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Abstract

Competition between two-sided platforms is shaped by the possibility of multihoming. If

initially both sides of platform singlehome, each platform provides users on one side exclusive

access to its users on the other side. If then one side multihomes, platforms compete on the

singlehoming side and exert monopoly power on the multihoming side. This paper explores

the allocative effects of such a change from single- to multihoming. Our results challenge the

conventional wisdom, according to which the possibility of multihoming hurts the side that

can multihome, while benefiting the other side. This in not always true, as the opposite may

happen or both sides may benefit.
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1 Introduction

Two-sided platforms cater to the tastes of two audiences—in many instances, buyers and sellers.

Decisions among these audiences are interdependent because of positive cross-group external

effects. One of the principle achievements of the literature on two-sided markets has been

to characterize the price structure and associated price distortions in alternative market en-

vironments. Competing platforms have to take into account the effect of a price change to

participation levels not only on the market side directly affected, but also indirect effects arising

from altered participation on the other side.

A possible market environment is that both sides singlehome. To reach a particular agent

on one side, an agent from the other side has to be on the same platform. If a platform lures

an agent from either side away from a competitor onto its site, this platform becomes more

attractive to agents on the other side, as more transaction partners become available on the

platform’s site and fewer partners are available on the competing site. Another possible market

environment is that agents on one side can multihome and agents on the other can singlehome.

This is the so-called competitive bottleneck, which has been described in these terms:

“Here, if it wishes to interact with an agent on the singlehoming side, the multi-

homing side has no choice but to deal with that agent’s chosen platform. Thus, plat-

forms have monopoly power over providing access to their singlehoming customers

for the multihoming side. This monopoly power naturally leads to high prices being

charged to the multihoming side, and there will be too few agents on this side being

served from a social point of view [...]. By contrast, platforms do have to compete

for the singlehoming agents, and high profits generated from the multihoming side

are to a large extent passed on to the singlehoming side in the form of low prices (or

even zero prices).” (Armstrong, 2006, pp. 669-670)

This insight has been appreciated and reproduced in various policy documents. For instance,

in a recent report, the German Cartel Office writes:1

“Armstrong analyses a constellation which he describes as competitive bottle-

necks with ‘one side applying singlehoming, the other one multihoming’. In this

scenario, the platforms were competing for users on the singlehoming side. Accord-

ingly, on the multihoming side, platforms provided monopolistic access to singlehom-

ing users who were members of the platform. Regarding the framework of the model

reviewed, this led to a monopolistic price on the multihoming side, while the price on

the singlehoming side would be fairly low as a result of platforms competing for users

on this side. In this respect, this may result in an inefficient price structure despite

potentially intensive platform competition (on the singlehoming side).” (BKartA,

2016, p. 58)

1Another instance is the statement by the European Commission in OECD (2009, p. 169).
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In this paper, we take a closer look at the price and surplus effects of multihoming. We

compare the competitive bottleneck to the two-sided singlehoming market environment. In the

latter, platforms compete on both sides of the market, whereas on the former they compete on

only one. One may therefore be tempted to conclude that an audience that obtains the possibility

to multihome faces higher prices and obtains a lower surplus, while the other audience faces lower

prices and obtains a higher surplus. Also, since in the competitive bottleneck, platforms compete

on only one side, one may expect that their profits are higher than in the market environment

in which both audiences singlehome. Yet, the effect of making one side multihome instead of

singlehome is less straightforward than what may in general be perceived. While it is true

that platforms exert monopoly power over the multihoming side, participants on this side may

actually benefit from multihoming.

As Evans and Schmalensee (2012, p. 16) observe,2 “in software platforms, for instance, the

price structure appears to be the opposite of what the competitive bottlenecks theory would

predict. Most personal computer users rely on a single software platform, while most developers

write for multiple platforms. Yet personal computer software providers generally make their

platforms available for free, or at low cost, to applications developers and earn profits from

the single-homing user side.” As our analysis will reveal, while this observation runs counter the

claim that the multihoming side faces high prices, it is perfectly compatible with the competitive

bottleneck model.

For the sake of concreteness, we assume that the seller side is the side of the market which

potentially can multihome, while buyers always singlehome. Our main findings are as follows.

When going from singlehoming to multihoming on one side, prices on both sides of the market

always move in opposite directions. It is not necessarily the case that sellers pay a higher fee

and buyers, a lower fee; the opposite may occur because sellers may pay a low price to start

with in the competitive bottleneck case. Platforms prefer to impose exclusivity to sellers (i.e.,

to prevent them from multihoming) if the sellers’ intrinsic value (the difference between their

stand-alone benefit and the marginal cost of accommodating them) is not too large. There

exist configurations of parameters for which this condition is always, or never, satisfied. Buyers

tend to prefer the competitive bottleneck environment when they value a lot the presence of

sellers and sellers find it profitable to multihome; they are then more likely to interact with a

larger set of buyers and to be charged lower fees. However, it may also happen that platforms

charge higher fees to buyers when sellers multihome than when they singlehome, and that this

negative price effect outweighs the positive participation effect, leading buyers to prefer the

two-sided singlehoming environment. As for sellers, if they perceive the two platforms as more

differentiated and if they exert weaker cross-group effects on buyers, then they are more likely

to be better off in the competitive bottleneck case.

Combining these findings, we obtain three important insights about how the surplus effects

play out for the three groups. First, the resulting market outcome may have the feature that

buyers, sellers and platforms are all better off when sellers are allowed to multihome. Second,

2Evans, Hagiu, and Schmalensee (2006) made the same point.
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whenever platforms benefit from imposing exclusivity, they necessarily hurt buyers and possibly

also sellers. Thus, in an environment with potential seller multihoming, an agency should

prohibit the use of exclusivity of the seller side if its aim is to maximize buyer surplus. Third,

whenever buyers suffer from seller multihoming, platforms and sellers benefit from it.

While comparing a two-sided singlehoming model to a competitive bottleneck model is an

interesting exercise, it may appear to be of little practical relevance because singlehoming on both

sides is observed in only few market environments. We want to challenge this view. First, while

multihoming may be feasible for some users on one side, it may well be the case that due to habits

or other latent factors a fraction of users does not consider the possibility of multihoming. Then,

a comparison between two-sided multihoming and the competitive bottleneck is an extreme

version of a comparison between markets in which such habits and other latent factor are present

and those in which they are not. Second, the present comparison informs policy makers about

possible effects when taking actions to enable multihoming or prohibiting exclusive dealing for

a fraction of sellers (or, in the flip side of the model, of buyers). The former may take the form

of aggregators combining the functionalities and listings by both platforms.

There exists surprisingly little work that studies the competitive effects of multihoming,

despite the policy debate about means to encourage multihoming. In the seminal paper by

Armstrong (2006) both market environments—that is, two-sided single-homing and competitive

bottleneck—are analyzed in detail, but no comparison is undertaken. Armstrong and Wright

(2007) endogenize the multihoming decision of buyers and sellers. In their setting, the compet-

itive bottleneck model emerges endogenously as one side decides not to multihome along the

equilibrium path. They, as well as the rest of the literature, do not look at the surplus effects

of the possibility of multihoming. In general, there exists little work on surplus effects in mar-

kets with two-sided platforms. Two exceptions are the following. First, Doganoglu and Wright

(2006) examine the incentives for firms to make their one-sided platforms compatible when users

are allowed to multihome or not; they extend their analysis to two-sided platforms but only in

the special case of symmetric cross-group external effects. Second, Anderson and Peitz (2016)

evaluate surplus effects of policy interventions in the competitive bottleneck world.

