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Scope

@ The California Independent System Operator (CAISO) has
implemented CB on February 1, 2011 under Federal Energy
Regulatory Commission’s (FERC) September 21, 2006 Market
Redesign and Technology Upgrade (MRTU) Order.

@ CB is a pure financial mechanism that allows market participants to
arbitrage price differences between forward and spot electricity
markets without physically obligation.

@ The central question of this study is to address whether the
CAISO's forward and spot electricity markets are efficient, and if
not, to what extent CB improves market efficiency.



Pricing Mechanisms

@ The prevailing mechanism for pricing electric energy in US electricity
markets operated by Independent System Operators (ISO) is Locational
Marginal Prices (LMP), defined as the incremental (least) cost of
supplying a marginal MW of power to the specific location while meeting
all security constraints

@ LMP is the pricing mechanism proposed by Bohn, Caramanis, and
Schweppe (1984) to internalize significant externalities arising from
the presence of Kirchhoff's laws that governs the power flow in
transmission systems.

@ When the transmission lines are congested and the import of
electricity from cheap producers are constrained, the I1SO is forced
to use some local but expensive producers for power generation in
order to satisfy the demand.

@ As a result, LMPs are high in the downstream areas of the
congested transmission lines, and low in the upstream areas.
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Over-generation, congestion and no storage
capability can lead to negative prices
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wo-settlements Electricity Markets

@ The two-settlement electricity markets consist of two interrelated
markets: day-ahead (DA) market, and real-time (RT) market.

@ DA LMPs are generally considered more stable than RT LMPs.

@ The DA market includes three sequential processes: market power

mitigation and reliability requirement determination (MPM-RRD),
integrated forward market (IFM), and residual unit commitment

(RUC).

@ In the RT market, the ISO runs the economic dispatch process every
5 minutes to rebalance the residual demand.

@ If a resource does not cover its total cost including start-up and
minimum load cost through its energy revenue at DA and RT
LMPs, its shortfall is covered by an uplift payment which is
allocated to market participants.



California ISO Market Timeline
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Example of DA-RT Price Spread
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Convergence (Virtual) Bidding (CB)

@ The California Independent System Operator (CAISO) has

implemented CB on February 1, 2011 under Federal Energy
Regulatory Commission’s (FERC) September 21, 2006 Market

Redesign and Technology Upgrade (MRTU) Order.

@ CB is a pure financial mechanism that allows market participants to
arbitrage price differences between forward and spot electricity
markets without physically obligation.

@ CB also enables market participants executing physical trades to
opt for RT prices instead of DA prices. It Also increases market
liquidity by enabling participants with no assets to take positions
arbitraging the DA-RT spread

11



Theoretical Benefits of CB

@ Price convergence is regarded as a benefit to the DA and RT
markets.

@ It reduces the incentives for market participants to defer their
physical resources to the RT market in expectation of favorable RT

LMPs.

@ T he benefit of CB also comes from the fact that it relieves market

participants from using physical resources to arbitrage price
differences between the DA and RT markets, also called implicit

virtual bidding in some literature.

@ The central question of this study is to address whether the
CAISQO's forward and spot electricity markets are efficient, and if
not, to what extent CB improves market efficiency.
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Convergence bidding volumes and

weighted price differences Q4 2014
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The Efficient Market Hypothesis

@ The efficient market hypothesis first formalized by Samuelson
(1965) and Fama (1970), asserts that at any given time asset prices
should always reflect all available information, and change quickly to
incorporate new information.

@ Jensen (1978) defines market efficiency in terms of trading
profitability — “a market is efficient with respect to [ary information
set, if it is impossible to make economic profits by trading on the
basis of [this] information set.”

@ Following this methodology, we empirically test for market efficiency
by evaluating the performance of trading strategies based on market
data in the CAISO electric power markets.



Our Approach

* Use the perspective of a trader attempting to construct
an optimal portfolio of virtual hourly positions.
e Construct and estimate a statistical time series model of the
returns from historical data

. Obtaiﬂ)an optimal portfolio (based on appropriate constraints
on ris

e Evaluate the arbitrage profits of the optimal portfolio using in
sample and out of sample data

e Asses market efficiency based on profitable arbitrage
opportunity.

e Alternative approach proposed by Jha and Wolak
[2013] was based on evaluating the “implied trading
cost” for which one cannot reject the null hyphotesis of
“no arbitrage” (based on average return = uniform
portfolio assumption )



Portfolio Optimization

Let PPA = R% and PRT € R?* denote DA and RT LMPs for one
node on day t.

DA-RT spreads can be expressed as R, = PtDA - PfT.
The energy trader’s optimization problem can be formulated as,

(PO) max,, E[R]x] —7llxx (1)
S.T. CHXIHI < Wy (2)

where 7 Is the costs allocated to 1 MWh of virtual position, C is
the reference price for 1 MWh of virtual position, and W is the
initial collateral.

xt(') > 0 denotes virtual supply, while xﬁ') < 0 denotes virtual
demand.



