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Abstract

The main goal of this paper is to study the nature of the support of the solution of suitable
nonlinear Schrödinger equations, mainly the compactness of the support and its spatial localiza-
tion. This question touches the very foundations underlying the derivation of the Schrödinger
equation, since it is well-known a solution of a linear Schrödinger equation perturbed by a regular
potential never vanishes on a set of positive measure. A fact, which reflects the impossibility
of locating the particle. Here we shall prove that if the perturbation involves suitable singular
nonlinear terms then the support of the solution is a compact set, and so any estimate on its
spatial localization implies very rich information on places not accessible by the particle. Our
results are obtained by the application of certain energy methods which connect the compactness
of the support with the local vanishing of a suitable “energy function” which satisfies a nonlinear
differential inequality with an exponent less than one. The results improve and extend a previous
short presentation by the authors published in 2006.
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1 Introduction

This paper deals with the study of the following stationary nonlinear Schrödinger equation (SNLS)

with a complex singular potential

−i∆u+ a|u|−(1−m)u+ bu = F (x), in Ω. (1.1)

Here, Ω ⊆ RN is an open subset, 0 < m < 1, and (a, b) ∈ C2. The interest of the consideration of

this stationary problem is motivated not only in order to study the asymptotic states, when t −→∞,

of the solutions of the associated evolution problem but also by the study of the so called standing

waves of the evolution problem (1.2) below, with b ∈ iR in (1.1). Indeed, choosing arbitrarily b ∈ iR

in (1.1) and setting for any (t, x) ∈ R × Ω, ϕ(t, x) = u(x)ebt, if u is a solution to (1.1) then ϕ is a

solution to 
i
∂ϕ

∂t
+ ∆ϕ+ ia|ϕ|−(1−m)ϕ = iF (x)ebt, in R× Ω,

ϕ|∂Ω = 0, on R× ∂Ω,

ϕ(0) = u, in Ω.

(1.2)

The main goal of this paper is to study the nature of the support of the solution of (1.1): mainly

its compactness and localization. Let us mention that, in our opinion, this question touches the very

foundations of the derivation of the Schrödinger equation. Indeed, one of the main modifications

introduced by Quantum Mechanics, with respect Classical Mechanics, is the impossibility to localize

the state (position and velocity) of a particle. The solution u(t, x) is related to the probability of

finding the position and momentum of particle (see, e.g. the presentation made in the text book

by Strauss [24]. It is well-known that in most of the different versions of the Schrödinger equations

2



the corresponding solution never vanishes on a subset positive measure of the domain, which reflects

the impossibility of localizing the particle as mentioned above. This is the case, for instance, in case

of the linear Schrödinger equation and also for some nonlinear versions where the linear equation is

perturbed by a nonlinear regular potential (see, for instance, the monographs of Sulem and Sulem [25]

and Cazenave [9]).

The main goal of this work is to show that if the linear Schrödinger equation is perturbed with suit-

able singular nonlinear potentials, then the support of the solution becomes a compact set and so any

estimate on its spatial localization implies very rich information on places which can not be occupied

by the particle.

We point out that complex potentials with certain types of singularities arise in many different situa-

tions (see, for instance, in Brezis and Kato [7], LeMesurier [19] and Liskevitch and Stollmann [22], and

the references therein). We also refer the reader to the survey Belmonte-Beitia [6] in which the author

supplying many references to this type of equation and many other contexts such as: semiconductors,

nonlinear optics, Bose-Einstein condensation, plasma physics, molecular dynamics. Special mention

is paid in this paper to the so-called Gross-Pitaevskii (corresponding to b 6= 0).

In this paper, we improve some of our previous results, outlined briefly in Bégout and Dı́az [4]. More-

over, we include here new estimates and generalizations. We are aware of very few other results

in the literature dealing with the support of solutions of nonlinear Schrödinger equations. For in-

stance, Rosenau and Schochet [23] propose a (one-dimensional) quasilinear Schrödinger equation in

order to get solutions with compact support for each t fixed. That equation and the techniques used

in that paper are very different from the ones in the present work. Analogously, in a paper dated

from 2008 ([18]), Kashdan and Rosenau consider the question of the existence (with some numerical

experiments) of some special solutions: an one-dimensional travelling wave solution of soliton type

u(t, x) = A(x − λt) exp
(
i(`(x − λt) + ωt)

)
, for the special case of a = iγ (in problem (1.2)) and

m ∈ (0, 1). They also consider the two-dimensional case (now with changing propagation directions).

A nonlinear term (of cubic type) is added in their equation. Those interesting results are independent

of our study which also applies in the presence of some additional nonlinear terms as in the above

mentioned reference.

A more restricted point of view was taken in the paper by Carles and Gallo [8] where the authors

prove finite time stabilization for a linear Schrödinger equations perturbed with a suitable singular

nonlinear potential. In their setting, they also prove some kind of compactness of the support of the

solution by means of a different energy method, but in their case the compactness occurs merely in
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time and not in the spatial coordinates.

We also point out that different propagation effects have been intensively studied in the literature, but

most of them are related to singularities, spectral and other properties (see, for instance, Jensen [17]).

The question of the compactness of the support considered here is of very different nature.

In order to present our results, we shall start by indicating some very special cases which are conse-

quences of more technical results stated later (see Theorem 2.1 below).

Theorem 1.1. Let 0 < m < 1, let a ∈ R\{0} and let b ∈ R, b > 0. Let F ∈ L
m+1
m (RN ) with compact

support. Then there exists a unique weak solution u ∈ H1(RN ) ∩ Lm+1(RN ) (see Definition 2.3

below) of the problem

−i∆u+ a|u|−(1−m)u+ ibu = F (x), in RN .

In addition, u is compactly supported.

Theorem 1.2. Let Ω ⊆ RN be a nonempty open subset, let 0 < m < 1, let a ∈ R \ {0} and let b ∈ R,

b > 0. Let F ∈ L
m+1
m (Ω) with compact support. Assume that F is small enough in L

m+1
m (Ω). Then

there exists a unique weak solution u ∈H1
0 (Ω) ∩Lm+1(Ω) (see Definition 2.3 below) of the problem−i∆u+ a|u|−(1−m)u+ ibu = F (x), in Ω,

u|∂Ω = 0, on ∂Ω.

In addition, u is compactly supported in Ω.

We emphasize that no sign assumption has been made on a in the precedent statements. Much more

general versions of our results are presented in the next section where we also include a detailed

explanation of the notations used in this paper.

2 Notations and general versions of the main results

Before stating our main results we shall indicate here some of the notations used throughout. Bold

symbols are used for complex mathematics objets. For a real number r, r+ = max{0, r} is the positive

part of r. We write i2 = −1. We denote by z the conjugate of the complex number z, by Re(z) its real

part and by Im(z) its imaginary part. For 1 6 p 6∞, p′ is the conjugate of p defined by 1
p + 1

p′ = 1.

Let j, k ∈ Z with j < k. We then write [[j, k]] = [j, k] ∩ Z. We denote by ∂Ω the boundary of a

nonempty subset Ω ⊆ RN , Ω its closure, Ωc = RN \ Ω its complement and ω b Ω means that ω ⊂ Ω

and that ω is a compact subset of RN . For an open subset Ω ⊆ RN , the usual Lebesgue and Sobolev

spaces are respectively denoted by Lp(Ω) = Lp(Ω;C) and Wm,p(Ω) = Wm,p(Ω;C) (1 6 p 6 ∞

4



and m ∈ N), Hm(Ω) = Wm,2(Ω;C), Hm
0 (Ω) = Wm,2

0 (Ω;C) is the closure of D(Ω) = D(Ω;C)

under the Hm-norm, and H−m(Ω) is its topological dual. H1
c (Ω) =

{
u ∈H1(Ω); suppu b Ω

}
.

C(Ω) = C0(Ω) = C(Ω;C) = C0(Ω;C) is the space of continuous functions from Ω to C. For k ∈ N,

Ck(Ω) = Ck(Ω;C) is the space of functions lying in C(Ω;C) and having all derivatives of order lesser

or equal than k belonging to C(Ω;C). For 0 < α 6 1 and k ∈ N0
def
= N∪{0}, Ck,αloc (Ω) = Ck,αloc (Ω;C) ={

u ∈ Ck(Ω;C);∀ω b Ω,
∑
|β|=k

Hα
ω (Dβu) < +∞

}
, where Hα

ω (u) = sup{
(x,y)∈ω2

x6=y

|u(x)−u(y)|
|x−y|α . The Lapla-

cian in Ω is written ∆ =
N∑
j=1

∂2

∂x2
j
. For a functional space E ⊂ L1

loc(Ω;C), we denote by Erad the

space of functions f ∈ E such that f is spherically symmetric. For a Banach space E, we denote by

E? its topological dual and by 〈 . , . 〉E?,E ∈ R the E? − E duality product. In particular, for any

T ∈ Lp′(Ω) and ϕ ∈ Lp(Ω) with 1 6 p < ∞, 〈T ,ϕ〉
Lp′ (Ω),Lp(Ω)

= Re
∫
Ω

T (x)ϕ(x)dx. For x0 ∈ RN

and r > 0, we denote by B(x0, r) = {x ∈ RN ; |x − x0| < r} the open ball of RN of center x0 and

radius r, by S(x0, r) = {x ∈ RN ; |x − x0| = r} its boundary and by B(x0, r) = B(x0, r) ∪ S(x0, r)

its closure. We also use the notation BΩ(x0, r) = Ω ∩ B(x0, r). As usual, we denote by C auxiliary

positive constants, and sometimes, for positive parameters a1, . . . , an, write C(a1, . . . , an) to indicate

that the constant C continuously depends only on a1, . . . , an (this convention also holds for constants

which are not denoted by “C”).

Let us return to equation (1.2). Note that no boundary condition is imposed since all the compact sup-

port results (which are due to Theorem 2.1 below) rest on the notion of local solution (Definition 2.3

below). If Ω 6= RN , boundary conditions are necessary for establishing existence and uniqueness of

global solutions of (1.1). For the purpose of clarity, we shall consider the Dirichlet case,

u|∂Ω = 0, on ∂Ω, (2.1)

rather than Neumann boundary condition, mixed boundary condition or another one. The choice of

the boundary condition is motivated by the integration by parts relation 〈∆u, v〉 = −〈∇u,∇v〉.

Compactness, existence and uniqueness results will follow from assumptions on (a, b) ∈ C2 stated

below. Define the following subsetsA = C \
{
z ∈ C; Re(z) = 0 and Im(z) 6 0

}
,

B = A ∪
{
0
}
.
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Existence assumption. Let (a, b) ∈ C2 satisfy

(a, b) ∈ A× B and


Re(a)Re(b) > 0,

or

Re(a)Re(b) < 0 and Im(b) >
Re(b)

Re(a)
Im(a).

(2.2)

Uniqueness assumption. Let (a, b) ∈ C2 satisfy

Im(a) > 0 and


a 6= 0 and Re(ab) > 0,

or

a = 0 and b ∈ B.

(2.3)

For a geometric explanation of these hypotheses, see Section 6. For (a, b) ∈ C2 satisfying (2.2), it will

be convenient to introduce the following constants. Let δ > 0 be an arbitrarily chosen parameter.