We follow the approach of Armstrong (2006) by considering platforms that are horizontally

differentiated on both sides of the market and charge access fees to each side. As an alternative,

platforms may charge transaction fees, as analyzed in Rochet and Tirole (2003). For an insightful

discussion of the use of different price instruments, see Rochet and Tirole (2006). While it would

be interesting, to extend our analysis to other price instruments, we restrict attention to access

fees, which is the natural assumption to make when platforms cannot monitor transactions.

2 The model

Two platforms compete to facilitate the interaction between a unit mass of sellers and a unit

mass of buyers, with this interaction generating positive cross-group external effects. Following

Armstrong (2006), we assume that platforms compete in membership fees and that buyers and
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sellers perceive them as horizontally differentiated. Horizontal differentiation is modeled in the

Hotelling fashion: platforms are located at the extreme points of the unit interval and face

constant costs cs and cb for each additional seller and buyer, respectively; sellers and buyers are

uniformly distributed on this unit interval and incur an opportunity cost of visiting a platform

that increases linearly in distance at rates τ s and τ b, respectively.

We assume the following form of interaction between buyers and sellers on a platform: buyers

purchase one unit of the perfectly differentiated product offered by each seller who is active on

the platform; each trade generates a benefit bb for the buyer and a profit bs for the seller.3

Buyers and sellers also derive a stand-alone benefit from visiting a platform; we assume that

these benefits are equal across platforms and we note them rb and rs. Letting nib and nis denote

the mass of buyers and sellers active on platform i, and noting mi
b and mi

s the membership fees

that platform i charges buyers and sellers, we can express buyer and seller surpluses of visiting

platform i (gross of any opportunity cost) as

vis = rs + nibbs −mi
s and vib = rb + nisbb −mi

b.

We consider a two-stage game in which platforms i ∈ {1, 2} set membership fees on each side

of the market, mi
s, m

i
b, simultaneously in stage 1 and buyers and sellers simultaneously make their

subscription decisions in stage 2. We compare different settings for stage 2 according to whether

participants in one or the other group choose at most one platform (i.e., to ‘singlehome’) or also

have the option to be active on both platforms (i.e., to ‘multihome’). We solve for subgame-

perfect equilibria and will restrict attention to parameter constellations such that both platforms

will be active in equilibrium (we will provide precise assumptions below).

Before analyzing the two settings, we establish a result in the benchmark case where cross-

group external effects are zero—i.e., bb = bs = 0. This result, which proves useful for the analysis

to follow, is summarized in the next lemma.

Lemma 1 In the absence of cross-group external effects, the price under multihoming is lower

than the price under singlehoming on side g if the profit-maximizing solution has the property

that not all participants multihome.

Proof. If participants on a particular side are singlehoming, we solve the standard Hotelling

model and obtain cg + τ g as equilibrium price on side g ∈ {b, s}, provided that there is full

market coverage. This requires that rg − τ g/2− (cg + τ g) > 0 or, equivalently, rg − cg > (3/2)τ g

holds. If participants are multihoming, their choice of buying from one platform is independent

of the pricing of the other platform, and each platform solves a monopoly problem. Solving the

first-order condition of profit maximization when the marginal consumer is in the interior of the

[0, 1]-interval, we obtain the price (rg + cg)/2. At this price, the marginal consumer is indeed

in the interior if rg − τ g − (rg + cg)/2 < 0, which is equivalent to rg − cg < 2τ g. In this case,

3It is assumed, quite realistically, that in a seller–buyer relationship, prices or terms of transaction are inde-

pendent of the membership fee that applies to buyers and sellers.
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the price under multihoming is less than under singlehoming if and only if (rg + cg)/2 < cg + τ g

or, equivalently, rg − cg < 2τ g. To summarize, for (3/2)τ g < rg − cg < 2τ g, the price under

multihoming—which coincides with the monopoly price in a single-product monopoly problem—

is less than the price under singlehoming—which coincides with the standard Hotelling duopoly

problem.

The reason for this at first glance counterintuitive result is that the firm faces a more elastic

demand when the consumers’ outside option is a constant rather than the competitor’s offer

(which becomes increasingly attractive when the firm wants to reach consumers located further

away)—that is, the same price cut leads to a larger demand increase in the monopoly than in

the duopoly setting.

3 Two-sided singlehoming

In this section we consider a market environment in which both sides of the market singlehome.

Our aim is to characterize the equilibrium in which both platforms are active.4

If buyers and sellers singlehome, the seller and the buyer who are indifferent between the

two platforms are respectively located at xs and xb such that v1
s − τ sxs = v2

s − τ s (1− xs) and

v1
b − τ bxb = v2

b − τ b (1− xb). It follows that n1
s = xs, n

2
s = 1− xs, n1

b = xb, and n2
b = 1− xb and

the total number of each side’s agents on the two platforms adds up to 1: n1
s +n2

s = n1
b +n2

b = 1.

Combining the indifference equations together with the expressions of vis and vib, we obtain the

following expressions for the numbers of buyers and sellers at the two platforms: nis
(
nib
)

= 1
2 + 1

2τs

(
(2nib − 1)bs − (mi

s −m
j
s)
)
,

nib
(
nis
)

= 1
2 + 1

2τb

(
(2nis − 1)bb − (mi

b −m
j
b)
)
.

(1)

Solving this linear equation system, we derive the equilibrium number of buyers and sellers at

stage 2 as a function of the membership fees:

nis(m
i
s,m

j
s,m

i
b,m

j
b) =

1

2
+
bs(m

j
b −m

i
b) + τ b(m

j
s −mi

s)

2(τ bτ s − bbbs)
,

nib(m
i
s,m

j
s,m

i
b,m

j
b) =

1

2
+
bb(m

j
s −mi

s) + τ s(m
j
b −m

i
b)

2(τ bτ s − bbbs)
.

Platform i chooses mi
s and mi

b to maximize Πi =
(
mi
s − cs

)
nis (·) +

(
mi
b − cb

)
nib (·). At the

symmetric equilibrium (m1
s = m2

s ≡ ms and m1
b = m2

b ≡ mb), the first-order conditions can be

written as {
ms = cs + τ s − bb

τb
(bs +mb − cb),

mb = cb + τ b − bs
τs

(bb +ms − cs).

The equilibrium membership fee for the sellers is equal to marginal costs plus the product-

differentiation term as in the standard Hotelling model, adjusted downward by the term bb
τb

(bs+

mb−cb). As pointed out by Armstrong (2006), to understand this term, note from expression (1)

4Our analysis follows Armstrong (2006). A textbook treatment can be found in Belleflamme and Peitz (2015).
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that each additional seller attracts bb/τ b additional buyers. These additional buyers allow the

intermediary to extract bs per seller without affecting the sellers’ surplus. In addition, each of

the additional bb/τ b buyers generates a margin of mb− cb to the platform. Thus bb
τb

(bs+mb− cb)
represents the value of an additional buyer to the platform. The same holds on the buyers’ side.

Solving the system of first-order conditions (with full participation) gives explicit expressions

for equilibrium membership fees (where the superscript 2S denotes ‘two-sided singlehoming’):

m2S
s = cs + τ s − bb and m2S

b = cb + τ b − bs.

We observe that the equilibrium membership fee for one group is equal to the usual Hotelling

formulation (marginal cost plus transportation cost) adjusted downward by the cross-group

external effect that this group exerts on the other group (see Armstrong, 2006).

