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1. Introduction

There is a general presumption that insurers can keep health care expenditure and costs down
by contracting with a small number of providers. This is based on three types of evidence.
First, cross section studies like Coe et al. (2013) which compare insurance plans with narrow
and broad networks. The latter tend to have higher cost per capita. This type of evidence can
be plagued by adverse selection problems (broader networks tend to be more attractive to people
with higher expected health care costs). This is not the case with evidence based on country
wide changes like managed care in the US. As documented by Cutler (2004), Dranove et al.
(1993) and Dranove (2000) the shift from indemnity insurance to managed care where insurers
contract a small provider network has reduced the growth in health care expenditure in the US.
The backlash which forced insurers to contract broader networks has led to increased health
care costs (Lesser et al., 2003). Finally, Klick and Wright (2014) analyze the effect of Any
Willing Provider (AWP) laws on health care costs. They show that AWP laws, which make it
harder for insurers to contract a narrow provider network, tend to raise health care costs.

It is important to distinguish the effect of network size on health care expenditure on the
one hand and on health care utilization and costs on the other. Cutler et al. (2000), analyz-
ing two forms of heart disease, mainly find price effects; i.e. selective contracting and man-
aged care lead to lower expenditure. Zwanziger and Melnick (1988); Zwanziger et al. (1994);
Zwanziger and Melnick (1996) and Chernew et al. (2008) document utilization and cost effects.
Chernew and Newhouse (2011) give an overview of the effects of managed care on both health
care expenditure and costs. In this paper, we focus on the effect of selective contracting on
utilization and costs.

We analyse the effect of network size on health care costs using a framework with private
contracting between insurers and providers. Private contracting means that only the parties
directly involved in the contracting can observe the contract, outsiders cannot (see, for exam-
ple, Hart and Tirole, 1990; Segal, 1999). In our context this implies that only the insurer
and provider involved know the details of the contract; neither other insurers, providers nor
consumers know what is in the contract.

Two reasons to motivate an analysis with private contracting are the following. First,
contracts between insurers and providers are, in fact, private due to confidentiality clauses
(Muir et al., 2013). Second, public contracts cannot explain why a narrow network leads to
lower costs. We will address well known arguments based on public contracting in section 3.
We argue that with public contracts, if there are effects of network size, these involve shifting
rents between insurers and providers. Treatment decisions and welfare are unaffected. As a
consequence, models with public contracts cannot address worries that narrow networks lead
to under-treatment (see, for instance, Terhune, 2013; Pear, 2014).

We introduce a model with homogeneous providers treating patients at constant marginal
costs c. Insurers offer providers contracts privately. These contracts specify two-part tariffs: fee-
for-service (variable part) p and capitation fee (fixed part) t. On the health insurance market,
insurers offer contracts specifying a co-payment γ for insured who need treatment. Both p and
γ can be used to reduce health care consumption: p < c is known as supply side cost sharing
and γ > 0 as demand side cost sharing (Ellis and McGuire, 1993). If p < c, capitation t > 0
compensates providers up front for loss-making treatments. The health economics literature
tends to focus on the extreme contracts –either pure capitation, p = 0, or pure fee-for-service,

2



t = 0. We allow both instruments to be used simultaneously. The question is: how do
provider choice and private contracting affect optimal supply and demand side cost sharing?
To illustrate, how can an insurer use supply side cost sharing (like a capitation fee) when
patients are free to choose their provider?

We show the following results with private contracts. As the size of the network increases, p
goes up as “aggressive” capitation contracts (low p, high t) become too expensive for insurers.
As providers cannot see each others’ contracts, they believe that too many patients will visit
them and therefore providers demand high t.1 To reduce the high capitation, fee-for-service
is raised and a bigger network leads to higher health care costs. Similarly, AWP laws by
expanding the network raise costs as well. Although providers are homogeneous in our model,
with private contracts they make positive profits (unless there is either only one provider in the
network or p = c). As providers gain from private contracting, the model motivates the use of
confidentiality clauses that we see in the real world. Fee-for-service p affects the probability that
a patient is treated by a provider. Hence, p is payoff relevant for a consumer buying insurance.
As contracts are private, consumers cannot observe p directly. However, network size signals
the level of p: a bigger network signals a higher probability of being treated. Finally, the
equilibrium network size is determined by the trade off between consumer utility and provider
profits.

This paper is related to the following strands of literature. First, the literature on demand
and supply side instruments to curb moral hazard (see, for instance Ellis and McGuire, 1993,
for an overview). Papers in this literature work with public contracts which has two impli-
cations. First, demand and supply side cost sharing can be analyzed separately. Second, the
first best outcome is implementable2 (see equation (11) below). Neither implication holds in a
model with private contracting.

Second, papers on provider networks and how they are organized include Ma and McGuire
(1997), Ma and McGuire (2002); features include non-contractible physician effort and insurers
imposing targets for providers’ supply of care. They characterize the outcomes that can be
achieved with optimal contracts. Outcomes are typically not efficient. Papers that allow for
provider heterogeneity include Capps et al. (2003) and Ho (2009). They derive the profits that
a provider can make by joining a network. Working with public contracts, Capps et al. (2003)
find that all providers are contracted in equilibrium (see section 3 below). This is not true
under private contracts. In Bardey and Rochet (2010), a health insurer operates in a two sided
market: contracting providers upstream and selling insurance downstream to heterogeneous
consumers. The equilibrium network is determined by two effects. On the one hand, the
demand effect: insured value bigger networks. On the other hand, the adverse selection effect:
bigger networks are relatively more attractive for high risk types. If the latter effect dominates
the former, narrow networks are more profitable. As we focus on private contracting, our set-up
is simpler with homogeneous providers and homogeneous consumers, constant treatment costs
and no physician effort choice.

Finally, this paper is related to the industrial organization literature on private contracting.
Papers in this literature specify agents’ beliefs about contracts that are payoff relevant to

1This is the opposite of the problem in Hart and Tirole (1990). There, retailers pay a manufacturer for a
profitable opportunity and worry that they may not get enough customers; here providers fear that they get
too many patients.

2Unless other constraints are introduced like the limited-liability constraint in Ma and Riordan (2002).
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them but which they do not observe. So-called passive beliefs are imposed by papers like
Hart and Tirole (1990) and Segal (1999). With passive beliefs, a provider receiving a deviating
contract from an insurer, still believes that other providers received the equilibrium contracts.
We show that with passive beliefs, only fee-for-service contracts are used and no capitation
(t = 0). As a technical innovation, we do not specify provider beliefs, but characterize the set
of contracts that make it incentive compatible for the insurer to truthfully reveal to providers
the relevant details of all contracts offered.

The rest of this paper is organized as follows. The next section introduces the model. Then
we consider a number of arguments based on public contracts of why bigger networks lead to
higher health care costs. We explain why we do not find these explanations convincing. Section
4 introduces private contracts. It shows the trade-off between supply-side cost sharing and
provider profits. As the network grows, the optimal fee-for-service increases and the capitation
fee falls. For a big enough network, there is no capitation fee at all. Section 5 characterizes the
equilibrium in the insurance market. We conclude with policy implications. Proofs of results
can be found in the appendix.

2. Model

Consider a model with risk averse consumers (mass one) buying insurance at premium σ ≥ 0
with out-of-pocket payment γ ≥ 0 (demand side cost sharing) in case a patient needs treatment.
A patient needs at most one treatment per period. Treatment is provided by homogeneous risk
neutral providers with cost c > 0 per treatment. Risk neutral insurers pay providers using
two-part tariffs with capitation fee t and fee-for-service p. That is, the provider receives p each
time she treats a patient, while the fixed fee t is paid once; say at the beginning of the period.

