)
3 , y

(2)
6

}{
y
(2)
2 , y

(2)
4 , y

(2)
5

}
,
{
y
(2)
2 , y

(2)
4 , y

(2)
6

}
,
{
y
(2)
2 , y

(2)
5 , y

(2)
6

}
,
{
y
(2)
3 , y

(2)
4 , y

(2)
5

}
,
{
y
(2)
3 , y

(2)
4 , y

(2)
6

}
,
{
y
(2)
3 , y

(2)
5 , y

(2)
6

}
,
{
y
(2)
4 , y

(2)
5 , y

(2)
6

}{
y
(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4

}
,
{
y
(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
5

}
,
{
y
(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
6

}
,
{
y
(2)
1 , y

(2)
2 , y

(2)
4 , y

(2)
5

}
,
{
y
(2)
1 , y

(2)
2 , y

(2)
4 , y

(2)
6

}{
y
(2)
1 , y

(2)
3 , y

(2)
4 , y

(2)
5

}
,
{
y
(2)
1 , y

(2)
3 , y

(2)
5 , y

(2)
6

}
,
{
y
(2)
1 , y

(2)
4 , y

(2)
5 , y

(2)
6

}
,
{
y
(2)
2 , y

(2)
3 , y

(2)
4 , y

(2)
6

}
,
{
y
(2)
2 , y

(2)
3 , y

(2)
5 , y

(2)
6

}{
y
(2)
2 , y

(2)
4 , y

(2)
5 , y

(2)
6

}
,
{
y
(2)
3 , y

(2)
4 , y

(2)
5 , y

(2)
6

}
,
{
y
(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4 , y

(2)
5

}
,
{
y
(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4 , y

(2)
6

}{
y
(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
5 , y

(2)
6

}
,
{
y
(2)
1 , y

(2)
2 , y

(2)
4 , y

(2)
5 , y

(2)
6

}
,
{
y
(2)
1 , y

(2)
3 , y

(2)
4 , y

(2)
5 , y

(2)
6

}
,
{
y
(2)
2 , y

(2)
3 , y

(2)
4 , y

(2)
5 , y

(2)
6

}
{
y
(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4 , y

(2)
5 , y

(2)
6

}}

A.8 The geometric selection procedure

The geometric selection procedure consists in, first determining the local extreme point and, then,

deriving the supporting hyperplanes at this extreme point. We adopt the convention of es1i1,...,skik

is the vector where the component ij is 1 if sj = +1 and -1 if sj = −1.

Determining the local extreme point The procedure to determine the local extreme point is

the following:

(1) Pick K and select the subvector P
(K)
0 . This is a vector in a space of dimension dK .

(2) For each component i, i = 1, . . . , dK , calculate the support function in direction ei and

e−i. Calculate the width in direction ei, i.e. Di = δ∗(ei;BK(θ)) + δ∗(e−i;BK(θ)). Cal-

culate the distance to the center point of the cube along the axis of component i: xi ={
e>i P

(K)
0 − δ∗(ei;BK(θ)) + Di

2

}
.

(3) Pick the coordinate i1 of the highest values of |xi|. If it is xi1 > 0, i1 is the highest index of the

local extreme point, i.e. the local vertex is related to the order i1? . . .? where the remaining

indices need to be found ; otherwise i1 is the lowest index, i.e. the local vertex is related to

the order ? . . .?i1.
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(a) Assume xi1 > 0. Pick ei1 , and construct the orthogonal projection of P
(K)
0 , P

(K)
i1

, onto

the facet Fi1 , xi1 = δ∗(ei1 ;BK(θ)). Then restart Step 2 with now the second index, i′.

For each i′ 6= i1, take ei1,i′ and ei1,−i′ . Compute the width of the intersection of the facet

and the set BK(θ):

Di1,i′ = δ∗(ei1,i′ ;BK(θ))− δ∗(ei1 ;BK(θ)) + δ∗(ei1,−i′ ;BK(θ))− δ∗(ei1 ;BK(θ)).

Calculate the distance to the center of the new cube which contains this intersection:

xi1,i′ =

(
e>i1,i′P

(K)
i1
− δ∗(ei1,i′ ;BK(θ)) +

Di1,i′

2

)
.

Pick the coordinate i2 of the highest values of |xi1,i′|.

(b) If now xi1 ≤ 0. Pick ei1 , and construct the orthogonal projection of P
(K)
0 , P

(K)
i1

, onto the

facet F−i1 , xi1 = −δ∗(e−i1 ;BK(θ)). Then restart Step 2 with now the second index, i′.