A(δ) =
|Re(a)|+ |Im(a)|+ δ

|Re(a)|
, if Re(a) 6= 0, (2.4)

B =
|Re(b)|+ |Im(b)|

|Re(b)|
, if Re(b) 6= 0, (2.5)

L =



δ, if Im(a) < 0 and Re(a)Re(b) > 0,

|Re(a)|, if Im(a) = 0, Im(b) > 0 and Re(a)Re(b) > 0,

Im(a) if Im(a) > 0 and Im(b) > 0,

Im(a)− Re(a)

Re(b)
Im(b), otherwise,

(2.6)

M =



max
{
A(δ), B

}
, if Im(a) < 0, Im(b) < 0 and Re(a)Re(b) > 0,

A(δ), if Im(a) < 0, Im(b) > 0 and Re(a)Re(b) > 0,

2 if Im(a) > 0, Im(b) > 0 and
(
Im(a) > 0 or Re(a)Re(b) > 0

)
,

B if
(
Im(a) > 0 and Im(b) < 0

)
or Re(a)Re(b) < 0.

(2.7)

Under hypothesis (2.2), one easily checks that A(δ), B, L and M are well defined and positive.

The parameter δ may seem very mysterious but, actually, it is not. In order to obtain the crucial

estimate (7.7), we apply Lemma 7.3 to (7.8) and (7.9). The hard case Im(a) < 0 can be treated in

the following way. If Re(a)Re(b) > 0 then we add the assumption Im(b) > Re(b)
Re(a) Im(a). But when

Re(a)Re(b) 6 0, if we do not want make an additional assumption on a and b, we have to introduce

a positive parameter δ in order to obtain a positive coefficient L = L(δ) in front of ‖u‖m+1

Lm+1(B(x0,ρ))
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(played by C2 in Lemma 7.3). If we do not introduce this parameter (that is, if we choose δ = 0)

then we get L = 0 in (7.7) and we loose the effect of the nonlinearity (see Cases 5 and 6 in the proof

of Lemma 7.3).

Numerical computations of stationary solutions are done in Bégout and Torri [5], while the evolution

case and self-similar solutions are studied in Bégout and Dı́az [2, 3], respectively. In this paper, we

prove the results stated in Bégout and Dı́az [4] and add some generalizations. This paper is concerned

with the propagation of the support of F to the solution u, and all these results are a consequence of

the following theorem.

Theorem 2.1. Let Ω ⊆ RN be a nonempty open subset, let 0 < m < 1, let (a, b) ∈ C2 satisfying (2.2),

let L > 0 be given by (2.6) and let M > 0 be given by (2.7). There exists C = C(N,m) > 0 satisfying

the following property. Let F ∈ L1
loc(Ω), let u ∈ H1

loc(Ω) be any local weak solution of (1.1) (see

Definition 2.3 below), let x0 ∈ Ω and let ρ0 > 0. If ρ0 > dist(x0, ∂Ω) then assume further that

u ∈H1
0 (Ω). If F |BΩ(x0,ρ0) ≡ 0 then u|BΩ(x0,ρmax) ≡ 0, where

ρνmax =

(
ρν0 − CM2 max

{
1,

1

L2

}
max

{
ρν−1

0 , 1
}

× min
τ∈(m+1

2 ,1]

{
E(ρ0)γ(τ) max{b(ρ0)µ(τ), b(ρ0)η(τ)}

2τ − (1 +m)

})
+

, (2.8)

and where for any τ ∈
(
m+1

2 , 1
]
,

E(ρ0) = ‖∇u‖2
L2(BΩ(x0,ρ0))

, b(ρ0) = ‖u‖m+1

Lm+1(BΩ(x0,ρ0))
, γ(τ) = 2τ−(1+m)

k ∈ (0, 1),

µ(τ) = 2(1−τ)
k , η(τ) = 1−m

1+m − γ(τ) > 0, k = 2(1 +m) +N(1−m),

ν = k
m+1 > 2.

Remark 2.2. If the solution is too “large”, it may happen that ρmax = 0 and so the above result is

not consistent. A sufficient condition to observe a localizing effect is that the solution is small enough,

in a suitable sense. We give two results in this direction. The first one (Theorem 3.3) pertains to

the size of the solution, while the second one is concerned with the size of the external source F

(Theorem 3.5), which seems to be more natural. In addition, Theorem 3.5 says where the support of

the solutions is localized with respect to the support of the external source F .

Now, we state the precise notion of solution.

Definition 2.3. Let Ω ⊆ RN be an open subset, let (a, b) ∈ C2, let 0 < m < 1 and let F ∈ L1
loc(Ω).

We say that u is a local weak solution of (1.1) if u ∈H1
loc(Ω) and if u is a solution of (1.1) in D ′(Ω),
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that is

〈−i∆u+ a|u|−(1−m)u+ bu,ϕ〉D′(Ω),D(Ω) = 〈F ,ϕ〉D′(Ω),D(Ω), (2.9)

for any ϕ ∈ D(Ω).

We say that u is a global weak solution of (1.1) and (2.1) if u is a local weak solution of (1.1) and if

furthermore u ∈H1
0 (Ω) ∩Lm+1(Ω).

Let z ∈ C \ {0}. Since
∣∣|z|−(1−m)z

∣∣ = |z|m, it is understood that
∣∣|z|−(1−m)z

∣∣ = 0 when z = 0.

Remark 2.4. Here are some comments about Definition 2.3.

1. For a global weak solution u of (1.1) and (2.1), the boundary condition u|∂Ω = 0 is included in

the assumption u ∈H1
0 (Ω). On the contrary, the notion of local weak solution does not consider

any boundary condition.

2. When u is a local weak solution of (1.1), we have ∇u ∈ L2
loc(Ω), a|u|−(1−m)u ∈ L

m+1
m

loc (Ω) and

bu ∈ L2
loc(Ω). Then ∆u ∈ L1

loc(Ω) and equation (1.1) makes sense in L1
loc(Ω). Furthermore,

L
m+1
m

loc (Ω) ⊂ L2
loc(Ω) and D(Ω) is dense in H1

c (Ω). It follows from Sobolev’s embedding that if

u is a local weak solution of (1.1) then

Re

∫
Ω

i∇u(x).∇ϕ(x)dx+ Re

∫
Ω

(
a|u(x)|−(1−m)u(x) + bu(x)

)
ϕ(x)dx

= Re

∫
Ω

F (x)ϕ(x)dx, (2.10)

for any ϕ ∈ H1
c (Ω) with either suppϕ ∩ suppF = ∅ or F ∈ L

p
p−1

loc (Ω), for some 1 6 p 6 ∞ if

N = 1, 1 6 p < ∞ if N = 2 or 1 6 p 6 2N
N−2 , if N > 3. For example, p = m + 1 is always an

admissible value.

3. In the same way, by density of D(Ω) in H1
0 (Ω)∩Lm+1(Ω)∩Lp(Ω), for any 1 6 p <∞, and in

H1
0 (Ω) ∩ Lm+1(Ω), if u is a global weak solution of (1.1) and (2.1) then (2.10) holds for any

ϕ ∈H1
0 (Ω) ∩ Lm+1(Ω) with either suppϕ ∩ suppF = ∅ or ϕ ∈ Lp(Ω) and F ∈ L

p
p−1 (Ω), for

some 1 6 p <∞. In particular, if p is as in 2. of this remark with additionally p > m+ 1, then

in view of H1
0 (Ω) ∩ Lm+1(Ω) ↪→ Lp(Ω), equation (1.1) makes sense in H−1(Ω) + L

m+1
m (Ω)

and (2.10) holds for any ϕ ∈H1
0 (Ω) ∩Lm+1(Ω).
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3 Spatial localization property

Theorem 3.1. Let Ω ⊆ RN be a nonempty open subset, let 0 < m < 1 and let (a, b) ∈ C2 satisfying

(2.2). Let F ∈ L
m+1
m (Ω), let u ∈ H1

loc(Ω) be any local weak solution of (1.1) (Definition 2.3), let

x0 ∈ Ω and let ρ1 > 0. If ρ1 > dist(x0, ∂Ω) then assume further that u ∈ H1
0 (Ω). Then there exist

E? > 0 and ε? > 0 satisfying the following property. Let ρ0 ∈ (0, ρ1). If ‖∇u‖2
L2(BΩ(x0,ρ1))

< E? and

∀ρ ∈ (0, ρ1), ‖F ‖
m+1
m

L
m+1
m (BΩ(x0,ρ))

6 ε?(ρ− ρ0)p+, (3.1)

where p = 2(1+m)+N(1−m)
1−m > N + 2, then u|BΩ(x0,ρ0) ≡ 0. In other words, with the notation of

Theorem 2.1, ρmax = ρ0.

Remark 3.2. We may estimate E? and ε? as

E? = E?

(
‖u‖−1

Lm+1(B(x0,ρ1))
, ρ1,

ρ0

ρ1
,
L

M
,N,m

)
,

ε? = ε?

(
‖u‖−1

Lm+1(B(x0,ρ1))
,
ρ0

ρ1
,
L

M
,N,m

)
,

where L > 0 and M > 0 are given by (2.4) and (2.7), respectively. The dependence on 1
δ means that

for any value δ small enough, E? and ε? are bounded from below.

Note that p = 1
γ(1) , where γ is the function defined in Theorem 2.1.

Theorem 3.3. Let Ω ⊆ RN be a nonempty open subset, let 0 < m < 1, let (a, b) ∈ C2 satisfying (2.2),

let L > 0 be given by (2.6) and let M > 0 be given by (2.7). There exists C = C(N,m) > 0

satisfying the following property. Let F ∈ L1
loc(Ω), let u ∈ H1

loc(Ω) be any local weak solution of

(1.1) (Definition 2.3), let x0 ∈ Ω and let ρ0 > 0. If 2ρ0 > dist(x0, ∂Ω) then assume further that

u ∈H1
0 (Ω). Finally, suppose F |BΩ(x0,2ρ0) ≡ 0, ‖u‖Lm+1(BΩ(x0,2ρ0)) 6 1 and one of the two estimates

(3.2) or (3.3) below is satisfied.

‖∇u‖
2(1−m)

k

L2(BΩ(x0,2ρ0))
6 C(2ν − 1)(1−m)M−2 min

{
1, L2

}
min

{
1

2
, ρ0

}ν−1

ρ0, (3.2)
‖∇u‖L2(BΩ(x0,2ρ0)) 6 1,

‖u‖
2s(m+1)

k

Lm+1(BΩ(x0,2ρ0))
6 C(2ν − 1)(1−m− 2s)M−2 min

{
1, L2

}
min

{
1

2
, ρ0

}ν−1

ρ0,
(3.3)

for some s ∈
(
0, 1−m

2

)
, where the constants k > ν > 2 are given in Theorem 2.1. Then u|BΩ(x0,ρ0) ≡ 0.

Remark 3.4. Note that in estimate (3.2), 2(1−m)
k = 2

p , where p > N + 2 is given in Theorem 3.1.
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Theorem 3.5. Let Ω ⊆ RN be a nonempty open subset, let 0 < m < 1, let (a, b) ∈ C2 satisfying

(2.2), let L > 0 be given by (2.6) and let M > 0 be given by (2.7). Then for any ε > 0, there

exists δ0 = δ0(ε,N,m,L,M) > 0 satisfying the following property. Let F ∈ L
m+1
m (Ω) and let u ∈

H1
0 (Ω) ∩Lm+1(Ω) be any global weak solution of (1.1) and (2.1). If suppF is a compact set and if

‖F ‖
L

m+1
m (Ω)

6 δ0 then suppu ⊂ Ω ∩ O(ε), where O(ε) is the open bounded set

O(ε) =
{
x ∈ RN ; ∃y ∈ suppF such that |x− y| < ε

}
.

