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tem to a large and detailed home-scan household-level data-set with food prices and
purchases from Great Britain, we show evidence on asymmetric consumer response
and loss aversion, with a stronger response when prices rise above their reference
level. Results are robust to changes in the price definition and model specification,
and a simulation shows that ignoring asymmetry may lead to important biases.
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I. Introduction

Canonical micro-economic consumer theory predicts that consumers respond to price
increases and decreases with the same intensity. In empirical demand analysis, this means
that a single set of price elasticities is estimated, without a distinction between increasing
and decreasing prices. The ’symmetry’ assumption has been frequently challenged in the
marketing literature as unnecessarily restrictive, and empirical counter-evidence has been
provided for several goods including soft drinks, eggs, coffee, yoghurt, and peanut butter
(Kalyanaram and Winer, 1995).

In his Principle of Economics, Marshall (1920) observed that demand functions may
be irreversible, which means that after a price change, its restoration to the previous
level does not necessarily bring back demand to the original level. The irreversibility
of demand functions has received a good deal of attention in theoretical economics as
it provides a justification to observed market price rigidities (Haavelmo, 1944; Heidhues
and Kőszegi, 2008). However, empirical analyses have been mostly confined to aggregate
demand data for single goods in regulated industries, such as tobacco and spirits (Farrell,
1952), gasoline (Gately, 1992) and telephone calls (Bidwell Jr et al., 1995).

This paper aims to bring sound empirical evidence on this potential asymmetry, while
ensuring consistency with the requirements of consumer theory. To this purpose, we
include reference price effects in the utility function, and we derive and estimate an
Almost Ideal Demand System specification which allows for asymmetric price elasticities.

In July 2017, we ran a Google Scholar search on the terms ”Almost Ideal Demand
System”, ”tax” and ”subsidy”, which returned 3,670 hits. The vast majority of these
papers simulates the impact of fiscal policies based on elasticity estimates, and they
all assume symmetric elasticities. Departure from this assumption is likely to generate
relevant differences in simulations and hence policy conclusions.

Several justifications have been provided to explain asymmetric elasticities, but the
most popular rests on framing or threshold effects. More specifically, it is argued that an
internal reference price (or price expectation) exists, against which consumers assess the
actual price of a good (Winer, 1986; Mazumdar et al., 2005)1. The resulting demand curve
is kinked in correspondence of the reference price (Drakopoulos, 1992; Kalyanaram and
Winer, 1995). Kinked demand curves are consistent with Prospect Theory (Kahneman
and Tversky, 1979), as consumers may react stronger to a price increase which generates
a loss of utility than to a price decrease leading to an utility gain.

There is, however, one major limitation in the existing body of evidence on asymmet-
ric price elasticities. The studies we have cited limit their focus on individual equations,
ignore substitutions completely or estimate these without considering cross-equation con-
straints such as the properties of adding-up or symmetry.

Understanding cross-price effects is however crucial for interpreting analytical results
for policy purposes which often needs to consider both direct and indirect effects of pric-

1Other explanations refer to asymmetries in search costs after a price change, habits or addictions, the
perception of prices as a proxy for quality and inter-temporal substitutions and stockpiling behaviours
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ing. For example, to understand the impact of taxing less healthy foods and beverages,
on consumption, it is important to know whether consumers substitute taxed foods and
beverages with untaxed alternatives which may or may not be healthier.

Furthermore, as cross-price effects can be either positive or negative with opposite
interpretation of consumption change, allowing for asymmetry in cross-price elasticities
provides more flexibility in understanding consumer behavior as substitution and comple-
mentarity patterns are not forced to apply for both price increases and decreases. If that
is the case, then averaging cross-elasticities for price increases and decreases is more likely
to yield in estimates close to zero which are less informative for policy interpretation as
policy only affects price change in one direction.

One partial exception is the study by Dossche et al. (2010), which extends the Almost
Ideal specification to allow for demand to be nonlinear in prices, albeit without an explicit
kink or a theoretical justification for the adjusted functional form. Their estimates, based
on sales data from a single retailer, are supportive of asymmetric elasticities. However,
by focusing on retailer data, it does not allow full estimation of (asymmetric) consumer
behavior as consumers can easily switch between retailers, including due to pricing.

The most complete theoretical effort to allow for reference prices within a theoretically
consistent demand function is found in Putler (1992). We draw form Putler’s work and
extend it to allow for asymmetry in both own-price and cross-price elasticities within a
demand system framework. We exploit a unique home-scan data-set which follows the
individual purchases of food and non-alcoholic beverages of more than 30,000 British
households over a two-year time span to provide empirical evidence on the existence,
direction and size of asymmetries in consumption responses.

II. Model

A. Irreversible demand functions and reference prices

The first discussion of irreversibility of demand functions is commonly ascribed to Mar-
shall’s criticisms of static demand theory in his Principles of Economics2:

It must however be admitted this theory is out of touch with real conditions
of life, in so far as it assumes that, if the normal production of a commodity
increases and afterwards again diminishes to its old amount, the demand price
and supply price will return to their old positions for that amount.

For many years, this irreversibility was seen as a challenge to static demand theory,
and the incompatibility of empirical studies on time series data with the assumption of
instantaneous adjustment to price changes. This has led to the explicit recognition of
dynamic demand schedules and shifting demand curves, especially for food products with
frequent price fluctuations (Working, 1932; Mighell and Allen, 1939).

2Marshall (1920), Appendix H, paragraph 3
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Haavelmo (1944) depicts a dynamic demand schedule, where the demand function
x = f0(p0) depends on the current level of demand (x0) and prices (p0). When prices
change from p0 to p1, the original demand function predicts the new equilibrium, x1 =
f0(p1). However, a new demand function x = f1(p0) is needed to predict what happens if
prices go back to p0, and the new consumption level will not necessarily equal x0, which
implies that the demand function is irreversible.

These theoretically irreversible demand functions can be turned into empirically es-
timable (reversible) demand functions by assuming that the irreversibility scheme is reg-
ular. The first empirical treatment of irreversible demand functions dates back to Farrell
(1952), but despite the suggestive empirical evidence on asymmetric elasticities and the
superior performance of irreversible demand functions, few attempts have been made to
provide a theoretical justification based on consumer behavior, resting largely on fram-
ing effects and Reference Price Theory, which at the same time are widely studied in
marketing science.

The existence of internal reference prices (IRP) is supported by a range of psycholog-
ical theories (Mazumdar et al., 2005), but the operationalization of the IRP concept in
economic models, as discussed later, is based on adaptive rational expectations (Nerlove,
1958). The explicit consideration of adaptive IRPs in the utility or cost function meets
our needs, as it allows for both estimable irreversible demand functions and asymmet-
ric elasticities, while ensuring consistency with the theoretical requirements of demand
theory. Reversible demand functions and symmetric elasticities become a special case
of this generalized framework, that assume perfect expectations (where IRPs equal to
actual prices).

B. Consumer choice theory with reference prices

The extension of consumer theory to accommodate (own) reference prices is thoroughly
discussed in Putler (1992). Ignoring cross- (reference) price effects is an undesirable
limitation, as it prevents the derivation of a theoretically consistent system of demand
equations. In other words, it is assumed that consumers only consider the IRP of the
good they decide to purchase, but do not perceive marginal gains or losses if the price of a
substitute good changes. Putler’s theoretical framework can however be easily extended
to allow for a complete set of IRPs and full substitution effects.

The utility function is augmented to consider loss (l) and gains (g) deriving from the
distance between the actual price (pi) and the reference price (ri) of a generic good i. For
the rest of the discussion we follow Putler’s notation and define an indicator function to
discriminate between losses and gains:

Ii =

{
1 if pi > ri

0 if pi ≤ ri

Hence, consumer losses and gains are defined as li = Ii(pi−ri) and li = (1−Ii)(ri−pi).
The augmented utility function is u = U(u∗, l,g), where u∗ = f(q) is the canonical utility
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function for a consumer basket of n goods, q = [q1, q2, ...qn] are the purchased quantities,
l = [l1, l2, ..., ln] and g = [g1, g2, ..., gn] are the vectors containing the perceived losses
and gains associated with a change in the price of any of the n goods. The consumer
minimizes the total cost x subject to the utility level defined by the augmented utility
function:

min
q≥0

x = p′q subject to U(q, l,g) ≥ u (1)

The resulting expenditure function E does not only depend on actual prices, but also
on reference prices through gains and losses:

x = E[p, I ◦ l, (1− I) ◦ g, u] (2)

where I is a n× 1 vector containing the indicator functions Ii and ◦ is the Hadamard
(entrywise) product.

From here we proceed in the the usual way. The Hicksian demand functions q =
h(p, r, u) are obtained via Shephard’s Lemma, and the indirect utility function is obtained
by inverting the expenditure function. The Marshallian demand functions q = f(p, r, x)
are generated by substituting the indirect utility function into the Hicksian demand func-
tions. These demand functions also have the reference prices among their arguments, as
shown in Putler (1992).

The overall effect on demand induced by a change in price pj is captured by the
following generalized Slutsky equation3:

∂fi(p, r, x)

∂pj
=

dhi
dpj

+ qj
∂fi
∂x

+
∂fi
∂x

[
(1− Ij)

∂E

∂gj
− Ij

∂E

∂lj

]
(3)

which decomposes the total demand response into a substitution effect, an income
effect, and a loss-gain effect. Note that the substitution effect also embodies a loss-gain
component through the utility function, and l and g are themselves a function of prices,
since:

dhi(p, r, u)

dpj
=
∂hi
∂pj

+
n∑
s=1

∂hi
∂ls

dls
dpj

+
n∑
s=1

∂hi
∂gs

dgs
dpj

=
∂hi
∂pj

+ Ij
∂hi
∂lj
− (1− Ij)

∂hi
∂gj

(4)

The above generalized Slutsky matrix is still negative semidefinite and symmetric.
Negativity follows from the concavity of the expenditure function, which is maintained
regardless of its extension to include reference prices. Symmetry of the first addendum
in (4) follows from symmetry of the canonical Slutsky Matrix, which implies that ∂hi

∂pj
=

∂hj
∂pi

. Furthermore, under our assumption of adaptive expectations, the reference prices

3See Appendix. The equation generalizes Putler’s result to the effect of cross-price changes
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ri adjust to price changes with (at least) one period delay, hence they can be treated as
pre-determined and exogenous. It follows that ∂l = ∂p and ∂g = −∂p. Thus, checking
symmetry on the remaining terms of the Slutsky equation also reduces to the above
condition ∂hi

∂pj
=

∂hj
∂pi

.