For each i′ 6= i1, take e−i1,i′ and e−i1,−i′ . Compute the width of the intersection of the

facet and the set BK(θ):

D−i1,i′ = δ∗(e−i1,i′ ;BK(θ))− δ∗(e−i1 ;BK(θ)) + δ∗(e−i1,−i′ ;BK(θ))− δ∗(e−i1 ;BK(θ)).

Calculate the distance to the center of the new cube which contains this intersection:

x−i1,i′ =

(
e>−i1,i′P

(K)
i1
− δ∗(e−i1,i′ ;BK(θ)) +

D−i1,i′

2

)
.

Pick the coordinate i2 of the highest values of |x−i1,i′ |.

(4) Repeat loop 2 and 3 until determining i1i2 . . . idK . This is our local extreme point.

(5) Do this procedure for all the values K. Collect the local extreme points accordingly.

Finding the facets at one extreme point Assume the extreme point is E
(K)
i1,i2,...,idK

(θ). We

now want to determine the facets of BK(θ) at this extreme point. The algorithm, detailed below,

is based on the idea that, when multiple equilibria does not exist between a series of outcomes, the

corresponding indices can be swapped if they are in consecutive ranks without changing the point

E
(K)
i1,i2,...,idK

(θ) in the space. It increases the number of inequalities that are binding at this extreme

point.
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1: Start with LK =
{
{y(K)

i1
}
}

and set k = 2.

k: Find the largest m such that
{
y

(K)
ik
, y

(K)
ik+1

, . . . , y
(K)
im

}
are not in multiplicity with elements in{

y
(K)
ij

}
, j ≥ k. Note

{
y

(K)
ik
, y

(K)
ik+1

, . . . , y
(K)
im

}
can be in multiplicity with elements in

{
y

(K)
ij

}
,

j ≤ k − 1.

LK = LK ∪
{{
y

(K)
i1
, y

(K)
i2
, . . . , y

(K)
ik−1

}
⊕ P∗

{
y

(K)
ik
, y

(K)
ik+1

, . . . , y
(K)
im

}}
.

Then, update to k + 1.22

R: Repeat the previous step for k = 2, . . . , dK steps and find

LK = LK ∩ ΩK .

LK can be converted into equivalent support directions. Any element CK of LK yields to the

direction eCK following Equation (10).

We provide a simple illustration of this algorithm in section A.9. The local geometry of set A(θ)

in the extreme point considered is

L =
{
LK : K = 0, 1, . . . , N

}
. (A.9)

Note that the composition of L is specific to each extreme point.

A.9 Determining the number of facets for B2(θ) when K=4

Following the previous section, we now illustrate how to determine the number of facets in a given

extreme point. Consider, for example, the extreme point E
(2)
1,2,3,4,5,6(θ) of B2(θ). We now determine

the number of facets. We know that it is at least 6 but, due to the fact that some outcomes are not

in multiplicity, we know that this point is also the same point than E
(2)
1,2,4,3,5,6(θ). The procedure

determines that. We show that, for this point:

22We define the concatenation ⊕ of two collections C and B as

C ⊕B =
⋃
c∈C

{
c ∪ b : b ∈ B

}
and P∗ is defined in Appendix A.7.1.
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LK =
{
{y(2)

1 }, {y
(2)
1 , y

(2)
2 }, {y

(2)
1 , y

(2)
2 , y

(2)
3 }, {y

(2)
1 , y

(2)
2 , y

(2)
4 }, {y

(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4 },

{y(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4 , y

(2)
5 }, {y

(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4 , y

(2)
5 , y

(2)
6 }
}

It means that the inequalities which are binding in E
(2)
1,2,3,4,5,6(θ) are based on the following directions

(that should be completed by zeros accordingly to give direction in R24): e1 = (1, 0, 0, 0, 0, 0)>,

e1,2 = (1, 1, 0, 0, 0, 0)>, e1,2,3 = (1, 1, 1, 0, 0, 0)>, e1,2,4 = (1, 1, 0, 1, 0, 0)>, e1,2,3,4 = (1, 1, 1, 1, 0, 0)>,

e1,2,3,4,5 = (1, 1, 1, 1, 1, 0)> and e1,2,3,4,5,6 = (1, 1, 1, 1, 1, 1)>.

We now follow the steps of the algorithm introduced in section 4.3.1.

(1) Set LK =
{
{y(2)

1 }
}
.