As we will see, to reduce over-consumption of health care services, the insurer wants to
pay a fee-for-service which is less than the cost of treatment, p < c (supply side cost sharing).
The provider is compensated for this loss with t > 0. If the insured can only enroll with one
provider, this provider receives the capitation fee per enrolled customer of the insurer. This
is often how it works with a primary physician or family doctor. But requiring insured to
enroll upfront with each possible specialist that may be needed in the coming period is not
practical. In this case, people choose their specialist from the insurer’s network once they need
one. Hence, the capitation fee for provider Pi needs to take into account the probability that
an insured falls ill and chooses Pi. One can think of t as a subscription fee: it gives the insured
the right to be treated by the provider. An insurer pays t to the provider for each of its insured.

We follow Ma and McGuire (1997) in assuming that

p ≥ 0 (1)

Indeed, with p < 0 and γ ≥ 0 the patient and physician are better off not reporting the
treatment to the insurer.

With probability θ ∈ 〈0, 1〉 the agent falls ill. We do not consider adverse selection issues: θ
is the same for all agents. The value of treatment v depends on the condition of the patient. The
physician observes v. We assume that v ∈ [0, v̄] is drawn from a distribution with cumulative
distribution function F and density function f with f(v) > 0 for each v ∈ [0, v̄].

Taking into account the relation between physician and patient (Arrow, 1963; Ma and Riordan,
2002), we assume that they determine together whether the patient receives treatment or not.
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The three relevant parameters are (for given c): value v of treatment for the patient (which
the patient may or may not know), co-payment γ that patient needs to pay and fee-for-service
p that provider receives from the insurer. We do not want to make very specific assumptions
here. We assume that there exists a continuously differentiable function v(p, γ) such that a
patient receives treatment if and only if v > v(p, γ).

In words, patients with high enough “severity” (value of treatment) v are treated. The
lower bound of who is treated is affected by financial incentives. Socially efficient treatment
follows if v(p, γ) = c: a patient is treated if and only if the value of treatment v exceeds the
cost of treatment c. If v(p, γ) > (<)c we say that there is under-(over-)treatment.

We make the following assumptions on the derivatives of v with respect to p and γ:

vp(p, γ) ≤ 0, vγ(p, γ) ≥ 0 (2)

As the provider receives a higher compensation from the insurer for treatment, she is more
willing to treat a patient (threshold decreasing in p); as the patient faces a higher co-payment,
he is less keen to be treated (threshold increasing in γ).

What we have in mind is that the patient and physician come to some sort of agreement on
whether to treat or not. As treatment becomes financially more attractive for the physician,
she is more likely to suggest it. As it becomes more expensive for the patient, he may be more
reluctant to undergo treatment (Aron-Dine et al., 2013). One way to model this is to assume
that physician and patient jointly maximize the following objective function

β(p− c) + (1− β)(v − γ) (3)

where β ∈ [0, 1] captures the physician’s bargaining power vis-a-vis the patient. This equation
gives the value of treatment which is compared to the value of no treatment (normalized at) 0.
The physician treats the patient if and only if (3) is positive; i.e. v(p, γ) = γ+β/(1−β)(c−p).
Such a set-up is rich enough to allow for the following cases. Efficient collusion (β = 1

2
) between

physician and patient: patient is treated if v+p−γ−c ≥ 0. Physician induced demand (β > 1
2
):

patient is treated because it is profitable for the physician even though patient’s welfare may
decrease (v(p, γ) < γ if p− c > 0).

We normalize the function v to rule out less interesting cases; that is, we assume

v(0, 0) > c and v(c, 0) < c (4)

Cost c is high enough that there is under-treatment in case the physician receives zero fee-for-
service (p = 0) and there is over-treatment if the physician is fully reimbursed (p = c); in both
cases the patient faces no co-payment. In the former case, the physician is reluctant to give
expensive treatment while this is not reimbursed to her at all (p = 0), in the latter, the patient
–facing no costs– demands treatment while for the physician providing such treatment does not
cost anything (p = c).

Hence, we rule out the case where there is either over-treatment or efficient treatment with
p = 0. In this case, the optimal p = 0 and the analysis is rather trivial. Similarly, we rule
out either under-treatment or efficient treatment at p = c. Again the optimal solution is
straightforward in this case.

We capture the agent’s risk aversion by a dis-utility function δ(p, γ); think of this as the
variance term in the agent’s utility function. We normalize,3 such that dis-utility for the agent

3We don’t do comparative statics with respect to θ, hence this normalization is without loss of generality.
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equals θδ(p, γ) and make the following assumptions on δ. First, δ(p, 0) = δp(p, 0) = 0: as γ = 0
there is no dis-utility (for any value of p). Further, δγ(p, γ) > 0 at γ > 0: an increase in γ raises
the dis-utility as the agent needs to pay more in case he needs treatment; in this sense the risk
increases with γ.4 Finally, δp(p, γ) ≥ 0: as p increases, patient is more likely to be treated (and
has to pay γ) because vp(p, γ) ≤ 0.

If the agent does not buy insurance, he goes to a provider in case he needs treatment. We
assume that there is price competition on the uninsured market and treatment is a homogeneous
good. Hence, the uninsured price equals pu = c and uninsured utility is given by

V u = θ

∫

v(c,c)

(v − c)f(v)dv − θδ(c, c) (5)

Without insurance, patient pays γu = c for treatment and provider receives pu = c (from the
patient) for the treatment. Hence the threshold treatment is given by v(c, c). Sometimes, it
is assumed that without insurance, efficient treatment choices are made. This would imply
v(c, c) = c; although we allow for this, we do not impose it.

If the agent buys insurance at premium σ ≥ 0, his utility equals:

V i = θ

∫

v(p,γ)

(v − γ)f(v)dv − σ − θδ(p, γ) (6)

An agent buys insurance if and only if V i ≥ V u. We exclude the case where a patient is paid
for undergoing treatment (i.e. we exclude γ < 0). Further, without insurance the patient pays
pu = c, hence we have with insurance that

γ ∈ [0, c〉 (7)

Consider the case with one provider P1 and one insurer Ia. P1’s profits with contract p, t
equal

π1 = H(p, γ)(p− c) + t (8)

where H denotes the probability that a patient is treated:

H(p, γ) = θ(1− F (v(p, γ))) (9)

with –from equation (2)– Hγ ≤ 0, Hp ≥ 0. Ia’s profits equal

πa = σ −H(p, γ)(p− γ)− t (10)

As a benchmark, note that social welfare is maximized by implementing efficient care con-
sumption v(p, γ) = c while minimizing δ(p, γ). Equation (4) implies that there exists p∗ ∈ 〈0, c〉
such that

v(p∗, 0) = c (11)

and δ(p∗, 0) = 0. To make sure that provider’s expected profits are non-negative, capitation
fee needs to be equal to at least t = H(p∗, 0)(c − p∗). Such a contract implements the first

4In fact, there is also another effect: as γ increases, the probability that the patient gets treatment decreases
because vγ ≥ 0. We assume that the direct effect of γ dominates this indirect effect.
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best outcome. Only supply-side cost sharing is used (p∗ < c). Because the agent is risk averse,
γ > 0 would be inefficient and thus there is no demand-side cost sharing (γ = 0) in first best.

With public contracts, the first best outcome can be implemented also with competing
risk neutral providers P1, ..., PN . Suppose the insurer contracts n of these providers, then
p = p∗, t = H(p∗, 0)(c−p∗)/n leads to non-negative expected profits for providers. As providers
are homogeneous, the probability that a patient visits Pi –conditional on being ill– equals 1/n.
Hence, with public contracts, moral hazard can be solved by supply side cost sharing (only).
This leaves the question why moral hazard in health care is still an issue.5 Further, health care
costs do not vary with the size of the network n and AWP laws have no effect on the outcome.

In section 4, we consider the effects of private contracting. First, we go over the arguments
why –with public contracts– the size of the network can affect health care costs.

3. Public contracts

In the introduction we suggested that there is evidence for the following two related findings:
(i) as the size of an insurer’s network increases, health care costs increase and (ii) AWP laws
tend to raise health care costs; where AWP laws “require managed care plans to accept any
qualified provider who is willing to accept the terms and conditions of a managed care plan”
(Hellinger, 1995, pp. 297).