C. An Almost Ideal Demand System with reference prices

We extend the flexible functional form of the Almost Ideal Demand System (AIDS)
model (Deaton and Muellbauer, 1980) to allow for internal reference price effects and
asymmetric elasticities. We choose the AIDS specification because of its popularity and
wide application in fiscal simulations, but a similar exercise could be replicated for other
theory-based demand system specifications.

The model extension to include reference price effects is relatively straightforward.
We start by incorporating reference prices in the AIDS cost function to account for losses
and gains as follows:

logC(u,p, r) = (1− u) log a(p, r) + u log b(p, r) (5)

Where

log a(p, r) = α0 +
n∑
k=1

αk log pk + 0.5
n∑
i=1

n∑
j=1

γ∗ij log pi log pj

+ 0.5
n∑
i=1

n∑
j=1

δijIj(log pi − log ri)(log pj − log rj)

− 0.5
n∑
i=1

n∑
j=1

ωij(1− Ij)(log ri − log pi)(log rj − log pj)

(6)

and

log b(p, r) = log a(p, r) + β0

n∏
k=1

pβkk

So that the cost function becomes

logC(u,p, r) = log a(p, r) + uβ0

n∏
k=1

pβkk

The derivation of the Marshallian demand function follows the usual AIDS procedure,
i.e. (a) the first derivative of the cost function with respect to prices generates the Hicksian
demand functions; (b) the indirect utility function is obtained through inversion of the
cost function with respect to u; (c) substitution of the indirect utility function into the
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Hicksian demand function generates a Marshallian demand function of the form:

wi = αi +
n∑
j=1

γij log pj +
n∑
j=1

δijIj(log pj − log rj)

−
n∑
j=1

ωij(1− Ij)(log pj − log rj) + βi log
( x
P

) (7)

where wi = piqi
x

is the expenditure share for the i-th good and losses and gains are
incorporated through the indicator function Ij. The model implies that for example if
losses occur, the expenditure share for each good is a function of its own price, prices
for other goods in the model, loss in the own price and losses or gains in other prices,
and total expenditure indexed through P, which is a non-linear price index specified as
follows:

logP = α0 +
n∑
k=1

αk log pk + 0.5
n∑
i=1

n∑
j=1

γ∗ij log pi log pj

+ 0.5
n∑
i=1

n∑
j=1

δijIj(log pi − log ri)(log pj − log rj)

− 0.5
n∑
i=1

n∑
j=1

ωij(1− Ij)(log ri − log pi)(log rj − log pj)

(8)

In addition to the usual AIDS adding-up conditions, the model with reference prices
requires the following additional constraints to be met:

n∑
i=1

δij =
n∑
i=1

ωij = 0

Furthermore, symmetry not only must hold for the γij parameters, but also for the
additional ωij and δij parameters.
Homogeneity is a more complex matter. If all prices and the total budget are multiplied
by a constant κ, but reference prices remain unchanged, the resulting demand equation
is:

wi = αi + log κ
n∑
j=1

γij +
n∑
j=1

γij log pj + log κ
n∑
j=1

δijIj + log κ
n∑
j=1

ωij(1− Ij)

+
n∑
j=1

δijIj(log pj − log rj) +
n∑
j=1

ωij(1− Ij)(log pj − log rj) + βi

(
κx

P (κ)

)
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where P (κ) is the non-linear price index in (8) where all prices are multiplied by κ. It
can be shown that for homogeneity to hold, it is necessary that in each equation of the
system

∑n
j=1 δijIj = 0 and

∑n
j=1 ωij(1− Ij) = 0. This is a more restrictive condition than∑n

j=1 δij = 0 and
∑n

j=1 ωij = 0, which are implied by the imposition of adding-up and
symmetry on three additional coefficients. Thus, as already discussed in Putler (1992),
homogeneity does not necessarily hold in a consumer model with reference price effects.

D. Asymmetric elasticities

The introduction of reference prices implies the estimation of two sets of Marshallian
price elasticities, thus allowing for asymmetric response, depending on the values of the
indicator function Ij, i.e. whether the changing price is above or below the reference
price.

eij =
∂ log qi
∂ log pj

=
∂wi

∂ log pj

1

wi
− ∂ log pi
∂ log pj

=
γij
wi

+
δijIj
wi
− ωj(1− Ij)

wi
− βi
wi
ηij −∆ij

(9)

where

ηij =
∂ logP

∂ log pj
= αj +

n∑
k=1

γkj log pk +
n∑
k=1

δkjIj(log pj − log rj)

−
n∑
k=1

ωkj (1− Ij) (log pj − log rj)

and ∆ij = 1 when i = j and 0 otherwise.

E. Empirical definition of reference prices

Internal reference prices are operationally treated as rational expectations, where the
expected price is a function of one or more prices experienced in the past (Muth, 1961).
The most common choice is to set the IRP equal to a single previous purchase price,
whereas more elaborate definitions refer to a combination of prices consumers may hold
in their memory (Kalyanaram and Winer, 1995).

The most common definition implies that consumers have in mind one price from the
past, which they compare with the shelf price. Hence, the reference prices for good i at
time t is:

rit = pis with s ≤ t− 1 (10)
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The obvious choice for the reference period s is the previous period. When a single
good is considered, the usual choice is to set the reference price equal to the last purchase
price of that good. However, this choice might be unnecessarily restrictive. Consumer
may decide not to purchase a good while knowing its price, as they decide to allocate
their budget to substitute goods. Given that in our theoretical setting the consumer is
assumed to assess the (reference) prices of multiple goods, a more realistic choice is to
use as reference prices those corresponding to the latest shopping trip where at least one
purchase was made, regardless of which food(s) were purchased:

rit = pis with argmax
z

s = {z ∈ (1, t− 1) | ∃k ∈ (1, n) : qkz > 0} (11)

Reference prices may also be assumed to include a combination rather than just one
previous price, as in adaptive theories. In this case an extrapolative expectation model
can be specified (Nerlove, 1958; Kalwani et al., 1990; Putler, 1992), where the reference
price is a geometrically weighted moving average of a set of past prices of the same good,
and the weights are normalized to sum to one:

rit =

(
L∑
h=1

ρhi

)−1 L∑
s=1

ρsipi,t−s (12)

where L is the number of lags being considered, and 0 < ρi ≤ 1 is a good-specific
parameter to be estimated through a distributed lag model.

Defining IRPs as rational expectations provides the condition which makes the irre-
versibility scheme regular. When prices change, not only do they affect current demand,
but they also induce modifications in reference prices for the next period, hence generating
a shift in the demand schedule.

III. Data

A. Raw Data

The lack of empirical demand studies on reference price effects and asymmetric elasticities
finds a justification in the historical scarcity of adequate data. A high time frequency and
geographical detail are required to process meaningful price and purchase information.
Data limitations have been recently overcome by the growing availability of large-scale
commercial home-scan panels.

We use secondary Great Britain (GB) household expenditure data from January 2012
to December 2013, purchased from Kantar Worldpanel UK. Our data include information
on all household food and non-alcoholic drinks purchases for consumption at home. Pur-
chases are made in a variety of outlets, such as major retailers, supermarkets, butchers,
greengrocers, and corner shops. Kantar Worldpanel UK has been collecting this data since
2006. The company recruits participants via postal mail and e-mail. Data are collected
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from each participant household via supplied hand-held scanners which households use
to scan barcodes of all purchased products. Barcodes to use for products where these are
missing (e.g. loose fruit and vegetables from a market) are supplied to households. Addi-
tionally, households send digital images of till receipts. Participants are offered vouchers
for retailers and for leisure activities of average value of £100 per household per year.

The data is collected from a sample of GB households (n = 32, 726 in 2012 and
n = 32, 620 in 2013) stratified according to household size, number of children, social
class, geographical region and age group. The joint data-set includes n = 36, 324 distinct
households, of which 80% (n = 29, 022) appear in both the 2012 and 2013 sample.

Our raw data-set consists of individual transactions, including information on the
day of the purchase, outlet, amount spent, and volume purchased. In addition, socio-
demographic data, collected annually, describes household size and composition, age,
ethnicity and highest qualification of the main shopper. It also includes information on
the geographical location (postcode district), income group, social class and tenure of the
household.

There are about 72 million transactions in our data-set, which implies a major trade-off
between the precision of highly disaggregated data and their meaningful use in demand
analysis. The basic observation is the individual transaction with a bar-code detail,
which means that products are disaggregated to the brand and package level, e.g. a
33cl Cola can be considered as a distinct good from a 1lt bottle. Having information
on the purchase date, outlet and household postcode means that the information on the
exact day of price change within a given area is potentially available. However, using
this level of detail is not viable at the barcode level, as it requires that every day at least
one household in the same postcode district purchases that specific product in a specific
outlet. The chosen level of disaggregation also impacts on some well-known demand
system estimation issues, such as the proportion of zero-expenditure observations and
the endogeneity of total expenditure. When aggregation choices are made, their impact
on the estimates is unknown and remains to be explained.

