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1 Introduction

Explquer le concept d eq
Faire un catalogue des dependances possibles, expliquer la congestion, les

interactions etc....
Dire ce qu on fait et ce qu on a fait dans l autre article: potential games
QQS notations et hypotheses. Throughout the paper both the type space

X and the strategy space Y will be assumed to be compact metric spaces.

Throughout the paper, the type space X and the action space Y will be
assumed to be compact metric spaces. Given a Borel probability measures
m on X (which we shall simply denote m ∈ P(X)) and T a Borel map: X →
Y , the pushforward (or image measure) of m through T , is the probability
measure T#m on Y defined by T#m(B) = m(T−1(B)) for every Borel subset
B of Y . The canonical projections on X × Y will be denoted πX and πY

respectively. For m1 ∈ P(X) and m2 ∈ P(Y ), we shall denote by Π(m1, m2)
the set of measures γ ∈ P(X × Y ) having m1 and m2 as marginals i.e. such
that πX#γ = m1 and πY #γ = m2.
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2 The regular case

In this section, we first recall the existence of Cournot-Nash in a regular
setting in which one can easily apply a fixed-point argument to derive an
existence result. What follows is essentially due to Mas-Colell [9], we give a
short proof for the sake of completeness. Throughout this section, we suppose
here for every ν ∈ P(Y ), C(., ., [ν]) is continuous on X × Y and that

ν 7→ C(., ., [ν]) is a continuous map from (P(Y ), w − ∗) to (C(X × Y ), ‖ · ‖∞)
(2.1)

where w−∗ stands for the weak-* topology on P(Y ). In this setting, Cournot-
Nash equilibria are naturally defined as:

Definition 2.1. A Cournot-Nash then consists of a joint probability measure
γ ∈ P(X × Y ) whose first marginal is the fixed measure µ ∈ P(X) and such
that, denoting by ν its second marginal we have

γ
(

{(x, y) ∈ X × Y : C(x, y, [ν]) = min
z∈Y

C(x, z, [ν])}
)

= 1 (2.2)

Theorem 2.2. Assume that X and Y are compact metric spaces and that
(2.1) holds then there exists at least one Cournot-Nash equilibrium.

Proof. Let
K := {γ ∈ P(X × Y ) : πX#γ = µ}.

Obviously, K is a convex and weakly-∗ compact subset of P(X × Y ). Then
define for every γ = µ ⊗ γx ∈ K

F (γ) := {µ ⊗ ηx : ηx ∈ P(Yγ(x))}

where Yγ(x) denotes the closed set

Yγ(x) := argminy∈Y C(x, y, [ν]) with ν := πY #γ.

Note that, for γ in K, setting ν := πY #γ, and

ϕν(x) := min
z∈Y

C(x, z, [ν])

(so that ϕν is continuous) F (γ) can also be expressed as

F (γ) =

{

θ ∈ K :

∫

X×Y

(

C(x, y, [ν]) − ϕν(x)
)

dθ(x, y) = 0

}

.

Hence, F is clearly a (weak-∗) closed and convex valued set-valued map
K ⇉ K. Let us now prove that F has a (weak-∗) closed graph, since the
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weak star topology is metrizable, it is enough to deal with a sequence (γn, θn)
such that γn ∈ K, θn ∈ F (γn), γn weakly ∗ converges to some γ and θn weakly
∗ converges to some θ in K. Setting ν := πY #γ and νn := πY #γn, νn weakly
∗ converges to ν. So, thanks to (2.1), C(., ., [νn]) uniformly converges to
C(., ., .[ν]), ϕνn

uniformly converges to ϕν , we may therefore pass to the limit
in

∫

X×Y

(

C(x, y, [νn]) − ϕνn
(x)

)

dθn(x, y) = 0

to deduce that θ ∈ F (γ). It thus follows from Ky Fan’s theorem that F

admits a fixed-point γ, defining ν := πY #γ, it is then easy to see that (γ, ν)
is an equilibrium.