As platforms set the same fees at equilibrium, the indifferent participants of both sides are

located at 1/2, meaning that n2S
s = n2S

b = 1/2. It follows that in equilibrium, a seller and a

buyer obtain, respectively, a surplus (gross of their transport cost) given by

v2S
s = hs + 1

2bs − τ s + bb and v2S
b = hb + 1

2bb − τ b + bs,

where hg ≡ rg − cg denotes the difference between the stand-alone benefit and the cost of

accommodating a participant of side g ∈ {b, s}. Thus sellers’ and buyers’ aggregate surpluses

are calculated respectively as

PS2S = v2S
s − 2

∫ 1
2

0
τ sxdx = hs − 5

4τ s + 1
2bs + bb,

CS2S = v2S
b − 2

∫ 1
2

0
τ bxdx = hb − 5

4τ b + 1
2bb + bs.

Finally, equilibrium profits are the same for both platforms and are computed as

Π2S = 1
2(τ b + τ s − bb − bs).

They are increasing in the degree of product differentiation on both sides of the market (as

in the Hotelling model) and decreasing in the buyers’ and sellers’ surplus for each transaction,

i.e., the magnitude of the cross-group external effects. The intuition for the latter result is the

following: as cross-group external effects increase, platforms compete more fiercely to attract

additional agents on each side as they become more valuable.

A series of conditions have to be met for the previous equilibrium to be valid. First, the

second-order conditions of the profit-maximization program are τ bτ s > bbbs and 4τ bτ s > (bb +

bs)
2. Both conditions require that the transportation cost parameters τ b and τ s (which measure

the horizontal differentiation between the two platforms) are sufficiently large with respect to the

gains from trade bb and bs (which measure the cross-group external effects). These conditions

are also sufficient to have a unique and stable equilibrium in which both platforms are active.

We check that the former condition makes sure that the number of members of one group at

one platform, nis (·) or nib (·), decreases not only with the membership fee that they have to pay
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but also with the membership fee that the other group has to pay on this platform.5 We also

observe that the latter condition is more restrictive than the former. Furthermore, we need to

guarantee full participation on the two sides; that is, the indifferent participant on each side

(located at 1/2) must have a positive net surplus at equilibrium: on the seller side, v2S
s − 1

2τ s > 0

or 2hs > 3τ s − bs − 2bb; on the buyer side v2S
b −

1
2τ b > 0 or 2hb > 3τ b − bb − 2bs. In sum, we

make the following set of assumptions for the two-sided singlehoming case.

Assumption 1 In the two-sided singlehoming case, parameters satisfy

4τ bτ s > (bb + bs)
2 (Soc2S)

2hs > 3τ s − bs − 2bb (FPs2S)

2hb > 3τ b − bb − 2bs (FPb2S)

4 Multihoming on one side (competitive bottlenecks)

Suppose now that sellers have the possibility to multihome (i.e., to be active on both platforms

at the same time), while buyers continue to singlehome. We assume that the decision whether

to subscribe to one platform is independent of the decision whether to subscribe to the other

platform. In particular, if a seller x is subscribed to both platforms his surplus is rs + n1
bbs −

m1
s − τ sx + rs + n2

bbs −m2
s − τ s(1 − x) = 2rs + bs − τ s − (m1

s + m2
s), which is independent of

his location. According to our assumption, a multihoming seller enjoys the stand-alone benefit

on both platforms—i.e., platforms are symmetric but provide different services leading to stand-

alone benefits that can be combined when multihoming.6

Sellers can be divided into three subintervals on the unit interval: those sellers located “on

the left” register with platform 1 only, those located “around the middle” register with both

platforms, and those located “on the right” register with platform 2 only. At the boundaries

between these intervals, xi0, we find the sellers who are indifferent between visiting platform i

(i ∈ {1, 2}) and not visiting this platform. Their locations are found as, respectively, x10 such

that rs + n1
bbs −m1

s = τ sx10, and x20 such that rs + n2
bbs −m2

s = τ s (1− x20). We assume for

now that 0 < x20 < x10 < 1 (we provide necessary and sufficient conditions below), so that

n1
s = x10 and n2

s = 1− x20, with the multihoming sellers being located between x20 and x10. As

far as buyers are concerned, we have the same situation as in the previous section. The number

of buyers and sellers visiting each platform are thus respectively given by

nib =
1

2
+
bb(n

i
s − n

j
s)− (mi

b −m
j
b)

2τ b
and nis =

rs + nibbs −mi
s

τ s
.

5For stronger cross-group external effects and/or weaker horizontal differentiation (i.e., for bbbs > τ bτs), the

number of agents on one platform would be an increasing function of their membership fee and the market would

tip; i.e., all buyers and sellers would choose the same platform.
6This assumption differs form Armstrong and Wright (2007) who assume that the services that give rise to

the stand-alone utility are the same on both platforms. In Section 6, we propose a more general formulation by

assuming that a multihoming seller enjoys a total stand-alone benefit equal to (1 + ρ) rs, with 0 ≤ ρ ≤ 1; that is,

we consider any situation between Armstrong and Wright’s assumption (ρ = 0) and our assumption (ρ = 1).
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Solving this system of four equations in four unknowns, we obtain buyers’ and sellers’ partici-

pation as a function of subscription fees and the parameters of the model,
nib =

1

2
+
bb(m

j
s −mi

s) + τ s(m
j
b −m

i
b)

2 (τ bτ s − bbbs)
,

nis =
bs
τ s

(
1

2
+
bb(m

j
s −mi

s) + τ s(m
j
b −m

i
b)

2 (τ bτ s − bbbs)

)
+
rs −mi

s

τ s
.

The maximization problems of the two platforms are the same as above. Platform 1’s best

responses are implicitly defined by the first-order conditions, which can be expressed as

m1
b =

− (bb + bs)m
1
s + bbm

2
s + τ sm

2
b − bs (bb − cs) + τ s (τ b + cb)

2τ s
,

m1
s =

− (bb + bs) τ sm
1
b + bbbsm

2
s + bsτ sm

2
b − bsbb (bs + cs + 2rs) + bbτ scb + (bs + 2cs + 2rs) τ bτ s

2 (2τ bτ s − bbbs)
.

Solving the previous system of equations, we find the equilibrium membership fees, which are

equivalent for both platforms (with the superscript CB standing for ‘competitive bottleneck’):

mCB
s = 1

2 (rs + cs) + 1
4(bs − bb),

mCB
b = cb + τ b − bs

4τs
(bs + 3bb + 2rs − 2cs) .

On the seller side, platforms have monopoly power. If the platform focused only on sellers, it

would charge a monopoly price equal to (rs + cs) /2+bs/4 (assuming that each seller would have

access to half of the buyers and, therefore, would have a gross willingness to pay equal to bs/2).

We observe that this price is adjusted downward by bb/4 when the cross-group effect that sellers

exert on the buyer side is taken into account. Similarly, on the buyer side, platforms charge the

Hotelling price, cb + τ b, less a term that depends on the size of the cross-group effects and on

the parameters characterizing the seller side (rs, cs, and τ s).