In particular, if ε > 0 is small enough then suppu ⊂ O(ε) ⊂ Ω.

We see that localization effect occurs under some smallness condition, either on the solution u (The-

orem 3.3) or on the external source F (Theorem 3.5). When Ω = RN , the phenomenon is simpler

since localization effect is always observed, without any condition of the size, neither on the solution

nor on the external source, as show the following result.

Theorem 3.6. Let 0 < m < 1, let (a, b) ∈ C2 satisfying (2.2), let F ∈ Lp(RN ), for some 1 6 p 6∞,

and let u ∈ H1(RN ) ∩ Lm+1(RN ) be any global weak solution of (1.1). If suppF is a compact set

then suppu is also compact.

4 Existence and smoothness

In this section, we give an existence result of solutions for equation (1.1) (Theorem 4.1), some a

priori bounds for the solutions of equation (1.1) (Theorem 4.4), which will be useful to establish our

existence result, and a smoothness result for equation (1.1) (Proposition 4.5).

Theorem 4.1. Let Ω ⊆ RN be a nonempty open subset, let 0 < m < 1, let (a, b) ∈ C2 satisfying

(2.2) and let F ∈ L
m+1
m (Ω). Then equations (1.1) and (2.1) admits at least one global weak solution

u ∈ H1
0 (Ω) ∩ Lm+1(Ω). Furthermore, the following properties hold for any global weak solution u(

except Property 3)
)
.

1) u ∈W 2,m+1
m

loc (Ω).

2) Let α ∈ (0,m]. If F ∈ C0,α
loc (Ω) then u ∈ C2,α

loc (Ω).

3) If Ω =
{
x ∈ RN ; r < |x| < R

}
, for some −∞ < r 6 r+ < R 6 +∞, and if F is spheri-

cally symmetric then there exists a spherically symmetric global weak solution u ∈H1
0 (Ω) ∩

Lm+1(Ω) of (1.1) and (2.1). For N = 1, this means that if F is an even (respectively, an

odd) function on Ω = (−R,−r)∪(r,R) then u is also an even (respectively, an odd) function.
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Remark 4.2. Assume F is spherically symmetric. Since we do not know, in general, if we have

uniqueness of the solution, we are not able to show that any solution is radially symmetric. For a

uniqueness result, see Theorem 5.2 below.

Remark 4.3. Assume |Ω| <∞. There exists ε = ε(N) > 0 such that for any (a, b) ∈ C2, 0 < m < 1

and F ∈ L2(Ω), if |b||Ω| 2
N < ε then equations (1.1) and (2.1) admits at least one global weak solution

u ∈ H1
0 (Ω). In addition, u ∈ H2

loc(Ω). Finally, Properties 2) and 3) of Theorem 4.1 hold. For more

details, see Bégout and Torri [5].

Theorem 4.4. Let Ω ⊆ RN be a nonempty open subset, let 0 < m < 1, let (a, b) ∈ C2 satisfying

(2.2), let L > 0 be given by (2.6), let M > 0 be given by (2.7) and let F ∈ L
m+1
m (Ω). Let u ∈

H1
0 (Ω) ∩ Lm+1(Ω) be any global weak solution of (1.1) and (2.1). Then we have the following

estimates.

‖∇u‖2
L2(Ω)

+ ‖u‖m+1

Lm+1(Ω)
6M0‖F ‖

m+1
m

L
m+1
m (Ω)

, (4.1)

‖u‖2
H1

0 (Ω)
+ ‖u‖m+1

Lm+1(Ω)
6 CM̃0

(
1 + ‖F ‖

δ(m+1)
m

L
m+1
m (Ω)

)
‖F ‖

m+1
m

L
m+1
m (Ω)

, (4.2)

where M0 = M
(

2M
L

) 1
m max

{
1, 2

L

}
, δ = 2(1−m)

(N+2)−m(N−2) , M̃0 = M0(1 +Mδ
0 ) and C = C(N,m).

Proposition 4.5. Let a ∈ C, let 0 < m < 1, let V ∈ Lrloc(Ω;C), for any 1 < r < ∞, let F ∈

L1
loc(Ω;C) and, for some ε > 0, let u ∈ L1+ε

loc (Ω;C)
(
u ∈ L1

loc(Ω;C) suffices if V ∈ L∞loc(Ω;C)
)

be a

solution to

−∆u+ V u+ a|u|−(1−m)u = F (x), in D ′(Ω). (4.3)

Let 1 < q <∞ and suppose u ∈ Lqloc(Ω). Then the following regularity results hold.

1) If for some p ∈ [q,∞), F ∈ Lploc(Ω) then u ∈W 2,p
loc (Ω).

2) Let α ∈ (0,m]. If (F ,V ) ∈ C0,α
loc (Ω)×C0,α

loc (Ω) then u ∈ C2,α
loc (Ω).

Remark 4.6. Since 0 < m < 1 and u ∈ L1
loc(Ω), one has L

1
m

loc(Ω) ⊂ L1
loc(Ω) and so |u|−(1−m)u ∈

L1
loc(Ω). In addition, from Hölder’s inequality V u ∈ L1

loc(Ω) and it follows that ∆u ∈ L1
loc(Ω). In

conclusion, equation (4.3) makes senses in L1
loc(Ω).

Remark 4.7. We only state a local smoothness result since we are interested by compactly supported

solutions. In this case, global smoothness is immediate. Nevertheless, one may wonder what happens

when a solution is not compactly supported. We use the notation of Proposition 4.5 and assume

11



further that Ω is bounded1 and has a C1,1 boundary. Let the assumptions of Proposition 4.5 be

fulfilled and let u ∈ Lq(Ω), for some 1 < q < ∞, be a solution to (4.3) such that u|∂Ω = 0 in the

sense of the trace2.

1. If for some p ∈ [q,∞), F ∈ Lp(Ω) and V ∈ Lr(Ω), ∀r ∈ (1,∞), then u ∈W 2,p(Ω)∩W 1,p
0 (Ω).

Indeed, recalling that if for some 1 < p < ∞, a function v ∈ Lp(Ω) satisfies ∆v ∈ Lp(Ω) and

v|∂Ω = 0 in the sense of the trace2 then v ∈W 2,p(Ω)∩W 1,p
0 (Ω) (Grisvard [15], Corollary 2.5.2.2

p.131). We then apply the bootstrap method of the proof of Proposition 4.5 to prove the result,

where we use the embedding Lr(Ω) ↪→ Ls(Ω), which holds for any r > s (since Ω is bounded)

and the global regularity result of Grisvard [15] (Corollary 2.5.2.2 p.131) in place of a local

regularity result (Cazenave [10], Proposition 4.1.2 p.101–102).

2. Let α ∈ (0,m]. If Ω has a C2,α boundary and (F ,V ) ∈ C0,α(Ω)×C0,α(Ω) then u ∈ C2,α(Ω)∩

C0(Ω)3. Indeed, it follows from the above remark that u ∈ W 2,N+1(Ω) ∩ H1
0 (Ω) and by

Sobolev’s embedding, u ∈ C0,1(Ω). Setting

f = F (x)− V u− a|u|−(1−m)u,

it then follow from equation (4.3) and estimate (8.5) below that f ∈ C0,α(Ω). Let v ∈ C def
=

C2,α(Ω) ∩C0(Ω) be a solution to

−∆w = f , (4.4)

given by Gilbarg and Trudinger [14], Theorem 6.14 p.107. Since u ∈ H1
0 (Ω) is also a solution

to (4.4), uniqueness for equation (4.4) holds in H1
0 (Ω) (Lax-Milgram’s Theorem) and C ⊂

H1
0 (Ω), we conclude that u = v and so u ∈ C.

We end this section by giving a result for the evolution equation (in a particular case).

1Actually, assumptions on Ω we use in this remark are ∂Ω bounded and |Ω| < ∞. But these two conditions imply
that Ω is bounded.

2Let T : u −→
{
γu,γ ∂u

∂ν

}
be the trace function defined on D(Ω), let 1 < p < ∞ and let Xp(Ω) =

{
u ∈

Lp(Ω); ∆u ∈ Lp(Ω)
}
. By density of D(Ω) in Xp(Ω), T has a continuous and linear extension from Xp(Ω) into

W
− 1

p
,p

(∂Ω)×W−1− 1
p
,p

(∂Ω) (Hörmander [16], Theorem 2 p.503; Lions and Magenes [20], Lemma 2.2 and Theorem 2.1
p.147; Lions and Magenes [21], Propositions 9.1, Proposition 9.2 and Theorem 9.1 p.82; Grisvard [15], p.54). Since
u ∈ Lq(Ω), it follows from equation (4.3) and Hölder’s inequality that u ∈Xp(Ω), for any 1 < p < q. Then “u|∂Ω = 0
in the sense of the trace” makes sense and means that γu = 0.

3For k ∈ N0 and 0 < α 6 1, Ck,α(Ω) =
{
u ∈ Ck(Ω;C);

∑
|β|=k

Hα
Ω(Dβu) < +∞

}
⊂W k,∞(Ω) (since Ω is bounded)

and C0(Ω) =
{
u ∈ C(Ω); ∀x ∈ ∂Ω, u(x) = 0

}
.
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Corollary 4.8. Let 0 < m < 1, let (λ, b) ∈ C × R satisfying λ 6= 0 and b > 0. If Im(λ) = 0 then

assume further Re(λ) 6 0. Finally, let F ∈ C0,m(RN ) be compactly supported. Then there exists a

solution u ∈ C∞
(
R;C2,m

b (RN )
)

toi
∂u

∂t
+ ∆u+ λ|u|−(1−m)u = F (x)eibt, in R× RN ,

u(0) = ϕ, in RN .
(4.5)

given by

∀(t, x) ∈ R× RN , u(t, x) = ϕ(x)eibt, (4.6)

where ϕ ∈ C2,m
b (RN ) is a solution compactly supported of

−∆ϕ− λ|ϕ|−(1−m)ϕ+ bϕ = −F (x), in RN , (4.7)

given by Theorem 4.1. Furthermore, for any t ∈ R, suppu(t) is compact.

5 Uniqueness

Theorem 5.1. Let Ω ⊆ RN be a nonempty open subset, let 0 < m < 1, let (a, b) ∈ C2 \ {(0,0)}

satisfying (2.3) and let F1,F2 ∈ L1
loc(Ω) be such that F1 − F2 ∈ L2(Ω). Let u1,u2 ∈ H1

0 (Ω) ∩

Lm+1(Ω) be two global weak solutions of

−i∆u1 + a|u1|−(1−m)u1 + bu1 = F1(x), in Ω, (5.1)

−i∆u2 + a|u2|−(1−m)u2 + bu2 = F2(x), in Ω, (5.2)

respectively. We have the following estimates.
‖u1 − u2‖L2(Ω) 6

|a|
Re
(
ab
)‖F1 − F2‖L2(Ω), if a 6= 0 and Re

(
ab
)
> 0,

‖u1 − u2‖L2(Ω) 6
1

b0
‖F1 − F2‖L2(Ω), if a = 0,

(5.3)

where b0 = |Re(b)|, if Re(b) 6= 0 and b0 = Im(b), if Re(b) = 0. If a 6= 0 and Re
(
ab
)

= 0 then assume

further that u1,u2 ∈ L∞(Ω). Then there exists a positive constant C = C(N,m) such that

‖u1 − u2‖L2(Ω) 6 C

(
‖u1‖L∞(Ω) + ‖u2‖L∞(Ω)

)1−m
|a|

‖F1 − F2‖L2(Ω). (5.4)

Theorem 5.2. Let Ω ⊆ RN be a nonempty open subset, let 0 < m < 1, let (a, b) ∈ C2 satisfying

(2.3) and let F ∈ L1
loc(Ω). Then equations (1.1) and (2.1) admit at most one global weak solution

u ∈H1
0 (Ω) ∩Lm+1(Ω).
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Corollary 5.3. Let Ω ⊆ RN be a nonempty open subset, let 0 < m < 1, let (a, b) ∈ A× B satisfying

(2.3) and let F ∈ L
m+1
m (Ω). Then equations (1.1) and (2.1) admit a unique global weak solution

u ∈H1
0 (Ω) ∩Lm+1(Ω). Furthermore, this solution satisfies Properties 1)− 3) of Theorem 4.1.