The existing literature uses arguments based on public contracting to explain the effect of
network size on health care costs. In this section, we review the arguments and show that they
are not convincing: although some can explain an effect on insurer expenditure, none leads to
an effect on utilization and costs. We present the arguments in the context of our model above.

3.1. threat to exclude

The first argument explains narrow networks by the threat to exclude. This threat enhances
the insurer’s bargaining power, leading providers to lower their prices.

In the model above, insurer Ia offers publicly each of the N providers a contract with

p∗, t∗ = H(p∗, 0)(c− p∗)/N (12)

where p∗ < c is defined in (11). Each provider is willing to accept this contract and all providers
are contracted in equilibrium. Similarly, if providers make the offers to the insurer (bidding
game)6, they compete the price down to the same contract (p∗, t∗). All these contracts are
accepted by the insurer.

According to this reasoning, there is no relation between the size of the network n = N
and either health care expenditure or costs. There can be an effect on price if I is under the

obligation to contract with all N providers. Then each provider can claim part of the rent
earned by the insurer in the bidding game, because the insurer cannot reject offers with t > t∗.7

Utilization and costs are not affected because the efficient contract remains optimal. But –even

5One possible explanation is asymmetric information (about provider costs and/or quality). This is explored
in Boone and Douven (2014).

6The case where a monopoly insurer makes the offers to providers is then called an offer game
(Segal and Whinston, 2003).

7If providers claim more then the rents earned by I, the insurer closes down to earn its outside option.
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with AWP laws– an insurer is not under the obligation to contract all providers nor to accept
any contract offer that a provider makes; hence this case is not relevant.

Summarizing, the only thing that is needed, is the threat to exclude a provider. In the
equilibrium of such a game, however, no provider is necessarily excluded. I offers insurance
that maximizes consumer’s value: p = p∗, γ = 0. Neither the size of the network nor AWP laws
affect health care costs.

3.2. shifting volume

Another argument in favor of narrow networks is that shifting patient volume to a small number
of providers leads to lower costs. To model this, we need increasing returns to scale (IRS).
Consider the set up above with two providers. Provider i’s cost per treatment is denoted c(xi)
where xi denotes number of patients treated by Pi and c′(xi) < 0 captures IRS. Let X∗ denote
the total number of patients. To simplify the exposition, assume X∗ is exogenous here.8. We
have x1 + x2 = X∗. One option for I is to offer P1 a contract with p = 0, t = X∗c(X∗). As
c′(x) < 0, it is optimal for I to deal with only one provider. So this model explains why a
network with only one provider leads to lower costs than a network with both providers.

Yet, we do not find this argument convincing for two reasons. First, it is not clear that in
this model AWP laws raise health costs. To see why they may have no effect, consider the case
where I offers a menu with two contracts: one contract p = 0, t = X∗c(X∗)/2 for the case of
a network with 2 providers and p = 0, t = X∗c(X∗) for a network with one provider. If one
provider accepts the latter contract, the other provider has no incentive to join the network
with the former contract. Hence, AWP laws do not affect the outcome in this set up. Indeed,
the insurer does not exclude a provider; the provider is not willing to join the network.

Second, the main reason why IRS is not a very convincing explanation for a narrow provider
network is that the optimal hospital size is quite modest. As pointed out by Haas-Wilson (2003,
pp. 147) for hospitals “most scale economies appear to be exhausted at relatively low levels of
output”. Posnett (1999, pp. 1063) summarizing empirical studies notes that “research does not
support any general presumption that larger hospitals benefit from economies of scale”. In fact,
dis-economies of scale can set in, making it optimal to spread an insurer’s patient population
over a number of hospitals.

3.3. taste for variety

Horizontal product differentiation is also used as an explanation for why bigger networks lead to
higher health care expenditure (not costs); Gal-Or (see, for instance, 1997). To illustrate this,
assume that there is one insurer and two providers. The providers are located on a Hotelling
beach of length 1 with provider 1 on position 0 and provider 2 on position 1. Let t denote
the travel cost over the beach. When an agent buys insurance, he does not know yet where he
ends up on the beach once he needs treatment; assume that each location between 0 and 1 is
equally likely (uniform distribution for the agent). Intuitively, each provider may specialize in
certain treatments and when buying insurance, the agent does not know yet which treatment
he needs.

If the insurer contracts only one provider (exclusive contract), expected value of insurance
for the agent equals ue = θ(v − 1

2
t) where v denotes the value of treatment once it is needed

8More generally, in the set up above, let p∗ denote a solution to c(H(p∗, 0)) = v(p∗, 0), then X∗ = H(p∗, 0).
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and 1
2
t the expected travel cost. If both providers are contracted (common outcome), we have

uc = θ(v − 1
4
t). Hence, a monopoly insurer charges a higher premium if both providers are

contracted: σc = uc > ue = σe. But the insurer offers the same prices to providers in both
cases: p∗ to ensure efficient treatment decisions (and a capitation fee to keep expected provider
profits non-negative). Hence, health care costs in this case are unaffected, though a monopolist
insurer charges a higher premium in case of a bigger network.

If providers make the offers, they can demand a higher capitation fee to appropriate part
of the surplus associated with the common outcome.9

Although the distribution of rents is different depending on who makes the (public) offers,
welfare and efficiency are unaffected. From a welfare point of view, capitation fees are transfers
between parties without affecting treatment decisions or efficiency. Hence, this type of model
cannot address efficiency concerns that smaller networks tend to reduce access to physicians
and decrease treatments (Terhune, 2013).

3.4. heterogeneous providers or agents

Our model focuses on homogeneous providers and symmetric agents. Cost heterogeneity can
also explain why bigger networks tend to have higher costs. However, it cannot explain well
the two observations at the start of this section.

First, consider the case where providers have different costs and treatment decisions are
exogenous. A narrow network –that only contracts the most efficient providers– has lower costs
than a network that also contracts less efficient providers. To formalize this idea, some form
of (horizontal) provider differentiation is needed (like the Hotelling set up above); otherwise,
what is the value of contracting inefficient providers?

But in such a model it is hard to understand why AWP laws affect health care costs. Suppose
the efficient providers treat patients at cost c per treatment, while less efficient providers have
costs c′ > c. Leaving capitation aside,10 an insurer can offer a contract with fee-for-service p = c
(or a slightly higher p). Any provider willing to treat at this price can accept the contract.
Inefficient providers will not accept such a contract; AWP laws do not force insurers to offer
contracts with p ≥ c′. Further, this line of argument suggests that all narrow networks contract
the same (efficient) providers. Although there is some overlap, the lack of overlap in a number
of areas (Coe et al., 2013, pp. 9) makes this argument less convincing.

Second, agents with different expected health care costs and adverse selection. If providers
are (perceived to be) differentiated in utility space, broader networks are more attractive to
insured than narrow networks. It seems reasonable to assume that this preference is stronger
for people with higher expected health care costs. Due to this effect, a cross section of insurers
where some offer narrow and others broad networks tends to show that the broader networks
have higher costs per capita (Cutler and Reber, 1998; Coe et al., 2013; Bardey and Rochet,
2010). But this argument is not directly convincing to explain why states with AWP laws tend
to have higher health care costs. Admittedly, there can be some endogeneity here, but it is not

9Using Bernheim and Whinston (1998), providers set p∗ to maximize efficiency in both the common and
exclusive case. Competition with exclusive contracts leads to zero rents for providers (as in the offer game
we consider). With common contracts, each provider claims her contribution to the surplus as rent (here the
reduction in expected travel cost θ 1

4
t). Gal-Or (1997) uses Nash bargaining to model the distribution of rents.

10With capitation and endogenous treatment decisions, insurer offers p = p∗ and capitation that covers the
difference c− p∗. Providers with costs c′ > c do not accept this contract.
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clear that this can explain cost differences of 3%; see the analysis of Klick and Wright (2014)
using state fixed effects. Further, adverse selection cannot explain the change in costs when a
whole country moves from indemnity insurance, via managed care with narrow networks to a
situation with broader networks (Cutler, 2004; Lesser et al., 2003).