(2) At step 2, find the largest m such that
{
y

(2)
2 , y

(2)
3 , . . . , y

(2)
m

}
are not in multiplicity even with

outcomes in
{
y

(2)
2 , y

(2)
3 , . . . , y

(2)
6

}
. Since y

(2)
2 and y

(2)
3 are in multiplicity, m = 2.

LK =
{{
y

(2)
1

}}
∪
{{{

y
(2)
1

}
⊕ P∗(y(2)

2 )
}∖
D∗2
}

=
{{
y

(2)
1

}}
∪
{{
y

(2)
1 , y

(2)
2

}}
=
{{
y

(2)
1

}
,
{
y

(2)
1 , y

(2)
2

}}
(3) At step 3, we look for the largest m such that

{
y

(2)
3 , . . . , y

(2)
m

}
are not in multiplicity even with

outcomes in
{
y

(2)
3 , . . . , y

(2)
6

}
. Since y

(2)
3 and y

(2)
4 are not in multiplicity, but y

(2)
3 and y

(2)
5 are,

m = 4.

LK =
{{
y

(2)
1

}
,
{
y

(2)
1 , y

(2)
2

}}
∪
{{{

y
(2)
1 , y

(2)
2

}
⊕ P∗

{
y

(2)
3 , y

(2)
4

}}∖
D∗2
}

=
{{
y

(2)
1

}
,
{
y

(2)
1 , y

(2)
2

}
,
{
y

(2)
1 , y

(2)
2 , y

(2)
3

}
,
{
y

(2)
1 , y

(2)
2 , y

(2)
4

}
,
{
y

(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4

}}
(4) At step 4, we look for the largest m such that

{
y

(2)
4 , . . . , y

(2)
m

}
are not in multiplicity even with

outcomes in
{
y

(2)
4 , . . . , y

(2)
6

}
. Since y

(2)
4 and y

(2)
6 are in multiplicity, m = 5.

LK =
{
{y(2)

1 }, {y
(2)
1 , y

(2)
2 }, {y

(2)
1 , y

(2)
2 , y

(2)
3 }, {y

(2)
1 , y

(2)
2 , y

(2)
4 }, {y

(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4 },

{y(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4 , y

(2)
5 }
}
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(5) Finally, add Y2 =
{
{y(2)

1 , y
(2)
2 , y

(2)
3 , y

(2)
4 , y

(2)
5 , y

(2)
6 }
}

.

Observe that this does not correspond to the extreme point with the maximum number of facets.

This happens in E
(2)
1,3,4,2,5,6(θ). In this case, we can start again the algorithm to determine that

there are 8 facets defined by the following directions: e1 = (1, 0, 0, 0, 0, 0)>, e1,3 = (1, 0, 1, 0, 0, 0)>,

e1,4 = (1, 0, 0, 1, 0, 0)>, e1,3,4 = (1, 0, 1, 1, 0, 0)>, e1,2,3,4 = (1, 1, 1, 1, 0, 0)>, e1,3,4,5 = (1, 0, 1, 1, 5, 0)>,

e1,2,3,4,5 = (1, 1, 1, 1, 1, 0)> and e1,2,3,4,5,6 = (1, 1, 1, 1, 1, 1)>.

A.10 Proof of Proposition 8

We do the proof for K = 1 and it is similar for K = 2, which proves the global result.

Fix θ. The goal is to proof that, if a point P
(1)
0 does not belong to B1(θ), a local selection

procedure would detect it.

First, observe that any extreme point is linked to an order between the three possible equilibria.

Each extreme point E
(1)
i1,i2,i3

(θ) has supporting hyperplanes with outer normal vectors, e
(1)
i1

, e
(1)
i1,i2

and

e
(1)
i1,i2,i3

= (1, 1, 1)>.

There are three cases:

• If P
(1)
0 is outside the cube which contains B1(θ). It means at least one of the values xi is outside

a bounded interval [−Di/2, Di/2], where Di = is the width in direction ei. The highest value

of |x1|, |x2|, |x3| selects a face which separates B1(θ) and P
(1)
0 . Assume this is |x1| and that

x1 > 0. The first component of P
(1)
0 is above the largest value of the first component of any

point of B1(θ). The local extreme point is E
(1)
1??(θ). Whatever the next choice, the direction

e
(1)
1 defines a supporting hyperplane of B1(θ) at this extreme point which separates B1(θ) and

P
(1)
0 . Consequently, T∞(e

(1)
1 ; θ) < 0.