The statistical unit for our model is the household, and as our focus is on budget
allocation and substitutions, a daily frequency would lead to the inclusion of a large
number of observations consisting of a small number of often single purchases. This
would imply a very strong endogeneity of the total expenditure term on the right hand
side of the demand system. As the vast majority of households make at least one food
shopping trip per week, we use weeks as the basic time unit.

B. Food purchases, aggregation and composite prices

Aggregation of individual products into food categories is common in the empirical de-
mand analysis literature for several reasons. First, standard household budget surveys
have a limited level of product detail, generally corresponding to food groupings based
on the UN COICOP classification, e.g. soft drinks, whole milk, or apples, with no brand
or packaging distinction. Second, aggregation across individual foods minimizes the fre-
quency of non-purchases. Third, food groups are more interesting from a policy per-
spective, as simulations to inform fiscal policies, such as taxes or subsidies to promote
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healthier eating, are concerned with substitutions at the food group level rather than
brand competition.

However, aggregation comes at a cost, as the actual prices paid by the consumer are
summarised into composite prices. These composite prices, or unit values, incorporate
a quality choice dimension, whose relevance depends on the heterogeneity of the actual
prices of the goods which form the aggregate (Deaton, 1988).

Our data, as most household budget surveys, reports the quantity purchased and the
amount spent for a product, and the unit value can be obtained by dividing expenditure
by quantity. Only at the maximum level of product detail, this unit value corresponds
to the shelf price, but even in this case it would embody a quality component because
of the choice of the retail outlet. Consumers do not choose between outlets depending
on the prices of individual products, but they rather decide where to shop based on an
expectation of the cost and quality of their food basket. Thus, two households living
in the same building, or even two consumers living in the same household, may pay a
different price for the same product in the same day. These issues need to be addressed
before demand estimation.

Food Purchases. We estimate two conditional demand systems incorporating reference
prices and allowing for different levels of product detail. First, we estimate a three-good
AIDS model conditional on total cola beverage expenditure, considering the following
three goods: (a) standard cola of a selected brand in bottles of 1-litre or more (X-Cola
1L+); (b) all other colas of the same brand, regardless of packaging and size (X-Cola
other); (c) all colas of any other brands, regardless of packaging and size (Other brands).
Within this system, the first good represents the maximum level of disaggregation in the
data-set, while showing an acceptable frequency of purchase across households and over
time.

Second, we estimate a four-good AIDS model conditional on total food and beverage
expenditure (excluding alcoholic drinks) using larger food groupings which may be rele-
vant to nutrition-targeted fiscal policies. The goods being modelled are: (a) fresh fruits,
vegetables and salad products (including chilled prepared products); (b) savoury snack
products (potato, vegetable or corn crisps, prawn crackers, crackers, poppadoms, pork
scratchings, snacking nuts and pop-corn); (c) non-alcoholic drinks (including soft drinks,
cordials, fruit juices and water but excluding flavoured milk and yoghurt drinks); (d) all
other food products.

We reshape the transaction-level raw data into a pooled data-set where the basic
observation is a household/week. For each of the aforementioned food groups we sum
the purchased volume and amount spent over each household and week. Considering the
complete data-set of 36,324 households, on average each household reports food purchases
on 83 weeks out of the 104 available, with 7% of the households purchasing food in each
of the 104 weeks.

Prices. Unit values for each food group are calculated as the ratio of the amount spent
over the quantity purchased. To deal with the quality choice component in unit values,
we follow the standard assumption that households living in the same area face the same
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prices in the same week (Deaton, 1988). Since we follow a system-wise approach, this
approach also provides us information on the price of substitute goods which have not
been purchased.

The households in our data-set are classified into 110 postcode areas4, and we exploit
this geographical disaggregation to obtain an estimate of local prices for all food groups
by averaging the unit values paid within each postcode and week:

pict =

∑
h∈Ac

xiht∑
h∈Ac

qiht
(13)

where xiht is the amount spent in period t by a household h to purchase all products
included in the food group i, qiht is the corresponding aggregated quantity, and Ac with
c = 1, ..., 110 is the set of households living in the c−th postcode area. With this basic
adjustment, we compute prices for all food groups and have variation across postcodes c
and time periods t.

An alternative approach, which we apply to check for robustness, is based on the
industry wide agreement on national pricing policy between food retailers and the UK
Competition Commission (Nakamura et al., 2015). According to the agreement, super-
markets apply the same prices in the same types of its shops in all of the UK branches
(e.g. products have the same price in all Tesco Metro branches which may differ from
the prices in Tesco Express branches). Thus, we aggregate prices based on households
shopping in the same type and brand of outlet, so that Ac in (13) reflects the set of
household shopping in the c-th outlet.

C. Sample description

The final sample for our analysis includes all households with positive total expenditure
on the selected goods for at least two weeks over the two-year period. Table 1 presents
descriptive statistics. After aggregation and deletion of observations with missing values
in demographic variables, the final data-set contains 2.15 millions of observations on
30,740 households, and on average each household reports food purchases in 70 weeks.
The demographic statistics are in line with the official statistics for Great Britain5.

Table 2 reports average quantities, expenditure and prices for the samples used in
estimation. The Cola model has a smaller number of households and observations, as only
those observations (household-weeks) where at least one cola is purchased are considered.
As one might expect, the proportion of non-purchases strongly depends on the level of
product aggregation. Although about 80% of the households have bought cola at least
once in the two-year period, only 11.4% of the observations include a purchase of the
X-Cola 1L+, whereas other brand colas account for 56.8% of the weekly purchases. On

4Postcode area is defined based on the letters in the first half of the postcode the household resides
in. Great Britain has 120 postcode areas, which depend on the area being served. For example London
has eight postcode areas, while other cities (e.g. Liverpool, Birmingham) only one. We aggregated some
postcode areas in London, Scotland and Wales to ensure that at least 5 household per week were present

5Office for National Statistics web site, www.ons.gov.uk
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Table 1. Sample Descriptive Statistics.

Mean St. Dev.

Household size 2.64 1.32
Age of main shopper 50.87 14.84
Number of children 0.59 0.96
Number of children if have children 1.76 0.82

Percent of Households

Households with children 33.4
Income

£0 - £9,999 pa 10.4
£10,000 - £19,999 pa 25.9
£20,000 - £29,999 pa 21.9
£30,000 - £39,999 pa 15.9
£40,000 - £49,999 pa 11.2
£50,000 - £59,999 pa 6.6
£60,000 - £69,999 pa 3.5
£70,000 + 4.6

ONS Social Grade
Class AB 20.8
Class C1 37.7
Class C2 18.1
Class D 13.4
Class E 10.0

Education of RP (highest qualification)
Degree or higher 26.6
Higher education 15.1
A Level 12.9
GCSE 22.0
Other 9.2
None 9.5

Tenure Type
Owned outright 29.6
Mortgaged 41.1
Rented 28.0
Other 1.4

Number of households 30, 740
Number of observations 2, 157, 395
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average, the total weekly quantity bought by cola purchasers across the three categories
is similar, ranging from 4.4 lt to 4.8 lt.

The table also shows the average price, which is the average of the geographical prices
across the postcode areas. The difference between the average price and the average unit
value paid by purchasing households (last column in Table 2) is a matter of weighting.
By averaging across households within the same week and postcode areas, geographical
price mitigate the quality and aggregation issue.

Unit values reflect the quality component, and averaging across the whole sample
assigns a larger weight to those postcode areas with a higher number of purchasing
households. Quality heterogeneity in the purchased products, such as a branded product
and variation in packaging and price across different stores makes the difference between
average prices and unit values larger, and this difference becomes larger as categories
aggregate a larger number of products and brands. For example, the average geographical
price per litre of X-Cola 1L+ is identical to the average unit values paid by purchasing
households, since there is no quality heterogeneity in the purchased products and very
little variation in packaging and prices across different stores.

The distance between the two averages in the X-Cola Other group reflects hetero-
geneity in household choices, mainly related to packaging, as products are available in
different sizes, and smaller sizes (e.g. cans) have a higher unit value. In the Other Cola
group the difference becomes even larger as the category aggregates over different brands
and sizes. Geographical prices are expected to cancel out, or at least mitigate, this ag-
gregation issue, as households within the same postcode are assumed to face the same
set of prices. Local demand shocks are also unlikely to affect the average prices due to
the voluntary National Pricing Policy within same types of stores (e.g. prices in Tesco
Extra in London would be the same as Tesco Extra in Liverpool).

These considerations are amplified when food groups are considered. The more het-
erogeneous the category (fruit & vegetables, other foods), the lower the percentage of
non-purchases, and greater the difference between geographical average prices and unit
values.

The dynamics in prices faced by households relative to the alternative definitions
of reference prices are presented in Table 3. We consider two alternative definitions of
reference prices: (a) lagged geographical prices; and (b) adaptive expectations.

The proportion of losses and gains, where the former represent those weeks where the
price is above the household reference price and vice versa, is relatively balanced across
all products, both for the cola and food groupings. Values in parentheses are the average
percent distance from reference price when a loss (gain) is experienced. The extent of
price variation experienced by cola shoppers is much larger than the one observed for the
food model.

Again, this may be explained by the level of product aggregation and category het-
erogeneity. Consumers facing a higher price for fruit, for example, have a much wider
choice of within category substitution relative to the cola categories.

Our second definition refers to adaptive expectation IRPs, based on the extrapolative
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Table 2. Purchase Data.