Portfolio Optimization (cont’d)

@ Without loss of generality, we assume Wy = 1.

@ The collateral used to establish virtual positions in DA-RT spreads
IS V¢ = Cx; and the costs associated with 1 dollar of collateral are
TS = =T

t .

@ The returns on DA-RT spreads are then defined as
szith%(pPA_pr)_
@ With these substitutions, (P0) is equivalent to (P1),

(P1) max,, E[RE yd — 7¢||ye|ls (3)
st lyelr €1, (4)

which is a portfolio optimization problem in the presence of linear
transaction costs.



Portfolio Optimization with VaR
Constraints

@ VaR is a modern way of measuring the risk of a portfolio, based on

computing probabilities of large losses of the portfolio (Rockafellar
and Uryasev, 2000).

@ Mathematically, VaR(z;n) = 1nf{'*:|P(P < 7v) = n} is the level
1-quantile of the random variable z 6 1) can be reformulated as a
portfolio optimization problem (VARO(~,n)) with VaR constraint

(6),
(VARO(7,m)) max,, E[RSTy.] — 7¢||yels (5)
st.  VaR(—Rfyun) <4 (6)
lyells < 1 (7)

where 7 is the predetermined upper bound for the VaR of the
portfollo



Portfolio Optimization with VaR
Constraints (cont’d)

@ DA-RT spreads are negatively skewed in most of the hours, which
cannot be modeled properly by a normal distribution.

@ Without assuming normality, VaR cannot be written in a closed
form, and there is no guarantee that VaR is convex.

@ Nemirovski and Shapiro (2006) propose a computationally tractable
approximation of the non-convex VaR constraint (6) with the

Chebyshev bound,
(VAR2(~v,1n))

maxy, it ye —75\lyells (8)
st —E[(RT ye +7)] + (MEI(RE T ye + 7)) <0
(9)

lyllx = 1. (10)



Portfolio Optimization with CVaR
Constraints

@ Since VaR is incapable of addressing the distribution of losses
beyond VaR(z;7n), CVaR is introduced by Rockafellar and Uryasev
(2000) as an alternative risk assessment technique to account for
losses in the tail of the distribution.

@ In this case, the optimization problem can be stated as follows,

(CVARO(y,m)) max,,  E[RFye] — 7¢lye[lx (11)
st.  CVaR(=RTyun) <~y (12)
lyel[r < 1. (13)



Portfolio Optimization with CVaR
Constraints (cont’d)

@ VaR and CVaR can be characterized by function
8,(z.p) = p+ 15 El(z — p)4].
CVaR(z,n7) = ming,(z,p). (14)
P

VaR(z,n) = argming,(z,p). (15)
p

@ Thus, by substituting CVaR(z, ), (CVARO(~,n)) becomes,

(CVARI(y.7)) max,, E(RTy)—7%lyls  (16)

yel1 < 1. (18)



Risk Measures: VaR vs. CVaR
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Time Varying Forward Premium

@ In electricity markets, the 24 hourly forward premia FP; on day t
take the form,

FP, = E;_1[P®* — PRT] = E;_4[R}). (19)

@ There exists extensive literature on the time-varying property of the

forward premium — a situation where the forward premium varies
through time to reflect economic risk.

@ The time-varying forward premium is observed and well documented
in exchange rates and traditional commodity markets, includin

Fama (1984), Fama and French (1987), Bekaert and Hodrick

z1993;, Backus, Foresi, and Telmer (2001), and Baillie and Kilic
2006).

@ Recently, there is a growing literature investigating the time-varying
forward premium in electricity markets.



Time Varying Forward Premium (cont’d)

@ Bessembinder and Lemmon (2002) model the forward market as a
closed system, where the only participants are producers and
consumers.

@ The forward premium can be expressed as,
PPA — E[PFT] = 01 Var[PET] — 02Skew[Pf"). (20)

where #; <0, and 62 < 0, implying that the forward premium is
negatively related to the variance of RT LMPs, and positively
related to the skewness of RT LMPs.

@ To express forward premia in terms of DA-RT Spreads
R, = PPA — PRT  we can rewrite (20) as,

E[R,] = 6, Var[R,] + 0, Skew[Ry]. (21)



ime Varying Forward Premium (cont’d)

@ The existing literature extensively studies the time-varying forward
premium in electricity markets by statistical models with observable
state variables, namely the volatility and skewness of spot prices,
the level of risk aversion, market structure, and demand and supply
capacity in Shawky, Marathe, and Barrett 2003?, Cartea and
Villaplana (2008), and Benth, Cartea, and Kiesel (2008).