Corollary 5.4. Let Ω ⊆ RN be a nonempty open subset, let 0 < m < 1 and let (a, b) ∈ C2 satisfying

(2.3). Then the problem −i∆u+ a|u|−(1−m)u+ bu = 0, in Ω,

u ∈H1
0 (Ω) ∩Lm+1(Ω),

has for unique solution u ≡ 0.

Corollary 5.5. Let 0 < m < 1, let (a, b) ∈ A×B satisfying (2.3) and let F ∈ C0,m(RN ) be compactly

supported. Then there exists a unique solution u ∈ C2,m
b (RN ) of (1.1) and (2.1) compactly supported.

If furthermore F is spherically symmetric then u is also spherically symmetric. For N = 1, this

means that if F is an even (respectively, an odd) function then u is also an even (respectively, an

odd) function.

6 Pictures

In this section, we give some geometric interpretation of the values of a and b. For convenience, we

repeat the hypotheses (2.2) and (2.3). We recall that,A = C \
{
z ∈ C; Re(z) = 0 and Im(z) 6 0

}
,

B = A ∪
{
0
}
.

For existence of solutions to problem (1.1) and (2.1), we suppose (a, b) ∈ C2 satisfies

(a, b) ∈ A× B and


Re(a)Re(b) > 0,

or

Re(a)Re(b) < 0 and Im(b) >
Re(b)

Re(a)
Im(a),

(6.1)

while for uniqueness, we assume

Im(a) > 0 and


a 6= 0 and Re(ab) > 0,

or

a = 0 and b ∈ B.

(6.2)

Existence. Condition (6.1) may easily be interpreted in this way: if b 6= 0 the one requires that

[a, b] ∩B = ∅, where B is the geometric representation of Ac. See Figures 1 and 2 below.
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Uniqueness. The second condition of (6.2) is trivial. Indeed, b can be chosen anywhere in the

complex plane, except on the half-axis where Im(z) < 0. Let us consider the first condition. We first

choose a ∈ C\{0} such that Im(a) > 0, and we choose b with respect to a. We see a and b as vectors

of R2. Then we write, −→a =

(
Re(a)
Im(a)

)
,
−→
b =

(
Re(b)
Im(b)

)
and we have

Re
(
ab
)

= Re(a)Re(b) + Im(a)Im(b) = −→a .
−→
b , (6.3)

where . denotes the scalar product between two vectors of R2. Then the condition Re
(
ab
)
> 0 is

equivalent to
∣∣∣∠(−→a ,

−→
b )
∣∣∣ 6 π

2
rad (see Figure 3 below).

Remark 6.1. Let (a, b) ∈ C2. Thanks to (6.3), the following assertions are equivalent.

1) (a, b) satisfies (6.1)–(6.2) (or (2.2)–(2.3)).

2) (a, b) ∈ A× B satisfies (6.2) (or (2.3)).

3)
(

(a, b) satisfies (6.2)
)

,
(
a 6= 0

)
and

(
Im(a) = Re(b) = 0 =⇒ Im(b) > 0

)
.

In other words, when Im(a) 6= 0, uniqueness hypothesis (6.2) implies existence hypothesis (6.1) (see

Figure 4 below).

7 Proofs of the localization properties

In this Section, we prove Theorems 2.1, 3.1, 3.3, 4.4, 3.5 and 3.6.

We recall some useful Gagliardo-Nirenberg’s and Young inequalities.

Proposition 7.1. Let Ω ⊆ RN be a nonempty open subset and let 0 6 p 6 1. Then, there exists a

positive constant C = C(N) such that

∀u ∈H1
0 (Ω) ∩Lp+1(Ω), ‖u‖L2(Ω) 6 C‖∇u‖

N(1−p)
(N+2)−p(N−2)

L2(Ω)
‖u‖

2(1+p)
(N+2)−p(N−2)

Lp+1(Ω)
, (7.1)

∀u ∈H1
0 (Ω) ∩L1(Ω), ‖u‖p+1

Lp+1(Ω)
6 C‖∇u‖

2pN
N+2

L2(Ω)
‖u‖

(N+2)−p(N−2)
N+2

L1(Ω)
. (7.2)

Note that C does not depend on Ω.

Lemma 7.2. For any real x > 0, y > 0, ε > 0 and p > 1, one has

xy 6
1

p′
εp
′
xp
′
+

1

p
ε−pyp. (7.3)
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Figure 1: Existence, choice of b Figure 2: Existence, choice of a and b

Figure 3: Uniqueness Figure 4: Uniqueness implies existence

Lemma 7.3. Let (a, b) ∈ C2 satisfying (2.2) and let C0, C1, C2, C3 be four nonnegative real numbers

satisfying

∣∣C1 + Im(a)C2 + Im(b)C3

∣∣ 6 C0, (7.4)∣∣Re(a)C2 + Re(b)C3

∣∣ 6 C0. (7.5)

16



Then one has

0 6 C1 + LC2 6MC0, (7.6)

where the positive constants L and M are defined by (2.6) and (2.7), respectively.

Proof. We split the proof in 6 cases. Let δ > 0.

Case 1. Im(a) > 0 and Im(b) > 0.

Then (7.6) follows from (7.4).

Case 2. Im(a) = 0, Im(b) > 0 and Re(a)Re(b) > 0.

We compute (7.4) + sign(Re(a))(7.5) and then obtain (7.6).

Case 3. Im(a) > 0, Im(b) < 0 and Re(a)Re(b) > 0.

We compute (7.4) + |Im(b)|
Re(b) (7.5) and then obtain (7.6).

Case 4. Re(a)Re(b) < 0.

If Im(b) = 0 then (2.2) implies Im(a) > 0, which falls into the scope of Case 1. So we may assume

Im(b) 6= 0. We compute (7.4)− Im(b)
Re(b) (7.5) and then obtain (7.6).

Case 5. Im(a) < 0, Im(b) > 0 and Re(a)Re(b) > 0.

We compute (7.4) + |Im(a)|+δ
Re(a) (7.5) and then obtain (7.6).

Case 6. Im(a) < 0, Im(b) < 0 and Re(a)Re(b) > 0.

We compute (7.4) + max
{
|Im(a)|+δ
|Re(a)| ,

|Im(b)|
|Re(b)|

}
(7.5). We then obtain (7.6).

This ends the proof.

Proof of Theorems 2.1 and 3.1. In order to establish our result in all cases of (2.2), we will adopt

the proofs of Theorem 2.1 p.12–18 and Theorem 3.2 p.28–30 of Antontsev, Dı́az and Shmarev [1],

which has to be adapted. We denote by σ the surface measure on a sphere, ρ2 = ρ0, if we are

concerned by Theorem 2.1 and ρ2 = ρ1, if we are concerned by Theorem 3.1. Assume we have either

ρ2 < dist(x0, ∂Ω)
(
⇐⇒ B(x0, ρ2) ⊂ Ω

)
or ρ2 > dist(x0, ∂Ω). The remaining case ρ2 = dist(x0, ∂Ω)(

⇐⇒ B(x0, ρ2) ⊂ Ω and ∂Ω ∩ S(x0, ρ2) 6= ∅
)
, will be treated at the end of the proof4. If ρ2 >

dist(x0, ∂Ω), we have u ∈H1
0 (Ω). So we may define ũ ∈H1

0

(
Ω∪B(x0, ρ2)

)
satisfying ũ|Ω ∈H1

0 (Ω),

by setting ũ = u, in Ω and ũ = 0, in Ωc ∩ B(x0, ρ2). Then ∇ũ = ∇u, almost everywhere in Ω and

∇ũ = 0, almost everywhere in Ωc ∩B(x0, ρ2). Still if ρ2 > dist(x0,Ω), we denote by F̃ the extension

of F by 0 in Ωc ∩B(x0, ρ2). We now proceed with the proof in 7 steps.

Step 1. Let L and M be the constants defined by (2.6) and (2.7), respectively. For almost every

4For simplicity, we assume that ∂Ω 6= ∅. Otherwise, we have Ω = RN and we only have to treat the first case:
B(x0, ρ2) ⊂ Ω.
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ρ ∈ (0, ρ2),

‖∇ũ‖2
L2(B(x0,ρ))

+ L‖ũ‖m+1

Lm+1(B(x0,ρ))
6MI(ρ) +MJ(ρ), (7.7)

where I(ρ) =

∣∣∣∣∣
∫
S(x0,ρ)

ũ∇ũ. x− x0

|x− x0|
dσ

∣∣∣∣∣ and J(ρ) =

∫
B(x0,ρ)

|F̃ (x)ũ(x)|dx. Moreover, I ∈ L1(0, ρ2)

and J ∈ L∞(0, ρ2).

From Hölder’s inequality, the above discussion and Sobolev’s embedding,

‖I‖L1(0,ρ2) 6 ‖ũ‖2H1(B(x0,ρ2))
<∞,

‖J‖L∞(0,ρ2) 6 ‖F̃ ‖
L

m+1
m (B(x0,ρ2))

‖ũ‖Lm+1(B(x0,ρ2)) <∞.

Let ρ ∈ (0, ρ2) For any n ∈ N, n > 1
ρ , we define the cutoff function ψn ∈W 1,∞(R) by

∀t ∈ R, ψn(t) =


1, if |t| ∈

[
0, ρ− 1

n

]
,

n(ρ− |t|), if |t| ∈
(
ρ− 1

n , ρ
)
,

0, if |t| ∈ [ρ,∞),

and we set for almost every x ∈ Ω ∪ B(x0, ρ2), ϕn(x) = ψn(|x − x0|)ũ(x). If ρ2 < dist(x0, ∂Ω)

then suppϕn ⊆ B(x0, ρ) ⊂ Ω and so ϕn ∈ H1
c (Ω). If ρ2 > dist(x0, ∂Ω) then ϕn|Ω ∈ H1

0 (Ω) and

suppϕn ⊆ Ω ∩B(x0, ρ). It follows from Definition 2.3 and Remark 2.4, 2. and 3., that ϕ = iϕn|Ω is

an admissible test function and so

Re

∫
B(x0,ρ)

ψn(|x− x0|)
(
|∇ũ|2 − ia|ũ|m+1 − ib|ũ|2

)
dx

= −Re

∫
B(x0,ρ)

ψ′n(|x− x0|)ũ∇ũ.
x− x0

|x− x0|
dx+ Im

∫
B(x0,ρ)

ψn(|x− x0|)F̃ ũdx.

