“ETP 2015 demonstrates that strategic action on clean energy technologies at national, regional
and international levels has the capacity to move the world closer to shared goals for

climate change mitigation while delivering benefits of enhanced energy security and

sustainable economic development. Unfortunately, this report also shows that the

current pace of action is falling short of the aim of limiting climate change to a

global temperature rise of 2°C (ETP modeling, the 2° Scenario or 2DS). Indeed,

despite positive signs in many areas, for the first time since the IEA started monitoring clean energy
progress, not one of the technology fields tracked is meeting its objectives. As a result, our ability to
deliver a future in which temperatures rise modestly is at risk of being jeopardized, and the future
that we are heading towards will be far more difficult unless we can take action now to

radically change the global energy system. “

Source: “Tracking Clean Energy Progress,” IEA, 2015



Why Are We Lagging Behind Targets?

e Global Externality Problems Involving Such Large Costs and Potential
Wealth Transfers are Inherently Difficult

e Too Much Wishful Thinking

* Too Little Hard-Nosed Analysis of Mitigation Costs, Incentives, Human
and Organizational Behavior

e Too Little Long-Term R&D and Innovation
e Reinforced By Bad Domestic and International Public Policies



Domestic and International Public Policies

 Marginal Cost of Mitigation with Current Policies Varies Widely Across
Applications (-SX - $1000/ton CO2 Avoided)

e Solar in Northern Ontario vs. Solar in Mexico

 The Most Economical Long-Term Mitigation Innovations Are Very
Uncertain and Cry Out for Broad Rather than Narrow Incentives

 Picking “Favorite” Technologies to Subsidize is a Loser
 Subsidies Are Very Difficult to Remove Once They Are Made Available

 Complementary Policies Receive Inadequate Attention (e.g. Electric
and Gas Transmission)

e Costs of Meeting 2050 Mitigation Goal Using Current Technologies
are Enormous Making the Likelihood of Achieving Goal Very Low



Domestic and International Public Policies

e International “Pledge and Verify Strategy” is Not Credible
* Incentive Structure is Wrong in the Short Run and Long Run (Innovation)

* Need Commitment to Uniform Global GHG Price Trajectory Equal to Best
Estimate of the (PDV) of the Marginal Damages from Emissions

e Cap and Trade with International Trading is the Most Realistic Approach
* Good luck with a global tax on carbon emissions

* Need a Different Mechanism to Allocate R&D Funds That Takes a Broad
Long-Term Perspective (e.g. ARPA-E)

* Hard to Make an International “Deal” with 195 Countries



Stabilization Wedges

Tackling the Climate Problem with Existing Technologies

This presentation is based on the “Stabilization Wedges” concept first presented in
"Stabilization Wedges: Solving the Climate Problem for the next 50 Years with Current Technologies,” S. Pacala and R. Socolow, Science, August 13, 2004.

Please credit the Carbon Mitigation Initiative, Princeton University
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Wedge Strategies Currently Available

The following pages contain descriptions of 15 strategies already available that could be scaled up over the next 50 years
to reduce global carbon emissions by 1 billion tons per year, or one wedge. They are grouped into four major color-
coded categories:

Efficiency & Conservation Nuclear Energy

—="1 Increased transport efficiency -l Nuclear electricity
—="] Reducing miles traveled
=] Increased building efficiency

——1 Increased efficiency of electricity production Renewables and Biostorage
—===21 \Wind-generated electricity

Fossil-Fuel-Based Strategies —===1 Solar electricity

-l Fuel switching (coal to gas) —===21 Wind-generated hydrogen fuel

—enll  Fossil-based electricity with carbon capture & storage (CCS) —==11 Bijofuels