It is useful to compare price changes in the competitive bottleneck model to those in the two-

sided singlehoming model. We observe that the equilibrium membership fee for sellers is increas-

ing in the strength of the cross-group effect in the competitive bottleneck model (∂mCB
s /∂bs > 0),

whereas it is constant in the two-sided singlehoming model. This is due to the monopoly pricing

feature on the multihoming side. Everything else equal, if sellers are multihoming, the platform

operators directly appropriate part of the rent generated on the multihoming side by setting

higher membership fees. This is not the case in the singlehoming world, where the membership

fee does not react to the strength of the network effect on the same side since platforms compete

for sellers (and buyers).

At equilibrium, seller and buyer participation is

nCBb = 1
2 and nCBs = 1

4τs
(bb + bs + 2hs) .

This allows us to compute the equilibrium net surplus of sellers and buyers (gross of transporta-

tion cost and for one platform) as:

vCBs = 1
4(bb + bs + 2hs),

vCBb = 1
4τs

(b2b + 4bsbb + b2s + 2 (bb + bs)hs) + hb − τ b.
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Note that vCBs is the per-platform seller’s surplus (gross of transport costs).7 We observe that

vCBs and vCBb are increasing in the net gain of the other side and in the net gain of the own side.

Aggregated over all buyers, in equilibrium, buyers’ surplus is

CSCB = vCBb − 2

∫ 1/2

0
τ bxdx = 1

4τs
((bb + bs) (bb + bs + 2hs) + 2bbbs) + hb − 5

4τ b.

Aggregated over all sellers, in equilibrium, sellers’ surplus is computed as (using the definitions

of nCBs and vCBs ):

PSCB =

∫ 1−nCB
s

0
(vCBs − τ sx)dx+

∫ nCB
s

1−nCB
s

(2vCBs − τ s)dx+

∫ 1

nCB
s

(vCBs − τ s (1− x))dx

= 1
τs

(
vCBs

)2
= 1

16τs
(bb + bs + 2hs)

2 .

We observe that the aggregated seller surplus is decreasing in the degree of platform differenti-

ation on the seller side, increasing in the stand-alone benefit on the seller side, and increasing

in cross-group external effects on both sides.

The platforms’ equilibrium profits are

ΠCB = 1
16τs

(8τ bτ s − (bb + bs)
2 − 4bbbs + 4h2

s).

As above, a set of conditions need to be satisfied for this equilibrium to hold. The second-

order conditions are here τ bτ s > bbbs and 8τ bτ s > (bb + bs)
2 + 4bbbs, the second condition being

more stringent than the first. Note that the latter condition implies that even if platforms do

not offer stand-alone utilities (hs = rs − cs = 0), equilibrium profits are strictly positive. These

conditions also guarantee that a unique and stable equilibrium exists in which both platforms

share the market—in short, sharing equilibrium. We also impose that some (but not all) sellers

multihome at equilibrium (if some sellers multihome, this also implies that all sellers participate).

This is the case if 1/2 < nCBs < 1, which is equivalent to 2τ s < bs + bb + 2hs < 4τ s. Finally,

all buyers must be willing to participate; i.e., rb + nCBs bb −mCB
b − 1

2τ b > 0 which is equivalent

to 4τ shb + 2 (bb + bs)hs > 6 (τ sτ b − bsbb) − (bb − bs)2. We collect all these conditions in the

following assumption.

Assumption 2 In the competitive bottleneck case (with multihoming sellers), parameters satisfy

8τ bτ s > (bb + bs)
2 + 4bbbs (SocCB)

2hs > 2τ s − bs − bb (FPsCB)

2hs < 4τ s − bs − bb (ShsCB)

4τ shb + 2 (bb + bs)hs > 6 (τ sτ b − bsbb)− (bb − bs)2 (FPbCB)
7Sellers located between 1 − nCB

s and nCB
s multihome and, therefore, earn a surplus of 2vCB

s . On the other

hand, vCB
s is the surplus earned by the sellers located between 0 and 1 − nCB

s , who choose to visit platform 1

only, and by the sellers located between nCB
s and 1, who choose to visit platform 2 only.
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Comparing conditions in Assumptions 1 and 2, we note the following. First, the second-

order conditions are less demanding in the competitive bottleneck case than in the two-sided

singlehoming case; that is, if (Soc2S) is satisfied, so is (SocCB). Second, for τ s > bb, full

participation of sellers is guaranteed in the competitive bottleneck case if full participation is

guaranteed in the two-sided singlehoming case; that is, if (FPs2S) is met, then so is (FPsCB).

5 Singlehoming vs. multihoming

In this section, we compare the sharing equilibrium of the two previous environments. Thus,

the sets of assumptions 1 and 2 have to hold. Regrouping them, we impose:8
4τ bτ s > (bb + bs)

2

hb > max
{

1
2 (3τ b − bb − 2bs) ,

1
4τs

(
6 (τ sτ b − bsbb)− (bb − bs)2 − 2 (bb + bs)hs

)}
hmin
s ≡ max

{
1
2 (2τ s − bs − bb) , 1

2 (3τ s − bs − 2bb) , 0
}
< hs < hmax

s ≡ 1
2 (4τ s − bs − bb)

To start with, we ask when a sharing equilibrium can be supported in the two environ-

ments. The relevant assumption regarding the relationship between platform differentiation and

cross-group external effects is (Soc2S) with two-sided singlehoming market and (SocCB) in the

competitive bottleneck market. As mentioned above, the former implies the latter. This con-

firms the claims that a sharing equilibrium is more “likely” to arise in a competitive bottleneck

environment than in a two-sided singlehoming environment. Conversely, a dominant platform

is less likely to emerge once multihoming is allowed on one side. We now examine in turn the

prices, the platform profits, and the surpluses of the participants.

5.1 Prices

We recall that in the model in which sellers multihome, platforms hold an exclusive access to

their set of singlehoming buyers (the ‘bottleneck’), which makes buyers valuable to extract profits

on the seller side. Platforms then set monopoly prices on the multihoming side and low (and

possibly even negative prices) on the singlehoming side, as has been pointed out by Armstrong

(2006). In other words, we expect platforms to compete fiercely for buyers (singlehomers) and,

in return, to milk sellers (multihomers). Hence, we may expect lower prices on the buyer side

and higher prices on the seller side when compared to the two-sided singlehoming model. We

call this the ‘bottleneck effect’.

However, prices charged to sellers in the competitive bottleneck model may be low to start

with and competition may well afford positive margins in the two-sided singlehoming environ-

ment. As stated in the following lemma, it depends on the parameters whether sellers pay a

lower prices in the competitive bottleneck model. Comparing prices, the bottleneck effect does

not necessarily dominate (there are parameter configurations that satisfy all our assumptions

8It is the third line—linking the values of hs, τs, bs, and bb—that will be crucial to derive our results. Given

the values of these parameters, it is always possible to find values of hb and τ b that satisfy the first two lines.
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for either case). In addition, when moving from singlehoming to multihoming on one side, prices

on both sides of the market always move in opposite directions.

Lemma 2 Allowing sellers to multihome increases the fee paid by sellers and decreases the fee

paid by buyers, mCB
s > m2S

s and mCB
b < m2S

b , if and only if 2hs + bs + bb > 4τ s − 2bb. The

opposite happens—that is, mCB
s > m2S

s and mCB
b < m2S

b —if and only if the left-hand and the

right-hand side of the inequality are reversed—that is, 2hs + bs + bb < 4τ s − 2bb. Both cases are

compatible with the conditions imposed on the parameters in Assumptions 1 and 2.