3.5. risk averse providers

Capitation contracts transfer risk from the insurer to the provider. We assume that providers
are risk neutral; the capitation fee only needs to cover the expected loss from treatment.
However, if providers are risk averse, insurers need to compensate them for this risk. Can
this explain the relation between network size and health care costs?

The risk that a provider faces is the loss c− p > 0 per treatment and the insurer has to pay
a risk premium. To reduce the risk premium, the insurer offers p > p∗. This increases health
care utilization and costs (compared to a situation with risk neutral providers). The effect of
an increase in network size is, however, ambiguous. As network size n goes up, more providers
need to be paid a risk premium; this tends to raise p and costs. However, as n increases,
the probability that one provider incurs the loss c − p decreases: the risk is spread over more
providers. If the latter effect dominates, p and costs tend to fall with n.

Further, as hospitals perform most operations hundreds of times a year, the law of large
numbers would suggest that there is not that much risk at the provider level. Hence for routine
treatments, the risk premium is not really an issue and p = p∗. With private contracts, the risk
that providers face is not stochastic but strategic (influenced by the insurer).

This section briefly presented the main explanations for the relation between network size
and health care costs in models with public contracting. We argued that these explanations are
not convincing. The next section introduces a model with private contracting. As explained in
the introduction, contracts between insurers and providers are, in fact, secret. Further, private
contracts give a straightforward explanation why network size affects health care costs.

4. Private contracts

The model that we use has two ingredients. First, contracts between insurers and providers
are private (i.e. not publicly observable). Second, the number of patients treated by provider
Pi depends on the fee-for-service p offered to other providers in the insurer’s network. Initially,
we capture the latter effect by assuming that insurers can guide patients to certain providers
within their network.

We are interested here in implicit mechanisms by which insurers steer patients to providers.
Explicit mechanisms to steer patients are excluding providers from the network and charging
patients different co-payments for different providers. These mechanisms are explicit because
they need to be specified in a consumer’s insurance contract. Hence, these mechanisms are
contractible for providers as well. Instead, we focus on ways to steer patients which are not
verifiable for providers. Such implicit mechanisms include advising patients directly when they
need to choose a provider. As insurers know how other customers fared with certain hospitals
and physicians, they have relevant information for patients. Patients can contact their insurer to
ask about this. Or the information can be presented on a web-site or in an app (De La Merced,
2014; Scott, 2011). Presenting providers in the network on a website in a certain order will affect
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patients’ choices. Finally, insurers can influence primary physicians to steer patients to certain
providers and not to others (Ho and Pakes, 2013; Liu, 2013; Kirk, 2014). Such mechanisms are
implicit as they cannot be verified by hospitals.

Although, (implicit) steering is plausible and simplifies the exposition, section 4.6 shows
that this assumption is not necessary to get that Pi’s profits depend on pj received by provider
Pj (j 6= i).

Hart and Tirole (1990) introduced private contracts in the context of an upstream monopo-
list with downstream retailers. In their model, private contracting is a contracting inefficiency:
the monopolist cannot commit to public contracts. If it could commit to such contracts, it would
be better off. This is different in our model. In fact, due to competition, insurer profits are
always zero. But provider profits are positive with private contracts where they would be zero
with public contracts. Hence, providers actually have a stake in defending the confidentiality
clauses in their contracts.

This section explains how private contracting affects the relation between network size and
costs. Section 6 comes back to AWP laws.

4.1. capitation and implicit steering

In addition to the elements in section 2, we have the following model in mind. Insurers Ia, ..., Im
simultaneously and independently offer providers P1, ..., PN contracts with a fee-for-service p
and capitation t.11 Without observing offers that other providers received, providers simul-
taneously and independently decide which offers to accept. This determines each insurer Ij’s
network size nj . Each insurer sells an insurance contract specifying its network, co-payment γ
and premium σ.12 Since providers are homogeneous, an insurer’s network is characterized by
its size. As n and γ are specified in the insured’s contract, these parameters are contractible for
providers as well.13 Hence, the contracts that providers receive, are conditional on γ. As the
insurer’s choice of γ is payoff relevant to providers (Hγ ≤ 0), it is specified in its contracts with
providers. This γ is then also used in the insurance contract sold to consumers. Because the
probability of being treated depends on the fee-for-service, p is payoff relevant for consumers.
However, p is not observed by them due to the private contracting between providers and insur-
ers. Indeed, few people know the prices specified in providers’ and insurers’ contracts. But, as
we show below, an insurer’s network size signals p. Based on σ, γ, n, an agent decides whether
to buy insurance and from whom. Once an insurer knows its number of customers, it pays t
for each customer to the providers in its network.

Then consumers fall ill and need to go to a provider. As described above, we assume that
insurers can steer consumers to providers. As providers are homogeneous, consumers do not
object to this.14 To keep things simple, we assume that patients do not incur (travel) costs to
visit a provider. If a provider does not treat the patient, he can visit another provider in his

11Offers made by insurer Ii to provider Pj can be written as (pij , tij). To ease notation, we drop the subscript
ij if this does not cause confusion.

12Since consumers are identical, there is no need for an insurer to offer more than one contract.
13In principle, we could consider co-payments that vary with provider. But because providers are homogeneous

and γ is contractible, there is no reason to do so.
14See Boone and Schottmüller (2014) for an analysis of the case where providers differ both in costs and in

quality.
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insurer’s network (if there is one) etc.15 If the patient is treated by a provider, the patient pays
γ to the insurer and the provider receives p from the insurer.

Summarizing, timing of the game is as follows:

1. Ia, ..., Im simultaneously, independently and privately make offers of the form (p, t, γ) to
P1, ..., PN

2. providers simultaneously and independently accept/reject offers; this gives Ij ’s network
size nj

3. each Ij announces premium σj , network size nj and co-payment γj to consumers

4. consumers decide whether to buy insurance and from which insurer

5. Ij pays contracted tj to providers for each insured customer

6. patients fall ill

7. Ij guides/steers patients to providers

8. provider Pi treating patient receives contracted pij from Ij ; patient pays γj to Ij

Because of assumption (4), the insurer wants to set p < c to reduce over-consumption of
health care. To compensate for the loss of treating a patient, providers are paid a capitation
fee. When evaluating an offer (p, t), a provider needs to take into account the probability that
she will treat an insurer’s customer.

This is straightforward with public contracts. Consider an insurer who contracts two
providers P1,2 with p1 < p2 < c. Then t1 = H(p1, γ)(c − p1) as P1 understands that all
patients from this insurer are first steered to her. Further, t2 = (H(p2, γ) − H(p1, γ))(c− p2)
since P2 only treats patients that are not treated by P1.

However, this does not work with private contracts. In particular, whereas the contract with
provider Pi can specify the size of the network n and co-payment γ that insured have to pay
(both are verifiable information), Pi does not know how pi relates to the fee-for-service offered
to other providers in the insurer’s network. If pi is the lowest fee offered in the network, Pi

should expect to treat H(pi, γ) patients; if there are providers Pj in the network with pj < pi,
Pi treats fewer patients than H(pi, γ).

16

As an example, consider Ia offering P1,2 prices p1 ≤ p2 ≤ c and t1 = H(p1, γ)(c − p1)
and t2 = (H(p2, γ) − H(p1, γ))(c − p2).

17 If P2 cannot observe/contract on p1 and t1, does
she accept the contract above? We argue that she does not. If she would accept, Ia has an
incentive to deviate and offer P1 the same contract p2, t2. For p2 close enough to p1, paying for
the probability of treatment H(p2, γ) − H(p1, γ) –even if it is paid twice– is less than paying
for the probability H(p2, γ).

15In equilibrium this happens only if providers receive different p’s from a patient’s insurer: see below.
16Note that the nature of this contracting problem between insurers and providers differs depending on

whether p > c or p < c. The relevant problem in our context is p < c. With p > c, treating the patient becomes
a profitable opportunity and the provider is willing to pay the insurer for this opportunity (t < 0). This is the
problem analyzed in Hart and Tirole (1990).