The previous result is not fully satisfactory. First, the regularity assump-
tion (2.1) is very demanding since it rules out purely local effects (congestion
for instance), there are some extensions to a less regular setting (see e.g. [5])
but to the best of our knowledge all these extensions require some form of
lower semicontinuity so that none of them enables one to cope with a local
dependence in the cost. Another drawback of an abstract proof relying on
a fixed-point theorem is that it is nonconstructive and we’d actually like to
say more on uniqueness and charcaterization of equilibria....

3 The separable case

Our aim now is to consider costs (x, y, ν) 7→ C(x, y, [ν]) with a possible local
dependence that is a dependence in ν(y), in such a case ν has to be absolutely
continuous with respect to some fixed reference measure m0 on the action
space Y and ν(y) has to be understood as the value of the Radon-Nikodym
derivative of ν with respect to m0 at y. This is motivated by congestion
i.e. the fact that more frequently played strategies may be more costly and
a natural way to take the congestion effect is to consider a term of the
form f(y, ν(y)) where f(y, .) is increasing in the total cost C. As soon as
one incorporates local congestion effects, assumption (2.1) is violated and to
make the problem still reasonably tractable, we shall now restrict ourselves
to the separable case where

C(x, y, [ν]) = c(x, y) + V [ν](y) (3.1)

where c ∈ C(X × Y ) is a transport (or matching) cost depending only on
the agent type and her strategy, whereas the function V [ν] (which may be
defined only m0-a.e. and only for ν’s that are absolutely continuous with
respect to m0 in the case of a congestion effect) captures an additional cost
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created by the whole population of players. The typical case we have in mind
is

V [ν](y) := f(y, ν(y)) + W [ν](y) (3.2)

where the first term is a congestion cost (again one has to understand ν as its
density), f is nondecreasing in its second argument (congestion) and W [ν] is
regular in the sense that that W [ν] ∈ C(Y ) for every ν ∈ P(Y ) with

ν 7→ W [ν] is a continuous map from (P(Y ), w − ∗) to (C(Y ), ‖ · ‖∞).
(3.3)

Typical regular costs are those given by averages i.e. W [ν](y) =
∫

Y
φ(y, z)dν(z)

where φ is continuous. Of course if the congestion cost f is zero, we are left
to the regular (in the sense of the previous paragraph) and separable case.
Taking the strategy distribution ν as given, an agent of type x therefore aims
to minimize in y the cost c(x, y) + V [ν](y), since the latter need not be a
continuous or even lower semicontinuous, the definition of an equilibrium has
to be modified as follows. First, when V [ν] is regular (in the sense of (3.3)
i.e. when f ≡ 0) let us set D := P(Y ), in the congested case where some
reference measure m0 ∈ P(Y ) is fixed according to which the congestion is
measured and V [ν] is of the form (3.2), we define the domain:

D := {ν ∈ L1(m0) :

∫

Y

f(y, ν(y))dm0(y) < +∞}. (3.4)

Note that when f satisfies the power growth condition:

1

C
(tα − 1) ≤ f(y, t) ≤ C(tα + 1) (3.5)

for some α > 0 and C > 0 and every (y, t) then D = Lp(m0) for p = 1 + α.
As before a Cournot-Nash is a joint type-strategy probability measure γ that
is consistent with the cost minimizing behavior of agents, in ou setting, this
leads to the defi

Definition 3.1. γ ∈ P(X × Y ) is a Cournot-Nash equilibria if its first
marginal is µ, its second marginal, ν, belongs to D and there exists ϕ ∈ C(X)
such that

c(x, y) + V [ν](y) ≥ ϕ(x) for µ ⊗ m0-a.e. (x, y) with equality γ-a.e.. (3.6)

A Cournot-Nash equilibrium (γ, ν) is called pure if it is of the form γ =
(id, T )#µ for some Borel map T : X → Y (that is agents with the same type
use the same strategy).
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As noted in [3], in the separable case, Cournot-Nash are very much related
to optimal transport. More precisely, for ν ∈ P(Y ), let Π(µ, ν) denote the
set of probability measures on X × Y having µ and ν as marginals and let
Wc(µ, ν) be the least cost of transporting µ to ν for the cost c i.e. the value
of the Monge-Kantorovich optimal transport problem:

Wc(µ, ν) := inf
γ∈Π(µ,ν)

∫∫

X×Y

c(x, y) dγ(x, y).