Introducing the spherical coordinates (r, σ), we get∣∣∣∣∣∣∣Re

∫
B(x0,ρ)

ψn(|x− x0|)
(
|∇ũ|2 − ia|ũ|m+1 − ib|ũ|2

)
dx

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣Re

n ρ∫
ρ− 1

n

 ∫
S(x0,r)

ũ∇ũ. x− x0

|x− x0|
dσ

 dr

+ Im

∫
B(x0,ρ)

ψn(|x− x0|)F̃ ũdx

∣∣∣∣∣∣∣
6 n

ρ∫
ρ− 1

n

I(r)dr +

∫
B(x0,ρ)

ψn(|x− x0|)|F̃ (x)ũ(x)|dx.
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We now let n ↗ ∞. Using the Lebesgue’s dominated convergence Theorem and recalling that I ∈

L1(0, ρ2), we obtain∣∣∣‖∇ũ‖2L2(B(x0,ρ))
+ Im(a)‖ũ‖m+1

Lm+1(B(x0,ρ))
+ Im(b)‖ũ‖2

L2(B(x0,ρ))

∣∣∣ 6 I(ρ) + J(ρ). (7.8)

Proceeding as above with ϕ = ϕn|Ω, we get∣∣∣Re(a)‖ũ‖m+1

Lm+1(B(x0,ρ))
+ Re(b)‖ũ‖2

L2(B(x0,ρ))

∣∣∣ 6 I(ρ) + J(ρ). (7.9)

Then Step 1 follows from (7.8), (7.9) and Lemma 7.3.

Let us recall and introduce some notations. Let τ ∈
(
m+1

2 , 1
]

and let ρ ∈ (0, ρ2). We set

E(ρ) = ‖∇ũ‖2
L2(B(x0,ρ))

, b(ρ) = ‖ũ‖m+1

Lm+1(B(x0,ρ))
, δ = k

2(1+m) ,

θ = (1+m)+N(1−m)
k ∈ (0, 1), ` = 1

θ(1+m) , γ(τ) = 2τ−(1+m)
k ∈ (0, 1),

µ(τ) = 2(1−τ)
k , η(τ) = 1−m

1+m − γ(τ) > 0.

Step 2. E ∈W 1,1(0, ρ2), for a.e. ρ ∈ (0, ρ2), E′(ρ) = ‖∇ũ‖2
L2(S(x0,ρ))

and

0 6 E(ρ) + b(ρ) 6 CL1ME′(ρ)
1
2

(
E(ρ)

1
2 + ρ−δb(ρ)

1
m+1

)θ
b(ρ)

1−θ
m+1

+ (2L1M)
m+1
m ‖F̃ ‖

m+1
m

L
m+1
m (B(x0,ρ))

, (7.10)

where C = C(N,m) and L1 = max
{

1, 1
L

}
.

We have the identity E(ρ) =

∫ ρ

0

(∫
S(x0,r)

|∇ũ|2dσ

)
dr. Since the mapping r 7−→

∫
S(x0,r)

|∇ũ|2dσ

lies in L1(0, ρ2), E is absolutely continuous on (0, ρ2). We then get the first part of the claim and we

only have to establish (7.10). Let ρ ∈ (0, ρ2). It follows from Cauchy-Schwarz’s inequality that

I(ρ) 6 ‖∇ũ‖L2(S(x0,ρ))
‖ũ‖L2(S(x0,ρ))

= E′(ρ)
1
2 ‖ũ‖L2(S(x0,ρ))

. (7.11)

We recall the interpolation-trace inequality (see Corollary 2.1 in Dı́az and Véron [12]. Note there is

a misprint: δ has to be replaced with −δ).

‖ũ‖L2(S(x0,ρ))
6 C

(
‖∇ũ‖L2(B(x0,ρ))

+ ρ−δ‖ũ‖Lm+1(B(x0,ρ))

)θ
‖ũ‖1−θ

Lm+1(B(x0,ρ))
, (7.12)

where C = C(N,m). Putting together (7.7), (7.11) and (7.12), we obtain,

E(ρ) + b(ρ) 6 CL1ME′(ρ)
1
2

(
E(ρ)

1
2 + ρ−δb(ρ)

1
m+1

)θ
b(ρ)

1−θ
m+1 + L1M

∫
B(x0,ρ)

|F̃ (x)ũ(x)|dx. (7.13)
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Applying Young’s inequality (Lemma 7.2) with x = ‖F̃ ‖
L

m+1
m (B(x0,ρ))

, y = ‖ũ‖Lm+1(B(x0,ρ))
,

ε =
(

2L1M
m+1

) 1
m+1

and p = m+ 1, we get

∫
B(x0,ρ)

|F̃ (x)ũ(x)|dx 6
m

m+ 1

(
2L1M

m+ 1

) 1
m

‖F̃ ‖
m+1
m

L
m+1
m (B(x0,ρ))

+
1

2L1M
b(ρ), (7.14)

for any ρ ∈ (0, ρ2). Putting together (7.13) and (7.14), we obtain (7.10). Hence Step 2.

Step 3. Let C0 be the constant in (7.10). For any τ ∈
(
m+1

2 , 1
]

and for a.e. ρ ∈ (0, ρ2),

C0L1ME′(ρ)
1
2

(
E(ρ)

1
2 + ρ−δb(ρ)

1
m+1

)θ
b(ρ)

1−θ
m+1

6
(
K1(τ)ρ−(ν−1)E′(ρ)

) 1
2

(E(ρ) + b(ρ))
γ(τ)+1

2 , (7.15)

where K1(τ) = CL2
1M

2 max
{
ρν−1

2 , 1
}

max{b(ρ2)µ(τ), b(ρ2)η(τ)} and C = C(N,m).

Let τ ∈
(
m+1

2 , 1
]

and let ρ ∈ (0, ρ2). A straightforward calculation yields(
E(ρ)

1
2 + ρ−δb(ρ)

1
m+1

)
b(ρ)

1−θ
θ(m+1)

= E(ρ)
1
2 b(ρ)

1−θ
θ(m+1) + ρ−δb(ρ)

1
θ(m+1)

= E(ρ)
1
2 b(ρ)τ(1−θ)`b(ρ)(1−τ)(1−θ)` + ρ−δb(ρ)

1
2 +τ(1−θ)`b(ρ)`−τ(1−θ)`− 1

2

6 2ρ−δ max
{
ρδ2, 1

}
K2(τ)

1
θ (E(ρ) + b(ρ))

1
2 +τ(1−θ)`

,

where K2
2 (τ) = max{b(ρ2)µ(τ), b(ρ2)η(τ)}. Hence (7.15) with K1(τ) = 4C2

0L
2
1M

2K2
2 (τ) max

{
ρν−1

2 , 1
}
.

Step 4. For any τ ∈
(
m+1

2 , 1
]

and for a.e. ρ ∈ (0, ρ2),

0 6 E(ρ)1−γ(τ) 6 K1(τ)ρ−(ν−1)E′(ρ) + (4L1M)
(m+1)(1−γ(τ))

m ‖F̃ ‖
(m+1)(1−γ(τ))

m

L
m+1
m (B(x0,ρ))

. (7.16)

Putting together (7.10) and (7.15), and applying again Young’s inequality (7.3) with p = 2
γ(τ)+1 ,

ε = (γ(τ) + 1)
γ(τ)+1

2 , x =
(
K1(τ)ρ−(ν−1)E′(ρ)

) 1
2 and y = (E(ρ) + b(ρ))

γ(τ)+1
2 , we obtain

E(ρ) + b(ρ)

6
(
K1(τ)ρ−(ν−1)E′(ρ)

) 1
2

(E(ρ) + b(ρ))
γ(τ)+1

2 + (2L1M)
m+1
m ‖F̃ ‖

m+1
m

L
m+1
m (B(x0,ρ))

,

6 C
(
K1(τ)ρ−(ν−1)E′(ρ)

) 1
1−γ(τ)

+
1

2
(E(ρ) + b(ρ)) + (2L1M)

m+1
m ‖F̃ ‖

m+1
m

L
m+1
m (B(x0,ρ))

,

where C = p−1
p ε

p
p−1 = C(N,m). Changing, if needed, the constant C in the definition of K1(τ), we

obtain

E(ρ) + b(ρ) 6
(
K1(τ)ρ−(ν−1)E′(ρ)

) 1
1−γ(τ)

+ (4L1M)
m+1
m ‖F̃ ‖

m+1
m

L
m+1
m (B(x0,ρ))

.
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Raising both sides of the above inequality to the power 1−γ(τ) and recalling that
(
1−γ(τ)

)
∈ (0, 1),

we obtain (7.16).

Step 5. Let α ∈ (0, ρ0]. If E(α) = 0 then u|BΩ(x0,α) ≡ 0.

From our hypothesis, E′ = 0 on (0, α). Furthermore, ‖F̃ ‖
L

m+1
m (B(x0,α))

= 0
(
from assumption of

Theorem 2.1 or (3.1)
)
. It follows from Step 2 and continuity of b that b(α) = 0. Hence Step 5 follows.

Step 6. Proof of Theorem 2.1.

Thus ρ2 = ρ0 and ‖F̃ ‖
L

m+1
m (B(x0,ρ0))

= 0. For any τ ∈
(
m+1

2 , 1
]
, set r(τ)ν =

(
ρν0 − ν

K1(τ)E(ρ0)γ(τ)

γ(τ)

)
+

and let ρmax = max
τ∈(m+1

2 ,1]
r(τ). Note that definition of ρmax coincides with (2.8). Let τ ∈

(
m+1

2 , 1
]
.

We claim that E(r(τ)) = 0. Otherwise, E(r(τ)) > 0 and so E > 0 on [r(τ), ρ0). From (7.16), one has

(we recall that γ(τ)− 1 < 0),

for a.e. ρ ∈ (r(τ), ρ0), K1(τ)E′(ρ)E(ρ)γ(τ)−1 > ρν−1. (7.17)

We integrate this estimate between r(τ) and ρ0. We obtain

ν
K1(τ)

γ(τ)

(
E(ρ0)γ(τ) − E(r(τ))γ(τ)

)
> ρν0 − rν(τ).

By definition of r(τ), this gives E(r(τ)) 6 0. A contradiction, hence the claim. In particular,

E(ρmax) = 0. It follows from Step 5 that u|BΩ(x0,ρmax) ≡ 0, which is the desired result. It remains

to treat the case where ρ0 = dist(x0, ∂Ω). We proceed as follows. Let n ∈ N, n > 1
ρ0
. We work on

B
(
x0, ρ0 − 1

n

)
instead of B(x0, ρ0) and apply the above result. Thus u|B(x0,ρnmax) ≡ 0, where ρnmax is

given by (2.8) with ρ0 − 1
n in place of ρ0. We then let n↗∞ which leads to the result. This finishes

the proof of Theorem 2.1.

Step 7. Proof of Theorem 3.1.

We have ρ2 = ρ1. Let γ = γ(1) and set for any ρ ∈ [0, ρ1], F (ρ) = (4L1M)
(m+1)(1−γ)

m ‖F̃ ‖
(m+1)(1−γ)

m

L
m+1
m (B(x0,ρ))

and K = K1(1)ρ
−(ν−1)
0 . Let E? =

(
γ

2K (ρ1 − ρ0)
) 1
γ and ε? = 1

2p′ (4L1M)
m+1
m

(
γ

2K

)p
. Note that p = 1

γ .