17To ease notation, we will not always explicitly acknowledge that p1 = p2 is also possible (but we do not
exclude this possibility). With p1 = p2 the lowest price, we think of H and ti as satisfying t1 = t2 = 1

2
H(p1, γ).

12



Summarizing, with private contracts an insurer makes each provider Pi an offer (pi, ti);
where the offer is conditional on public information about the insurer’s network size n and
co-payment γ. The insurer has payoff relevant information (prices pj for j 6= i) that Pi cannot
observe but needs to know to evaluate the expected profits associated with (pi, ti). There are
two ways to proceed. First, given the offer (pi, ti), Pi forms beliefs about the other offers (pj, tj).
Second, the insurer truthfully reveals its private information. We use the latter route and come
back to beliefs in section 4.5.

4.2. truthful revelation

We take a mechanism design approach and characterize the set of contracts that make it
incentive compatible (IC) for an insurer to reveal its private information truthfully to providers.
As the insured do not observe the offers (pi, ti), the insurer’s revenues (from premiums paid
by the insured) cannot depend on pi, ti. For a given network size, IC refers to I’s total costs
C (only). That is, IC implies that there is not a deviating contract that strictly reduces I’s
expected costs; taking the (contractible) network size as given.

Let xi denote the true probability that a patient in the insurer’s network is treated by Pi

–given all of I’s contracts— and x̂i denotes I’s message to Pi of this probability. Given this
message, I offers Pi a price per treatment pi ≤ c and a fixed fee ti = x̂i(c− pi). We define the
set of contracts where xi is truthfully revealed as

Aγ,n = {(p, x̂(c− p)) ∈ [0, c]× IR+|x̂ ≥ x} (13)

where the set Aγ,n is conditional on contractible information γ, n. Given that x is truthfully
revealed, a provider is willing to accept each contract in Aγ,n. A contract that is not in the set
Aγ,n implies that x̂ is not truthful and providers reject such contracts.

Proposition 1. For each (p, t) ∈ Aγ,n we have that

t ≥ H(p, γ)(c− p) (14)

In words, a provider who receives offer (p, t) expects that p is the lowest price offered to all
n providers in the network: x̂ = H(p, γ). This is clearly sufficient for a contract to be in Aγ,n,
the proof shows that it is also necessary.

Note that transfers t in the set A are, in fact, independent of the size of the network n.
This is the cost for the insurer of using capitation contracts in a network with competing
providers. Although capitation contracts lower health care consumption by setting p < c, each
provider worries that patients are steered towards her first. Hence, the capitation fee exceeds
the expected treatment loss for most providers.

At first sight, the ability to (implicitly) steer the patient hurts the insurer. It raises the
capitation fees that an insurer has to pay. However, this is a blessing in disguise. First,
note that by contracting only one provider this problem is resolved (recall that providers are
homogeneous). Second, as we show shortly, the result in proposition 1 allows the insurer to
signal its fee-for-service to the consumer.
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4.3. minimizing costs

Since pi, ti is not observed by final consumers, an insurer chooses its contracts with suppliers
to minimize its costs:

C(n, γ) = min
pi≤pi+1

H(p1, γ)(c−γ)+
n
∑

i=2

[(H(pi, γ)−H(pi−1, γ))(pi − γ) +H(pi, γ)(c− pi)] (15)

where we order providers such that p1 ≤ p2 ≤ . . . ≤ pn and ti is chosen such that equation (14)
holds with equality (no reason for I to give more than this). Provider P1 gets all patients to visit
her first. She treats H(p1, γ) patients. Hence, I spends H(p1, γ)(p1 − γ) + t1 = H(p1, γ)(c− γ)
on this provider (in expected terms). If the patient is not treated by P1, he will go for a
“second opinion” and I steers him towards P2. Provider Pi (i ≥ 2) receives ti and treats
H(pi, γ) − H(pi−1, γ) patients. I spends (H(pi, γ) − H(pi−1, γ))(pi − γ) + H(pi, γ)(c − pi) on
this provider. This leads to a profit for Pi equal to

πi = H(pi−1, γ)(c− pi) (16)

Pi gets capitation fee based on treatment probability H(pi, γ), while the probability that she
actually treats equals H(pi, γ)−H(pi−1, γ). As illustrated in figure 1, H(pi−1, γ) of the patients
are not treated by Pi and she makes a profit on these patients.

0 v(pi ,γ) v(pi−1,γ) v(0,0) v̄

v

H(pi−1,γ)

f(v)

Figure 1: Provider Pi makes a profit over H(pi−1, γ) patients not treated by her.

Hence, although providers are homogeneous and insurers make take-it-or-leave-it offers,
providers make strictly positive profits if n ≥ 2 and pn < c. Define total provider profits as

ΠP (γ, p1, . . . , pn) =

n
∑

i=1

πi =

n−1
∑

i=1

H(pi, γ)(c− pi+1) (17)

It is routine to verify that (15) can be written as

C(n, γ) = min
pi≤pi+1

H(pn, γ)(c− γ) + ΠP (γ, p1, . . . , pn) (18)
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The first term is the expected cost of treating the patient. If the patient falls ill, the probability
that he is treated (at all) equals H(pn, γ) with pn the highest fee-for-service in the network. If
provider profits would be zero, the first term would be I’s treatment cost. The second term
equals total providers’ profits.

4.4. optimal fee-for-service

With n = 1, provider profits equal 0 and costs are minimized by minimizing the treatment
probability. For given γ, the profit maximizing fee-for-service p = 0. With n ≥ 2, the trade-off
faced by the insurer is the following. If it sets the highest pn = 0, utilization is low but provider
profits ΠP are high. Setting the lowest p1 = c, leads to ΠP = 0 but a high probability of
treatment.

Before characterizing the equilibrium in the insurance market, we need to characterize the
effects of the co-payment γ and network size n on insurer’s costs C and highest price pn. We
assumed that patients face no costs visiting providers. Hence, for insured the relevant variable
is the probability that they get treatment (at all) which is determined by pn.

Proposition 2. Costs C(n, γ) are decreasing in γ and increasing in n for pn < c.
Highest price pn is weakly increasing in n.

Increasing the co-payment γ reduces costs directly (as patients pay a bigger contribution to
the cost) and indirectly by reducing the probability of treatment (Hγ ≤ 0).

Increasing network size n raises costs (unless pn = c; then adding more providers does not
affect costs as tn = 0).18 As more providers need to be contracted, low pn becomes more
expensive and hence pn tends to rise with n. Hence, we find that health care utilization and
costs increase with network size because Hpdpn/dn ≥ 0.

This is our explanation for the observations in the introduction that bigger networks tend to
go hand in hand with higher health costs. As the network grows, using capitation contracts with
low fee-for-service becomes more expensive. Therefore, fee-for-service increases with network
size and thus health care utilization and costs increase with network size.

As shown in the proof of the proposition, the effect of γ on pn is ambiguous. On the one
hand, higher γ reduces the treatment cost c− γ; hence the insurer is willing to choose higher
pn and treat more patients. On the other hand, higher γ implies –ceteris paribus pn−1– that
Pn−1 treats fewer patients and hence a lower profit has to be paid to Pn. This leads the insurer
to choose lower pn. Finally, there is the interaction effect Hpγ on which we have not made any
assumptions. Hence, we cannot sign dpn/dγ; neither do we need to sign it.

Example 1. Assume that v ∈ [0, 2] with f(v) = 1− 1
2
v. Patient is treated if and only if (3) is

non-negative. There are two providers P1,2. Consider the case with γ = 0. Then it is routine
to verify that

H(p, 0) =
θ

4

(

β

1− β
(c− p)− 2

)2

(19)

If I contracts with P1 only (n = 1), it is optimal to set p11 = 0, t11 = H(0, 0)c –where the
superscript denotes network size n. Health care costs equal C(1, 0) = H(0, 0)c

18In fact, if pn = c, we have pi = c for each provider i.
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If I contacts with both providers (n = 2), it is still optimal to set p21 = 0, t21 = H(0, 0)c.
Optimal p22 depends on parameter values. I’s costs as a function of p2 can be written as

C = H(0, 0)c+ (H(p2, 0)−H(0, 0))p2 +H(p2, 0)(c− p2) (20)

Figure 2 draws C as a function of p2 for parameter values: β = 0.75, c = 0.2, θ = 0.1. Cost
minimizing p22 ∈ [0, c] is an interior solution. As the size of the network increases, more patients
are treated (p22 > p11 = 0) and health care costs equal C(2, 0) > H(0, 0)c = C(1, 0).