It is obvious that the optimal transport problem above admits solutions since
the admissible set is convex and weakly-∗ compact. Let us then denote by
Πo(µ, ν) the set of optimal transport plans i.e.

Πo(µ, ν) := {γ ∈ Π(µ, ν) :

∫∫

X×Y

c(x, y) dγ(x, y) = Wc(µ, ν)}.

The link between Cournot-Nash equilibria and optimal transport is based
on the following straightforward observation: if γ is a Cournot-Nash equi-
librium and ν denotes its second marginal then γ ∈ Πo(µ, ν). Indeed, if
ϕ ∈ C(X) is such that (3.6) holds and if η ∈ Π(µ, ν) then we have

∫∫

X×Y

c(x, y) dη(x, y) ≥

∫∫

X×Y

(ϕ(x) − V [ν](y)) dη(x, y)

=

∫

X

ϕ(x) dµ(x) −

∫

Y

V [ν](y) dν(y) =

∫∫

X×Y

c(x, y) dγ(x, y)

so that γ ∈ Πo(µ, ν).
The previous proof also shows that ϕ solves the dual of Wc(µ, ν) i.e.

maximizes the functional
∫

X

ϕ(x) dµ(x) +

∫

Y

ϕc(y) dν(y)

where ϕc denotes the c-transform of ϕ i.e.

ϕc(y) := min
x∈X

{c(x, y) − ϕ(x)} (3.7)

In an euclidean setting, there are well-known conditions on c (the so-
called generalized Spence-Mirrlees condition, see [4]) and µ which guarantee
that such an optimal γ necessarily is pure whatever ν is:

Corollary 3.2. Assume that X = Ω where Ω is some open connected bounded
subset of R

d with negligible boundary, that µ is absolutely continuous with
respect to the Lebesgue measure, that c is differentiable with respect to its
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first argument, that ∇xc is continuous on R
d × Y and that it satisfies the

twist condition:

for every x ∈ X, the map y ∈ Y 7→ ∇xc(x, y) is injective,

then for every ν ∈ P(Y ), Π0(µ, ν) consists of a single element and the latter
is of the form γ = (id, T )#µ hence every Cournot-Nash equilibrium is pure
(and actually fully determined by its second marginal).

In dimension 1, the condition above on c roughly amounts to the usual
Spence-Mirrlees singe-crossing condition i.e. the strict monotonicity in y of
∂xc or the following condition on the mixed partial derivative

∂2
xyc has constant sign .

4 Uniqueness under monotonicity

In the framework of Mean-Field Games, Lions and Lasry [7] established that
some simple monotonicity property of ν 7→ V [ν] is enough to guarantee
uniqueness of the equilibrium. A simple adaptation of their argument gives
the elementary uniqueness result:

Theorem 4.1. If ν 7→ V [ν] is strictly monotone in the sense that for every
ν1 and ν2 in P(Y ), one has

∫

Y

(V [ν1] − V [ν2])d(ν1 − ν2) ≥ 0

and the inequality is strict whenever ν1 6= ν2 (the fact that the previous
integral is well-defined is actually part of the assumption: it holds for instance
whenever V [ν] is a continuous function for every ν or when Y is finite,
or when V [ν] is local and some restrictions are imposed on ν....) then all
equilibria have the same second marginal.

Proof. Assume that (ν1, γ1) and (ν2, γ2) are two equilibria, and let ϕ1, ϕ2 in
C(X) such that

V [νi](y) ≥ ϕi(x) − c(x, y), i = 1, 2,

on X × Y (in the case of definition 2.1) or for every x and m0-a.e. y (in the
case of definition 3.1) with an equality γi-a.e.. Integrating with respect to γi

and using the fact that γi ∈ Π(µ, νi), we get
∫

Y

V [νi]dνi =

∫

X

ϕidµ −

∫

X×Y

cdγi, i = 1, 2
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whereas for i 6= j
∫

Y

V [νi]dνj ≥

∫

X

ϕidµ −

∫

X×Y

cdγj

substracting, we get
∫

Y
V [ν1]d(ν1−ν2) ≤

∫

X×Y
cd(γ2−γ1) and

∫

Y
V [ν2]d(ν2−

ν1) ≤
∫

X×Y
cd(γ1−γ2), the monotonicity assumption thus allows us to prove

that ν1 = ν2.