Assume now E(ρ1) < E?. Applying Step 4 with τ = 1, one has for a.e. ρ ∈ (ρ0, ρ1),

−KE′(ρ) + E(ρ)1−γ 6 F (ρ). (7.18)

Let define the function G by

∀ρ ∈ [0, ρ1], G(ρ) =
( γ

2K
(ρ− ρ0)+

) 1
γ

. (7.19)

Then G(ρ1) = E?, G ∈ C1([0, ρ1];R)
(

since 1
γ > 2

)
and G satisfies

∀ρ ∈ [0, ρ1], −KG′(ρ) +
1

2
G(ρ)1−γ = 0, (7.20)

E(ρ1) < G(ρ1). (7.21)
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Finally and recalling that γ = 1
p , from our hypothesis (3.1) and (7.19), one has

∀ρ ∈ (0, ρ1), F (ρ) 6
1

2

( γ

2K
(ρ− ρ0)+

) 1−γ
γ

=
1

2
G(ρ)1−γ . (7.22)

Putting together (7.18), (7.22) and (7.20), one obtains

−KE′(ρ) + E(ρ)1−γ 6 −KG′(ρ) +G(ρ)1−γ , for a.e. ρ ∈ (ρ0, ρ1). (7.23)

Now, we claim that for any ρ ∈ [ρ0, ρ1), E(ρ) 6 G(ρ). Indeed, if the claim does not hold, it follows

from (7.21) and continuity of E and G that there exist ρ? ∈ (ρ0, ρ1) and δ ∈ (0, ρ? − ρ0] such that

E(ρ?) = G(ρ?), (7.24)

E(ρ) > G(ρ), ∀ρ ∈ (ρ? − δ, ρ?). (7.25)

It follows from (7.23) and (7.25) that for a.e. ρ ∈ (ρ? − δ, ρ?), G′(ρ) < E′(ρ). But, with (7.24), this

implies that for any ρ ∈ (ρ?−δ, ρ?), G(ρ) > E(ρ), which contradicts (7.25), hence the claim. It follows

that 0 6 E(ρ0) 6 G(ρ0) = 0. We deduce with help of the Step 5 that u|BΩ(x0,ρ0) ≡ 0, which is the

desired result. It remains to treat the case where ρ1 = dist(x0, ∂Ω). We proceed as follows. Assume

E(ρ1) < E?. Then there exists ε > 0 small enough such that ρ0 < ρ1 − ε and E(ρ1) < E?(ε), where

E?(ε) =
(
γ

2K (ρ1 − ρ0 − ε)
) 1
γ . Since ε? is a non increasing function of ρ1, we do not need to change

its definition. Estimates (7.18)–(7.23) holding with ρ1 − ε in place of ρ1, it follows that E(ρ0) = 0

and we finish with the help of Step 5. This ends the proof of Theorem 3.1.

Proof of Theorem 3.3. Let C0 = C0(N,m) be the constant in estimate (2.8) given by Theorem 2.1.

We then choose C = C−1
0 in (3.2) and (3.3). Using the notations of Theorem 2.1 and its proof, we

define for any τ ∈
(
m+1

2 , 1
]
,

r(τ)ν =

(
(2ρ0)ν − C0M

2 max

{
1,

1

L2

}
max

{
(2ρ0)ν−1, 1

}
×E(2ρ0)γ(τ) max{b(2ρ0)µ(τ), b(2ρ0)η(τ)}

2τ − (1 +m)

)
+

,

and recall that ρmax = max
τ∈(m+1

2 ,1]
r(τ). Assume (3.2) holds. Then ρmax > ρ1(1) > ρ0 and it follows

from (2.8) of Theorem 2.1 that b(ρ0) = 0. Now assume (3.3) holds. Since E(2ρ0) 6 1, b(2ρ0) 6 1 and

0 < µ(τ) < η(τ) < 1, for any τ ∈
(
m+1

2 , 1
)
, it follows from definitions of ρ1 and ρmax, that

ρνmax > ρν1(1− s) > (2ρ0)ν − C0M
2 min{1, L2}max{(2ρ0)ν−1, 1}

1−m− 2s
b(2ρ0)µ(1−s) > ρν0 .

By (2.8) of Theorem 2.1, b(ρ0) = 0. This concludes the proof.
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Proof of Theorem 4.4. By Definition 2.3 and of Remark 2.4, 3., we can choose ϕ = iu and ϕ = u

in (2.10). We then obtain,

‖∇u‖2
L2(Ω)

+ Im(a)‖u‖m+1

Lm+1(Ω)
+ Im(b)‖u‖2

L2(Ω)
= Im

∫
Ω

Fudx,

Re(a)‖u‖m+1

Lm+1(Ω)
+ Re(b)‖u‖2

L2(Ω)
= Re

∫
Ω

Fudx.

Applying Lemma 7.3, these estimates yield,

‖∇u‖2
L2(Ω)

+ L‖u‖m+1

Lm+1(Ω)
6M

∫
Ω

|F | |u|dx. (7.26)

We apply Young’s inequality (7.3) with x = |F |, y = |u|, ε =
(

2M
(m+1)L

) 1
m+1

and p = m + 1. With

(7.26), we get

‖∇u‖2
L2(Ω)

+
L

2
‖u‖m+1

Lm+1(Ω)
6M

(
2M

L

) 1
m

‖F ‖
m+1
m

L
m+1
m (Ω)

,

from which we deduce (4.1). Finally, applying Gagliardo-Nirenberg’s inequality (7.1), with p = m,

and Young’s inequality (7.3), with p = 4+N(1−m)
N(1−m) and ε = 1, one obtains

‖u‖
2

(N+2)−m(N−2)
4+N(1−m)

L2(Ω)
6 C‖∇u‖

2N(1−m)
4+N(1−m)

L2(Ω)
‖u‖

4(1+m)
4+N(1−m)

Lm+1(Ω)
6 C

(
‖∇u‖2

L2(Ω)
+ ‖u‖m+1

Lm+1(Ω)

)
,

and finally

‖u‖2
L2(Ω)

6 C
(
‖∇u‖2

L2(Ω)
+ ‖u‖m+1

Lm+1(Ω)

)δ+1

, (7.27)

where δ = 2(1−m)
(N+2)−m(N−2) . Estimate (4.2) then follows from (4.1) and (7.27).

Proof of Theorem 3.5. Let C be the constant given by Theorem 3.3 and let ε > 0. Set K = suppF

and K(ε) = O(ε). We would like to apply Theorem 3.3 with ρ0 = ε
4 . By (4.1) of Theorem 4.4, there

exists δ0 = δ0(ε,N,m,L,M) > 0 such that if ‖F ‖
L

m+1
m (Ω)

6 δ0 then ‖u‖Lm+1(Ω) 6 1 and

‖∇u‖
2(1−m)

k

L2(Ω)
6 C2−2ν(2ν − 1)(1−m)M−2 min{1, L2}min{2, ε}ν−1ε. (7.28)

We recall that the distance between two closed sets A and B of RN with one of them compact is

defined by

dist(A,B) = min
(x,y)∈A×B

|x− y|
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and that

dist(A,B) > 0 ⇐⇒ A∩ B = ∅.

Let x0 ∈ K(ε)c. Let y ∈ B
(
x0,

ε
2

)
and let z ∈ K. By definition of K(ε), dist(K(ε)c,K) = ε. We then

have

ε = dist(K(ε)c,K) 6 |x0 − z| 6 |x0 − y|+ |y − z| 6
ε

2
+ |y − z|.

Taking the minimum on (y, z) ∈ B
(
x0,

ε
2

)
×K, we get

ε

2
6 dist

(
B
(
x0,

ε

2

)
,K
)
,

which means that B
(
x0,

ε
2

)
∩K = ∅, for any x0 ∈ K(ε)c. By (7.28), u satisfies (3.2) with ρ0 = ε

4 and

we deduce that for any x0 ∈ K(ε)c, u|Ω∩B(x0,
ε
4 ) ≡ 0 (Theorem 3.3). Let n ∈ N. By compactness,

K
(

7ε
8

)c ∩B(0, n) may be covered by a finite number of balls B
(
x0,

ε
4

)
with x0 ∈ K(ε)c. Thus for any

n ∈ N, u|Ω∩K( 7ε
8 )

c∩B(0,n) ≡ 0. It follows that u = 0 almost everywhere on

⋃
n∈N

(
Ω ∩K

(
7ε

8

)c

∩B(0, n)

)
= Ω ∩K

(
7ε

8

)c

.

This means that suppu ⊂ Ω ∩K
(

7ε
8

)
⊂ Ω ∩ O(ε). Finally, since K is a compact set, Ω is open and

K ⊂ Ω, it follows that if ε is small enough then O(ε) ⊂ Ω. This ends the proof.

Proof of Theorem 3.6. Let L, M and C be the constants given by (2.6), (2.7) and Theorem 3.3,

respectively. We would like to apply Theorem 3.3 with ρ0 = 1. Since F is compactly supported and

u ∈H1(RN ) ∩L
m+1
m (RN ), there exists R > 1 such that suppF ⊂ B(0, R− 1),

‖u‖Lm+1({|x|>R−1}) 6 1 and ‖∇u‖
2(1−m)

k

L2({|x|>R−1}) 6 C21−ν(2ν − 1)(1−m)M−2 min{1, L2}.

Let x0 ∈ RN be such that |x0| > R + 1. Then B(x0, 2) ∩ suppF = ∅ and, with help of the above

estimate, u satisfies (3.2) with ρ0 = 1. It follows from Theorem 3.3 that u|B(x0,1) ≡ 0. For each integer

n > 2, define the compact set Cn by

Cn =

{
x ∈ RN ; R+

1

n
6 |x| 6 R+ n− 1

n

}
.

By compactness, Cn may be covered by a finite number of balls B(x0, 1), where R+1 6 |x0| 6 R+1+n.

Thus for any n ∈ N, u|Cn ≡ 0. It follows that u = 0 almost everywhere on⋃
n>2

Cn =
{
x ∈ RN ; |x| > R

}
.

Then suppu ⊂ B(0, R), which is the desired result.
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8 Proofs of the existence and smoothness results

In this Section, we prove Proposition 4.5, Theorem 4.1 and 4.8.

Proof of Proposition 4.5. By Remarks 4.6, equation (4.3) makes senses in L1
loc(Ω).

Proof of Property 1). Let 1 < q 6 p < ∞. Assume F ∈ Lploc(Ω) and u ∈ Lqloc(Ω) is a solution

to (4.3). For r ∈ (1,∞), r− denotes any real in (1, r). Assume v ∈ Lr−loc(Ω), for some 1 < r <∞, is a

solution of (4.3). It follows that |v|−(1−m)v ∈ L
r−
m

loc (Ω) and since 0 < m < 1, L
r−
m

loc (Ω) ⊂ Lrloc(Ω). So

by (4.3) and Hölder’s inequality, V u ∈ Lr−loc(Ω) and so ∆v ∈ Lmin{r−,p}
loc (Ω). Furthermore, if for some

1 < r <∞, v ∈ Lrloc(Ω;C) and ∆v ∈ Lrloc(Ω;C) then v ∈W 2,r
loc (Ω;C) (see for instance Cazenave [10],

Proposition 4.1.2 p.101–102). We then have shown the following property. Let 1 < r <∞.

u ∈ Lr
−

loc(Ω) =⇒ u ∈W 2,min{r−,p}
loc (Ω). (8.1)

Now, we proceed to the proof of Property 1) in 2 cases.

Case 1.
(
N
2 6 q 6 p

)
or
(
q < N

2 and q 6 p 6 Nq
N−2q

)
.