• If P
(1)
0 is in the cube but not in B1(θ). Whatever the choice of the extreme point of B1(θ),

the third direction (1, 1, 1)> defines a supporting hyperplane which separates B1(θ) and P
(1)
0 .

Consequently, T∞(e
(1)
1,2,3; θ) < 0. And, so forth for the other possibilities.

• If P
(1)
0 ∈ B1(θ), any choice of local extreme point is valid because, for any direction q,

T∞(q,K; θ) ≥ 0.

Supplementary Appendix - page 20



When P
(1)
0 ∈ B1(θ), the procedure does not reject θ. When P

(1)
0 /∈ B1(θ), the procedure does.

It is therefore a valid and sharp characterization of B1(θ).

A.11 Proof of Proposition 9

Under condition UI, following Lemma 3.1 of Romano and Shaikh (2008), we have

sup
P∈P

sup
S∈L

∣∣∣P(√M (
µ(P )− P̂M

)
∈ S

)
− ΦΣ(P )(S)

∣∣∣ −→
M→∞

0,

where ΦΣ(·) is the cumulative distribution function of the centered multivariate normal distribution

with variance Σ, µ(P ) = EP (Y ) and Σ(P ) = diag(µ(P )) − µ(P )µ(P )> and L is a collection of

convex sets with zero boundary.

Consider the directions q of G and relabel them q1, . . . , qm. Then, define m convex sets in R2N ,

D1, ...,Dm such that,

∀U ∈ Di,
q>i U√
q>i Σqi

≤ min
j 6=i

q>j U√
q>j Σqj

.

Now, we can define, for a given x ∈ R the sets S1, ..., Sm (Si ⊂ Di) such that

∀U ∈ Si, x ≤ q>i U√
q>i Σqi

≤ min
j 6=i

q>j U√
q>j Σqj

.

Now, we have

P

(
inf
q∈G

(
√
M
q>(µ(P )− P̂M)√

q>Σq

)
≥ x

)
=

m∑
i=1

P
(√

M(µ(P )− P̂M) ∈ Si
)

−→
M→∞

m∑
i=1

ΦΣ(P ) (Si) =
m∑
i=1

P(Z ∈ Si),

uniformly over P ∈ P , for Z ∼ N (0,Σ(P )). Moreover,

m∑
i=1

P(Z ∈ Si) =P

(
Z ∈

m⋃
i=1

Si

)

=P

(
inf
q∈G

q>Z√
q>Σq

≥ x

)
.
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So, uniformly over P ∈ P ,

inf
q∈G

(
√
M
q>(µ(P )− P̂M)√

q>Σq

)
d−→

M→∞
inf
q∈G

q>Z√
q>Σq

. (A.10)

Following, Bontemps et al. (2012), proof of Proposition 10, we can now consider the two different

cases:

• If P0, the true choice probability vector belongs to A(θ), the set of minimizers of TM(q; θ)

tends to Qθ, the set of minimizers of T∞(q, θ). This set may not be reduced to a singleton if

P0 is at the intersection of at least two facets. Therefore,

ξM(θ) =
√
M min

q∈G

TM(q; θ)√
q>Σq

=
√
M inf

q∈G

TM(q; θ)− T∞(q; θ) + T∞(q; θ)√
q>Σq

= inf
q∈G

√
M(q>(P0 − P̂M)) +

√
MT∞(q; θ)√

q>Σq

= inf
q∈Qθ

√
M(q>(P0 − P̂M))√

q>Σq

The last equality holds because for any q ∈ Qθ, T∞(q; θ) = 0 and q /∈ Qθ, T∞(q; θ) > 0. So

asymptotically, the argmin belongs to Qθ (remember that G is discrete). We conclude using

the uniform convergence of Equation (A.10).

• If P0 /∈ A(θ), the value T∞(q, θ) is negative for any direction q. TM(q, θ) converges uniformly

in q, on the unit sphere, toward a strictly negative value and is therefore bounded away from

zero uniformly. The rescaling by
√
M makes the limit −∞.