Typical example of strictly monotone maps are given by purely local con-
gestion terms V [ν](y) = f(y, ν(y)) with f increasing in its second argument.
On the contrary, typical regular nonlocal terms are not monotone. Let us
give however an example where the congestion effect dominates the nonocal
interaction term, consider

V [ν](y) := ν(y) +

∫

Y

φ(y, z)ν(z)dz

(so that D = L2(m0)) then if
∫

Y ×Y

φ2(y, z)m0(dy)m0(dz) < 1

as a simple application of Cauchy-Schwarz inequality, we have
∫

Y

(V [ν1] − V [ν2])d(ν1 − ν2) ≥ ‖ν1 − ν2‖
2
L2(m0)(1 − ‖φ‖2

L2(m0⊗m0)
),

so that our uniqueness result applies.

5 Equilibria by best-reply iteration

In this section, we adopt a direct approach when c is quadratic and V [ν]
satisfies some suitable convexity condition which makes solving type x agents
program, given ν, more explicit by a first-order condition. Throughout this
paragraph, we will assume that X = Ω, Y = U , where Ω and U are some
open bounded convex subsets of R

d, that the cost is quadratic:

c(x, y) :=
1

2
|x − y|2, ∀(x, y) ∈ R

d × R
d

that µ is absolutely continuous with respect to the Lebesgue measure on X

and has a bounded density, that V [ν] is a smooth and convex function for
every ν ∈ P(Y ), which is the case if V [ν] has the form

V [ν](y) :=

∫

φ(y, z)dν(z)
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with φ smooth and convex with respect to its first argument. We also assume
that for every ν ∈ P(Y ) and every x ∈ X, the solution of

inf
y∈Y

{
1

2
|x − y|2 + V [ν](y)} (5.1)

belongs to U (which is the case as soon as V [ν] fulfills some coercivity as-
sumption and U is chosen large enough). In this case the solution of (5.1) is
obtained by a first-order condition which gives

y = (Id + ∇V [ν])−1(x).

The resolvent operator (Id + ∇V [ν))−1 is a very natural operator in convex
analysis where it is known as the proximal operator of V [ν]. If agents have a
prior ν on the other agents actions, their cost-minimizing behavior leads to
another a posteriori measure on the action space Y , namely

Tν := (Id + ∇V [ν])−1
# µ. (5.2)

One easily checks that (γ, ν) is an equilibrium if and only if ν = Tν and
γ = (Id, (Id + ∇V [ν])−1)#µ is the optimal transport plan between µ and ν

for the quadratic cost. Finding an equilibrium thus amounts to finding a
fixed point of T and we shall see some additional conditions that ensure that
T is a contraction of P(Y ) endowed with the 1-Wasserstein distance W1 (we
refer to Villani’s textbooks [10], [11] for more on Wasserstein distances):

W1(ν1, ν2) := inf
η∈Π(ν1,ν2)

∫

Y ×Y

|y1 − y2|dη(y1, y2)

Since (P(Y ), W1) is a complete metric space, these conditions will there-
fore imply the existence and the uniqueness of an equilibrium (and more
importantly, from a numerical point, this equilibrium can be approximated
by the iterates of T applied to any ν0 ∈ P(Y )). Our additional assump-
tions read as : there exists λ > 0, C ≥ 0 and M > 0 such that for every
(ν1, ν2) ∈ P(Y ) ×P(Y ) the following inequalities hold

D2V [ν1] ≥ λId on X (5.3)

det(Id + D2V [ν1]) ≤ M on X (5.4)
∫

Y

|∇V [ν1](y) −∇V [ν2](y)|dy ≤ CW1(ν1, ν2) (5.5)
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Theorem 5.1. Under the assumptions of this section, if (5.3), (5.4) and
(5.5) hold and if

MC‖µ‖L∞ < 1 + λ (5.6)

then the map T defined by (5.2) is contraction of (P(Y ), W1). There ex-
ists therefore a unique equilibrium (γ, ν) = ((Id, (Id + ∇V [ν])−1)#µ, (Id +
∇V [ν])−1)#µ) and for every ν0 ∈ P(Y ), the sequence T nν0 converges to ν in
the distance W1 (that is for the weak-∗ topology).

