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Abstract

Recent advancements in artificial intelligence and deep learning made it possible for bots to pass
as humans, as is the case with the recent Google Duplex—an automated voice assistant capable of
generating realistic speech that can fool humans into thinking they are talking to another human. Such
technologies have drawn sharp criticism due to their ethical implications, and have fueled a push towards
transparency in human-machine interactions. Despite the legitimacy of these concerns, it remains un-
clear whether bots would compromise their efficiency by disclosing their true nature. Here, we conduct
a behavioral experiment with participants playing a repeated prisoner’s dilemma game with a human
or a bot, after being given either true or false information about the nature of their associate. We find
that bots do better than humans at inducing cooperation, but that disclosing their true nature negates
this superior efficiency. Human participants do not recover from their prior bias against bots despite
experiencing cooperative attitudes exhibited by bots over time. These results highlight the need to set
standards for the efficiency cost we are willing to pay in order for machines to be transparent about their
non-human nature.
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Introduction

Humans tend to trust algorithms less than they trust other humans [1]. In cooperative contexts, they break
promises made to a computer more easily than promises made to a human [2], and they believe other
humans to be more intelligent [3] and more cooperative [4] than artificial agents. This aversion to AI as
a social partner extends to other settings such as health-care [5, 6, 7] and forecasting [1]. One way for
machines to bypass these prejudices is to conceal their true nature, that is, to passively let people think
they are actually interacting with another human. Naturally, this requires machines to be sophisticated
enough to pass as humans, but this hurdle is about to be overcome in various contexts. For example,
Google Duplex is an automated voice assistant that can perform a variety of mundane phone-based tasks
on behalf of its user, such as making dinner reservations and booking appointments. Duplex has crossed
the uncanny valley [8] by effectively passing as human. This was achieved by imitating human speech
patterns including hesitations, ums, and ahs, which a machine would ordinarily not do except to trick
conversation partners into thinking they are interacting with another human. Accordingly, Duplex is able
to have natural conversations with the people it calls on the phone, and to successfully complete bookings
and transactions [9].

In spite or because of its impressive ability to mimic human speech, Duplex’s technological break-
through was marred by the ethical controversy it stirred [10, 11]. The fact that Duplex could hide its true
nature to humans was considered at least deceitful [12], and at most horrifying [13]. Consequently, some
voices called for machines to be transparent about their true nature, and to disclose it upfront before any
interaction with a human [14]. Given the uneasiness that humans display against bots in cooperative con-
texts, this push toward transparency raises a critical question: Does transparency come at the expense of
efficiency in human-bot interactions?

To address this question, we sought behavioral evidence for a transparency-efficiency tradeoff in the
context of social dilemmas, where each “player” can choose to either cooperate with, or defect against, the
other player. We conducted an experiment in which participants played the canonical iterated prisoner’s
dilemma [15, 16, 17, 18, 19, 20, 21, 22, 23, 24] with either a bot or a human, and we orthogonally manipu-
lated the information that participants received about the nature of their associate—so that half participants
were accurately informed about whether their partner was human or bot, while the other half received
inaccurate information.

While this setup is far from addressing the psychological and cognitive subtleties involved in interacting
with a complex system such as Google Duplex in a naturalistic environment, it allowed us to investigate
whether bots can do better than humans at eliciting cooperation from their partner; to assess the prejudice
humans have against cooperation partners they believe to be bots; and to investigate the extent to which
this prejudice may nullify the ability of bots to elicit greater cooperation, once they reveal their true nature.
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Experimental Design

We observed the behavior of human participants in a repeated prisoner’s dilemma, a well-established
medium for studying and evaluating cooperative behavior in many disciplines (e.g., [15, 25, 2, 26, 27]).
Each participant played at least 50 rounds of this game with either a bot or a human. The actions of the
bots were decided by a reinforcement-learning algorithm called S++ [28] (see Supplementary Note 5 for
a brief overview of this algorithm). Among the numerous algorithms that can generate strategic decisions
in repeated games (e.g., [29, 15, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]), we selected S++ because it out-
performs other algorithms in simulations, and because it can learn effective behavior within only a few
rounds of interaction, making it particularly suitable for human-bot experiments where it is infeasible for
participants to play thousands of rounds [40].