@ The choice of state variables is largely predetermined and varies
across different electricity markets, which limits the possibility to
arrive at a generalization.



Model Description

@ In the CB context, Hidden Markov Model (HMM) is a discrete-time

stochastic process {S,, R,}]_; where the sequence of states {S,}] ,
is an unobserved Markov chain.

@ In this study, we assume the conditional probability density function
of R:, given the occurrence of S;, follows a Gaussian mixture

distribution.

O~~~
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Model Description (cont’d)

@ We assume P(z:|s;) = ¢s, z,, P(St+1|5t) = as,.s,., -
@ The equation for the returns on DA-RT spreads R, in cluster z, is,

Re = iz, + Xles, (22)

where i, denotes the conditional mean given the cluster z;, 2,
denotes the conditional covariance given the cluster z;, and ¢,

denotes the noise.

)
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Data

@ The data for this study consist of the historical DA and RT LMPs

at the CAISO NP15 EZ Gen Hub before and after the
implementation of CB.

@ The costs 7 are assumed to be $0.085 for 1 MWh of cleared virtual
position and the reference price C for 1 MWh of cleared virtual
positionand is calculate by the 95th percentile value of the historical
price differences between DA and RT LMPs.



Table : Seasonal Means of Post-CB DA-RT Spreads

Hour November - January February - April May - July August - October
1 § 1.15 2.25 — 105
2 1.98 2.71 163 161
3 1.47 425 2.02 1.68
4 2.93 3.46 3.19 2.78
5 1.51 144 1.79 0.55
6 -0.74 -1.73 1.85 0.18
7 -0.16 0.34 5.82 -0.29
8 2.32 -3.53 -3.70 2.58
9 -3.99 -0.60 244 -0.14
10 -1.44 -10.37 203 0.27
11 0.15 -11.31 -0.72 0.90
12 -0.70 -5.47 1.85 400
13 -2.25 -1.93 0.92 3.70
14 2.76 -0.13 -2.22 8.27
15 1.09 -2.11 -1.71 143
16 0.58 1.15 -8.40 -3.04
17 2.68 -0.98 -14 45 -9.02
18 3.55 2.02 -23.82 -3.18
10 0.35 2.46 -7.51 -8.79
20 3.32 -0.39 -71.79 -0.17
21 0.93 3.39 1.38 0.44
22 -1.85 1.27 -10.84 432
23 -0.75 0.43 -1.19 1.66
24 1.88 2.02 -2.47 3.61

Overall U.73 -0.52

-2.41

U.04




Table : Seasonal Standard Deviations of Post-CB DA-RT Spreads

Hour November - January February - April May - July August - October
1 .40 731 8.20 — &.07
2 10.37 10.48 0.36 6.72
3 8.54 13.02 13.68 8.78
< 11.23 15.42 15.22 11.65
5 9.53 10.54 14 43 0.05
6 17.46 20.04 0.15 5.22
7 19.30 22.21 14 97 22.00
3 044 55.20 5124 8.76
g 56.30 17.93 7.34 17.61
10 31.29 77.13 15.01 20.01
11 30.15 05.54 27.36 36.17
12 29.90 60.60 23.17 10.13
13 53.25 20.47 36.14 27.79
14 0.72 10.40 61.68 7.89
15 16.01 21.82 56.80 40590
16 14.00 6.75 90.58 118.79
17 14.82 20.07 111.17 108.03
18 22.96 10.50 117.88 81.25
19 40.83 12.25 47 47 78.20
20 13.03 20.47 60.89 63.16
21 20.30 7.40 2173 43.60
22 40.20 7.09 70.50 2348
23 18.00 10.51 22.21 16.58
24 1412 14 .65 44 51 5.70

Overall 25.50 33.01 51067 46.29



Optimal Numbers of States and Clusters

@ We choose the number of states M = 2 to avoid the overfitting
problem commonly encountered in learning a large state-space

HMM.
@ We choose the number of clusters N = 3, according to “elbow

criterion’ .

Wihin Clusser Sum of Squasmd Eror

] B [ T
Number of Clusiers

Figure : Post-CB Within-Cluster Sum of Squared Error




Transition probabilities of the
Post-CB GMHMM

Table : Transition Probabilities of the Post-CB GMHMM

otate 1 oState 2
Statel 05 23% 1 77%
State2 4 00% 06.00%

Table : Cluster Probabilities of the Post-CB GMHMM

Cluster 1 Cluster 2 Cluster 3
Statel 80.65% 10.35% 0.00%
State2 56.84% 42.10% 1.05%




Post-CB Posterior State Probabilities
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Marginal Distribution of Post-CB

DA-RT Spread

1 2000

-
Empincal
11000 )
Slatat
18000 | Stite?
000 |
1000 |
== 7000 |
o
5
e LT
M S000
L
/J
]
i . S } S—
1% 00 L0 0 50

NA-AT Speaad (SMWH)

Figure : Marginal Distribution
of Post-CB DA-RT Spreads for

3 a.m.