Proof. Let ν1, ν2 ∈ P(Y )×P(Y ), since ((Id+∇V [ν1])
−1, (Id+∇V [ν2])

−1)#µ

belongs to Π(Tν1, T ν2), we first have

W1(Tν1, T ν2) ≤

∫

X

|(Id + ∇V [ν1])
−1 − (Id + ∇V [ν2])

−1|dµ. (5.7)

Now let x ∈ X and yi := (Id + ∇V [νi])
−1(x), we then write

y1 − y2 = ∇V [ν2](y2) −∇V [ν1](y1)

= ∇V [ν1](y2) −∇V [ν1](y1) + (∇V [ν2] −∇V [ν1])(y2)

taking the inner product with y1 − y2 and using (5.3) (recalling that D2f ≥
λId ⇒ (∇f(y1) −∇f(y2)) · (y1 − y2) ≥ λ|y1 − y2|

2), we get

|y1 − y2|
2 = (y1 − y2) · (V [ν1](y2) −∇V [ν1](y1) + (∇V [ν2] −∇V [ν1])(y2))

≤ −λ|y1 − y2|
2 + |y1 − y2||∇(V [ν2] −∇V [ν1])(y2)|

so that

|((Id + ∇V [ν1])
−1 − (Id + ∇V [ν2])

−1)(x)| = |y1 − y2|

≤
1

1 + λ
|(∇V [ν2] −∇V [ν1])(y2)|

=
1

1 + λ
|(∇V [ν2] −∇V [ν1]) ◦ (Id + ∇V [ν2])

−1(x)|.

Recalling (5.7) and using the fact that (Id +∇V [ν2])
−1
# µ = Tν2, we then get

W1(Tν1, T ν2) ≤
1

1 + λ

∫

Y

|∇V [ν2] −∇V [ν1]|dTν2. (5.8)

Now it follows from the fact that (Id + ∇V [ν2])#Tν2 = µ, the injectivity
of Id + ∇V [ν2] and the change of variables formula that Tν2 has a density
with respect to the Lebesgue measure (again denoted Tν2) for y ∈ (Id +
∇V [ν2])

−1(X) given by

Tν2(y) = µ(y + ∇V [ν2](y)) det(Id + D2V [ν2](y)).
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Finally, using (5.8)-(5.4) and (5.5), we obtain

W1(Tν1, T ν2) ≤
‖µ‖L∞M

1 + λ

∫

Y

|∇V [ν2](y) −∇V [ν1](y)|dy

≤
‖µ‖L∞MC

1 + λ
W1(ν1, ν2)

the conclusion thus follows from assumption (5.6) and Banach’s fixed point
theorem.

It may seem difficult at first glance to check the assumptions of theorem
5.1 we therefore now give a class of examples. Namely, we consider the case
where

V [ν](y) = V0(y) + ε

∫

Y

φ(y, z)dν(z) (5.9)

where ε > 0 is a scalar parameter (capturing the size of interaction, say), V0

is a smooth and convex function such that D2V0 ≥ λ0Id on Y with λ0 > 0
and φ is C2 on R

d × R
d.

Corollary 5.2. Assume that ν 7→ V [ν] has the form (5.9) and that the
previous assumptions are satisfied, then for ε small enough, the map T defined
by (5.2) satisfies (5.3)- (5.4)- (5.5)- (5.6) and there is a unique equilibrium.

Proof. Let Λ0 ≥ λ0 be such that D2V0 ≤ Λ0Id on Y , then (5.3) and (5.4)
hold respectively with λ = λ0 + O(ε) and M = (1 + Λ0 + O(ε))d. As far
as (5.5) is concerned, we recall the Kantorovich duality formula for W1 (see
[10], [11] for details):

W1(ν1, ν2) := sup

{
∫

Y

ud(ν1 − ν2) : u 1-Lipschitz

}

.