All observations Purchases Purchases only

Exp Vol Price Percent Exp Vol Unit value

Cola model

X-Cola (1lt+) 0.33 0.50 0.69 11.4 2.89 4.36 0.69
(1.14) (1.76) (0.10) (2.02) (3.22) (0.19)

X-Cola (other) 1.63 1.85 0.99 40.4 4.05 4.58 1.09
(2.91) (3.44) (0.14) (3.35) (4.09) (0.58)

Other brands 1.39 2.73 0.48 56.8 2.44 4.82 0.57
(2.16) (4.04) (0.07) (2.36) (4.32) (0.40)

Total Cola 3.35 5.09 100.0
(3.11) (4.48)

Households 24,433
Observations 420,770

Food model

Fruit & Veg 6.59 3.89 1.73 85.3 7.72 4.55 2.00
(6.60) (3.72) (0.17) (6.51) (3.63) (1.44)

Snacks 1.35 0.20 6.91 44.8 3.01 0.45 7.48
(2.19) (0.33) (0.39) (2.40) (0.37) (3.32)

Soft drinks 2.35 3.50 0.69 56.8 4.13 6.17 0.83
(3.66) (5.51) (0.05) (4.02) (6.08) (0.68)

Other foods 37.09 20.87 1.83 99.5 37.16 20.97 2.09
(26.92) (16.04) (0.12) (26.83) (16.02) (2.58)

Total Food 47.28 28.46 100.0
(33.08) (20.66)

Households 30,740
Observations 2,157,395

Notes: Standard deviations in parentheses. Food quantities are expressed in kilograms and
drink quantities in litres per week. Expenditures are in Sterling Pounds (£) per week. Prices
and unit values are in £/Kg. or £/Litre. Prices are the average of unit values by postcode
area. Unit values are the ratio between expenditure and quantity by household. Purchases
refer to the household weeks with non-zero expenditure.
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Table 3. Proportion of Losses and Gains, and Average Distance from Reference Price.

Reference Price
Lagged Adaptive Lagged Price
Price Expectation (5% trim)

Loss Gain Loss Gain Loss Gain

X-Cola (1lt+) 45.9 47.8 48.6 51.4 34.3 36.3
(13.7) (−14.0) (12.8) (−12.9) (17.5) (−17.6)

X-Cola (other) 47.4 47.3 49.1 50.9 35.1 35.2
(12.8) (−12.9) (12.1) (−11.9) (16.4) (−16.6)

Other brands 47.1 47.6 48.8 51.2 34.3 34.7
(12.7) (−12.6) (11.9) (−11.5) (16.5) (−16.4)

Fruit & Veg 50.4 48.3 50.2 49.8 16.2 14.9
(4.2) (−4.0) (3.8) (−3.9) (8.1) (−8.0)

Snacks 49 49.7 49.5 50.5 17.2 16.8
(4.4) (−4.3) (3.8) (−3.8) (8.4) (−8.2)

Soft drinks 49.6 49.1 49.3 50.7 21.6 21.7
(5.5) (−5.4) (4.6) (−4.6) (9.4) (−9.3)

Other foods 50.7 48.0 50.7 49.3 13.3 12.2
(3.6) (−3.7) (3.2) (−3.4) (7.6) (−7.8)

Note: Figures show the proportion of losses (actual price above the reference price) and gains
(actual price below the reference price. The figure in brackets is the average distance between
the actual price and the reference price conditional on losses (gains). The 5% trim means that
price gaps are classified as losses or gains only when the distance between actual prices and
reference prices exceeds 5%.

expectation model (12). Using adaptive expectations makes very little difference, except
that the average variations are slightly smaller6. When this formulation is adopted, all
observations are classified as losses or gains, and there is no such thing as the price meeting
expectation. The share of losses and gains is around 50%, as for the geographical lagged
price specification.

To avoid erroneously interpreting the noise introduced by aggregation across individ-
ual products as a price change, we check for the robustness of our elasticity estimates
to a stricter definition of losses and gains, which only occur when the distance between
the actual price and the reference price exceeds 5% (the last two columns in Table 3).
Variations below this threshold are still considered in elasticity estimation, but they only
affect average elasticity, and not the asymmetry led by the losses and gains. Trimming
observations within this range strongly reduces their occurrence and increases the average
magnitude of losses and gains, especially for the food categories where price variation is
smaller. The balance between losses and gains remains similar to the other reference
price definitions.

6We set the number of geometric lag to five, but we tested for different lag numbers, which made
almost no difference in reference price estimates
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IV. Estimation strategy

The augmented AIDS model which allows for reference prices described in equation (7)
can be estimated as any standard AIDS model. Since its introduction, the AIDS model
has sparkled a vast literature addressing empirical estimation challenges associated with
the nature of the data, and proposing a variety of solutions (Blundell, 1988). These
deal with the presence of zero observations (non-purchases), the endogeneity of the total
expenditure variable on the right-hand side of the equations, the use of unit values instead
of retail prices, and the need to account for heterogeneity in household characteristics and
preferences. In robustness analyses, we check to what extent asymmetric estimates from
our model depend on the different estimation choices choices in dealing with these issues.

As shown in Table 2, the disaggregation level of our data implies a varying proportion
of household-weeks with no purchases in a specific group. Failing to consider the right-
hand censoring generates a selection bias which affects the estimation of the behavioral
parameters and demand elasticities. The problem of selection bias is generally addressed
using two-step estimation procedures, where the first step involves the estimation of a
discrete choice selection model to obtain the probability of non-zero purchases given a set
of household characteristics. In the second step this probability enters the AIDS model
to improve the consistency of the parameter estimates.

Different two-step methods have been proposed in the literature, where an important
aspect is whether estimates of the second-step AIDS model are based on the full sample,
or only on non-zero observations. The latter approach follows the standard Heckman
selection model, and is undesirable when working with systemwise estimation on data-
sets which - like ours - have a large proportion of non-purchases. We adopt the alternative
formulation described in Shonkwiler and Yen (1999) and Tauchmann (2005), makes use
of the full estimation sample and is common in the empirical literature. The first stage
probit equation is defined as:

ziht = τi0 +
k∑
b=1

τibdhbt +
12∑
c=1

ζicsct + ρiqih,t−1 + uiht (14)

where

ziht =

{
1 if qiht > 0

0 if qiht ≤ 0

is the binary variable discriminating between purchases and non-purchases of good
i for household h at time t, and is expressed as a function of a set of k household
characteristics dhbt, b = 1, ..., k, of thirteen 4-weekly effects sct to control for seasonality in
purchase patterns, and of lagged purchases qih,t−1 to allow for stockpiling. The household
characteristics we consider in our model are those listed in Table 1, that is household size,
age of the main shopper, household income, and dummies to capture the education level of
the main shopper, the household social grade, the tenure type and the presence of children
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aged under 15 in the household. Based on the maximum likelihood estimates of equation
(14), we compute, for each household, week and good, the probabilities from standard
normal density function φiht (z∗iht) and the cumulative distribution function Φiht (z∗iht),
where z∗iht are the predictions from the probit model. These estimates enter the second
estimation step as follows:

wiht = φiht (z∗iht) fiht + θiΦiht (z∗iht) (15)

where fiht is the right-hand side expression in the AIDS model (7) for good i, household
h and time t:

fiht = αi +
n∑
j=1

γij log phjt +
n∑
j=1

δijIhjt(log phjt − log rhjt)+

−
n∑
j=1

ωij(1− Ihjt)(log phjt − log rhjt) + βi log

(
xht
Pht

)

where Pht is the non-linear price index defined in (8), phjt is the price for good j faced
by household h at time t, and rhjt is the corresponding reference price. As before, the
losses and gains enter the model through the indicator function.

Our empirical specifications rest on the assumption of weak separability, and our
models are conditional on total cola expenditure and total food and drink expenditure,
respectively. To deal with the endogeneiy of the total expenditure, in the baseline spec-
ification we instrument total expenditure (on either cola or food and beverage), using
household income, a set of 4-weeks dummies to account for seasonality, and other house-
hold characteristics.

A third source of bias is related to the aforementioned unit value issue, associated with
quality choice heterogeneity and aggregation, which led us to use average unit values
by postcode area and week as a proxy for the prices. While averaging mitigates the
problem, a further correction may be necessary if there exist large disparities in household
characteristics across post-codes, so that the difference in average unit values between
postcode areas might not only reflect actual price differences. We use a two-step approach
which draws from Deaton (1988). First, for each good, we demean logs of unit values, logs
of purchased values, all household demographics, and 13 four-weeks seasonal dummies.
Second, we run a regression with the demeaned unit values on the left-hand side, and
with demeaned quantities, demographics and seasonal dummies on the right hand side:

(ln viht − ln vict) =
k∑
b=1

λib(dht − dct) + φi(ln qiht − ln qict) + υiht (16)

where viht is the unit value paid by household h for good i at time t, vict is the average
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of unit values for good i in postcode area c, dht is a set of household demographics (and
seasonal dummies), dct is the corresponding postcode average, qiht is the quantity of the
good purchased by the household, and qict the corresponding postcode average.

The adjusted prices (including the reference ones) for each good , postcode and week
are then obtained from the average unit values by applying the coefficient vectors λ and
φ as follows:

ln pict = ln vict −
k∑
b=1

λibdct − φi ln qict (17)

Finally, we augment the model to allow for household heterogeneity. We adopt two
alternative routes for this purpose. First, we augment the AIDS model by adding demo-
graphic variables as intercept shifters. Second, we re-estimate the model with household
fixed effects. Econometric estimation under this specification is not trivial when the num-
ber of households is so large, thus we estimate the linearized version of the AIDS model,
substituting the non-linear price index with the Stone index.

While this variety of specifications and estimation issues might seem redundant, our
goal is to check whether the model specification and asymmetric elasticities are robust
to these choices.

V. Results

Own-price Marshallian elasticities estimated by the AIDS extension to include reference
prices, are shown in Table 4. Our baseline specification is the two-step model in (15),
and total expenditure is instrumented to account for endogeneity. We show the results
for the canonical symmetric AIDS model in the first column of the table. Asymmetric
own-price elasticities are reported under the two different price definitions described in
section II., using the price from the last shopping trip as the reference price (11), and the
reference price from the extrapolative expectation model as in (12). For both specifica-
tions we report the elasticity associated with losses, i.e. when the current price exceeds
the IRP, and with gains, i.e. when the current price is lower than the IRP. To check for
the sensitivity of estimates to price measurement noises, the last two columns refer to
estimates when the price at the last shopping is the IRP, but losses and gains only occur
if the gap between the price and the IRP is above 5%.