-l Coal synfuels with CCS —==="71 Forest storage

-l Fossil-based hydrogen fuel with CCS —===] Soj| storage

Carbon Mitigation Initiative, Princeton University



Figure 2. Global Greenhouse Gas Emissions by Sector, 1990-2010
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Figure 3. Global Carbon Dioxide Emissions by Region, 1990-2011
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Figure ES-1: U.S. Greenhouse Gas Emissions by Gas
Note: Emussions values are presented m CO; equivalent mass units using IPCC AR4 GWP values.
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Figure 1.7 Primary Energy Consumption per Real Dollar of Gross Domestic Product, 1949-2014
(Thousand Btu per Chained (2009) Dollar)
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Figure 19. Energy use per capita and per 2009
dollar of gross domestic product, and carbon dioxide

emissions per 2009 dollar of gross domestic product,
in the Reference case, 1980-2040 (index, 2005 = 1.0)
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Figure 1.1 Primary Energy Overview
(Quadrillion Btu)
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Figure 18. Primary energy consumption by fuel in the
Reference case, 1980-2040 (quadrillion Btu)
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Figure 36. Energy-related carbon dioxide emissions in
six cases. 2000-2040 (million metric tons)
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Produce today’s electric capacity
2™ with double today’s efficiency

=

Double the fuel efficiency of the
world’s cars or halve miles traveled

Use best efficiency practices in
all residential and commercial
buildings

Efficiency

Carbon Mitigation Initiative
Princeton University

Photos courtesy of Ford Motor Co., DOE, EPA



Energy efficiency offers the most affordable o Residental
means of delivering energy B3 incusta
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Time Ex ante Empirical

horizon projections estimates
(NEAT)
(1) 2)

Panel A: Private internal rate of return

10 years 7.0% -10.5%
16 years 11.8% -2.2%
20 years 12.8% 0.3%

Panel B: Private internal rate of return, adding avoided emissions damages

10 years 11.3% _8.8%
16 years 15.5% -0.8%
20 years 16.4% 1.5%

Panel C: Social internal rate of return

10 years -1.0% -20.0%
16 years 5.4% -9.5%
20 years 7.0% -6.1%

Panel D: CO, abatement cost - 3 percent discount ($/ton COy)

10 years $29 $552
16 years -519 $329
20 years -$35 $255

Fowlie, Greenstone and Wolfram, E2e Working Paper 20, 2015



Measuring the Welfare Effects of Energy Efficiency Programs

Hunt Allcott and Michael Greenstone*

July 11, 2015

Abstract

Energy efficiency programs are typically evaluated with engineering-style approaches that
use simulated energy savings instead of empirical estimates and ignore non-monetary benefits
and costs. We formalize an alternative welfare framework based on revealed preferences and
apply it a 100,000-household randomized field experiment at a Better Buildings energy efficiency
program in Wisconsin. Average simulated savings are 56 percent larger than the actual empirical

estimates, and investment takeup decisions imply large non-monetary benefits and costs. If

evaluated only on monetary factors (i.e. energy cost and externality reductions and investment

costs), the Wisconsin and national Better Buildings programs had negative one to negative six

percent social internal rates of return. Our revealed preference welfare approach suggests that

the Wisconsin program reduced welfare, because subsidies substantially exceeded externality

damages.



Miles apart

Below are models whose overall gas mileage in our tests fell 3 or more mpg below what the window sticker

promises.

Model EPA CR overall Difference Difference
combined mpg (mpg) (percent)
mpg

Lincoln MKZ 45 34 1 244
Hybrid
Ford C-Max 47 37 10 213
Hybrid
Ford Fusion 47 39 8 17.0
Hybrid
Volkswagen Jetta 45 37 8 17.8
Hybrid
Toyota Prius C 50 43 7 14.0
Toyota Prius 50 44 6 12.0
Honda Civic 44 40 4 9.1
Hybrid
Infiniti M35h 29 25 4 13.8
Lexus ES 300h 40 36 4 10.0
Toyota Avalon 40 36 4 10.0
Hybrid
Buick LaCrosse 29 26 3 10.3
(eAssist)
Honda Insight 141 38 3 7.3
Hyundai Sonata 36 33 3 8.3
Hybrid
Lexus RX 450h 29 26 3 103

Consumer Reports Magazine, August 2013
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Carbon Capture &
Storage