A total of 698 human participants were recruited through the crowd-sourcing platform MTurk and
re-directed to an external website that was purposely built for our experiment (for more details on the
experimental setup, see Supplementary Notes 1 - 4 and Supplementary Figures). Of the 350 participants
who played with another human, 170 were accurately informed that their partner was human, and 180 were
inaccurately informed that their partner was a bot. Likewise, of the 348 participants who played with a
bot, 188 were accurately informed that their partner was a bot, and 160 were inaccurately informed that
their partner was human. Accordingly, the experiment followed a 2×2 design, in which participants were
randomly assigned to one of four conditions: playing with a human they knew to be human, playing with
a bot they knew to be a bot, playing with a human they believed to be a bot, and playing with a bot they
believed to be human. In the rest of this article, we sometimes speak of participants who played with a
purported bot to designate participants who were told, accurately or not, that their partner was a bot; and
likewise, we speak of participants playing with a purported human to designate participants who were told,
accurately or not, that their partner was human.

Results

Overall, participants who played with bots (whether they knew it or not) cooperated slightly more (46%)
than participants who played with humans (41%). This is consistent with previous evidence showing that
S++ can do at least as well as humans when it comes to eliciting cooperation from its partners; the algorithm
achieves this by rewarding cooperation, tentatively forgiving lapses of cooperation, and meting punishment
in case of prolonged defection [40]. The key question we address in this article, though, is whether humans
are prejudiced against partners they believe to be bots, and whether this prejudice can hurt the performance
of transparent bots.

To illustrate the prejudice against purported bots in the early game, Figure 1 displays the proportion of
cooperative decisions made by human players during rounds 1–3, for all possible sequences of decisions
up to that round. In qualitative terms, human players were consistently less likely to cooperate with pur-
ported bots, regardless of the decisions made by their partner during previous rounds. To test the statistical
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Figure 1: Prejudice against purported bots in the early game Proportion of human participants who
made a cooperative decision in rounds 1–3, as a function of the purported nature of their partner (error
bars show 95% confidence interval). Within each round, the subfigures split participants according to the
history of decisions made by their partner in previous rounds (there are two such histories for round 2, and
four such histories for round 3). Participants are always more likely to cooperate with a purported human,
regardless of their partner’s decision history. As shown in the regression table, this effect is significant both
in round 2 and in round 3.
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Round 1 Round 2 Round 3
Purported Human 0.13 0.47∗∗ 0.40∗

(0.15) (0.16) (0.16)
Previous Cooperation 0.98∗∗∗ 0.63∗∗∗

(0.16) (0.12)

Table 1: Participants are always more likely to cooperate with a purported human, regardless of their
partner’s decision history. As shown in the regression table, this effect is significant both in round 2 and in
round 3. Key: ∗ = p < 0.05, ∗∗ = p < 0.01, ∗ ∗ ∗ = p < 0.001

significance of this result, we conducted a binomial regression for each of the three rounds, in which the de-
pendent variable was the decision to cooperate, and the predictors were the purported nature of the partner,
as well as the number of cooperative decisions made by the partner during earlier rounds (this predictor
was omitted for the round 1 regression). The regression tested whether the coefficient attached to each
predictor was significantly different from zero. As shown in Table 1, the purported nature of the partner
did not impact cooperation in the first round, but did so in rounds 2 and 3, regardless of the decisions that
the partner made in earlier rounds.

So far, data suggest that actual bots, employing the S++ algorithm [28], can elicit cooperation to a
greater extent than humans, but that humans cooperate less with purported bots. The question, then, is
whether bots which are transparent about their true nature may be penalized to an extent that would offset
their greater ability to elicit cooperation. To address this question, we must consider cooperation rates
all through the game, in all four experimental treatments. These data are shown in Figure 2. As can be
seen, participants cooperated less when playing with purported bots (blue line) than with purported humans
(red line), through all 50 rounds of the game. Real bots (left panel) did better than humans (right panel)
at eliciting cooperation, mostly because human cooperation deteriorated through the game, while bots
managed to keep cooperation with humans constant. These results are confirmed by a multilevel binomial
regression in which the dependent variable was the decision to cooperate, and the predictor were the round
number, the true nature of the partner (and its interaction with round), the purported nature of the partner
(and its interaction with round); with a random intercept per participant and per game session. We tested
whether the coefficients attached to each term were significantly different from zero. The model detected
a significant effect of purported partner (z = −3.5, p < .001), and a main effect of round (z = −8.2,
p < .001), which was qualified by an interaction effect between round and the true nature of the partner
(z = 8.3, p < .001). No other effects were detected as significant.