Price elasticities can be thought of a combination of two different sources of price
variability: (a) cross-sectional variation within the same time period, in our case price
variation across post-codes; (b) time variation in prices faced by the same household,
which in our case is reduced to the postcode price variation over time. Canonical models
do not explicitly decompose these two sources of variability. Our augmented model,
together with a definition of IRPs based on rational expectations and lags, separates the
effect of time variation and further splits demand response into two separate elasticities,
depending on whether households are in a loss or gain situation. Symmetric elasticities
in Table 4 can be seen as the final combination of these sources of variability.
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Considering the cola model, the own-price elasticity values are plausible and show rela-
tively smaller own-price elasticity for the X-Cola 1L+ relative to other colas from the same
brand and to the aggregate group of colas from all other brands. The distinction between
losses and gains confirms an established result from the empirical literature in line with
consumer loss aversion, as own-price elasticities are larger under losses relative to gains
(Kalyanaram and Winer, 1995; Meyer and Johnson, 1995). Our theoretically-consistent
system wise specification, however, points at an interesting result. The asymmetry in
demand elasticity is strongest for other cola brands. This would have implications to
a firm’s pricing strategy; particularly as in a consumer gain situation the demand for
other cola brand beverages is much less elastic in comparison to X-cola. With symmetric
elasticity estimates this imbalance between brands would be hidden.

The size of our data-set and the precision of our estimates provides strong support
to the asymmetric elasticity hypothesis, and changing the price definition or trimming
only bring minor differences to the estimates and no detectable difference in terms of
goodness-of-fit.

These results are confirmed in the food model. As expected, the asymmetry is less
evident, and becomes negligible as foods are aggregated into larger groups, to the point
that the elasticites in the residual group including all other foods are almost identical
to the symmetric ones. After trimming, the asymmetry is still clear for snacks and soft
drinks, albeit smaller for fruit and vegetables.

Relative to previous evidence, our model has the advantage of providing theoretically
consistent cross-price elasticities allowing for differential response depending on whether
prices increase or decrease. These are presented in Table 5. As it is often the case
with aggregated goods, substitution elasticities are relatively small, and the asymmetry
is also less conspicuous, albeit still large relative to standard errors. Again, changing the
definition of the reference price does not bring major differences in the estimates, or the
direction of their asymmetry.

Some results are, however, intriguing. For example, consider the competition be-
tween X-Cola (other) products and other brands. When X-Cola raises their price above
the reference (hence a loss situation for the X-Cola other group in Table 5), we find a
strong substitution towards other brand colas with a cross-price elasticity of 0.658. How-
ever, in case of a price cut which brings price below the reference (a gain situation),
the substitution away from other brand colas is much smaller in comparison, around
0.095 – something the symmetric elasticity would have overestimated by five-fold (0.498).
Consider now the opposite situation. Under symmetry, other brand colas have a small
(0.049) positive cross-price elasticity towards X-Cola (other), indicating these are substi-
tute products. When accounting for reference price effects, the substitution effect holds
only if the price of other brands goes above the reference, as demand for X-Cola increases
(a cross-price elasticity of 0.211). However, if other brands cut prices below the reference,
X-Cola (other) products become complements, as cross-price elasticities are negative and
large (-0.363), hence indicating an increase in X-Cola (other) demand too. Interestingly,
the demand for other brand colas does not respond to increases in prices of X-cola 1lt+,
but it is a complement (and demand for other brand colas increases) when the price of
X-Cola 1lt+ is cut.
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Table 4. Own-price elasticities.

Reference Price

Lagged Adaptive Lagged Price
Symmetric Price Expectation (5% trim)

Loss Gain Loss Gain Loss Gain

Cola model

X-Cola (1lt+) −0.985 −1.073 −0.892 −1.089 −0.877 −1.068 −0.897
(0.009) (0.013) (0.012) (0.012) (0.013) (0.012) (0.012)

X-Cola (other) −1.431 −1.627 −1.004 −1.650 −0.915 −1.601 −1.026
(0.041) (0.038) (0.038) (0.037) (0.045) (0.036) (0.037)

Other brands −1.115 −1.324 −0.642 −1.347 −0.547 −1.297 −0.666
(0.046) (0.045) (0.046) (0.045) (0.052) (0.044) (0.045)

Obs. 400,437 399,980 400,437 399,980
RMSE 0.359 0.359 0.359 0.359

Food model

Fruit & Veg −1.363 −1.303 −1.194 −1.285 −1.087 −1.264 −1.193
(0.014) (0.019) (0.024) (0.017) (0.019) (0.010) (0.011)

Snacks −0.977 −1.037 −0.899 −1.043 −0.905 −1.005 −0.872
(0.028) (0.033) (0.029) (0.032) (0.029) (0.022) (0.023)

Soft drinks −1.056 −1.096 −0.933 −1.132 −0.888 −1.038 −0.902
(0.023) (0.027) (0.029) (0.028) (0.028) (0.019) (0.020)

Other foods −1.019 −1.014 −1.004 −1.013 −0.995 −1.010 −1.003
(0.002) (0.003) (0.003) (0.002) (0.002) (0.001) (0.001)

Obs. 2,055,686 2,055,685 2,055,674 2,055,686
RMSE 0.126 0.126 0.127 0.126

Note: Standard errors in parentheses. All standard errors are clustered by postcode area (110
postcode areas).
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Good evidence of asymmetric cross-price elasticities also emerges for the food model.
Given the nutrition and health implications of these food groupings, looking at the cases
where switching from losses to gain turns two goods from substitutes to complements
or vice versa is especially important. For example, we find that under the symmetric
elasticity scenario and if prices increase above reference, soft drinks and snacks are largely
unrelated as price change in one does not affect the demand for the other. However if
prices of either snacks or soft drinks are cut, the two food groups become complements,
leading to an increase, albeit a small one, in the consumption of the other products
(cross-price elasticity of 0.12 and 0.15, respectively).

A. Robustness checks

We now turn our attention to the role played by choosing a specific price definition or
model specification in detecting asymmetry. Tables 6 and 7 present the elasticity gaps,
intended as the difference between loss and gain elasticities, under different reference price
definitions7. The first three columns correspond to the three reference prices considered
in the previous two tables, and the elasticity gaps are very similar. The fourth column
(Model 3) incorporates the adjustment for unit value bias as in (16) and (17).

Relative to the baseline model, the differences are very small, and mostly in the
direction of stronger asymmetries. Model 4 shows the elasticity gaps when prices are
clustered by retailer rather than by postcode area, under the assumption that the same
retailer applies the same price in the same type of its outlets. Since households might shop
in more than one outlet in one week, it is assumed that each household faces the (average)
prices set by the retailer where they spent most of their budget in that week. Elasticity
gaps are generally smaller, especially in the cola system, but with very few exceptions
their size is large enough to confirm asymmetry in the same direction as in the other
models. Exceptions to this are the own- and cross-price elasticity gaps, which are small
and close to zero, for the X-Cola 1lt+ in the cola model, and for fruit & vegetables in
the food model.

For the cola model, failure to detect asymmetry might be ascribed to a relatively
larger number of missing observations (about 10% of observations), as small and local
retailers do not occur in the data enough to estimate prices for all three cola groups. This
inconsistency might be explained by the X-Cola 1lt+ being already the category with the
lowest number of purchases, and having most of the price information from the largest
national retailer with relatively smaller price variation. The same explanation clearly
does not hold for fruit & vegetables, and given that the elasticity gap was already quite
small in the baseline model, the evidence of asymmetric elasticities for this category is
weak.

The effects of adopting different econometric specifications for the demand models
can be explored by looking at the elasticity gaps in Tables 8 and 9. Our baseline model
applies the zero expenditure and endogeneity corrections, and does not take into con-
sideration household heterogeneity. Incorporating household demographics as intercept
shifters in the demand system specification (Model 1) does not produce any appreciable

7The complete sets of elasticities are provided as additional on-line material
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Table 5. Cross-price Elasticities.

Reference Price

Lagged Adaptive Lagged Price
Symmetric Price Expectation (5% trim)

Loss Gain Loss Gain Loss Gain

Cola model

Price of X-Cola (1lt+)
X-Cola (other) 0.036 0.069 0.020 0.076 0.016 0.067 0.021

(0.013) (0.015) (0.014) (0.016) (0.015) (0.015) (0.014)
Other brands −0.050 0.000 −0.119 0.008 −0.129 −0.004 −0.115

(0.013) (0.016) (0.014) (0.017) (0.015) (0.016) (0.014)
Price of X-Cola (others)

X-Cola (1lt+) −0.081 −0.047 −0.099 −0.040 −0.103 −0.048 −0.098
(0.011) (0.014) (0.013) (0.013) (0.013) (0.013) (0.012)

Other brands 0.498 0.658 0.095 0.674 0.012 0.635 0.116
(0.042) (0.039) (0.040) (0.037) (0.048) (0.037) (0.039)

Price of Other Brands
X-Cola (1lt+) 0.073 0.127 −0.001 0.136 −0.012 0.123 0.002

(0.012) (0.015) (0.014) (0.015) (0.015) (0.014) (0.014)
X-Cola (other) 0.049 0.211 −0.363 0.226 −0.450 0.187 −0.343

(0.044) (0.042) (0.042) (0.042) (0.049) (0.041) (0.041)