Proof. The proof follows directly from computing the difference between the seller and the

buyer fees in the two cases:

mCB
s −m2S

s = 1
2 (rs + cs) + 1

4 (bs − bb)− (cs + τ s − bb)

= 1
4 [(2hs + bs + bb)− (4τ s − 2bb)] ,

mCB
b −m2S

b = cb + τ b − bs
4τs

(3bb + bs + 2rs − 2cs)− (cb + τ b − bs)

= bs
4τs

[(4τ s − 2bb)− (2hs + bs + bb)] .

As for the compatibility with Assumptions 1 and 2, we recall that conditions (FPs2S),

(FPsCB) and (ShsCB) impose that max {2τ s, 3τ s − bb} < 2hs+bs+bb < 4τ s. Clearly, 4τ s−2bb <

4τ s. Moreover, if τ s > bb, then 4τ s − 2bb > max {2τ s, 3τ s − bb}.
Based on the intuition that sellers have to pay monopoly prices in the competitive bottleneck

model and that platforms compete in this case fiercely on the multihoming side, we would

consider mCB
s > m2S

s and mCB
b < m2S

b as the “natural” outcome. However, as we have shown

in Lemma 1 for the case with no cross-group external effects, under our assumption that some

but not all sellers multihome if this option is available, the monopoly price (corresponding to

the competitive bottleneck model) must be lower than the duopoly price (corresponding to the

two-sided singlehoming model). This is because when not all sellers multihome, a drop in the fee

on the seller side is more effective to expand the number of sellers when they are multihoming (in

which case, the offer of a platform competes against the outside option, just as in the monopoly

problem) instead of singlehoming (in which case, the offer of a platform competes against the

rival’s offer, just as in the standard duopoly problem). This result still holds in the borderline

case in which only sellers are subject to a positive cross-group external effect (bs > 0 and bb = 0):

we indeed check that mCB
s −m2S

s = 1
4 (2hs + bs − 4τ s) < 0 by virtue of condition (ShsCB), which

becomes 2hs < 4τ s − bs in this particular case. It follows that the “natural” outcome can occur

only if the buyers’ utility increases with the number of sellers (bb > 0).

5.2 Platform incentives

What are the platforms’ incentives regarding single- vs multihoming? This is not a rhetorical

question, as platforms may be able to use non-price strategies to prevent participants from

multihoming. For instance, a platform may impose exclusivity on sellers and, thus, force them to
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become singlehomers. How do platform profits depend on exclusivity? To answer this question,

we compare equilibrium profits:

ΠCB −Π2S =
[(
mCB
b − cb

)
nCBb +

(
mCB
s − cs

)
nCBs

]
−
[(
m2S
b − cb

)
n2S
b +

(
m2S
s − cs

)
n2S
s

]
= 1

2

(
mCB
s −m2S

s

) (
1− bs

τs

)
+
(
nCBs − 1

2

) (
mCB
s − cs

)
.

where the second line uses our previous results, namely nCBb = n2S
b = n2S

s = 1
2 , nCBs > 1/2

and mCB
b − m2S

b = − (bs/τ s)
(
mCB
s −m2S

s

)
. We see that if, for instance, sellers pay a higher

fee in the competitive bottleneck case and this fee is larger than marginal cost (mCB
s > m2S

s

and mCB
s > cs) while τ s > bs, then all terms are positive, meaning that platforms make higher

profits when sellers can multihome. Conversely, still in the case where τ s > bs, if platforms

subsidize sellers in the competitive bottleneck case (mCB
s < cs) and set a lower fee than in the

two-sided singlehoming case (mCB
s < m2S

s ), then all terms are negative and platforms prefer to

prevent sellers from multihoming.

To formalize this intuition, we use the values of mCB
s , m2S

s and nCBs to compute

ΠCB −Π2S =
4h2

s + 8 (bb + bs) τ s − 8τ2
s −

(
b2b + 6bbbs + b2s

)
16τ s

.

A sufficient condition for ΠCB > Π2S is 8 (bb + bs) τ s − 8τ2
s −

(
b2b + 6bbbs + b2s

)
> 0 (as we

assume hs > 0). This polynomial in τ s has two positive roots, (bb + bs) /2±
√

2 (bb − bs) /4, and

is positive if τ s is comprised between the two roots. Otherwise, we have that

ΠCB < Π2S ⇔ hs <
1
2

√
8τ2

s − 8 (bb + bs) τ s +
(
b2b + 6bbbs + b2s

)
≡ hΠ

s .

Recalling that 2hs < 4τ s − bb − bs according to condition (ShsCB), we observe that the latter

inequality is always satisfied if τ s <
√
bbbs/2.9 We record our results in the following lemma.

Lemma 3 If −
√

2 |bb − bs| < 4τ s − 2bb − 2bs <
√

2 |bb − bs|, then platforms are always willing

to allow sellers to multihome. In contrast, if τ s <
√
bbbs/2, then platforms are always willing to

prevent sellers from multihoming. Outside this regions of parameters, platforms prefer to allow

sellers to multihome if and only if hs > hΠ
s .

5.3 Participants’ surpluses

In this subsection we compare the aggregate surplus of buyers and sellers in the two environ-

ments. In particular, we want to know to whether buyers’ and sellers’ preferences aligned or

misaligned regarding the multihoming of sellers. Our previous discussion about equilibrium fees

points at a major source of misalignment, as fees move in opposite directions: when sellers pay

lower fees in the competitive bottleneck case, buyers pay lower fees in the two-sided singlehoming

case, and vice versa. However, participants also care about the number of agents of the other

9It is readily checked that τs <
√
bbbs/2 < min

{
(bb + bs) /2−

√
2 (bb − bs) /4, (bb + bs) /2 +

√
2 (bb − bs) /4

}
.

Recall also that parameters must satisfy condition (Soc2S), i.e., 4τ bτs > (bb + bs)2, which can be rewritten as

2τ2s >
(
(bb + bs)2/ (2τ b)

)2
. This condition is compatible with τs <

√
bbbs/2 as long as τ b > (bb + bs)2/(2

√
bbbs).
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group they can interact with, and these numbers also differ in the two environments. First, as

nCBs > 1/2, there are more sellers active on a platform under multihoming than under single-

homing, thus adding value to participation on the buyer side. Second, multihoming sellers have

access to all buyers, which may positively affect their surplus (even if they pay twice the fees and

the transportation costs). Thus, we need to examine how the effects of price and participation

balance one another.

Buyers. For buyers, we have vCBb − v2S
b = (nCBs − 1/2)bb −

(
mCB
b −m2S

b

)
. The first term

is the participation effect and is clearly positive, as multihoming brings more sellers on each

platform; the second is the price effect and, as we have seen above, it can be either negative (if

mCB
b > m2S

b ) or positive. At the aggregate level, CSCB = vCBb − τ b/4 and CS2S = v2S
b − τ b/4

imply that CSCB −CS2S = vCBb − v2S
b . Using the definition of nCBs and the expression derived

above for mCB
b −m2S

b , we can write

CSCB − CS2S =
[

1
4τs

(2hs + bb + bs)− 1
2

]
bb − bs

4τs
[(4τ s − 2bb)− (2hs + bs + bb)] .

It is clear that the participation effect (the first term) increases with the strength of the cross-

group effect that sellers exert on buyers (bb), and with the equilibrium number of sellers in

the competitive bottleneck case, which is itself an increasing function of hs and a decreasing

function of τ s (more sellers decide to multihome when their intrinsic benefits are larger and

when transportation costs are smaller). It can be checked that an increase in bb or hs, or a

decrease in τ s also reduce the importance of the price effect (the second term), thereby making

it unambiguously more likely that CSCB > CS2S .10

Developing the previous expression, we find

CSCB > CS2S ⇔ hs >
4τ s − bs − bb

2
− bb

bs + τ s
bs + bb

≡ hbs.