The transparency-efficiency tradeoff is best perceived by comparing the red line in the right panel (true
humans known to be humans) to the two lines in the left panel. A bot passing as human (red line, left
panel) is more efficient than a real human, mostly because humans are bad at maintaining cooperation in
repeated games [18, 41, 42], whereas the programming of the bot allows it to keep its partner cooperating.
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Figure 2: The tradeoff between efficiency and transparency Proportion of cooperative decisions made
by human participants, as a function of the true and purported nature of their partner, across the 50 rounds
of the game. For better visualization, fitted lines display a quadratic model of the data, with the shaded area
representing the 95% confidence interval.

But as soon as the bot reveals its true nature (blue line, left panel), it pays a large penalty that completely
offsets its advantage and makes it less efficient than an actual human. After a large number of rounds, its
performance ends up matching human performance, but this is only because human performance largely
deteriorates with time, while the bot is able to maintain its mediocre performance throughout the game.

The bots used in our study learn to expect less from humans than from other bots, especially when
they are transparent, as shown by changes in the “aspiration level” of S++ over time. In more detail, the
aspiration level is a parameter expressing the payoff that S++ expects to receive (see SI for mathematical
details). As long as this expectation is met, S++ does not change its strategy. If the expectation is not
met, S++ starts exploring other strategies. Furthermore, as this expectation decreases, S++ becomes less
likely to attempt to arrive at a mutually cooperative solution. S++ starts with an optimistic aspiration level
of 3, which corresponds to mutual cooperation. As shown in Figure 3, on average, this aspiration level
decreases over time as S++ interacts with people, and to even lower levels when S++ is being transparent
about its nature. A linear regression of aspiration level on partner (human vs. bot) and round detected
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Figure 3: Bots learn to expect less from humans especially when they are transparent The aspiration
level of the bot is the payoff it expects from its partner. This aspiration level decreases through the game as
a result of defection from the partner. Since transparent bots experience greater defection, their aspiration
level is lower than that of opaque bots. Bots who play with other bots have much higher aspiration levels
than bots who play with humans (aspiration levels for this case were generated through a simulation of 50
games of 50 rounds).

significant effects of both predictors (partner: t = −43.9, p < .001; round: t = −63.4, p < .001).
Another linear regression of aspiration level on transparency (opaque vs. transparent) and round, restricted
to human partners, detected significant effects of both predictors (transparency: t = −14.9, p < .001;
round: t = −65.0, p < .001).

In sum, results offer clear behavioral evidence for an efficiency-transparency tradeoff in human-machine
cooperation. Bots were better than humans at eliciting cooperation, but only if they were allowed to pass
as humans. As soon as their true nature was revealed, cooperation rates dropped and could no longer
match typical levels of human-human cooperation. The magnitude of this effect was about 10 percentage
points, which may lead to a substantial cumulative effect for bots who are used widely and routinely. While
cooperation is not always or necessarily the best course of action (since it could theoretically lead to ex-
ploitation) we observed a substantial correlation between the cooperation rate of human players and their
profits in the game, whether with other humans (r = .52, p < .001), or with bots (r = .58, p < .001).

Before we discuss whether people may decide to let bots hide their true nature for the sake of efficiency,
we need to discuss one alternative to deception. What if bots disclosed their true nature, but let people know
that better results can be achieved if they are treated just like humans? Perhaps this simple intervention
may restore cooperation to some degree, without the need for deception. We tried this intervention on 190

7



human participants, who were informed before the game that ‘Data suggest that people are better off if
they treat the bot as if it were a human.’ Results in this debiasing condition are shown in Figure 2 (right
panel). Participants in this condition behaved essentially the same as if they had not received the debiasing
information, suggesting that simple debiasing cannot solve the transparency-efficiency tradeoff.