Food model

Price of Fruit & Veg
Snacks −0.063 −0.103 0.027 −0.123 0.031 −0.026 0.034

(0.021) (0.033) (0.033) (0.033) (0.034) (0.018) (0.018)
Soft drinks 0.251 0.229 0.084 0.225 0.005 0.143 0.068

(0.017) (0.027) (0.032) (0.030) (0.031) (0.014) (0.014)
Other foods 0.056 0.049 0.031 0.047 0.016 0.043 0.031

(0.002) (0.003) (0.003) (0.003) (0.003) (0.001) (0.001)
Price of Snacks

Fruit & Veg −0.027 −0.044 0.005 −0.052 0.007 −0.017 0.006
(0.008) (0.013) (0.013) (0.012) (0.013) (0.007) (0.007)

Soft drinks −0.033 0.029 −0.116 0.058 −0.122 −0.007 −0.131
(0.020) (0.023) (0.023) (0.024) (0.022) (0.016) (0.016)

Other foods 0.008 0.009 0.003 0.008 0.004 0.005 0.003
(0.001) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001)

Price of Soft drinks
Fruit & Veg 0.127 0.118 0.045 0.116 0.004 0.077 0.039

(0.009) (0.014) (0.016) (0.015) (0.016) (0.007) (0.007)
Snacks −0.038 0.044 −0.150 0.082 −0.159 −0.001 −0.167

(0.027) (0.031) (0.031) (0.032) (0.030) (0.022) (0.022)
Other foods −0.018 −0.019 −0.005 −0.017 0.000 −0.012 −0.005

(0.001) (0.002) (0.002) (0.003) (0.002) (0.001) (0.001)
Price of Other foods

Fruit & Veg 0.147 0.117 0.032 0.112 −0.033 0.094 0.039
(0.012) (0.015) (0.017) (0.014) (0.015) (0.007) (0.007)

Snacks 0.225 0.242 0.169 0.235 0.183 0.262 0.234
(0.018) (0.027) (0.028) (0.025) (0.032) (0.013) (0.013)

Soft drinks −0.281 −0.282 −0.156 −0.276 −0.119 −0.288 −0.225
(0.015) (0.023) (0.022) (0.024) (0.024) (0.010) (0.010)

Note: Standard errors in parentheses. All standard errors are clustered by postcode area (110
postcode areas).
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Table 6. Elasticity Gaps and Reference Price Definitions: Cola Model.

Model
Baseline (1) (2) (3) (4)

X-Cola (1lt+)
Own-price −0.181∗∗∗ −0.212∗∗∗ −0.170∗∗∗ −0.202∗∗∗ −0.037∗∗

(0.020) (0.020) (0.019) (0.021) (0.017)
X-Cola (other) 0.049∗∗∗ 0.060∗∗∗ 0.046∗∗∗ 0.057∗∗∗ 0.052∗∗∗

(0.018) (0.019) (0.017) (0.020) (0.016)
Other brands 0.118∗∗∗ 0.137∗∗∗ 0.111∗∗∗ 0.130∗∗∗ −0.017

(0.020) (0.022) (0.019) (0.021) (0.013)
X-Cola (others)

Own-price −0.623∗∗∗ −0.735∗∗∗ −0.576∗∗∗ −0.797∗∗∗ −0.184∗∗∗

(0.049) (0.059) (0.047) (0.066) (0.036)
X-Cola (1lt+) 0.052∗∗∗ 0.063∗∗∗ 0.049∗∗∗ 0.061∗∗∗ 0.055∗∗∗

(0.020) (0.021) (0.018) (0.021) (0.017)
Other brands 0.563∗∗∗ 0.663∗∗∗ 0.519∗∗∗ 0.726∗∗∗ 0.133∗∗∗

(0.052) (0.062) (0.050) (0.065) (0.031)
Other brands

Own-price −0.681∗∗∗ −0.800∗∗∗ −0.631∗∗∗ −0.856∗∗∗ −0.116∗∗∗

(0.060) (0.070) (0.057) (0.070) (0.033)
X-Cola (1lt+) 0.128∗∗∗ 0.149∗∗∗ 0.121∗∗∗ 0.141∗∗∗ −0.018

(0.022) (0.023) (0.020) (0.023) (0.013)
X-Cola (other) 0.574∗∗∗ 0.676∗∗∗ 0.529∗∗∗ 0.739∗∗∗ 0.132∗∗∗

(0.053) (0.063) (0.051) (0.067) (0.031)
Obs. 399,980 400,437 399,980 399,980 359,167
RMSE 0.359 0.359 0.359 0.359 0.359

Notes: ∗∗∗p < 0.01;∗∗∗ p < 0.05;∗∗∗ p < 0.10. Elasticity gap figures in the table are the difference between
elasticities above and below the reference price (RP). Standard errors in parentheses (Delta Method). Reference
prices in the models are as follows:
Baseline model: Lagged geographical price (average by postcode area).
Model (1): Adaptive expectations based on five lags of geographical prices.
Model (2): Lagged geographical price with a 5% trim (prices are considered as different from the RP only when
their percent difference is above 5%).
Model (3): Lagged geographical price with a Deaton-type correction.
Model (4): Lagged supermarket price (average across prices of the same outlet across the country)
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Table 7. Elasticity Gaps and Reference Price Definitions: Food Model.

Model
Baseline (1) (2) (3) (4)

Fruit & Veg
Own-price −0.109∗∗∗ −0.198∗∗∗ −0.070∗∗∗ −0.167∗∗∗ 0.014

(0.034) (0.030) (0.015) (0.037) (0.009)
Snacks −0.130∗∗ −0.154∗∗ −0.060∗∗ −0.069 −0.078∗∗∗

(0.054) (0.046) (0.027) (0.053) (0.016)
Soft drinks 0.144∗∗∗ 0.220∗∗∗ 0.075∗∗∗ 0.173∗∗∗ 0.055∗∗∗

(0.051) (0.036) (0.021) (0.050) (0.014)
Other foods 0.018∗∗∗ 0.031∗∗∗ 0.012∗∗∗ 0.023∗∗∗ −0.003∗∗∗

(0.005) (0.004) (0.002) (0.005) (0.001)
Snacks

Own-price −0.138∗∗∗ −0.139∗∗∗ −0.133∗∗∗ −0.139∗∗∗ −0.171∗∗∗

(0.042) (0.048) (0.034) (0.042) (0.027)
Fruit & Veg −0.049∗∗ −0.059∗∗ −0.023∗∗ −0.026 −0.029∗∗∗

(0.020) (0.028) (0.010) (0.020) (0.006)
Soft drinks 0.145∗∗∗ 0.180∗∗∗ 0.124∗∗∗ 0.147∗∗∗ 0.154∗∗∗

(0.032) (0.043) (0.025) (0.035) (0.021)
Other foods 0.006∗ 0.004 0.002 0.001 0.003∗∗

(0.003) (0.004) (0.002) (0.003) (0.001)
Soft drinks

Own-price −0.163∗∗∗ −0.244∗∗∗ −0.135∗∗∗ −0.181∗∗∗ −0.177∗∗∗

(0.040) (0.040) (0.030) (0.046) (0.027)
Fruit & Veg 0.073∗∗∗ 0.112∗∗∗ 0.038∗∗∗ 0.088∗∗∗ 0.028∗∗∗

(0.026) (0.021) (0.011) (0.025) (0.007)
Snacks 0.194∗∗∗ 0.241∗∗∗ 0.166∗∗∗ 0.197∗∗∗ 0.207∗∗∗

(0.043) (0.046) (0.033) (0.047) (0.028)
Other foods −0.014∗∗∗ −0.017∗∗∗ −0.007∗∗∗ −0.015∗∗∗ −0.004∗∗

(0.004) (0.004) (0.002) (0.004) (0.001)
Other foods

Own-price −0.011∗∗∗ −0.018∗∗∗ −0.007∗∗∗ −0.008∗∗ 0.003∗∗

(0.004) (0.004) (0.002) (0.004) (0.001)
Fruit & Veg 0.085∗∗∗ 0.145∗∗ 0.055∗∗∗ 0.105∗∗∗ −0.012∗∗

(0.023) (0.059) (0.010) (0.024) (0.006)
Snacks 0.073∗ 0.052 0.027 0.011 0.042∗∗∗

(0.041) (0.054) (0.019) (0.039) (0.013)
Soft drinks −0.126 −0.156∗∗∗ −0.063∗∗∗ −0.139∗∗∗ −0.033∗∗

(0.036) (0.004) (0.014) (0.036) (0.013)
Obs. 2,055,685 2,055,674 2,055,686 2,055,685 2,052,247
RMSE 0.126 0.127 0.126 0.126 0.126

Notes: ∗∗∗p < 0.01;∗∗∗ p < 0.05;∗∗∗ p < 0.10. Elasticity gap figures in the table are the difference between
elasticities above and below the reference price (RP). Standard errors in parentheses (Delta Method). Reference
prices in the models are as follows:
Baseline model: Lagged geographical price (average by postcode area).
Model (1): Adaptive expectations based on five lags of geographical prices.
Model (2): Lagged geographical price with a 5% trim (prices are considered as different from the RP only when
their percent difference is above 5%).
Model (3): Lagged geographical price with a Deaton-type correction.
Model (4): Lagged supermarket price (average across prices of the same outlet across the country)
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change in the elasticity gap, and the goodness-of-fit is slightly worse for both the cola
and food models. Model 2 presents estimates where endogeneity of total expenditure is
not addressed, and the total expenditure enters the model without any instrumenting.
Although elasticity gaps are slightly smaller when endogeneity is ignored, the evidence
of asymmetry remains clear and consistent with the previous models.

The third alternative specification (Model 3) refers to a model where no correction
for zero expenditure is introduced, and all zero expenditures enter the model. This has
a large effect on the elasticity gaps for those goods whose proportion of non-purchases is
higher, hence the cola model, and snacks and soft drinks in the food model. However,
the direction of the bias is towards making the asymmetry larger, which suggests the zero
expenditure correction is not generating the asymmetry, but rather reduces it.