0 p 2
2

c

p2

C

Figure 2: Cost minimizing fee-for-service p2 for provider P2.

4.5. passive beliefs

In this paper, we focus on the set of offers where I truthfully reveals xj to each Pj, in the sense
of equation (13). An alternative that is often used in the literature on private contracting is
to assume passive beliefs (see, for instance, Hart and Tirole, 1990; Segal, 1999). We argue that
with passive beliefs it is not possible to use capitation contracts to reduce over-treatment.

With passive beliefs, a provider receiving a deviating offer believes that all other providers
still received their equilibrium offer. Then there is only an equilibrium with pi = c for all
i. Suppose not, that is consider an equilibrium with p1 ≤ p2 < c. Then a deviating offer
with p̃2 = p1 + ε, p̃1 = p2 + ε leads to t̃2 = (H(p1 + ε, γ) − H(p1, γ))(c − p1) ≈ 0 < t1 and
t̃1 = (H(p2 + ε, γ)−H(p2, γ))(c− p2) ≈ 0 < t2. Hence such a deviation is always profitable for
I. Therefore, with passive beliefs there are only fee-for-service contracts in equilibrium and no
capitation fees: pi = c, ti = 0 for each i.19

4.6. no steering

We assume that patients have no preference for a particular provider and allow the insurer to
guide them to a provider in the network. This simplifies notation, but is not essential for the

19Sometimes wary beliefs are used in this context (see for instance Rey and Vergé, 2004; McAfee and Schwartz,
1994). With wary beliefs, a provider receiving contract (pi, ti) asks: given this contract, what are the cost
minimizing contracts that I offers the other providers? As we have imposed little structure on our primitives,
this question cannot be easily answered.
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results. To illustrate this, we sketch a model where a fraction α ∈ [0, 1] of insured chooses a
provider on their own without consulting with their insurer.

Assume that there are two providers P1,2 in insurer I’s network. A fraction α of insured,
simply visits the provider that is closest to where they live; say, 1

2
α go to P1 first and

1
2
α to P2.

If they are not treated by their chosen provider, they visit the other one.
Assume p1 < p2. How many patients are treated by each provider? First, consider P1: she

is visited by 1
2
α patients living close to her and 1− α patients guided by the insurer:

1
2
αH(p1, γ) + (1− α)H(p1, γ) = H(p1, γ)(1−

1
2
α) (21)

A fraction 1
2
α go to P2 directly, whereas 1 − 1

2
α go to P1 first. Of these 1 − 1

2
α patients, a

fraction H(p1, γ) is treated by P1 and H(p2, γ) − H(p1, γ) is treated by P2. Total number of
patients treated by P2 is given by

1
2
αH(p2, γ) + (1− 1

2
α)(H(p2, γ)−H(p1, γ)) = H(p2, γ)− (1− 1

2
α)H(p1, γ) (22)

That is, total number of patients treated by the network is H(p2, γ), (1−
1
2
α)H(p1, γ) of these

are treated by P1. For each α ∈ [0, 1], the probability that P2 treats a patient depends on p1
and we need the insurer to reveal p1 truthfully to P2. As α increases, the effect of p1 on P2’s
costs becomes smaller, but it does not disappear. Even with α = 1, the patients not treated
by P1 will come to P2 and hence P2’s profits depend on p1.

5. Insurance market

In this section, we characterize the equilibrium on the health insurance market. As an illustra-
tion, we show that people with higher income prefer an insurer with a broader network (higher
n).

We assume Bertrand competition between insurers. Consumers do not observe contracts
(p, t) between insurers and providers. Hence, consumers’ valuation of health insurance con-
tracts cannot depend on these. Consumers do observe n, γ, σ and base their valuation of an
insurance contract on these. Insurers that offer the same network size n and co-payment γ, offer
homogeneous products. As consumers are all the same, Bertrand competition between insurers
leads them to offer the same contract n, γ at an insurance premium equal to σ = C(n, γ).
The probability that an insured patient is treated (at all) depends on the highest contracted
fee-for-service pn which we denote by p(n, γ).

Insurers choose n, γ to maximize consumers’ valuation of insurance

V i = θ

∫

v(p(n,γ),γ)

(v − γ)f(v)dv − C(n, γ)− θδ(p(n, γ), γ) (23)

Using (18), we write this as

V i = θ

∫

v(p(n,γ),γ)

(v − c)f(v)dv − ΠP (γ, p1(n, γ), . . . , pn(n, γ))− θδ(p(n, γ), γ) (24)
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To ease notation, we use the following shorthands:

v̄(n, γ) = v(p(n, γ), γ) (25)

δ̄(n, γ) = δ(p(n, γ), γ) (26)

Π̄P (n, γ) = ΠP (γ, p1(n, γ), . . . , pn(n, γ)) (27)

∆δ̄(n, γ) = δ̄(n+ 1, γ)− δ(n, γ) (28)

∆Π̄P (n, γ) = Π̄P (n+ 1, γ)− Π̄P (n, γ) (29)

Now we can characterize the optimal n and γ.

Proposition 3. For given γ, the optimal network size n satisfies:

∆ΠP (n− 1, γ) ≤ θ

(

∫ v̄(n−1,γ)

v̄(n,γ)

(v − c)f(v)dv −∆δ̄(n− 1, γ)

)

(30)

∆ΠP (n, γ) ≥ θ

(

∫ v̄(n,γ)

v̄(n+1,γ)

(v − c)f(v)dv −∆δ̄(n, γ)

)

(31)

For given n, the optimal co-payment γ is determined by

dΠ̄P (n, γ)

dγ
≥ θ

(

(c− v̄(n, γ))f(v̄(n, γ))v̄γ(n, γ)− δ̄γ(n, γ)
)

(32)

where the inequality is strict at γ = 0 only.

Optimal network size is a trade-off between providers’ profits and consumer utility. By
increasing the network size, p(n, γ) = pn increases and patients are treated more often (propo-
sition 2). This increases the utility of treatment in case of under-treatment (v̄ − c > 0) and
raises the dis-utility of risk aversion (in case γ > 0). The effect on provider profits can be both
positive and negative.

Equation (30) implies that moving from a network with n− 1 to n providers increases V i:
consumer utility increases more than profits. But increasing to n+1 reduces V i: profits increase
more than consumer utility in (31).

To get some more intuition, assume that the optimal γ = 0. That is, ∆δ̄(n, 0) = 0 and the
trade-off is between over/under-treatment and the effect of n on profits. Recall that the latter
effect is non-monotone as ΠP = 0 both for n = 1 and for n high enough that pn = c. Now
equation (31) implies that under-treatment is possible (integral positive) if provider profits ΠP

increase with n. Similarly, (30) implies that over-treatment (v̄(n − 1, γ) < c) can happen if
provider profits fall with n.

The optimal co-payment γ is also determined by the trade-off between over/under-treatment
and consumer dis-utility on the one hand and provider profits on the other. If v̄ < c, an increase
in γ reduces over-treatment which raises the value of insurance ex ante. In this case, γ = 0 can
only be optimal if the costs θδ̄ + Π̄P increase fast with γ. If this is not the case, the optimal
γ > 0 and (32) holds with equality.

With public contracts it is straightforward to implement first best p∗ and γ = 0. With
private contracts this is not the case. First, the relation between p and n is determined by the
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insurer’s cost side only (without reference to consumer valuation). Hence, generically speaking
there is no n∗ such that p(n∗, 0) = p∗. Even if such n∗ would exist, equations (30) and (31)
imply that the effect of n on provider profits may induce n 6= n∗.