Now, we need to consider the fact that Σ is estimated. We need to use the following additional

result to replace Σ by Σ̂ in the proofs above:

sup
P∈P

∥∥∥Σ̂(P )− Σ(P )
∥∥∥ P−→ 0

where ‖.‖ is the component-wise maximum of absolute value of each element. This follows from

lemma S.7.1 in supplement to Romano and Shaikh (2012).
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A.12 Proof of Corollary 11

In the proof of Proposition 9, we show that uniformly over P ∈ P ,

ξM(θ)
d−→

M→∞
inf

(q)∈Qθ
N (0, q>Σ(P ) q)

if P0 ∈ A(θ). Observe that the distribution depends on θ only through the minimizing set Qθ, but

θ doesn’t affect the covariance of the distribution. Define

S = ∪θ∈ΘIQθ

Since S ⊆ G the result follows.

A.13 Proof of Proposition 12

Following Proposition 2, we know that any subset of Y1 of cardinality greater than 2 corresponds to

a multiple equilibria region. Consequently, ∆
(1)
S (θ) for any subset S ⊆ Y1 is non-zero, and, following

Proposition 4, any change in the order gives a different point. Let i1, i2, . . . , id1 be an order of the

coordinates that defines an extreme point E
(1)
i1,i2,...,id1

(θ) and C(1)
i1,...,id1

be the cone of directions q such

that δ∗(q;B1(θ)) = q>E
(1)
i1,...,id1

(θ). Each direction defines a supporting hyperplane (or facet) of B1(θ)

at E
(1)
i1,...,id1

(θ).

Any direction q in the cone can be written as

q = (qi1 − qi2)ei1 + (qi2 − qi3)ei1,i2 + . . .+ (qid1−1
− qid1 )ei1,i2,...,id1−1

+ qid1ei1,i2,...,id1 .

All the coefficients except the last one are positive. The cone is therefore generated by ei1 , ei1,i2 ,...,

ei1,i2,...,id1−1
, ei1,i2,...,id1 or −ei1,i2,...,id1 .23

In other words, there are only d1 supporting hyperplanes of B1(θ) at this point, and it is sufficient

to check the inequalities related to these hyperplanes/facets for a point locally around E
(1)
i1,...,id1

(θ).

A.14 Proof of Proposition 13

To find the upper bound on the number of facets in any extreme point for 1 < K < N − 1, we first

have to pack the indices which correspond to outcomes which are not in multiplicity.

23Remark that ei1,i2,...,id1 = (1, 1, . . . , 1)>.
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• Let us first define lmax the cardinality of the maximal subset S ∈ YK such that any pair of S is

not in multiplicity. If we collect these indices from the second one, we can switch their order

and still have the same point. For example, if y
(K)
i2

and y
(K)
i3

are not in multiplicity, the point

E
(K)
i1,i2,i3,??? is the same point than E

(K)
i1,i3,i2,??? when the next orders don’t change. Consequently,

it defines at most one additional outer normal vector following the construction we used earlier

in the case K = 1. The first outer normal vectors are e
(K)
i1

, e
(K)
i1,i2

, e
(K)
i1,i3

, e
(K)
i1,i2,i3

, etc. These series

of indices are related to 2lmax−1 outer normal vector corresponding to all e
(K)
i1,ij

, j = 2..lmax +1,

e
(K)
i1,ij ,ik

, j, k between 2 and lmax + 1 up to e
(K)
i1,i2,...,ilmax+1

.

• Then we add indices according to the following rule. At each step k, starting from 3, the next

index im is such that, if possible, y
(K)
ik
, . . . , y

(K)
im

are not in multiplicity even with all remaining

outcomes YK\{y(K)
i1

. . . , y
(K)
ik−1
}. Otherwise, we pick a random index and we go on. It adds

at the maximum (if the added index is not in multiplicity with anybody before) 2lmax−1 new

supporting hyperplanes (as you can switch all orders between k and k + lmax − 1, and count

only those where the last index is not the last value, i.e. 2lmax − 2lmax−1 = 2lmax−1). See figure

6 below.

• After Step 1, it remains dK − lmax − 1 points after having chosen i1, i2, . . . , ilmax+1.

• The maximum number of facets is therefore L∗max = 1 + 2lmax − 1 + (dK − lmax− 1)(2lmax−1) =

2lmax + (dK − lmax − 1)(2lmax−1).

Observe that this bounds is a loose bound and can always be refined by brute force on a case

to case basis. Nevertheless, it gives a sufficiently precise estimate of c(L∗) the true cut off value.

When N = 4 and K = 2, dK = 6 and lmax = 2 (see Section A.7.2). Applying the formula above we

obtain, L∗max = 10. The true L∗ is equal to 8. However the two cut off values for a level of 5% (see

Section 4.3) are c(8) = −2.51 and c(10) = −2.58. When N = 5 and K = 2, dK = 10 and lmax = 2.