Model 4 introduces fixed household effects which are incompatible with the adjustment
for zero expenditure and hence Model 3 provides a more natural benchmark to assess the
elasticity gaps of the fixed effect model. Once household heterogeneity is accounted for
we still find good evidence of asymmetric elasticities for most goods but the asymme-
try becomes slightly weaker. This result may be related to the introduction of a large
number of household effects (approximately 24,000 and 30,000 in cola and food system,
respectively). These are likely to capture most of the price variability, which is already
restricted by the number of number of postcode areas (110) and weeks (104). Indeed,
the price variability, as measured by the standard deviations, is very small. Coefficients
of variation computed from Table 2 range between 14% and 15% for the cola categories,
and between 6% and 10% for the food categories. The biggest effect is on the fruit &
vegetables category, where asymmetry disappears, suggesting again that household con-
sumption response for this aggregated category is likely to be symmetric. Aggregation
of a large number of quite heterogeneous products, and the relative ease to adjust con-
sumption when quantities on sale are continuous, as it is the case for fresh foods, are
both plausible justifications for symmetric elasticities for fruit & vegetables.

On balance, our robustness checks confirm the evidence for asymmetric elasticities.
Alternative definitions of the reference price had little impact on the size of these gaps.
Instead, different econometric specifications do generate conspicuous differences in the
elasticity gaps, especially when ignoring the zero expenditure bias, and when introducing
fixed household effects. Not all goods are affected to the same extent by the asymmetry,
which is likely to be related to the aggregation level and on whether the products are sold
in continuous or discrete quantities. The largest asymmetries were found for colas, but
this is also due to the fact that price variations are larger for these goods in comparison
to the relatively aggregated four food groups. When considering the latter, we provide
evidence of a relevant reference price effect for snacks and soft drinks, whereas the evidence
is much weaker for fruit & vegetables and no asymmetry is detected for the residual food
category.

B. Asymmetric elasticities and simulations

The elasticity gaps we estimated were in some cases relatively large and now we analyse
the implications of ignoring these in demand simulations. A basic, but informative as-
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Table 8. Elasticity Gaps and Model Specification: Cola Model.

Model
Baseline (1) (2) (3) (4)

X-Cola (1lt+)
Own-price −0.181∗∗∗ −0.172∗∗∗ −0.178∗∗∗ −1.295∗∗∗ −0.357∗∗∗

(0.020) (0.020) (0.020) (0.114) (0.047)
X-Cola (other) 0.049∗∗∗ 0.051∗∗∗ 0.072∗∗∗ 0.128∗∗∗ 0.098∗∗∗

(0.018) (0.018) (0.019) (0.026) (0.011)
Other brands 0.118∗∗∗ 0.108∗∗∗ 0.094∗∗∗ 0.145∗∗∗ −0.003

(0.020) (0.019) (0.020) (0.023) (0.009)
X-Cola (others)

Own-price −0.623∗∗∗ −0.576∗∗∗ −0.534∗∗∗ −0.793∗∗∗ −0.125∗∗∗

(0.049) (0.044) (0.046) (0.047) (0.022)
X-Cola (1lt+) 0.052∗∗∗ 0.055∗∗∗ 0.077∗∗∗ 0.494∗∗∗ 0.376∗∗∗

(0.020) (0.019) (0.020) (0.102) (0.043)
Other brands 0.563∗∗∗ 0.515∗∗∗ 0.453∗∗∗ 0.464∗∗∗ 0.019

(0.052) (0.046) (0.049) (0.033) (0.013)
Other brands

Own-price −0.681∗∗∗ −0.623∗∗∗ −0.547∗∗∗ −0.609∗∗∗ −0.016
(0.060) (0.054) (0.057) (0.043) (0.016)

X-Cola (1lt+) 0.128∗∗∗ 0.117∗∗∗ 0.101∗∗∗ 0.801∗∗∗ −0.018
(0.022) (0.021) (0.022) (0.128) (0.047)

X-Cola (other) 0.574∗∗∗ 0.525∗∗∗ 0.462∗∗∗ 0.664∗∗∗ 0.027
(0.053) (0.047) (0.049) (0.048) (0.019)

Obs. 399,980 399,980 399,980 420,770 420,770
RMSE 0.359 0.361 0.346 0.372 0.278

Notes: ∗∗∗p < 0.01;∗∗∗ p < 0.05;∗∗∗ p < 0.10. Elasticity gap figures in the table are the difference between
elasticities above and below the reference price (RP). Standard errors in parentheses (Delta Method). Model
specifications are as follows:
Baseline model: corrected for endogeneity and zero expenditure.
Model (1): Includes household demographics.
Model (2): No endogeneity correction.
Model (3): No correction for zero expenditures.
Model (4): Includes fixed household effects, linear model, no correction for zero expenditures.
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Table 9. Elasticity Gaps and Model Specification: Food Model.

Model
Baseline (1) (2) (3) (4)

Fruit & Veg
Own-price −0.109∗∗∗ −0.101 −0.094∗∗∗ −0.040 0.103∗∗∗

(0.034) (0.066) (0.034) (0.031) (0.037)
Snacks −0.130∗∗ −0.060 −0.136∗∗ 1.395∗∗∗ 0.004

(0.054) (0.069) (0.053) (0.085) (0.064)
Soft drinks 0.144∗∗∗ 0.129∗ 0.141∗∗∗ 0.370∗∗∗ 0.004

(0.051) (0.068) (0.050) (0.079) (0.056)
Other foods 0.018∗∗∗ 0.013 0.016∗∗∗ −0.169∗∗∗ −0.020∗∗∗

(0.005) (0.009) (0.005) (0.006) (0.007)
Snacks

Own-price −0.138∗∗∗ −0.144∗∗ −0.125∗∗∗ −0.787∗∗∗ −0.189∗∗∗

(0.042) (0.072) (0.043) (0.087) (0.069)
Fruit & Veg −0.049∗∗ −0.023 −0.052∗∗ 0.055 0.001

(0.020) (0.026) (0.020) (0.046) (0.013)
Soft drinks 0.145∗∗∗ 0.124∗∗∗ 0.144∗∗∗ 1.138∗∗∗ 0.050

(0.032) (0.044) (0.033) (0.088) (0.034)
Other foods 0.006∗ 0.003 0.006 0.020∗ 0.004

(0.003) (0.004) (0.003) (0.010) (0.003)
Soft drinks

Own-price −0.163∗∗∗ −0.139∗∗∗ −0.161∗∗∗ −0.516∗∗∗ −0.133∗∗∗

(0.040) (0.050) (0.041) (0.009) (0.048)
Fruit & Veg 0.073∗∗ 0.065∗ 0.071∗∗ 0.560∗∗∗ 0.001

(0.026) (0.034) (0.026) (0.091) (0.019)
Snacks 0.194∗∗∗ 0.167∗∗∗ 0.193∗∗∗ −0.431∗∗∗ 0.085

(0.043) (0.059) (0.044) (0.091) (0.057)
Other foods −0.014∗∗∗ −0.013∗∗∗ −0.014∗∗∗ 0.001 0.005

(0.004) (0.005) (0.004) (0.004) (0.005)
Other foods

Own-price −0.011∗∗∗ −0.003 −0.008∗∗ −0.095∗∗∗ 0.011
(0.004) (0.007) (0.004) (0.004) (0.009)

Fruit & Veg 0.085∗∗∗ 0.059 0.074∗∗∗ −0.471∗∗∗ −0.105∗∗∗

(0.023) (0.043) (0.022) (0.086) (0.036)
Snacks 0.073∗ 0.037 0.068 −0.455∗∗∗ 0.100

(0.041) (0.046) (0.041) (0.050) (0.075)
Soft drinks −0.126∗∗∗ −0.114∗∗∗ −0.124∗∗∗ −0.286∗∗∗ 0.079

(0.036) (0.043) (0.034) (0.003) (0.073)
Obs. 2,055,685 1,918,544 2,055,685 2,157,537 2,157,537
RMSE 0.126 0.104 0.126 0.089 0.089

Notes: ∗∗∗p < 0.01;∗∗∗ p < 0.05;∗∗∗ p < 0.10. Elasticity gap figures in the table are the difference between
elasticities above and below the reference price (RP). Standard errors in parentheses (Delta Method). Model
specifications are as follows:
Baseline model: corrected for endogeneity and zero expenditure.
Model (1): Includes household demographics.
Model (2): No endogeneity correction.
Model (3): No correction for zero expenditures.
Model (4): Includes fixed household effects, linear model, no correction for zero expenditures.
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sessment can be based on the straightforward application of the estimated asymmetric
elasticities, using the Delta method to obtain standard errors. Table 10 provides some
examples of how elasticity-based simulations change when reference prices are considered,
and asymmetry is allowed for, based on our baseline model.

To this purpose we consider four basic scenarios of price change. For the cola market,
we assess the effects on demand from a 10% price increase in all X-Colas, and the effects
of a 10% price cut in the price set by competitors. For the food model, we explore the
consumption effects of hypothetical fiscal measures to promote healthier consumption,
such as a 10% increase in the price of snacks, which might be induced by a tax targeting
less healthier products, and a 10% decrease in the price of fruit & vegetables, to simulate
a subsidy on healthier products.

The effects of a 10% rise in X-Cola prices are underestimated by the symmetric model,
as loss aversion is ignored. Considering all three categories in the system, the bias is not
trivial, as purchased quantities for bottled X-Cola fall by a further 0.6% relative to the
symmetric model. Sales of all other X-Cola products are also simulated to be lower
by 1.6% if asymmetry is allowed. Substitution to competitor brands increases by 6.6%
instead of 4.5%, as predicted by the symmetric model. While trivial differences at small
scale, a rough back-of-the-envelope estimation to scale up consumption response taking
into account the number of British households helps appreciating the magnitude of these
differences. In comparison to the symmetric model, allowing for asymmetries estimates
an additional reduction of more than 100,000lt per week of X-Cola sold in Great Britain,
and an additional increase of 300,000lt sold by competitors per week.