Hence, the model with private contracts explains why moral hazard in health care is still
an issue. It cannot be easily resolved with a combination of demand and supply side measures.

Example 1 (Continued). Now we derive the network size and co-payment that maximizes
V i. With the parameter values introduced above, we find the following. With n = 1, we have
v(0, 0) = 0.60, C = 0.01. Since 0.60 > 0.20 = c, there is under-treatment and γ = 0. With
n = 2, we get p2 = 0.08, v(0.08, 0) = 0.36, C = 0.02. Since 0.36 > 0.2, there is still under-
treatment –hence γ = 0 with n = 2– but less so than with n = 1. Consequently, total costs are
higher with n = 2. The increase in treatment value equals

∫ 0.60

0.36

vf(v)dv = 0.08 (33)

Hence, moving from n = 1 to n = 2 yields an increase in V i equal to 0.08− (0.02− 0.01) > 0.
In this example, it is optimal for an insurer to contract both providers.

To illustrate the results, we give a simple formalization of the idea that people with higher
income tend to buy insurance featuring a bigger network. To simplify notation, assume that
the optimal γ = 0. Let 1/µ denote the marginal utility of income, where people with higher
income, have higher µ > 0. Then we write equation (24) as

V i = θ

∫

v(p(n,0),0)

vf(v)dv −
1

µ
C(n, 0) (34)

Then equation (30) can be written as

∆ΠP (n− 1, 0) ≤ θ

∫ v̄(n−1,0)

v̄(n,0)

(v −
c

µ
)f(v)dv (35)

and higher µ leads to higher n. Note that in a cross section with agents with different µ’s,
different insurance contracts will be offered with varying network size. Each µ-type chooses the
contract that is optimized for her; there are no incentive compatibility issues here.20

6. Policy implications

We have introduced a model where competing insurers use two instruments to control over-
consumption in health care: demand-side and supply-side cost sharing. Whereas the former is

20Analyzing adverse/advantageous selection in this model is beyond the scope of this paper. To illustrate why,
assume that high risk types have a distribution function Fh and low risk types F l ≥ Fh. That is, conditional
on falling ill, high risk types tend to draw higher v than low risk types (in the sense of first order stochastic
dominance). Then single crossing may not be satisfied in this example. That is, at n = 1, h-types may have a
stronger preference for an increase in n than l-types, while for higher n the opposite is true. Indeed, for high n,
F i(v̄(n−1, γ))−F i(v̄(n, γ)) may be smaller for i = h than for i = l. See Boone and Schottmüller (forthcoming)
for an analysis of health insurance when single crossing is not satisfied. As mentioned, Bardey and Rochet
(2010) analyze optimal network size in a model with adverse selection.
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publicly observable and contractible (insured need to know their co-payments) the latter is not.
Neither consumers nor other providers dealing with an insurer know the details of the contract
between the insurer and a provider, although this information is payoff relevant to them.

This has three implications. First, using “aggressive” capitation contracts (with a low fee-
for-service) becomes expensive for an insurer as its network expands. Second, homogeneous
providers earn strictly positive profits in a network with at least two providers and a fee-for-
service below treatment cost. Third, insurers with a big network signal generous insurance to
consumers: they pay a high fee-for-service making their physicians relatively willing to treat.
This explains why insurers with bigger networks tend to have higher health care costs: patients
are more likely to get treatment.

This section considers the implications of this model for two policies: AWP laws and initia-
tives to make prices more transparent.

We start by analyzing the effects of AWP laws. As a first observation, in reality contracts
between providers and insurers are private (see Introduction). It is not clear how AWP laws deal
with this. From a theory point of view, an insurer has to contract with any willing provider, but
with private contracts it could just offer a loss making contract (low p and low t, e.g. p = t = 0)
to providers it would rather not deal with. In practice, AWP laws “require managed care plans
to explicitly state evaluation criteria and ensure “due process” for providers wishing to contract
with the plan” (Hellinger, 1995, pp. 297). For the purpose of our model, let’s assume that it is
harder for an insurer to exclude a provider under AWP laws. That is, even though the insurer
would rather not contract Pi, this provider can go to court and force a contract in a state with
AWP laws.

Observe that with private contracts, provider profits can be strictly positive and hence an
excluded provider has an incentive to join an insurer’s network. This in contrast to public
contract models in section 3, where contracts can be chosen such that provider profits are
zero. Hence, there is no strict incentive for a provider to join a network. Further with public
contracts, even if more providers join a network, there is no effect on the health care costs of
the network.

With private contracts, if an additional insurer joins the network, the fee-for-service tends
to increase. Hence, if AWP laws lead to bigger networks, they will also increase health care
consumption and costs. This is consistent with evidence cited in the Introduction. With
Bertrand competition and homogeneous goods on the insurance market, insurers choose network
size to maximize consumer value. AWP laws then unambiguously reduce welfare by forcing
insurers to increase their network size. This conclusion does not necessarily follow with insurer
market power as the network size may not be optimal in this case.

Discussions of policy initiatives to increase price transparency in health care provision usu-
ally focus on the bargaining effects and the risk of collusion (see e.g. Cutler and Dafny, 2011;
Sinaiko and Rosenthal, 2011). There is agreement that patients should know the prices that
they have to pay themselves; either through co-payments or by paying for uninsured treatments.
But should there be transparency about the prices paid by insurers/managed care organizations
to providers? Currently these prices are secret, what happens when they become public?

The bargaining effect from the literature can be illustrated as follows. Suppose that provider
P1 has agreed to a low price with insurer Ia while charging Ib a high price. If these prices become
public, Ib will demand a low price as well, making P1 less likely to agree to such a low price
in the first place. This suggests that price transparency raises prices. But this argument is
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not quite complete: suppose Ib pays a low price to P2; if prices become public, Ib may be less
willing to pay a high price to P1 as it fears that P2 will demand this high price as well. Hence,
price transparency reduces the price Ib pays to P1. In other words, the bargaining effect of
price transparency is ambiguous.

The collusion argument goes as follows. Suppose providers try to form a cartel to charge
insurers high prices. With secret contracts it is hard to detect a deviation from the cartel
agreement making it hard to coordinate on a high price. With public prices, deviations are
immediately detected and the cartel can sustain higher prices (Albaek et al., 1997).

Implicit in this analysis are two assumptions. First, prices are only transfers with no effects
on health outcomes. Second, people are insured and therefore not interested in the prices that
insurers pay to providers (conditional on the premium that they pay). As we have argued above,
these assumptions are generally incorrect and therefore important effects of price transparency
are overlooked.

First, as argued by the literature on supply-side cost sharing, prices are not neutral (see e.g.
Ellis and McGuire, 1993; Chandra et al., 2011). Higher fee-for-service leads to more treatments.
Starting from a situation with under-treatment, such a price increase can be welfare enhancing.
The analysis above takes this effect into account.

Second, the prices paid by insurers to providers affect the insurance premium. The premium
is clearly relevant for insured. But because of the previous effect, insured are interested in the
prices paid to providers even ignoring the effect on the premium. Indeed, these prices affect
the probability that the insured gets treatment when falling ill.

Taking these effects into account, what are the effects of more price transparency in our
framework? We argue that this depends on the degree of price transparency. If prices can
become fully transparent to everyone, reforms to implement this transparency are welfare en-
hancing. Indeed, with public contracts it is possible to implement the first best. However, if
prices only become partially transparent, we argue that these reforms reduce welfare. So when
it comes to policies to increase price transparency the motto should be: do it well or not at all.
This can be seen as follows.

Consider the case where prices become public to all providers, insurers and consumers. Then
we are in the framework of section 3 and the first best can be implemented: p = p∗, γ = 0.
This improves welfare compared to private contracts. However, making prices transparent to
consumers is not going to be easy. We know that for treatments that patients actually use,
they find it hard to understand what the price is (Rosenthal, 2014). Here we are considering a
consumer who buys insurance –and therefore does not yet know what treatments he will need in
the coming period– knowing all prices that his insurer will pay to the providers in the network.
It is hard to envisage a policy that can increase transparency to such an extent.