It is readily checked that the latter inequality is more likely to be satisfied when bb increases

or when τ s decreases, which confirm our previous intuition. Recall that conditions (FPs2S),

(FPsCB) and (ShsCB), together with hs > 0, impose

hmin
s ≡ max

{
1
2 (2τ s − bs − bb) , 1

2 (3τ s − bs − 2bb) , 0
}
< hs < hmax

s ≡ 1
2 (4τ s − bs − bb) .

It is clear that hbs is less than the upper bound. Hence, there always exist admissible values of hs

that are sufficiently large for consumers to prefer that sellers be allowed to multihome. However,

parameters may be such that hbs is also less than the lower bound, implying that buyers prefer

sellers to multihome for any admissible value of hs. This is so, for instance, if bb > bs, i.e., if

buyers value more the interaction with sellers than vice versa. We formalize these findings in

the next lemma (which is proved in Appendix 8.1).

Lemma 4 If bb > bs or if bs > bb and τ s <
(
b2b + 4bbbs + b2s

)
/ (2 (bb + 2bs)) ≡ τmin

s , then buyers

are always better off when sellers are allowed to multihome (CSCB > CS2S). Otherwise (i.e.,

10The net effect of a change in bs is ambiguous.
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for bs > bb and τ s > τmin
s ), they may prefer that sellers be forced to singlehome (CS2S > CSCB)

for small values of hs = rs − cs (i.e., for hmin
s < hs < hbs).

In summary, Lemma 4 shows that we can expect consumers to welcome the possibility for

sellers to multihome, because it gives them access to a larger set of sellers with whom they can

interact, and it may even lead platforms to charge them lower fees. This is all the more likely

that they value a lot the presence of sellers and that sellers find it profitable to multihome.

We provide sufficient conditions for this to be only possible outcome. However, it may happen

that platforms charge higher fees to buyers when sellers multihome than when they singlehome,

and that this negative price effect outweighs the positive participation effect—if this is the case,

buyers prefer that platforms actually prevent seller multihoming.

Sellers. For singlehoming sellers, we have vCBs − v2S
s = m2S

s − mCB
s ; here, there is no par-

ticipation effect, as buyers equally split between the two platforms in both environments; and

we have seen above that the price difference can go both ways. As for multihoming sellers, we

focus on the one located at the middle of the Hotelling line for whom the surplus difference is

equal to 2vCBs − τ s − (v2S
s − τ s/2) = rs + (bs − τ s) /2 −

(
2mCB

s −m2S
s

)
. Developing the latter

expression, we find that this seller is better off in the competitive bottleneck environment than

in the singlehoming environment if and only if τ s > bb.
11

At the aggregate level, we recall the expressions derived in Sections 3 and 4:

PSCB = 1
τs

(
vCBs

)2
= 1

16τs
(bb + bs + 2hs)

2 ,

PS2S = v2S
s − 1

4τ s = hs − 5
4τ s + 1

2bs + bb.

It follows that

PSCB > PS2S ⇔ 4h2
s − 4 (4τ s − bb − bs)hs + 20τ2

s − 8 (2bb + bs) τ s + (bb + bs)
2 > 0.

If τ s > 2bb, this polynomial in hs has no real root in which case it can be shown that it is

positive everywhere, meaning that PSCB > PS2S . Otherwise, for τ s < 2bb, the polynomial has

two real roots. The larger roots is equal to 1
2 (4τ s − bs − bb) +

√
τ s (2bb − τ s). Recalling that

our parameter restrictions impose that hs < hmax
s = 1

2 (4τ s − bs − bb), we immediately see that

this root lies above the upper bound of the admissible range. As for the lower root, we denote

it

hss ≡ 1
2 (4τ s − bs − bb)−

√
τ s (2bb − τ s).

As established in the following lemma (see Appendix 8.2 for the formal proof), the inequality

hss > hmin
s must hold unless τ s is sufficiently small. Then, we have that PSCB > PS2S for hs < hss

and PSCB < PS2S otherwise. In the cases in which hss < hmin
s , we have that PSCB < PS2S for

all admissible parameter configurations.

11Recall that under this condition, full participation of sellers is guaranteed in the competitive bottleneck case

if full participation is guaranteed in the two-sided singlehoming case—i.e., condition (FPs2S) implies condition

(FBsCP).
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Lemma 5 If τ s > 2bb, then sellers are always better off when they are allowed to multihome

(PSCB > PS2S). In contrast, for sufficiently small values of τ s, sellers are always better off

when they are prevented from multihoming (PSCB < PS2S). For intermediate values of τ s,

sellers prefer to multihome if hs < hss, and to singlehome otherwise.

According to Lemma 5, sellers’ preferences regarding multihoming crucially depend on the

ratio between the degree of platform differentiation, τ s, and the strength of cross-group effects

that sellers exert on buyers, bb: the larger this ratio—that is, the larger τ s and/or the smaller

bb—the more likely it is that sellers are better off in the competitive bottleneck case. This stands

in sharp contrast with what we observed for buyers, who are more likely to prefer that sellers

singlehome when τ s increase and/or bb decrease. Thus, we have identified here an important

source of divergence between the preferences of buyers and sellers. However, this does not exclude

the existence of parameter configurations such that buyers and sellers agree, as we discuss in

the following subsection.

5.4 Surplus comparisons: The complete picture

To close this section, we superimpose the results of Lemmas 3–5, so as to measure the extent

to which platforms, buyers and sellers agree or disagree with respect to the benefits from seller

multihoming. There are a priori eight possible scenarios. In the next proposition, we eliminate

three of them by proving a clear divergence between buyers on one side, and sellers and platforms

on the other side (the proof is relegated to Appendix 8.3).

Proposition 1 Whenever buyers prefer that sellers be forced to singlehome (CS2S > CSCB),

both sellers and platforms prefer the opposite (PSCB > PS2S and ΠCB > Π2S).

Proposition 1 leaves us with four other scenarios. The first two scenarios correspond to the

conventional wisdom: CSCB > CS2S and PS2S > PSCB; that is, the possibility of multihoming

is beneficial for the side that continues to singlehome, but harmful for the side that is allowed

to multihome. Then, platforms may have higher profits in either environment: they will please

sellers if they choose to impose exclusivity, and please buyers otherwise.

In the last two scenarios, both buyers and sellers are better off in the competitive bottleneck

environment: CSCB > CS2S and PSCB > PS2S . Again, platforms may prefer one or the other

environment. Here, if they impose exclusivity (which can only occur if bb > bs), they hurt both

groups; otherwise, the possibility of multihoming for sellers is welfare improving as it makes all

parties better off. We summarize our findings in the next proposition.

Proposition 2 (1) Whenever platforms find it preferable to impose exclusivity, they necessarily

hurt at least one group of participants. (2) It is possible that buyers, sellers and platforms are

all better off when sellers are allowed to multihome.