L∗max = 18 whereas L∗ = 15.
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i1 il+3 . . . idKi2 i3 il+1 il+2

Step 2

Step 3

Max dK − lmax − 1 indices.

. . .

Step 2: we can switch any of these indices. 2lmax − 1 facets.

Order:

Step 3: at max, we can switch any of these indices. 2lmax−1 additional facets.
Note: l denotes lmax in the circles related to the order.

Figure 6: Counting the maximum number of facets at E
(K)
i1,i2,...,idK

(θ).

K N = 5 N = 6 N = 7 N = 8 N = 9
2 2 3 3 4 4
3 2 4 7 8 10
4 1 3 7 14 14
5 1 3 8 14
6 1 4 10
7 1 4
8 1

Table VII: Value of lmax for N ≤ 9
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A.15 The simulation of the critical values

We propose an algorithm to simulate the critical values c(G, α) of Section 4.2. Observe that:

min
q∈G

q>Z√
q>Σ̂q

= min
q∈G

(Σ̂1/2q)>Σ̂1/2Z̃√
(Σ̂1/2q)>(Σ̂1/2q)

+ 0p(1),

where Z̃ ∼ N(0, Σ̂−1). The matrix Σ̂1/2 rotates the quantities of interest but the direction q which

minimizes the quantity are still the same.

1. Draw Z̃ from the normal distribution N (0, Σ̂−1). Cut Z̃ in subvectors Z̃(0), Z̃(1), . . . , Z̃(N).

2. For each K ∈ {0, 1, . . . , N}, order Z̃
(K)
i , i = 1, . . . , dK in the increasing order Z̃

(K)
i1

, Z̃
(K)
i2

, etc.

The direction qK which minimizes q>KΣ̂Z̃(K)/
√
q>KΣ̂qK is among the direction e

(K)
i1

, e
(K)
i1,i2

, ...,

e
(K)
i1,i2,...,idK

. Calculate all the values q>KΣ̂Z̃(k)/
√
q>KΣ̂qK for all the potential candidates and

take the minimum one, called mK .

3. Take m = minK=0,...,N mK .

4. Repeat the previous steps, S − 1 times to get S realizations of the distribution of the lower

bound and take the α-quantile of this distribution. This is c(G, α).

A.16 The entry game with three players

In this section, we consider our entry game with three firms. The profit of firm i in market m, πim

is modeled as:

πi = βi + αi

(∑
j 6=i

aj

)
+ εi, (A.11)

where a1 (resp. a2, a3) is equal to 1 when π1 > 0 (resp. π2 > 0, π3 > 0), 0 otherwise. The

joint distribution of (ε1, ε2, ε3), F (·; γ), is assumed to be known up to parameter and θ denote all

parameters in the model. We also assume that α’s are negative.

A.16.1 Multiple equilibria regions

There are, in this setup, eight regions of multiple equilibria, which correspond to the set of outcomes

expressed in Table VIII. First note that S(1) =
{
S1, S2, S3, S4

}
and S(2) =

{
S5, S6, S7, S8

}
.
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N = 1 S1 =

(
0, 0, 1
0, 1, 0

)
S2 =

(
0, 0, 1
1, 0, 0

)
S3 =

(
0, 1, 0
1, 0, 0

)
S4 =

 0, 0, 1
0, 1, 0
1, 0, 0


N = 2 S5 =

(
0, 1, 1
1, 0, 1

)
S6 =

(
0, 1, 1
1, 1, 0

)
S7 =

(
1, 0, 1
1, 1, 0

)
S8 =

 0, 1, 1
1, 0, 1
1, 1, 0


Table VIII: All multiplicities in pure strategy Nash equilibrium of entry game with 3 players.

A.16.2 The set of predicted choice probabilities

Recall that the probability of each outcome can be written with the unknown selection mechanism

η(·). For example,

P001 = P
(1)
1 (θ, η) = ∆

(1)
1 (θ) +

∑
S∈{S1,S2,S4}

∫
R(K)
S (θ)

η((0, 0, 1)>|ε, θ)dF (ε; γ),

Let uj(Sk) be defined like in Section A.4. The set A(θ) is the collection of points in R8 that can be

written, for some specific choice of weights uj(Sk):



P000

P001

P010

P100

P011

P101

P110

P111


=



∆
(0)
1 (θ)

∆
(1)
1 (θ) + u1(S1)∆

(1)
S1

(θ) + u1(S2)∆
(1)
S2

(θ) + u1(S4)∆
(1)
S4

(θ)