The more likely effect will then be that prices become transparent to providers and insur-
ers but not to consumers buying insurance. Then the effect is that insurers can implement
aggressive capitation contracts with p = 0 without leaving profits to insurers. The size of the
network no longer signals the fee-for-service, as p = 0 can be implemented for any network size
at no additional cost with public contracts. As the n ≥ 2 providers see each others’ contracts,
each expects to treat H(0, γ)/n patients. They are willing to accept a contract with capitation
t = cH(0, γ)/nThe effect of this degree of price transparency is that health care costs will fall.
At first sight, the policy may then look successful. However, with p = 0 there is under-provision
of health care and hence the welfare consequences are not necessarily positive.
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Summarizing, AWP laws tend to increase health care costs. If the insurance market is
competitive, AWP laws tend to reduce welfare. If price transparency policies can make prices
public to consumers, first best can be implemented and welfare increases. However, it seems
more likely that prices become transparent to insurers and providers only. In that case, health
care costs fall but so may welfare.
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A. Proof of results

Proof of proposition 1

Consider two offers (pi, ti), (pj, tj) ∈ Aγ,n resp. with pj < pi < c and other providers (in
case n ≥ 3) receive offers pk > pi. Hence xj = H(pj, γ) and xi = H(pi, γ) − H(pj, γ). Then
expected costs for the insurer are given by

C = xi(pi − γ) + x̂i(c− pi) + xj(pj − γ) + x̂j(c− pj) (A.1)

One possible deviation is to offer both providers (pi, ti)– which is accepted as (pi, ti) ∈ Aγ,n.
This leads to costs

C̃ = (xi + xj)(pi − γ) + 2x̂i(c− pi) (A.2)

There is no incentive to deviate if and only if C̃ − C ≥ 0. It is routine to verify that this can
be written as

xj(pi − pj) + x̂i(c− pi)− x̂j(c− pj) ≥ 0 (A.3)

Clearly, (pj , xj(c− pj)) ∈ Aγ,n with x̂j = xj = H(pj, γ). Thus the following inequality needs to
be satisfied:

− xj(c− pi) + x̂i(c− pi) ≥ 0 (A.4)

Finally, let pj approach pi from below. Then this inequality implies that x̂i ≥ xj which converges
to H(pi, γ); that is, x̂i ≥ H(pi, γ).

Proof of proposition 2

As in the main text, we use the convention where p1 ≤ p2 ≤ . . . ≤ pn. Define the function
for provider profits Π∗

P (n, p, γ) –which is different from (17)– as follows

Π∗
P (n, p, γ) = min

pi≤p

n−1
∑

i=1

H(pi, γ)(c− pi+1) (A.5)

where pn is optimally chosen such that pn = p. Hence we find that

∂Π∗
P (n, p, γ)

∂p
= −H(pn−1, γ) < 0 (A.6)

We can write
C(n, γ) = min

pn
Π∗

P (n, pn, γ) +H(pn, γ)(c− γ) (A.7)

The first order condition for an interior solution for pn can be written as

−H(pn−1, γ) +Hp(pn, γ)(c− γ) = 0 (A.8)

If the expression on the left hand side is positive at pn = 0, then costs are minimized by choosing
pn as low as possible and we find pn = 0 and consequently p1 = p2 = . . . = pn = 0. If the
expression on the left hand side is negative at pn = c, then costs are minimized by choosing
pn ≤ c as high as possible; that is pn = c.

We need to establish the effects of γ, n on C and of n on pn. First, consider the effect of γ
on C. Using the envelope theorem, we have

∂C(n, γ)

∂γ
= Hγ(pn, γ)(c− γ)−H(pn, γ) +

n−1
∑

i=1

Hγ(pi, γ)(c− pi+1) < 0 (A.9)
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Second, to find the effect of n on C, start with C(n, γ) and assume that prices p1 ≤ . . . ≤ pn < c
minimize these costs. Moving from n back to n− 1, drop Pn’s contract:

C(n− 1, γ) ≤ H(pn−1, γ)(c− γ) +

n−2
∑

i=1

H(pi, γ)(c− pi+1) < C(n, γ) (A.10)

where the first inequality follows because p1, . . . , pn−1 may not lead to lowest C(n− 1, γ) and
the second inequality follows from H(pn−1, γ) ≤ H(pn, γ), γ < c and H(pn, γ)(c− pn) > 0.

Before, we derive the effect of n on pn, we need the first order condition for an interior
solution of pi (i ≤ n− 1) in (A.5):

Hp(pi, γ)(c− pi+1)−H(pi−1, γ) = 0 (A.11)

with H(p0, γ) = 0 (as firms are indexed i ≥ 1 and hence “provider” 0 –by convention– treats
no patients). If the expression (on the left hand side) is positive, then pi is chosen as low as
possible: pi = pi−1. If it is negative, pi is chosen as high as possible: pi = pi+1.

Next, we write

C(n+ 1, γ) = min
pn≤pn+1

Π∗
P (n, pn, γ) +H(pn, γ)(c− pn+1) +H(pn+1, γ)(c− γ) (A.12)

The derivatives of this expression with respect to pn+1
n , pn+1

n+1 (price paid to Pn, Pn+1 when the
size of the network is n + 1) can be written as:

−H(pn+1
n , γ) +Hp(p

n+1
n , γ)(c− pn+1

n+1) (A.13)

−H(pn+1
n , γ) +Hp(p

n+1
n+1, γ)(c− γ) (A.14)

The claim in the proposition is that pn+1
n+1 ≥ pnn. Suppose –by contradiction– this is not the

case: pn+1
n+1 < pnn, then we also have pn+1

n ≤ pn+1
n+1 < pnn. Hence evaluating (A.13) and (A.14)

at pn+1
n = pn+1

n+1 = pnn, it must be the case that both expressions are positive (i.e. evaluated at
pn+1
n = pn+1

n+1 = pnn, it is optimal to reduce pn+1
n , pn+1

n+1):

−H(pnn, γ) +Hp(p
n
n, γ)(c− pnn) > 0 (A.15)

−H(pnn, γ) +Hp(p
n
n, γ)(c− γ) > 0 (A.16)

Now consider two possibilities for the first order condition of pnn (A.8). First,

−H(pnn−1, γ) +Hp(p
n
n, γ)(c− γ) ≤ 0 (A.17)

Combining this with (A.16), leads to

−H(pnn, γ) +H(pnn−1, γ) > 0 (A.18)

which is a contradiction because Hp > 0 and pnn ≥ pnn−1. Second,

−H(pnn−1, γ) +Hp(p
n
n, γ)(c− γ) > 0 (A.19)

Then pnn is chosen as low as possible: pnn = pnn−1. Let p
n
i denote the price for highest i such that

−H(pni−1, γ) +Hp(p
n
i , γ)(c− pni+1) ≤ 0 (A.20)
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That is, all j > i have a corner solution at the lower bound pnj ≥ pnj−1: pnn = . . . = pni+1 = pni .
Hence we can write (A.20) as

−H(pni−1, γ) +Hp(p
n
n, γ)(c− pnn) ≤ 0 (A.21)

Combining this with (A.15) leads to a contradiction because pni−1 ≤ pnn implies H(pnn, γ) ≥
H(pni−1, γ).

Finally, consider the effect of γ on pn. If pn is a corner solution, then a small change in γ
has no effect on pn. If pn is characterized by first order condition (A.8), then the second order
condition (for a minimum) implies Hpp(pn, γ)(c− γ) > 0. Hence

sign

(

dpn
dγ

)

= sign (Hγ(pn−1, γ) +Hp(pn, γ)−Hpγ(pn, γ)(c− γ)) (A.22)

Since Hγ < 0 and Hp > 0, we cannot sign this expression in general. Moreover, we didn’t make
an assumption on Hpγ. Hence, the effect of γ on pn ambiguous.
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