Proof. The first part directly follows from Proposition 1, as buyers and sellers never agree

that exclusivity would make them all better off. To show the existence of the other configura-

tions, we build numerical examples. First, take bb > bs and τ s > 2bb, so that respectively buyers
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and sellers always prefer the competitive bottleneck environment. Set bb = 40, bs = 10 and

τ s = 85. Then, we have hΠ
s = 83.516 while hmin

s = 82.5 and hmax
s = 145. For hs = 83, we check

that ΠCB − Π2S = −43/170 < 0, in which case platforms would impose exclusivity, thereby

hurting both buyers and sellers. In contrast, for hs = 85, we have ΠCB − Π2S = 25/34 > 0, in

which case all parties agree that the competitive bottleneck environment is preferable.

We summarize our results in Table 1 and Figure 1. Table 1 shows the five possible com-

binations of preferences for the three parties—buyers, sellers, and platforms (‘CP’ indicates a

preference for the competitive bottleneck case, ‘2S’ for the two-sided singlehoming case). In the

last column of the table, we indicate the zones of Figure 1 that correspond to the various com-

binations (the left panel corresponds to the case in which bb > bs and the right panel, to the

case in which bs > bb).

Buyers Sellers Platforms Zones in Figure 1

CB 2S 2S 1, 5

CB 2S CB 2, 6

CB CB CB 3, 7

CB CB 2S 4

2S CB CB 8

Table 1. Preferred market environments
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Figure 1: Surplus effects of seller multihoming

We conclude that without further information, a competition authority or regulator cannot

know whether allowing multihoming on one side (with the other side singlehoming) leads to

higher or lower net surpluses on either side. It is, therefore, a priori not possible to say whether

the side that changes its behavior from singlehoming to multihoming (or reverse) benefits or

suffers from this change of behavior.
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6 Extension: Stand-alone benefits when multihoming

We propose here a more general formulation of the competitive bottleneck problem by assuming

that a multihoming seller enjoys a total stand-alone benefit equal to (1 + ρ) rs. We let the

parameter ρ take any value between 0 and 1 to cover any situation regarding the services that

give rise to the stand-alone utility. At one extreme (ρ = 1), we have the case considered so

far in this paper: platforms provide completely differentiated services. At the other extreme

(ρ = 0), we have the case analyzed by Armstrong and Wright (2007): platforms provide exactly

the same services, so that joining a second platform does not generate any extra stand-alone

benefit. In this section, we consider the whole spectrum between these two extremes. Our goal

is to show that our results still hold under this more general formulation and that our main

message is even reinforced—that is, the conventional wisdom about the effects of multihoming

cannot be trusted. As the analysis follows the same steps as in Section 4, we skip most of the

developments.

Derivation of equilibrium. The sellers who are indifferent between visiting platform i (i ∈
{1, 2}) and visiting both platforms are now identified by

x1m = 1− 1

τ s

(
ρrs + n2

bbs −m2
s

)
and x2m =

1

τ s

(
ρrs + n1

bbs −m1
s

)
.

As above, we assume that 0 < x1m < x2m < 1, so that n1
s = x2m and n2

s = 1 − x1m. Noting

that nothing changes for buyers, we can proceed in the same way as in Section 4: we solve for

buyers’ and sellers’ participation levels and then use these expressions to derive the platforms’

profits as functions of the four fees. Solving the systems of the four first-order conditions, we

find the following equilibrium fees and equilibrium participation, where hs,ρ stands for ρrs − cs
(note that hs,ρ = hs = rs − cs for ρ = 1):

mcb
b = cb + τ b −

bs
4τ s

(bs + 3bb + 2hs,ρ) ,

mcb
s = cs + 1

2hs,ρ + 1
4 (bs − bb) ,

ncbb = 1
2 and ncbs = 1

4τs
(bb + bs + 2hs,ρ) .

From there, we can compute the equilibrium net surplus of sellers and buyers (gross of trans-

portation costs) as:

vshs = 1
4 (bb + bs) + 1

2 ((2− ρ) rs − cs) ,

vmhs = 1
2 (bb + bs) + (rs − cs) ,

vcbb = 1
4τs

(b2b + 4bsbb + b2s + 2 (bb + bs)hs,ρ) + hb − τ b,

where vshs denotes the surplus for singlehoming sellers (i.e., sellers located between 0 and 1−ncbs ,

who choose to visit platform 1 only, and sellers located between ncbs and 1, who choose to visit

platform 2 only) and vmhs the surplus for multihoming sellers (i.e., sellers located between 1−ncbs
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and ncbs ). Note that vmhs = 2vshs − (1− ρ) rs—that is multihoming sellers earn less than twice

the surplus of singlehoming sellers because of the possible duplication between the stand-alone

benefits provided by the two platforms. For the special case ρ = 1 (no duplication), vmhs = 2vshs ,

as postulated in Section 4.

Aggregated over all buyers, in equilibrium, buyers’ surplus is

CScb = 1
4τs

((bb + bs) (bb + bs + 2hs,ρ) + 2bbbs) + hb − 5
4τ b.

Aggregated over all sellers, in equilibrium, sellers’ surplus is

PScb =

∫ xcb1m

0
(vshs − τ sx)dx+

∫ xcb2m

xcb1m

(vmhs − τ s)dx+

∫ 1

xcb2m

(vshs − τ s (1− x))dx

= 1
16τs

(bb + bs + 2hs,ρ)
2 + (1− ρ) rs.

Finally, the platforms’ equilibrium profits are computed as

Πcb = 1
16τs

(8τ bτ s −
(
b2s + b2b + 6bsbb

)
+ 4h2

s,ρ).

It is easily seen that the conditions of Assumption 2 guarantee that this equilibrium holds

for any value of ρ (the conditions become more stringent as ρ increases).

Multihoming vs. singlehoming. We observe that the expressions for the equilibrium prices,

participations, buyers’ surplus and platforms’ profits are isomorphic to the ones obtained in

Section 4: we just need to replace hs by hs,ρ. As hs,ρ ≤ hs, we can immediately conclude that

mcb
b ≥ mCB

b , mcb
s ≤ mCB

s , ncbs ≤ nCBs , CScb ≤ CSCB, and Πcb ≤ ΠCB.

Thus, the more similar the services provided by the platforms (i.e., the smaller ρ), the higher the

fee charged to buyers and the lower the fee charged to sellers; there are also fewer multihoming

sellers, which results in a lower surplus for buyers and lower profits for platforms. The impact

on sellers is less obvious, since an additional term appears in PScb. We compute

PScb − PSCB = 1
4τs

(bb + bs + hs,ρ + hs) (hs,ρ − hs) + (1− ρ) rs

= (1− ρ) rs

(
1− 1

4τs
(bb + bs + hs,ρ + hs)

)
= (1− ρ) rs

(
1− nCBs + (1− ρ)

rs
4τ s

)
≥ 0.

Hence, sellers obtain a higher surplus as ρ decreases.

The previous results suggest than when comparing the competitive bottleneck and the two-

sided singlehoming environments, it is more likely, as ρ decreases, that sellers prefer the former,

while buyers and platforms prefer the latter. Hence, a larger duplication of stand-alone benefits

(i.e., a lower ρ) further undermines the conventional wisdom, according to which the possibility

of multihoming should hurt the side that can multihome (here, sellers) while benefiting the other

side.
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7 Conclusion

In this paper, we have reconsidered the classic Armstrong (2006) two-sided platform setting

with the aim to analyze the impact of multihoming on one side on prices, platform profits, and

buyer and seller surplus. The competitive bottleneck world is described as a world in which

the multihoming side has to pay monopoly prices and platforms compete on the singlehoming

side. However, this does not imply that the multihoming side were to pay lower prices if it could

not multihome. We recall the three main insights regarding the surplus platforms, buyers, and

sellers obtain. (i) Whenever buyers prefer that sellers be forced to singlehome, both sellers and

platforms prefer the opposite. (ii) Whenever platforms find it preferable to impose exclusivity,

they necessarily hurt at least one group of participants. (iii) It is possible that buyers, sellers

and platforms are all better off when sellers are allowed to multihome. All our findings are easily

reformulated if the buyer instead of the seller side is the side that may be able to multihome.