Hence, for any Lipschitz continuous function u on Y and any pair of probabil-
ity measures m1, m2 on Y one has |

∫

Y
ud(m1−m2)| ≤ Lip(u, Y )W1(m1, m2)

where Lip(u, Y ) denotes the Lipschitz constant of u on Y . Since for (ν1, ν2) ∈
P(Y ) × P(Y ) and y ∈ Y we have

∇V [ν1](y) −∇V [ν2](y) = ε

∫

Y

∇yφ(y, z)d(ν1 − ν2)(z)

and since φ is C2, ∇yφ is locally Lipschitz, so that we obtain
∫

Y

|∇V [ν2](y) −∇V [ν1](y)|dy ≤ ε
(

∫

Y

Lip(∇yφ(y, .)dy
)

W1(ν1, ν2)

so that (5.5) holds with C = O(ε) and thus (5.6) is satisfied for small enough
ε.
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Figure 1: Convergence to the equilibrium in the case ε = 10−2, V0(x) = 0.5(x −
0.2)2, φ(z) = 0.25z4, µ consists of two bumps summetric with respect to 0.5 and
the initial guess ν0 is a truncated parabola with support [0, 1]. The figure on the
left shows the iterates for the density νk, and the figure on the right shows the
coresponding cumulative functions, convergence is very fast, the equilibrium has
a shape that is similar to that of µ, it is slightly shifted to the left (because of V0)
and more concentrated (because of the interaction term).
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Figure 2: Same as before but with larger interaction factor, namely ε = 1, result-
ing in a more concentrated equilibrium configuration.

6 Combining a variational approach with a

fixed point argument

6.1 Variational approach

In [3], we obtained Cournot-Nash equilibria by a variational approach related
to optimal transport. As already recalled in paragraph 3, under the separable
form (3.1), if γ is a Cournot-Nash equilibrium and ν denotes its second
marginal then γ ∈ Πo(µ, ν) i.e. it solves the optimal transport problem:

Wc(µ, ν) := inf
γ∈Π(µ,ν)

∫

X×Y

c(x, y)dγ(x, y). (6.1)
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If, in addition, externalities take the typical form

V [ν](y) = f(y, ν(y)) + W [ν](y), W [ν](y) =

∫

Y

φ(y, z)dν(z)

with f(y, .) increasing (congestion) satisfying the growth condition (3.5) and
φ is continuous and symmetric i.e. φ(y, z) = φ(z, y), then we can associate
to V [ν] the functional

E[ν] =

∫

Y

F (y, ν(y))dm0(y) +
1

2

∫∫

Y ×Y

φ(y, z) dν(y) dν(z).

In this setting, V is the first variation of E, V [ν] = δE
δν

in the sense that
for every (ρ, ν) ∈ D2, one has

lim
ε→0+

E[(1 − ε)ν + ερ] − E[ν]

ε
=

∫

Y

V [ν] d(ρ − ν).

It is therefore natural to consider the variational problem

inf
ν∈D

Jµ[ν] where Jµ[ν] := Wc(µ, ν) + E[ν]. (6.2)

It is not hard to check that the first-order optimality condition for (6.2)
actually gives Cournot-Nash and the assumptions above easily guarantee the
existence of a minimizer, we thus have (see [3]):

Theorem 6.1 (Minimizers are equilibria). Assume that X = Ω where Ω is
some open bounded connected subset of R

d with negligible boundary, that µ

is equivalent to the Lebesgue measure on X (that is both measures have the
same negligible sets) and that for every y ∈ Y , c(., y) is differentiable with
∇xc bounded on X × Y . If ν solves (6.2) and γ solves Wc(µ, ν) then γ is a
Cournot-Nash equilibrium. In particular there exist CNE.

In other words, the situation described above may be related to poten-
tial games. The main drawback of the previous result lies in the symmetry
assumption for the interaction term. Symmetry is essential for V to have a
potential but assuming symmetry is not particularly realistic, we shall see
in the next paragraph how to cope with more general nonsymmetric interac-
tions.