∆
(1)
2 (θ) + u2(S1)∆

(1)
S1

(θ) + u2(S3)∆
(1)
S3

(θ) + u2(S4)∆
(1)
S4

(θ)

∆
(1)
3 (θ) + u3(S2)∆

(1)
S2

(θ) + u3(S3)∆
(1)
S3

(θ) + u3(S4)∆
(1)
S4

(θ)

∆
(2)
1 (θ) + u1(S5)∆

(2)
S5

(θ) + u1(S6)∆
(2)
S6

(θ) + u1(S8)∆
(2)
S8

(θ)

∆
(2)
2 (θ) + u2(S5)∆

(2)
S5

(θ) + u2(S7)∆
(2)
S7

(θ) + u2(S8)∆
(2)
S8

(θ)

∆
(2)
3 (θ) + u3(S6)∆

(2)
S6

(θ) + u3(S7)∆
(2)
S7

(θ) + u3(S8)∆
(2)
S8

(θ)

∆
(3)
1 (θ)


, (A.12)

with the constraint
∑

j|y(K)
j ∈S uj(S) = 1, 0 ≤ uj(S) ≤ 1 for S ∈ S(K). The partition here refers

to different K (number of active firm in any outcome). This partition is very useful as the convex

set decomposes into cartesian product of smaller dimension convex set. This convex set only need

18 directions to characterize it.

Figure 7 displays the set B1(θ), its outer cube and the inequalities (in red) which are tested in

our geometric selection procedure.

A.16.3 The directions used in the Monte Carlo experiment

Following Proposition 4, we have a closed-form expression for the support function. It is equal to:
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E
(1)
1,2,3

E
(1)
1,3,2

E
(1)
2,1,3

E
(1)
2,3,1

E
(1)
3,2,1

E
(1)
3,1,2

P

max P (0, 0, 1)

max P (1, 0, 0)

max P (0, 1, 0)

U

Figure 7: The geometric selection procedure for B1(θ).
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δ∗ (q;A(θ)) = q>∆(θ)

+ max(q2, q3)∆
(1)
S1

(θ) + max(q2, q4)∆
(1)
S2

(θ) + max(q3, q4)∆
(1)
S3

(θ) + max(q2, q3, q4)∆
(1)
S4

(θ)

+ max(q5, q6)∆
(2)
S5

(θ) + max(q5, q7)∆
(2)
S6

(θ) + max(q6, q7)∆
(2)
S7

(θ) + max(q5, q6, q7)∆
(2)
S8

(θ),

where q = (q1, . . . , q8)> and

∆(θ) =
(
∆

(0)
1 (θ),∆

(1)
1 (θ),∆

(1)
2 (θ),∆

(1)
3 (θ),∆

(2)
1 (θ),∆

(2)
2 (θ),∆

(2)
3 (θ),∆

(3)
1 (θ)

)>
.

The identified set can be estimated by testing that the point P0 belongs to A(θ) or, equivalently,

by testing that

min
q∈G

δ∗ (q;A(θ))− q>P0 ≥ 0.

The following sets of directions considered for G are given below. For ”Ineq1”, we consider 16

inequalities derived from these 16 directions. Each direction is a column of the following set:

G1 =



1
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0

0
0
1
0
0
0
0
0

0
0
0
1
0
0
0
0

0
0
0
0
1
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.

Similarly, for ”Ineq2” we consider also 16 directions:

G2 =
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.

”Ineq3” takes the whole set of inequalities and equalities which define B0(θ) B1(θ) and B3(θ)
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(the equality related to B2(θ) being redundant is dropped):

G3 =


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.

”Ineq4” replaces the directions e
(K)
ij in ”Ineq3 by the directions −e(K)

l

G4 =
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
.

A.17 Additional Monte Carlo simulations

We compare our procedure with the results of the GMS procedure proposed by Andrews and Soares

(2010) and its refinement by Romano et al. (2012). We use the DGP of the example with three

player considered in table IV, i.e, β = 0.35 and α1 = α2 = α3 = −0.4. Table IX displays the mean

rejection rate across simulations for a sequence of points on a curve displayed in Figure 8. The

sequence of points contains points from the identified set and outside this identified set. First, for

M = 1000, all rejection rates are fine with values close to 5% at the boundary. Second, the power

of our local procedure is better than the GMS procedures because the critical value is smaller.
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M=1000 M=2000
G L AS RSW G L AS RSW