Implement CCS at

¢ 800 GW coal electric plants or

¢ 1600 GW natural gas electric
plants or

¢ 180 coal synfuels plants or

¢ 10 times today’s capacity of
hydrogen plants

Carbon Mitigation Initiative, Princeton University

i CO2 dissolved in
~ formation water

F COz2 plume

Saline Aquifer

Graphic courtesy of Alberta Geological Survey



Nuclear
Electricity

Triple the world’s nuclear electricity
capacity by 2060

Graphic courtesy of NRC

Carbon Mitigation Initiative, Princeton University



Fuel Switching

Substitute 1400 natural gas electric plants
for an equal number of coal-fired facilities

Carbon Mitigation Initiative, Princeton University

Photo by J.C. Willett (U.S. Geological Survey).



Global renewable electricity generation Annual change in renewable power output
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Global energy consumption 2013
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Wind Electricity

Photo courtesy of DOE

Carbon Mitigation Initiative, Princeton University

Install 1 million 2 MW windmills to
replace coal-based electricity,

OR

Use 2 million windmills to produce
hydrogen fuel



U.S. EIA

Figure 31. Electricity generation by fuel in the
Reference case, 2000-2040 (trillion kilowatthours)
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Figure 18. Primary energy consumption by fuel in the
Reference case, 1980-2040 (quadrillion Btu)
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Current Installed Wind Power Capacity (MW)
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ERCOT Grid Operations
Wind Integration Report: 08/11/2015

Peak Load

Load Peak Hour (HE)
Wind Over Peak
Wind Record 02/19/15
Max Wind Value*
Wind Peak Time
Wind Integration %

69,625 MW
16

1,066 MW
11,154 MW
4,961 MW
22:54

9.55 %



Load MW

ERCOT Load vs. Actual Wind Output

08/04/2015 - 08/11/2015
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Solar Electricity

Install 20,000 square kilometers for
dedicated use by 2060

Carbon Mitigation Initiative, Princeton University

Photos courtesy of DOE Photovoltaics Program



Cumulative Solar Electric Capacity
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24-Hour Renewables Production

Renewable Peak_ Peak Production Daily Production
Production

Resources ) (MW) (MWh)
Time

Solar Thermal 14:22 721 6,252

_ 1453 5,493 48,690

Wind 21:05 4,452 90,049

Small Hydro 17:26 340 4,834

Biogas 23:54 197 4,463
6:27 304 7,011
21:36 1,023 23,874

Total

Renewables 185,174

Total 24-Hour System Demand (MWh): 781,787

CAISO, August 18, 2015
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Resources
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This graph shows the production of various types of renewable

generation across the day.
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Hourly Average Breakdown of Renewable

Resources
24-Hour Renewables Production 8,000

Renewable P :e‘:::i Peak Production Daily Production

Resources SRR (MW) (MWh)

Time

_ 11:04 4,886 44,164

Wind 23:18 3,010 28,972

Small Hydro 17:22 380 4,771 )
Biogas 14:18 204 4,729

Bio 3 11:42 337 7753

Geothermal 23:04 995 22,812

Total

Renewables 116,563

Total 24-Hour System Demand (MWh): 817,408

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

) Time of Day
This graph shows the production of various types of renewable

generation across the day.

System Peak Demand (MW)
“one minute average

42,058
Time: 15:24

CAISO, June 30, 2015



Biofuels

Scale up current global ethanol
production by ~12 times

Carbon Mitigation Initiative, Princeton University




Quantified energy-specific subsidies and support by type, fiscal years 2010 and 2013

billion 2013 dollars
wind
solar
coal, natural gas, and petroleum liquids
LIHEAP
other end-use subsidies
conservation
other renewables
biofuels
nuclear
electricity: smart grid and transmission

—_

cia)

FY 2013

LIHEAP = Low Income Energy Assistance Program



CLEAN ENERGY TAX CREDITS GO TO HIGHER-INCOME AMERICANS
Distribution by income categories
60%

54%
Percentage of:

50 - . » 48%
18%

Residential energy credits
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40
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Borenstein and Lucas, NBER WP21342, 2015



Top 10 Emitters 2011
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