6.2 Existence for nonsymmetric interactions

We now assume that V [ν] is the sum of a local congestion term and of a
regular term:

V [ν](y) := f(y, ν(y)) + W [ν](y) (6.3)
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where f(y, .) is increasing, satisfies the power growth condition:

1

C
(tα − 1) ≤ f(y, t) ≤ C(tα + 1) (6.4)

for some α > 0 and C > 0 and every (y, t) and that W [ν] ∈ C(Y ) for every
ν ∈ P(Y ) with

ν 7→ W [ν] is a continuous map from (P(Y ), w − ∗) to (C(Y ), ‖ · ‖∞) (6.5)

This framework covers the case of a general (pairwise) interaction term

W [ν](y) :=

∫

Y

φ(y, z)dν(z)

or more generally

W [ν](y) :=

∫

Y

φ(y, z1, · · · , zn)dν(z1) · · · dν(zn)

with an arbitrary continuous φ whereas the variational approach of [3] re-
quires φ to be symmetric.

We then have

Theorem 6.2. In addition to the assumptions of theorem 6.1, assume that
V [ν] is of the form (6.3) with f satisfying (6.2) and W satisfying (6.5) then
there exists at least one Cournot-Nash equilibrium.

Proof. Let p = α + 1, K be the set of Lp probability densities, for ν ∈ K let
us consider the minimization problem

inf
θ∈K

Wc(µ, θ) +

∫

F (y, θ(y))dy +

∫

W [ν]dθ

where F (y, .) is a primitive of f(y, .). By standard lower semi-continuity
arguments, this problem possesses at least a solution that is in fact unique
by strict convexity of F (y, .) (and convexity of the other terms). Let us
denote by G(ν) this minimizer, it is easy to check that (6.5) implies that the
map G is continuous with respect to the weak topology of Lp and the growth
condition (6.2) implies that G(K) is bounded in Lp hence relatively compact
for the weak topology of Lp. Thanks to Schauder’s fixed point theorem, there
exists ν ∈ K such that ν = G(ν). Arguing as in [3], one easily sees that any
γ that solves Wc(µ, ν) actually is a Cournot-Nash equilibrium.

13



6.3 An ODE for equilibria in dimension one

We now consider the one-dimensional case where X = Y = [0, 1] (say), m0

is the Lebesgue measure on X, µ is equivalent to the Lebesgue measure and
the cost c is of class C2 and satisfies the Spence-Mirrlees condition:

∂2
xyc(x, y) > 0.

We again consider a separable total cost of the form c(x, y) + f(ν(y)) +
∫

Y
φ(y, z)ν(z)dm0(z) with f increasing and φ continuous (and not necessarily

symmetric). We just note that replacing the interaction term
∫

Y
φ(y, z)ν(z)dz

by a more general one like F (y,
∫

Y
φ(y, z1, . . . , zn)ν(z1)dm0(z1) . . . ν(zn)dm0(zn))

actually costs no generality for what follows. To fix ideas, we’ll take two cases
for the congestion cost f :

f(ν) = ν or f(ν) = log(ν).

As shown in [3], in the case f(ν) = log(ν), the Inada condition holds which
guarantees that ν is positive everywhere on [0, 1], this need not be the case
when f(ν) = ν (or other power functions, which can be considered as well).
Because of the Spence-Mirrlees condition, we know that equilibria are pure
i.e. if (γ, ν) is an equilibrium then γ = (id, T )#µ for some map T which is the
optimal transport between µ and ν. This map is well-known to be the unique
nondecreasing map which transports µ to ν (and it is easy to compute, once
ν is known by the formula T = F−1

ν ◦ Fµ where Fµ is the cdf of µ and F−1
ν

is the quantile function of ν). Finding an equilibrum (γ, ν) thus amounts
to find the transport map T which as we shall see is characterized by some
nonlinear and nonlocal ODE.

The equilibrium condition can be rewritten as

min
x∈[0,1]

{c(x, y) − ϕ(x)} + f(ν(y)) +

∫ 1

0

φ(y, z)ν(z)dz

= ϕc(y) + f(ν(y)) +

∫ 1

0

φ(y, z)ν(z)dz ≥ 0 (6.6)

with an equality for y = T (x) which is the point which realizes the minimum
above, i.e.