17000 -
Empincal

Slake

State?

Frequancy

203

| W J— — e a3
150 100 40 0
NA-AT Speaad (SAAWH)

Figure : Marginal Distribution
of Post-CB DA-RT Spreads for

3 p.m.



Regression Analysis

@ To further test the implications of Bessembinder and Lemmon
(2002), we regress the means for each of the 24 hours in the 2
states of the post-CB GMHMM on the corresponding variance and

skewness measures in Table 6.

@ The regression specification can be written in the form of (23),

StateMean; = Hy + 01 StateVar; + #,StateSkew; + ¢;.

Table 10 Pre-CB Regression Analysis

(23)

fo 04 o to, to, to, R Squared DF
0.9050 -0.0032 -1.1511 1.2250 -16.1359 -2.0904 0.8732 45
Table 11 Post-CB Regression Analysis
6o f1 (D) tog to, to, R Squared DF
1.8041 -0.0021 -1.0617 4.6235 -13.4369 -4.2229 0.8246 45




In Sample and Out of Sample Tests

@ In the in-sample test, the performance is tested over the same
dataset used to fit the model. Technically, this should yield the best
possible results.

@ In the out-of-sample test, the strategy is evaluated over a period
which is different from the one the strategy is optimized on.
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Performance Under a VaR constraint

Table : Performance under a VaR Constraint

btrategy Farameter txpected Keturn Standard Deviation bharpe Max Drawdown
Fre-CLB ln-bample Fertormance
~ = 0.02 7 = 0.90 153.42% 14 60% 10.34 112%
~ =0.02 5 = 0.85 187.50% 10.54% 0.48 1.53%
v = 0.02 n = 0.80 210.34% 24.71% 8.43 2.09%
Fre-LB Out-of-Sample Pertormance
~ = 0.02 7 = 0.90 00.36% 24 50% 358 6.91%
v = 0.02n = 0.85 118.70% 20.42% 3.05 8.96%
+ =0.02 3 = 0.80 150.92% 35.15% 423 0.45%
Fost-UB In-Sample Pertformance
¥ =0.02 7 = 0.90 78.03% 11.10% 6.70 2.23%
v =0.02 7 =0.85 86.66% 13.08% 6.42 2.82%
~ =0.02 » = 0.80 87.61% 15.21% 5.59 3.72%
Fost-UB Uut-ot-Sample Performance
~ = 0.02 = 0.90 3347% 13.03% 2.35 2.13%
v =0.02 5 = 0.85 35.11% 14.35% 2.25 3.19%
v =0.02n =0.80 38.03% 16.55% 2.13 5.08%
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Performance Under a CVaR Constraint

Table : Performance under a CVaR Constraint

otrategy FParameter | Expected Return standard Deviation sharpe Max Drawdown
Fre-CB In-Sample Pertormance
~ =0.027n = 0.09 267.77% 37.04% 7.18 1.19%
+=0.02n=0.98 206.75% 44 60% 6.61 1.14%
~+~=0.02n=0.95 341.83% 59.30% 5.74 1.42%
Fre-LB Out-of-Sample Fertformance
~ = 0.02 7 = 0.99 245 86% 47.78% 5.10 6.50%
~+=0.027n=0.98 266.79% 55.65% 476 7.23%
~+=0.027n=0.95 284.81% 66.01% 420 7.80%
Fost-LB In-Sample Ferformance
+=0.02n =099 47 35% 11 54% 3.80 2.1%%
~v=0027n=0.98 52.93% 13.20% 3.77 3.16%
v+ =0.02n =0.95 60.82% 16.58% 3.50 4.60%
Fost-CB Uut-of-Sample Performance
v =0.027n=0.99 |  2258% 16.56% 1.10 402%
v+ =0.02n =0.98 25.55% 17.87% 1.27 5.29%
~+=0.02n=0.95 22.18% 22.83% 0.84 0.01%




Conclusions

@ Clearly, the deteriorated profitability in the post-CB period provides
compelling evidence for the improved market efficiency, which
demonstrates the benefit of CB.

@ The profitability in the post-CB period, however, conveys empirical
implications that can be interpreted differently, depending on the
level of competition and the level of risk aversion of virtual traders.

@ If virtual traders are risk-neutral and the competition among virtual
traders is intense, the profitability in the post-CB period is
convincing evidence against the fully efficient DA and RT markets.

@ Otherwise, the profitability in the post-CB period might only
rationally reflect the economic profit to incentivize the participation
of risk averse virtual traders, which has nothing to do with market
inefficiency and the mispricing of financial instruments.