On the other hand, the symmetric model overestimates the response to a 10% de-
crease in the price set by competitors of X-Cola. The demand for colas of other brands
increases by 6.4%, rather than 11.1% as predicted by the symmetric model, a difference of
about 700,000lt per week when average household responses are projected at the national
level. In addition, the asymmetric model predicts that X-Cola purchases also increase
by 350,000lt per week in response to the price cut, while simulations from the symmetric
model see a substitution effects which would reduce purchases by around 50,000lt per
week.

Similar considerations apply to the food model, but to a lesser extent, as the estimated
asymmetries are smaller. As before, the symmetric model underestimates the effects of a
loss induced by taxation. Reduction in snack consumption in response to the 10% tax is
-9.8% according to the symmetric model, and -10.5% according to the asymmetric model.
In terms of quantities this means a little more than one gram per household per week. It
should be noted, however, that according to the symmetric model such a tax would also
lead to a reduction in the demand for soft drinks (-0.3%), whereas the asymmetric model
predicts a +0.3% increase in soft drink consumption.

As before, subsidies - hence consumer gains - are estimated to have a relatively smaller
impact on consumption. Still, the difference which emerges from our baseline model rel-
ative to the symmetric model is meaningful. The symmetric model simulates an increase
in consumption of fruit & vegetables of 0.531Kg per household per week, in compari-
son to 0.457Kg predicted by the baseline model, which means a distance of almost a
portion per household per week. However, the asymmetry for this category is not as ro-
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bust to alternative model specifications. Considering the impact on snack consumption,
the two models provide simulations with opposite signs. The symmetric model predicts
substitution to snacks when fruits & vegetables prices are subsidized, whereas the asym-
metric effects suggest a complementary effect, and predict a small reduction in snack
consumption. A reduction in soft drink demand due to subsidies on fruit & vegetables is
also overestimated by the asymmetric model (2.5% relative to the 0.8% predicted by the
asymmetric model).

VI. Summary and Conclusion

This paper extends the Almost Ideal Demand System specification to incorporate ref-
erence prices and allow for asymmetric consumer response depending on whether price
changes occur above or below the reference price. Importantly, we generalize previous
efforts by incorporating cross-price reference effects allowing estimation of asymmetric
cross-price elasticities, consistent with the requirements of consumer theory.

We test this theoretical advancement by extending the functional form of the Almost
Ideal Demand System to allow for reference prices, and we exploit a large data-set based
on home scan data to test the empirical evidence on asymmetric elasticities. We find
good evidence of asymmetric own-price and cross-price elasticities, which is quite robust
to changes in the definition of reference prices. In our baseline we opted for using the
lagged price as the reference which has the attractiveness of straightforward interpretation
of the elasticities, as losses correspond to all situations when price has increased since
last shopping, and gains refer to a price decrease.

We also checked the sensitivity of our asymmetric estimates to various econometric
specifications which are known to influence estimates of demand models. Controlling for
endogeneity of total expenditure, or adjustment for the unit value quality component
does not affect estimates, whereas correcting for zero expenditure does change both the
elasticity values and the size of asymmetry, but in the direction of detecting smaller
asymmetries relative to the model without zero correction. Furthermore, the censored
model controls for possible stockpiling in the first stage decision to purchase. When fixed
household effects are introduced, the asymmetries become smaller, particularly for fruits
& vegetables.

Our empirical tests on demand models augmented with internal reference prices lead us
to two main considerations on the nature of asymmetric elasticities. First, we find that the
relevance of asymmetry increases with the level of product detail. The larger the number
of products aggregated into a single category, the smaller the evidence of asymmetry,
to the point that no asymmetry emerges when considering large food aggregates. Not
unrelated to the aggregation aspect, asymmetry appears smaller when consumers have
more flexibility in choosing purchasing quantities. Products sold in discrete quantities
and set packages, such as cola bottles, are more likely to exhibit asymmetric elasticities
relative to goods like fruit & vegetables, often sold loosely, which means that it is easier
to adjust the purchased quantities if price changes.

Second, we bring further evidence on consumer loss aversion. Consumers show a
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Table 10. Simulated Effects of Price Policies on Purchased Quantities with Asymmetric
Elasticities.

Model

Symmetric Asymmetric (Baseline)

Cola Model
10% Increase in all X-Cola Prices

X-Cola (1lt+)
−10.66∗∗∗ −11.20∗∗∗

(0.13) (0.15)
X-Cola (other) −13.95∗∗∗ −15.58∗∗∗

(0.42) (0.39)
Other brands +4.48∗∗∗ +6.58∗∗∗

(0.46) (0.43)

10% Cut in Prices of Competitors

X-Cola (1lt+) −0.73∗∗∗ +0.01
(0.12) (0.14)

X-Cola (other) −0.49 +3.63∗∗∗

(0.44) (0.42)
Other brands +11.15∗∗∗ +6.42∗∗∗

(0.46) (0.46)

Food Model
10% Tax on Snacks

Fruit & Veg −0.28∗∗∗ −0.32∗∗

(0.08) (0.13)
Snacks −9.76∗∗∗ −10.50∗∗∗

(0.28) (0.36)
Soft drinks −0.33 +0.43∗

(0.20) (0.25)
Other foods +0.04∗∗∗ +0.06∗∗

(0.01) (0.02)

10% Subsidy on Fruit and Vegetables

Fruit & Veg +13.66∗∗∗ +11.76∗∗∗

(0.14) (0.23)
Snacks +0.59∗∗ −0.49

(0.21) (0.34)
Soft drinks −2.48∗∗∗ −0.86∗∗∗

(0.17) (0.32)
Other foods −0.32∗∗∗ −0.25∗∗∗

(0.01) (0.03)

Note: ∗∗∗p < 0.01;∗∗∗ p < 0.05;∗∗∗ p < 0.10. Figures show the percent change in purchased
quantities under the different pricing scenarios. Standard errors in brackets (Delta method).
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stronger reaction to price increases relative to price reductions, and importantly our
complete demand system specification enables us to generalize this result to substitution
effects. Our model shows that substitution elasticities are larger when the current price
exceeds the reference price, and in a number of cases we even find that two goods that
are substitutes in case of a price increase become complements if price decreases. Given
that we are referring to Marshallian elasticities, incorporating expenditure effects, this
looks like a plausible behaviour, hidden behind substitution elasticities close to zero in
models without reference prices.

Our basic simulations showed that the bias from ignoring asymmetric consumption
response may be substantial and that the extension is especially desirable when demand
models are used to develop pricing strategies or fiscal policies. With the availability of
a large and highly detailed data-set as our home scan data, generalizing demand models
to allow for a reference price effect in both own- and cross-prices comes at almost no
computing cost, and the case of symmetric elasticities can be simply regarded as a special
case.
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A Appendix

A. Generalized Slutsky Equation

Because demand schedules are allowed to adapt, the total effect of a price change is
captured by the total derivative of the Marshallian demand function f . Considering the
impact of a change in price pj on the demanded quantity qi, optimization implies that
qi = h(p, r, u) = q = f(p, r, x), so that:

dfi(p, r, x)

dpj
=
dhi(p, r, u)

dpj
=
∂fi
∂pj

+
∂fi
∂E

dE

dpj
(18)

where p is the vector of prices, r is the vector of reference prices, u is the utility
level, x is the available budget, h is the Hicksian demand function, E is the expenditure
function and

dE

dpj
=
∂E

∂pj
+
∑
i

Ii
∂E

∂li

dli
dpj

+
∑
i

(1− Ii)
∂E

∂gi

dgi
dpj

Since
dli
dpj

=
dgi
dpj

= 0 ∀i 6= j

the relationship simplifies to:

dE

dpj
=
∂E

∂pj
+ Ij

∂E

∂lj

dlj
dpj

+ (1− Ij)
∂E

∂gj

dgj
dpj

=
∂E

∂pj
+ Ij

∂E

∂lj

d(pj − rj)
dpj

+ (1− Ij)
∂E

∂gj

d(rj − pj)
dpj

=
∂E

∂pj
+ Ij

∂E

∂lj
− (1− Ij)

∂E

∂gj

Which simply implies that the impact of losses (gains) on total cost must be added
(subtracted) to the usual effect of a price change when minimising the cost function. This
ensures duality with the utility maximisation problem, based on the augmented utility
function incorporating gains and losses.

Shephard’s Lemma can be also generalised to show8 that:

∂E

∂pj
= hj[p, I ◦ (p− r), (1− I) ◦ (r− p), u]

8Demonstration is provided in Putler (1992), page 305
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Thus (18) becomes:

dhi(p, r, U)

dpj
=
∂fi
∂pj

+
∂fi
∂E

[
∂E

∂pj
+ Ij

∂E

∂lj
− (1− Ij)

∂E

∂gj

]
=

=
∂fi
∂pj

+
∂fi
∂E

[
hj + Ij

∂E

∂lj
− (1− Ij)

∂E

∂gj

]
=

=
∂fi
∂pj

+ hj
∂fi
∂E

+
∂fi
∂E

[
Ij
∂E

∂lj
− (1− Ij)

∂E

∂gj

]

Since optimal consumption qj = hj[p, r, U ] = fj[p, r,M ], after rearranging terms, the
generalised Slutsky equation can written as

∂fi(p, r, x)

∂pj
=
dhi(p, r, u)

dpj
− qj

∂fi(p, r, x)

∂E

+
∂fi(p, r, x)

∂E

[
(1− Ij)

∂E

∂gj
− Ij

∂E

∂lj

]
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