ϕ(x) = c(x, T (x)) − ϕc(T (x)) = min
y∈[0,1]

{c(x, y) − ϕ(y)}

the smoothness of c implies that ϕ is Lipschitz hence differentiable a.e, for a
point of differentiability of ϕ, the envelope theorem therefore gives

ϕ′(x) = ∂x(x, T (x)) hence ϕ(x) = ϕ(0) +

∫ x

0

∂xc(s, T (s))ds (6.7)
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Log Case

In the case f(ν) = log(ν), as already mentioned ν is positive everywhere
on [0, 1] so that T is increasing on [0, 1], T (0) = 0 and T (1) = 1 and using
(6.6)-(6.7) and the fact that T#µ = ν, we get

ν(T (x)) = exp
(

− ϕc(T (x)) −

∫ 1

0

φ(T (x), z)ν(z)dz
)

= exp
(

ϕ(x) − c(x, T (x)) −

∫ 1

0

φ(T (x), T (y))dµ(y)
)

= exp
(

ϕ(0) +

∫ x

0

∂xc(s, T (s))ds − c(x, T (x)) −

∫ 1

0

φ(T (x), T (y))dµ(y)
)

but the fact that T#µ = ν can be expressed as

µ(x) = ν(T (x))T ′(x) (6.8)

Replacing and setting C := e−ϕ(0) we find the following equation where only
T appears:

T ′(x) = Cµ(x) exp
(

−

∫ x

0

∂xc(s, T (s))ds+c(x, T (x))+

∫ 1

0

φ(T (x), T (y))dµ(y)
)

(6.9)
supplemented with the initial condition T (0) = 0 and since T (1) = 1 the
constant C is given by

1

C
=

∫ 1

0

exp
(

−

∫ x

0

∂xc(s, T (s))ds+c(x, T (x))+

∫ 1

0

φ(T (x), T (y))dµ(y)
)

µ(x)dx.

ITERATIVE SIMULATION ALGO (hope to find several equilibria):
Given Tk increasing with Tk(0) = 0, Tk(1) = 1, define

1

Ck

:=

∫ 1

0

exp
(

−

∫ x

0

∂xc(s, Tk(s))ds + c(x, Tk(x)) +

∫ 1

0

φ(Tk(x), Tk(y))dµ(y)
)

µ(x)dx,

Sk(x) := Ckµ(x) exp
(

−

∫ x

0

∂xc(s, Tk(s))ds + c(x, Tk(x)) +

∫ 1

0

φ(Tk(x), Tk(y))dµ(y)
)

,

Tk+1(x) :=

∫ x

0

Sk(s)ds

Linear case

Let us consider now the case where f(ν) = ν, the equilibrium condition

can then be written as ν(y)+ϕc(y)+
∫ 1

0
φ(y, z)ν(dz) ≥ λ (for some constant

λ) with an equality whenever ν(y) > 0 which can be rewritten as

ν(y) =
(

λ − ϕc(y) −

∫ 1

0

φ(y, z)ν(z)dz
)

+
.
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Since ν may vanish, T may be discontinuous and the situation is actually
more involved than in the log case (one cannot use an ODE for T but just
its integrated form Fν ◦ T = Fµ). Actually, it is better here to forget about
T and to look for the optimal transport between ν and µ (which may have
flat zones but is continuous) and is given by

S = F−1
µ ◦ Fν .

Normalizing ϕc(0) = 0 (actually the integration constant is already in the λ

above), we then have as before

ϕc(y) =

∫ y

0

∂yc(S(s), s))ds.

ITERATIVE SIMULATION ALGO (hope to find several equilibria):
Start with a probability density νk on [0, 1], then do:

• Compute the optimal transport between νk and µ:

Sk = F−1
µ ◦ Fνk

,

• compute the Kantorovich potential ϕc
k by

ϕc
k(y) =

∫ y

0

∂yc(Sk(s), s)ds,

• Compute the new density νk+1 by

νk+1(y) =
(

λk − ϕc
k(y) −

∫ 1

0

φ(y, z)νk(z)dz
)

+
,

where λk is such that the function above has total mass 1 (this is just
finding the root of a monotone function...).
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