0.889 0.923 0.914 0.899 0.998 0.999 0.999 0.999
0.826 0.881 0.865 0.841 0.995 0.997 0.997 0.996
0.756 0.820 0.802 0.773 0.984 0.992 0.990 0.988
0.679 0.750 0.731 0.698 0.964 0.978 0.975 0.971
0.595 0.675 0.656 0.616 0.927 0.952 0.950 0.941
0.512 0.594 0.571 0.532 0.875 0.913 0.907 0.897
0.434 0.516 0.492 0.453 0.797 0.854 0.844 0.826
0.365 0.442 0.419 0.383 0.718 0.775 0.764 0.742
0.304 0.375 0.353 0.315 0.625 0.694 0.681 0.657
0.246 0.316 0.294 0.257 0.522 0.603 0.589 0.559
0.196 0.259 0.240 0.206 0.413 0.494 0.479 0.446
0.155 0.209 0.193 0.163 0.319 0.392 0.378 0.351
0.121 0.170 0.157 0.128 0.241 0.300 0.289 0.265
0.095 0.135 0.125 0.101 0.180 0.229 0.218 0.200
0.077 0.112 0.102 0.082 0.127 0.172 0.161 0.145
0.066 0.095 0.086 0.069 0.095 0.124 0.118 0.107
0.056 0.083 0.076 0.057 0.070 0.094 0.088 0.078
0.048 0.073 0.065 0.049 0.052 0.071 0.067 0.060
0.045 0.065 0.059 0.045 0.042 0.058 0.054 0.048
0.043 0.062 0.054 0.043 0.035 0.048 0.045 0.040
0.040 0.059 0.053 0.040 0.033 0.043 0.040 0.036
0.038 0.057 0.049 0.038 0.031 0.041 0.038 0.035
0.037 0.054 0.048 0.037 0.030 0.039 0.036 0.033
0.036 0.054 0.046 0.036 0.030 0.038 0.035 0.031
0.036 0.053 0.045 0.035 0.030 0.038 0.035 0.031
0.036 0.052 0.044 0.035 0.029 0.038 0.035 0.030
0.035 0.052 0.044 0.035 0.029 0.038 0.035 0.030
0.035 0.052 0.043 0.035 0.029 0.038 0.035 0.029
0.035 0.052 0.043 0.035 0.029 0.038 0.035 0.029
0.035 0.052 0.043 0.035 0.029 0.038 0.035 0.028
0.035 0.052 0.044 0.035 0.029 0.038 0.035 0.029
0.035 0.052 0.045 0.035 0.029 0.038 0.035 0.030
0.035 0.052 0.046 0.035 0.029 0.038 0.035 0.030
0.036 0.054 0.048 0.036 0.030 0.038 0.036 0.032
0.043 0.064 0.058 0.044 0.039 0.052 0.048 0.043
0.050 0.075 0.069 0.051 0.056 0.079 0.071 0.064
0.069 0.103 0.094 0.072 0.103 0.140 0.132 0.118
0.152 0.208 0.189 0.158 0.316 0.390 0.375 0.346
0.104 0.145 0.133 0.108 0.196 0.244 0.236 0.215
0.223 0.289 0.269 0.235 0.468 0.541 0.527 0.504
0.300 0.382 0.355 0.314 0.600 0.680 0.669 0.641
0.394 0.471 0.449 0.410 0.729 0.793 0.781 0.758
0.491 0.569 0.548 0.512 0.836 0.882 0.874 0.856
0.600 0.676 0.656 0.618 0.921 0.947 0.945 0.934
0.708 0.774 0.754 0.722 0.963 0.976 0.974 0.970
0.800 0.855 0.841 0.812 0.988 0.993 0.992 0.990
0.877 0.916 0.905 0.888 0.996 0.997 0.997 0.996
0.933 0.958 0.952 0.940 0.998 1.000 0.999 0.999
0.968 0.979 0.976 0.972 1.000 1.000 1.000 1.000
0.985 0.993 0.991 0.988 1.000 1.000 1.000 1.000
0.996 0.998 0.997 0.997 1.000 1.000 1.000 1.000
0.999 1.000 0.999 0.999 1.000 1.000 1.000 1.000

The rejection rates for the points in the iden-
tified set are colored in grey.

Table IX: Rejection frequencies for points tested according to different inference methods. See
Figure 8 for a plot of the points in the space (α1, α2).
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Figure 8: Sequence of points tested (the points of the identified set are colored).
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