Future work may look into alternative settings to address the effect of multihoming. This

appears to be a worthwhile endeavour given the inclination of some competition authorities and

regulators to encourage and facilitate multihoming.

8 Appendix

8.1 Proof of Lemma 4

We first note that

hbs > 1
2 (2τ s − bs − bb)⇔ τ s > bb,

hbs > 1
2 (3τ s − bs − 2bb)⇔ (τ s − bb) (bs − bb) > 0,

hbs > 0⇔ τ s >
b2b + 4bbbs + b2s

2 (bb + 2bs)
≡ τmin

s .

(1) Take bb > bs. (1a) If τ s > bb, then hmin
s = 1

2 (3τ s − bs − 2bb) and we see from the middle

line above that hbs < hmin
s . (1b) If (bb + bs) /2 < τ s < bb, then hmin

s = 1
2 (2τ s − bs − bb) and

we see from the top line above that hbs < hmin
s . (1c) If τ s < (bb + bs) /2, then hmin

s = 0 and as

τmin
s > (bb + bs) /2 when bb > bs, we have again, from the bottom line above, that hbs < hmin

s . (2)

Take bs > bb. (2a) If τ s > (bs + 2bb) /3, then hmin
s = 1

2 (3τ s − bs − 2bb) and as (bs + 2bb) /3 > bb

when bs > bb, we have that hbs < hmin
s from the middle line above. (2b) If τ s < (bs + 2bb) /3,

hmin
s = 0 and as τmin

s < (bs + 2bb) /3, we have that hbs > hmin
s for τ s < τmin

s .

8.2 Proof of Lemma 5

We first establish the sign of C ≡ 20τ2
s−8 (2bb + bs) τ s+(bb + bs)

2. This quadratic form in τ s has

real roots provided that 11b2b + 6bbbs − b2s > 0, which is guaranteed if bs < 7.45bb. If bs > 7.45bb,

C > 0 for all τ s. If bs < 7.45bb, then the two roots, which we note τ−s and τ+
s , are such that

0 < τ−s = 1
5 (2bb + bs)− 1

10

√
11b2b + 6bbbs − b2s < τ+

s = 1
5 (2bb + bs)+ 1

10

√
11b2b + 6bbbs − b2s < 2bb.
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So, C is positive for τ s < τ−s or τ s > τ+
s , and negative otherwise. We now rewrite the condition

PSCB > PS2S as 4h2
s−4 (4τ s − bb − bs)hs+C > 0. For this quadratic form to have real roots, we

need 4 (4τ s − bb − bs)2−4C = 16τ s (2bb − τ s) > 0, or τ s < 2bb. If τ s > 2bb, then C > 0, implying

that PSCB > PS2S . Consider now the case where τ s < 2bb. There are then two positive roots:

hss ≡ 1
2 (4τ s − bs − bb)−

√
τ s (2bb − τ s) and 1

2 (4τ s − bs − bb) +
√
τ s (2bb − τ s) > hmax

s . Clearly,

hss > 0 if and only if C > 0. So, in case hss > hmin
s , then PSCB > PS2S if hs < hss, whereas

PSCB < PS2S otherwise. If hss < 0, then PSCB < PS2S for all admissible hs > hss. We still

need to compare hss to hmin
s . We have that

hss > 1
2 (2τ s − bs − bb)⇔ τ s > bb,

hss > 1
2 (3τ s − bs − 2bb)⇔ (τ s − bb) (5τ s − bb) > 0.

(1) Take bb > bs. (1a) If τ s > bb, then hmin
s = 1

2 (3τ s − bs − 2bb) and we see from the bottom

line above that hss > hmin
s . (1b) If (bb + bs) /2 < τ s < bb, then hmin

s = 1
2 (2τ s − bs − bb) and

we see from the top line above that hss < hmin
s . (1c) If τ s < (bb + bs) /2, then hmin

s = 0; as

τ−s < (bb + bs) /2 < τ+
s , we have that hss > hmin

s for τ s < τ−s and hss < hmin
s for τ−s < τ s <

(bb + bs) /2. (2) Take bs > bb. (2a) If τ s > (bs + 2bb) /3, then hmin
s = 1

2 (3τ s − bs − 2bb) and as

(bs + 2bb) /3 > bb when bs > bb, we have that hss > hmin
s from the bottom line above. (2b) If

τ s < (bs + 2bb) /3, hmin
s = 0; as τ−s < τ+

s < (bs + 2bb) /3, we have that hss > hmin
s for τ s < τ−s

and τ+
s < τ s < (bs + 2bb) /3, whereas hss < hmin

s for τ−s < τ s < τ+
s . Collecting the previous

results, we have that hss < hmin
s in which case PSCB < PS2S for all admissible parameters if

either bb > bs and τ−s < τ s < bb or bs > bb and τ−s < τ s < τ+
s .

8.3 Proof of Proposition 1

From Lemma 4, we know that for buyers to prefer that sellers singlehome, we must have bs > bb,

τ s > τmin
s , and hmin

s < hs < hbs. (1) We first show that in that case, sellers prefer the possibility

of multihoming. Suppose not. We know from Lemma 5 that for sellers to prefer two-sided

singlehoming, we must have hs > hss. So, it must be that hss < hs < hbs. However, hbs > hss is

incompatible with bs > bb and τ s > τmin
s :

hbs > hss ⇔ 1
2 (4τ s − bs − bb)− bb

bs + τ s
bs + bb

> 1
2 (4τ s − bs − bb)−

√
τ s (2bb − τ s)

⇔ τ s (2bb − τ s)−
(
bb
bs + τ s
bs + bb

)2

= (bb − τ s)
τ s
(
2b2b + b2s + 2bbbs

)
− bbb2s

(bb + bs)
2 > 0.

But for bs > bb, we have

τmin
s =

b2b + 4bbbs + b2s
2 (bb + 2bs)

> bb >
bbb

2
s

2b2b + b2s + 2bbbs
.

So, τ s > τmin
s ⇒ τ s > bb and τ s >

bbb
2
s

2b2b + b2s + 2bbbs
⇒ hss > hbs

It follows that τ s > τmin
s and hs < hbs imply that hs < hss and sellers prefer multihoming, a

contradiction. (2) We now show that bs > bb, τ s > τmin
s , and hmin

s < hs < hbs also imply
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that platforms prefer the competitive bottleneck environment. By contradiction, suppose that

platforms prefer the two-sided-singlehoming environment. From Lemma 3, we know we need

K ≡ 8τ2
s − 8 (bb + bs) τ s +

(
b2b + 6bbbs + b2s

)
> 0 and hmin

s < hs < hΠ
s . For bs > bb, we have

both K > 0 and hΠ
s > hmin

s if and only if τ s <
1
2 (bb + bs) − 1

4

√
2 (bs − bb) ≡ τmax

s . Yet, it is

easily shown that bs > bb implies that τmax
s < τmin

s . It follows that for bs > bb and τ s > τmin
s ,

the inequality hΠ
s < hmin

s must hold and, therefore, that platforms prefer to allow sellers to

multihome.
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