It follows from (8.1), applied with r = q, that u ∈W 2,q−

loc (Ω). In one hand, if q < N
2 thenW 2,q−

loc (Ω) ⊂

Lp
−

loc(Ω). It follows from (8.1) (applied with r = p) and Sobolev’s embedding that u ∈ Lp+δloc (Ω), for

δ ∈ (0, 1) small enough. On the other hand, if q > N
2 then W 2,q−

loc (Ω) ⊂ Lp+1
loc (Ω). So in both cases,

u ∈ Lp+δloc (Ω). Applying (8.1) with r = p+ δ, we then obtain u ∈W 2,p
loc (Ω).

Case 2. 1 < q < p, q < N
2 and Nq

N−2q < p.

We recall that if 1 < r < N
2 then Sobolev’s embedding is

W 2,r−

loc (Ω) ⊂ Ls
−

loc(Ω), for any 1 6 s <∞ such that
1

s
>

1

r
− 2

N
. (8.2)

Since Nq
N−2q < p, we may define the smallest integer n0 > 2 such that 1

q −
2n0

N < 1
p . We then set

1

pn0

=


1
p+1 , if 1

q −
2n0

N 6 0,

1
q −

2n0

N , if 1
q −

2n0

N > 0,

in order to have p < pn0 <∞. Finally, define the n0 real (pn)n∈[[0,n0−1]] by p0 = q and

∀n ∈ [[0, n0 − 1]],
1

pn
=

1

p0
− 2n

N
.

It follows that for any n ∈ [[1, n0 − 1]], q 6 pn−1 < pn 6 p < pn0
<∞ and

∀n ∈ [[1, n0]],
1

pn
>

1

pn−1
− 2

N
. (8.3)

From (8.1)–(8.3) applied n0 times (and recalling that p < pn0
< ∞), we then obtain u ∈ W 2,p

loc (Ω).

This ends the proof of Property 1).
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Proof of Property 2). We recall the following Sobolev’s embedding and estimate.

W 2,N+1
loc (Ω) ⊂ C

1, 1
N+1

loc (Ω) ⊂ C0,1
loc (Ω), (8.4)

∀(z1, z2) ∈ C2,
∣∣∣|z1|−(1−m)z1 − |z2|−(1−m)z2

∣∣∣ 6 5|z1 − z2|m. (8.5)

Assume further that (F ,V ) ∈ C0,α
loc (Ω)×C0,α

loc (Ω), for some α ∈ (0,m]. In particular, V ∈ L∞loc(Ω) and

by Property 1), u ∈W 2,N+1
loc (Ω). It follows from (8.4), (8.5) and (4.3) that |u|−(1−m)u ∈ C0,m

loc (Ω)

and so ∆u ∈ C0,α
loc (Ω). Thus u ∈ C2,α

loc (Ω) (Theorem 9.19 p.243–244 in Gilbarg and Trudinger [14]).

This concludes the proof of the proposition.

Proof of Theorem 4.1. Let L and M be the constants given by (2.6) and (2.7), respectively. We

proceed in 4 steps.

Step 1. Let Ω ⊂ RN be an open bounded subset and let g ∈ L2(Ω). Then there exists a unique

solution u ∈H1
0 (Ω) of

−∆u = g, in L2(Ω). (8.6)

Moreover, there exists a positive constant C = C(|Ω|, N) such that∥∥(−∆)−1g
∥∥
H1

0 (Ω)
6 C‖g‖L2(Ω), ∀g ∈ L

2(Ω). (8.7)

In particular, the mapping (−∆)−1 : L2(Ω) −→H1
0 (Ω) is linear continuous.

Existence and uniqueness come from Lax-Milgram’s Theorem where the bounded coercive bilinear

form a on H1
0 (Ω)×H1

0 (Ω) and the bounded linear functional L on H−1(Ω) are defined by

a(u,v) = Re

∫
Ω

∇u(x).∇v(x)dx and 〈L,v〉H−1,H1
0

= Re

∫
Ω

v(x)g(x)dx,

respectively. Note that a is coercive due to Poincaré’s inequality. Taking the H−1 −H1
0 duality

product of equation (8.6) with u and applying Poincaré’s inequality, we obtain estimate (8.7) and so

continuity of (−∆)−1.

Step 2. Let Ω ⊂ RN be an open bounded subset, let 0 < m < 1, let (a, b) ∈ C2 and let F ∈ L2(Ω).

For each ` ∈ N, define f` = g` − iF , where

∀v ∈ L2(Ω), g`(v) =


ia|v|−(1−m)v + ibv, if |v| 6 `,

ia`m
v

|v|
+ ib`

v

|v|
, if |v| > `.

(8.8)

Then for any ` ∈ N, there exists at least one solution u` ∈H1
0 (Ω) of

−∆u` = f` (u`) , in L2(Ω).
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It is clear that (f`)`∈N ⊂ C(L2(Ω);L2(Ω)). With the help of Step 1 and the continuous and compact

embedding i : H1
0 (Ω) ↪→ L2(Ω), we may define a continuous and compact sequence of mappings

(T`)`∈N of H1
0 (Ω) as follows. For any ` ∈ N, set

T` : H1
0 (Ω)

i
↪→ L2(Ω)

f`−→ L2(Ω)
(−∆)−1

−−−−−→ H1
0 (Ω)

v 7−→ i(v) = v 7−→ f`(v) 7−→ (−∆)−1(f`)(v)

Let ` ∈ N. Let C be the constant in (8.7) and set R = C(|a| + |b| + 1)
(

2`|Ω| 12 + ‖F ‖L2(Ω)

)
. Let

v ∈H1
0 (Ω). It follows from (8.7) that

‖T`(v)‖H1
0 (Ω) =

∥∥(−∆)−1(f`)(v)
∥∥
H1

0 (Ω)
6 C‖f`(v)‖L2(Ω)

6 C(|a|+ |b|+ 1)
(

(`m + `)|Ω| 12 + ‖F ‖L2(Ω)

)
6 R.

Hence, T`
(
H1

0 (Ω)
)
⊂ BH1

0
(0, R), where BH1

0
(0, R) =

{
u ∈H1

0 (Ω); ‖u‖H1
0 (Ω) 6 R

}
. In a nutshell,

T` is a continuous and compact mapping from H1
0 (Ω) into itself, BH1

0
(0, R) is a bounded, closed and

convex subset of H1
0 (Ω) and T`

(
BH1

0
(0, R)

)
⊂ BH1

0
(0, R). By the Schauder’s fixed point Theorem,

T` admits at least one fixed point u` ∈ BH1
0
(0, R). Hence Step 2 follows.

Step 3. Let be the hypotheses of the theorem. Assume further that Ω is bounded. Then equation (1.1)

admits at least one solution u ∈H1
0 (Ω).

In other words, we have to solve

−∆u = f(u), in L2(Ω), (8.9)

where f = g − iF and for any v ∈ L2(Ω), g(v) = ia|v|−(1−m)v + ibv. Let (F k)k∈N ⊂ D(Ω) be such

that F k
L

m+1
m (Ω)−−−−−−−→
k→∞

F and for any k ∈ N, ‖F k‖
L

m+1
m (Ω)

6 2‖F ‖
L

m+1
m (Ω)

. Let g` be defined by (8.8)

and set for any (k, `) ∈ N2, fk` = g` − iF k. For any (k, `) ∈ N2, let uk` ∈H1
0 (Ω) be a solution of

−∆uk` = f`(u
k
` ), in L2(Ω), (8.10)

given by Step 2. We take the H−1 −H1
0 duality product of equation (8.10) with uk` first and iuk`

second. Applying Lemma 7.3, we then get for any (k, `) ∈ N2,

‖∇uk` ‖
2
L2(Ω)

+ L‖uk` ‖
m+1

Lm+1({|uk
` |6`})

+ L`m‖uk` ‖L1({|uk
` |>`})

6M

∫
Ω

|F k||uk` |
(
χ{|uk

` |6`} + χ{|uk
` |>`}

)
dx.

Applying Young’s inequality (7.3) to the first term on the right-hand side and the Hölder’s inequality
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to the second term of the right-hand side, we arrive to the following estimate.

2‖∇uk` ‖
2
L2(Ω)

+ L‖uk` ‖
m+1

Lm+1({|uk
` |6`})

+ 2‖uk` ‖L1({|uk
` |>`})

(
L`m −M‖F k‖L∞(Ω)

)
6M

(
2M

L

) 1
m

‖F k‖
m+1
m

L
m+1
m (Ω)

6 C‖F ‖
m+1
m

L
m+1
m (Ω)

. (8.11)

For any k ∈ N, there exists `k ∈ N large enough such that L`mk −M‖F k‖L∞(Ω) > 1. Moreover, Ω

being bounded, we have Lm+1(Ω) ↪→ L1(Ω). So
(
∇uk`k

)
k∈N and (uk`k)k∈N are bounded in L2(Ω)

and L1(Ω), respectively. It follows from Gagliardo-Nirenberg’s inequality (7.2) (applied with p = 1),

that (uk`k)k∈N is also bounded in L2(Ω) and so in H1
0 (Ω). Finally, by Rellich-Kondrachov’s Theorem,

there exists a subsequence (unϕ(n))n∈N of (uk`k)k∈N and h ∈ L2(Ω;R), such that

unϕ(n)

L2(Ω)−−−−→
n→∞

u, (8.12)

unϕ(n)

a.e. in Ω−−−−−→
n→∞

u, (8.13)∣∣∣unϕ(n)

∣∣∣ 6 h, for any n ∈ N, a.e. in Ω, (8.14)

By (8.13) and (8.14),

gϕ(n)

(
unϕ(n)

)
χ{
|un

ϕ(n)|6ϕ(n)
} a.e. in Ω−−−−−→

n→∞
g(u),

∀n ∈ N,
∣∣∣gϕ(n)

(
unϕ(n)

)∣∣∣ 6 C(hm + h) ∈ L1(Ω), a.e. in Ω.

It follows from the dominated convergence Theorem that

gϕ(n)

(
unϕ(n)

)
χ{
|un

ϕ(n)|6ϕ(n)
} L1(Ω)−−−−→

n→∞
g(u). (8.15)

In addition, by (8.12) and Hölder’s inequality,∥∥∥∥gϕ(n)

(
unϕ(n)

)
χ{
|un

ϕ(n)|>ϕ(n)
}∥∥∥∥
L1(Ω)

6
C

ϕ(n)

(∥∥unϕ(n)

∥∥m+1

Lm+1(Ω)
+
∥∥unϕ(n)

∥∥2

L2(Ω)

)
n→∞−−−−→ 0. (8.16)

Putting together (8.15) and (8.16), we obtain

gϕ(n)

(
unϕ(n)

)
L1(Ω)−−−−→
n→∞

g(u). (8.17)

Since Fn
n→∞−−−−→ F in L

m+1
m (Ω) ↪→ L1(Ω), we deduce with help of (8.12) and (8.17) that

∆unϕ(n)

H−2(Ω)−−−−−→
n→∞

∆u, (8.18)

fϕ(n)

(
unϕ(n)

)
L1(Ω)−−−−→
n→∞

f(u). (8.19)

By (8.10), we have for any n ∈ N, −∆unϕ(n) = fnϕ(n)

(
unϕ(n)

)
, in L2(Ω). Estimates (8.18) and (8.19)

allow to pass in the limit in this equation in the sense of D ′(Ω). This means that u ∈ H1
0 (Ω) is a
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solution of (8.9) and since f(u) ∈ L2(Ω), equation (8.9) makes sense in L2(Ω).

Step 4. Conclusion. Under the hypotheses of the theorem, equation (1.1) admits at least one solution

u ∈H1
0 (Ω) ∩Lm+1(Ω) and Properties 1)–3) of the theorem hold.