Discussion

Many voices have called for intelligent machines to be transparent, in the sense that their decisions might
be explained in terms that would be understood by the people they affect [43, 44, 45]. But machines which
interact or cooperate with humans can be transparent in a different sense, by disclosing their non-human
nature upfront, before any interaction, even when their programming could allow them to convincingly pass
as humans. While these situations are still rare, the Google Duplex example has been a warning call for
many, by showing how close we are to a world where bots can conduct a discussion and close a transaction
with humans, without ever revealing their non-human nature.

Although there is broad consensus that machines should be transparent about how they think, it is less
clear whether they should always be transparent about who they are. To make an informed decision about
this design choice, we need to gain a better understanding of the costs and benefits of transparency. In
particular, we need to know whether the performance we expect from machines (e.g., a fluid and efficient
cooperation) can be impaired when machines disclose their true nature to their human partners. Here we
showed that transparency could hurt performance, to the extent that the superior efficiency of machines was
nullified when they disclosed their non-human nature. It is important to note that this result is restricted to
one form of transparency (i.e., a disclosure about non-human nature), and one form of efficiency (i.e., coop-
eration in a social dilemma). To generalise this result, future research will have to examine a broader range
of transparency manipulations (e.g., a description of the bots’ learning abilities and prosocial tendency) as
well as a broader range of efficiency benchmarks (e.g., interaction speed or customer satisfaction). We used
cooperation in a social dilemma as a proxy for efficiency, to capture situations where cooperation would
lead to the best possible result, but can be compromised by a temptation not to cooperate, or a belief that
the partner will not cooperate. Help desks operated by bots may provide a good example: while trusting
the bot to help might lead to a quicker and easier resolution, humans may nevertheless decide to require
and wait for human help, due to a prejudice against the bot. However, one could imagine situations in
which knowingly interacting with a bot might make things easier. For example, providing negative feed-
back about a product or a performance may be easier when talking to a bot, since it would eliminate the
face-saving issues that complicate such an interaction between humans [46].

With these caveats, our results lead to the question of whether machines should be allowed to hide their
non-human nature for the sake of efficiency. Ultimately, this choice must be made by the very people they
interact with; otherwise it would violate fundamental values of autonomy, respect, and dignity for humans
in socio-technical systems. However, if people know that their interactions with transparent machines will
be impaired, if they value the efficiency of these interactions, and if they value it enough to accept being
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deceived, then they may consider it acceptable for machines to be opaque.
The difficulty, of course, is that this decision cannot be made on a case-by-case basis. Once one knows

their partner to be a machine, there is no un-knowing that fact: it would make no sense for a machine to ask
its partner for the permission to pass as human. Accordingly, people must agree on a policy to let machines
deceive them in some circumstances, without asking them for informed consent when it happens.

It remains to be seen whether such a policy might be ethically grounded and socially acceptable. It
is important to note, though, that people sometimes find it acceptable, ethical, and desirable to be blind
to the individuals they deal with. In what is perhaps the most famous example of such a policy, major
orchestras adopted a ‘blind’ audition process in which musicians played out of sight of the jury, in order
to hide their identity, and most importantly their gender [47]. This policy was for the most part motivated
by the desire to reduce gender discrimination, and it succeeded in that respect. But for orchestras just as
for companies, the objective of blind hiring is not only to increase diversity for diversity’s sake: the goal is
also to hire better individuals, who might have been rejected due to prejudice—in other words, to improve
the efficiency of the hiring process, along with its fairness.

There is no need for humans to be more ‘fair’ to machines, whatever it would mean. Discrimination
toward human groups is a serious problem, discrimination toward machines is not. However, being blind
to the true nature of a machine may improve its cooperative efficiency, just as being blind to the identity
of a candidate can improve the efficiency of the hiring process. If people agree, for efficiency purposes,
to be blind to the individuals they seek to hire, then they may also agree to be blind to the machines they
interact with, in return for a more efficient cooperation. Opaque bots are still more ethically challenging
than blind hiring, though. In the case of blind hiring, the pursuit of efficiency comes together with the
pursuit of fairness: there is no salient conflict of ethical values. In the case of opaque bots, the pursuit of
efficiency through non-transparency may well conflict with other values, such as respect and dignity. Our
results highlight the need to reflect on the efficiency cost we are willing to pay in order to uphold these
values in our interactions with machines.
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