For any n ∈ N, we write Ωn = Ω ∩ B(0, n). Let n0 ∈ N be large enough to have Ωn0
6= ∅. For

each n > n0, let un ∈ H1
0 (Ωn) be any solution of (1.1) in Ωn given by Step 3, with the external

source Fn = F |Ωn . We define ũn ∈ H1
0 (Ω) by extending un by 0 in Ω ∩ B(0, n)c. Then ∇ũn =

∇un, almost everywhere in Ωn and ∇ũn = 0, almost everywhere in Ω ∩ B(0, n)c. It follows from

(4.2) of Theorem 4.4 that (un)n∈N is bounded in H1
0 (Ωn) ∩ Lm+1(Ωn), or equivalently, (ũn)n∈N is

bounded in H1
0 (Ω) ∩ Lm+1(Ω). Up to a subsequence, that we still denote by (ũn)n∈N, there exists

u ∈H1
0 (Ω)∩Lm+1(Ω) such that ũn ⇀ u in H1

w(Ω), as n −→∞, and ũn
L

m+1
loc (Ω)
−−−−−−→
n→∞

u. Let ϕ ∈ D(Ω).

Since ũn
L

m+1
loc (Ω)
−−−−−−→
n→∞

u, we have |ũn|−(1−m)ũn
L

m+1
m

loc (Ω)
−−−−−−−→

n→∞
|u|−(1−m)u, and in particular

lim
n→∞

〈a|ũn|−(1−m)ũn,ϕ〉
L

m+1
m (Ω),Lm+1(Ω)

= 〈a|u|−(1−m)u,ϕ〉
L

m+1
m (Ω),Lm+1(Ω)

. (8.20)

Recalling that u ∈H1
0 (Ω) and ũn ⇀ u in H1

w(Ω), as n −→∞, we get with help of (8.20),

lim
n→∞

(
〈i∇ũn,∇ϕ〉L2(Ω),L2(Ω) + 〈a|ũn|−(1−m)ũn,ϕ〉

L
m+1
m (Ω),Lm+1(Ω)

+ 〈bũn,ϕ〉L2(Ω),L2(Ω)

)
= 〈−i∆u+ a|u|−(1−m)u+ bu〉D′(Ω),D(Ω). (8.21)

Let n1 > n0 be large enough to have suppϕ ⊂ Ωn1
. Using the basic properties of ũn described as

above and the fact un is a solution of (1.1) in Ωn, we obtain for any n > n1, ϕ|Ωn ∈ D(Ωn) and

0 = 〈−i∆un + a|un|−(1−m)un + bun − Fn,ϕ|Ωn〉D′(Ωn),D(Ωn)

=
〈
i∇un,∇

(
ϕ|Ωn

)〉
L2(Ωn),L2(Ωn)

+ 〈a|un|−(1−m)un,ϕ|Ωn〉Lm+1
m (Ωn),Lm+1(Ωn)

+ 〈bun,ϕ|Ωn〉L2(Ωn),L2(Ωn) − 〈Fn,ϕ|Ωn〉Lm+1
m (Ωn),Lm+1(Ωn)

= 〈i∇ũn,∇ϕ〉L2(Ω),L2(Ω) + 〈a|ũn|−(1−m)ũn,ϕ〉
L

m+1
m (Ω),Lm+1(Ω)

+ 〈bũn,ϕ〉L2(Ω),L2(Ω) − 〈F ,ϕ〉
L

m+1
m (Ω),Lm+1(Ω)

,

from which we deduce

〈i∇ũn,∇ϕ〉L2(Ω),L2(Ω) + 〈a|ũn|−(1−m)ũn,ϕ〉
L

m+1
m (Ω),Lm+1(Ω)

+ 〈bũn,ϕ〉L2(Ω),L2(Ω)

= 〈F ,ϕ〉
L

m+1
m (Ω),Lm+1(Ω)

,
(8.22)

for any n > n1. Passing to the limit in (8.22), we get with (8.21),

〈−i∆u+ a|u|−(1−m)u+ bu,ϕ〉D′(Ω),D(Ω) = 〈F ,ϕ〉D′(Ω),D(Ω), ∀ϕ ∈ D(Ω),
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which is the desired result. Properties 1) and 2) follow from Proposition 4.5. Finally, if F is spherically

symmetric then u, obtained as a limit, is also spherically symmetric. Indeed, we replace all the

functional spaces E with Erad and we follow the above proof step by step. For N = 1, this includes

the case where F is an even function. Finally, if F is an odd function, it is sufficient to work with

the space Eodd = {v ∈ E; v is odd} in place of E. Hence Property 3).

Proof of Corollary 4.8. Let the assumptions of the corollary be satisfied. Let a = −iλ, b = ib and

G = −iF . Then (a, b) ∈ A × B satisfies (2.2) and we may apply Theorem 4.1 and Theorem 3.6 to

find a solution ϕ ∈ C2,m
b (RN ) of (1.1) compactly supported for such a, b and G. It follows that ϕ is

a solution to (4.7). A straightforward calculation show that u defined by (4.6) is a solution to (4.5).

This ends the proof.

9 Proofs of the uniqueness results

In this Section, we prove Theorems 1.1, 1.2, 5.1 and 5.2, and Corollaries 5.3, 5.4 and 5.5. Let

0 < m 6 1. Set for any z ∈ C, f(z) = |z|−(1−m)z, where it is understood that f(0) = 0. The proof

of Theorem 5.1 relies on the two following lemmas.

Lemma 9.1. Let 0 < m 6 1. Then there exists a positive constant C such that

∀(z1, z2) ∈ C2, Re
((
f(z1)− f(z2)

)
(z1 − z2)

)
> C

|z1 − z2|2

(|z1|+ |z2|)1−m ,

as soon as |z1|+ |z2| > 0.

Proof. We denote by | . |2 the Euclidean norm in R2. From Lemma 4.10, p.264 of Dı́az [11], there

exists a positive constant C such that(
|X|−(1−m)

2 X − |Y |−(1−m)
2 Y

)
.(X − Y ) > C

|X − Y |22
(|X|2 + |Y |2)1−m ,

for any (X,Y ) ∈ R2×R2 satisfying |X|2 + |Y |2 > 0. We apply this lemma with X =

(
Re(z1)
Im(z1)

)
and

Y =

(
Re(z2)
Im(z2)

)
. Note that |X|2 = |z1|, |Y |2 = |z2| and |X − Y |2 = |z1 − z2|. The result follows

from a direct calculation.

Corollary 9.2. Let 0 < m 6 1. Then,

Re
((
f(z1)− f(z2)

)
(z1 − z2)

)
> 0,

for any (z1, z2) ∈ C2.
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Proof. The result is clear if |z1|+ |z2| = 0. Otherwise, apply Lemma 9.1.

Remark 9.3. Corollary 9.2 still holds for any m > 0 and can be directly obtained as follows. The

mapping f (considered as a function from R2 onto R2) is the derivative of the convex function

F : R2 −→ R
(x, y) 7−→ 1

m+1 (x2 + y2)
m+1

2 .

It follows that f is a monotone function (Proposition 5.5 p.25 of Ekeland and Temam [13]).

Lemma 9.4. Let Ω ⊆ RN be an open subset, let 0 < m < 1, let (a, b) ∈ C2 satisfying (2.3) and let

F1,F2 ∈ L1
loc(Ω) be such that F1 − F2 ∈ L2(Ω). Let u1,u2 ∈ H1

0 (Ω) ∩ Lm+1(Ω) be two solutions

of (5.1) and (5.2), respectively. Then there exists a positive constant C = C(N,m) satisfying the

following property. If a 6= 0 then

Im(a)‖∇u1 −∇u2‖2L2 + C|a|2
∫
ω

|u1(x)− u2(x)|2

(|u1(x)|+ |u2(x)|)1−m dx+ Re
(
ab
)
‖u1 − u2‖2L2

6 Re

∫
Ω

a
(
F1(x)− F2(x)

)(
u1(x)− u2(x)

)
dx, (9.1)

where ω =
{
x ∈ Ω; |u1(x)|+ |u2(x)| > 0

}
. If a = 0 then

Re(b)‖u1 − u2‖2L2 = Re

∫
Ω

(
F1(x)− F2(x)

)(
u1(x)− u2(x)

)
dx, (9.2)

‖∇u1 −∇u2‖2L2 + Im(b)‖u1 − u2‖2L2 = Im

∫
Ω

(
F1(x)− F2(x)

)(
u1(x)− u2(x)

)
dx. (9.3)

Proof. Let u1 and u2 be two solutions of (1.1) and (2.1) and set u = u1 − u2 and F = F1 − F2.

Then u satisfies

−i∆u+ a
(
f(u1)− f(u2)

)
+ bu = F , in H−1(Ω) +L

m+1
m (Ω). (9.4)

Assume a 6= 0. We take the H−1 +L
m+1
m −H1

0 ∩Lm+1 duality product of (9.4) with au. We obtain,

Im(a)‖∇u‖2
L2 + |a|2〈f(u1)− f(u2),u〉

L
m+1
m ,Lm+1

+ Re
(
ab
)
‖u‖2

L2 = 〈aF ,u〉L2,L2 . (9.5)

Applying Lemma 9.1, there exists a positive constant C = C(N,m) such that

〈f(u1)− f(u2),u〉
L

m+1
m ,Lm+1

> C

∫
ω

|u(x)|2

(|u1(x)|+ |u2(x)|)1−m dx. (9.6)

Then (9.1) follows from (9.5) and (9.6). We turn out the case a = 0. Taking the H−1 + L
m+1
m −

H1
0 ∩Lm+1 duality product of (9.4) with u and iu, one respectively obtains (9.2) and (9.3).
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Proof of Theorem 5.1. Note that since (a, b) ∈ C2 \ {(0,0)} satisfies (2.3), if a = 0 and Re(b) = 0

then one necessarily has Im(b) > 0. We apply estimates (9.1)–(9.3) of Lemma 9.4, according to the

different cases, and Cauchy-Schwarz’s inequality. Estimates (5.3) and (5.4) follow.

Proof of Theorem 5.2. Let F ∈ L1
loc(Ω) and let u1,u2 ∈ H1

0 (Ω) ∩ Lm+1(Ω) be two solutions

of (1.1) and (2.1). By Lemma 9.4, (9.1)–(9.3) hold with F1 − F2 = 0. We first note that, since

u1−u2 ∈H1
0 (Ω), if ‖∇u1−∇u2‖L2 = 0 then u1−u2 = 0, a.e. in Ω and uniqueness holds. It follows

from hypotheses (2.3) and Lemma 9.4 that one necessarily has ‖u1−u2‖L2 = 0, ‖∇u1−∇u2‖L2 = 0

or
∫
ω

|u1−u2|2
(|u1(x)|+|u2(x)|1−m)dx, where ω =

{
x ∈ Ω; |u1(x)| + |u2(x)| > 0

}
. Those three cases imply that

u1 = u2, a.e. in Ω. This finishes the proof of the theorem.

Proof of Corollary 5.3. Apply Theorem 4.1, Theorem 5.2 and Remark 6.1.

Proof of Corollary 5.4. By uniqueness (Theorem 5.2), u ≡ 0 is the unique solution.

Proof of Corollary 5.5. Apply Theorem 3.6, Theorem 4.1, Proposition 4.5, Theorem 5.2 and

Remark 6.1.

Proof of Theorem 1.1. Apply Theorem 3.6 and Corollary 5.3.

Proof of Theorem 1.2. Apply Theorem 3.5 and Corollary 5.3.
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