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Abstract

We investigate how machine learning might bring clarity to a human decisions made
during the criminal justice process. We created a model that predicts a defendant’s risk
of being rearrested after their charges are dropped. We used a database from the office
of the Orleans Parish District Attorney that covers cases from 1988-1999. Applying
strategies identified by past research that compared prediction models to judicial de-
cision makers, our model selected higher risk individuals to prosecute than its human
counterparts did. For a set charge rate, our model would reduce the rearrest rates
between 5% and 9%. Developed further, such a model could have several important
policy implications: it might identify defendant characteristics that are particularly
‘noisy’ to prosecutors; it could suggest ways of alleviating criminal caseloads without
increasing crime rates; and it might provide important insights into how a prosecutor’s
background relates to the quality and nature of their charging decisions.

Introduction

It has been claimed that the US criminal justice system incarcerates too many and gener-
ally does so unfairly. Experts have identified certain factors that have particularly strong
effects on the system’s purported inefficiencies and inequities, including the aggressiveness
of prosecutors and the practice of plea bargaining. [1, 3]. It has been suggested that a
reduced emphasis on plea bargaining and a heavier emphasis on the “screening” process —
the stage when prosecutors decide whether or not to charge a defendant — could improve
the fairness and efficiency of the system.[3] In our investigation we are not concerned with
weighing in on the validity of such claims. We aim instead to augment the understanding
of screening decisions made by prosecutors.

After a person is arrested and before a trial begins, prosecutors (screeners) can decide
to either accept those charges and proceed to a trial or to drop them. In order to assess
whether or not the decision to drop charges was made correctly, we use rearrest as our target;
that is, if an individual who had charges dropped enters the arrest registry again within a
certain time frame, we consider the screen decision to have been wrong. To optimize this
prediction problem we use gradient boosted trees, a forward stagewise additive modeling
algorithm that averages decision trees that are sequentially improved. After optimizing the
model, we employed techniques described by Kleinberg et al [2] to assess its performance

1



compared to screeners. A reduction in rearrest rate model by the model would allow us to
critique the way that screeners select defendants to charge.

Data

Our data describe over a decade of arrests in a federal prosecutor’s office from The Orleans
Parish District Attorney’s office. The current data set is from 1988 to 1999 and provides de-
tailed information on approximately 430,000 charges and 280,000 cases (involving 145,000
defendants) filed or adjudicated during this timeframe. The data collected also contains
detailed information regarding each individual offender, such as information about the pros-
ecutor, arrest register, and defendant.

Data Cleaning

When possible, we imputed missing values for continuous-valued features based on the values
of other non-missing features (i.e., imputing the value of the screening date from date of
arrest and number of days between arrest and when the arrestee was seen by a screener).
For continuous-valued features where this was not possible, missing values were imputed as
the mode. Using the codebook and lookup tables associated with the dataset, we flagged
invalid values of binary and categorical features. Binary and categorical features were then
transformed using one-hot encoding.

Our model only considers cases where the arrestee was not charged. We found that there
were sometimes multiple arrests for a defendant on the same day. Some of these entries were
duplicates while others took on different values for the screening outcome code. We flagged
the multiple arrests so that there would only be one arrest per defendant per day, and if
charges for that defendant were accepted for any of the arrests on that day, we set the
screening outcome code to indicate that charges were accepted. Those arrestees were then
removed from the dataset fed into the model.

We split the data into training, validation, and test sets using a split of 64/16/20. The
split was stratified along the year of arrest so that the distribution of arrests over time was
consistent among the training, validation, and test sets.

Target Variable

To construct the target variable, we had to identify arrests where the arrestee was rearrested
within a certain number of years in the future. In order to evaluate whether an arrestee was
rearrested within a certain number of years, we truncated the data by that number of years
from 1999, the last year for which we have arrest data. For example, if we wanted to create
a target variable that indicates rearrest within 2 years, we would create that variable for
defendants arrested between 1988 and 1997 so that we could conclusively determine whether
an arrestee in 1997 was rearrested within two years. We created target variables for rearrests
within one to five years, removing 36,246 records (45%) from our training data.

Modeling

Our approach starts by creating a model that takes as input instances of arrests in an arrest
registry. Each arrest includes details related to both the charge and the arrested individual.
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Additionally, each arrest in the data has a field with the number of days, if it exists, until
the individual has a subsequent arrest. Using data from which actual outcomes are known
and a loss function that penalizes incorrect predictions, the model learns how to optimally
predict the outcome if it receives a new input. Thus our model makes a prediction about
whether each entry in a registry will or will not be rearrested within a set amount of time.
The window of time during which we consider rearrest is variable. The model also gener-
ates a probability of rearrest for an instance; this probability, or risk score, is essential to
formulating a comparison between the model and human decision makers.

This prediction model was trained on a dataset of 80,217 arrestees. A validation set
with 20,055 arrestees was used to evaluate the performance of different permutations of the
model. A test set of 25,068 arrestees has still not been touched and awaits our completed
model.

Baseline Model - Decision Tree

One of the simplest ways to predict whether someone would be rearrested is to use a decision
tree based on age and the severity of the charge. Therefore we constructed a baseline model
of maximum depth 4 using these two features. Given a parent node, we fit the model by
minimizing the entropy of child nodes. Entropy is defined as

−(p0 log2 p0 + p1 log2 p1)

where p0 is the proportion of the node comprised of arrestees who were not rearrested and
p1 is the proportion of the node comprised of arrestees were rearrested. The baseline model
achieved 60% accuracy on the validation set and an F-score of 65%.

Ensemble method: Gradient Boosted Trees

We refine our baseline model with Gradient Boosted Trees, a sequential ensemble model
comprised of decision stumps. We used binomial deviance as our loss function:

log(1 + e−2yŷ)

where y is the true value of the target variable and ŷ is the value predicted by the algorithm.
Using this loss function allows us to interpret the score function as a probability.

Model Optimization

Feature Selection

We performed feature selection using the following steps:

1. Create 22 training datasets, one using all features and 21 created by removing one
feature at a time.

2. Train a gradient boosted trees model on each of the modified training data sets.

3. Repeat this process for 5 different target variables from rearrest within 1 year to
rearrest within 5 years.
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4. Evaluate each of the 220 models to identify which feature, target, and model combi-
nation results in the highest validation f-score.

We found that the highest F-score resulted from removing Arrest Credit Code, keeping
the rest of the features, and predicting rearrest within 5 years.

Parameter Optimization

After selecting rearrest within 5 years as the target variable and choosing a final set of
features, we performed parameter optimization. All the models we trained use 50% as the
probability threshold for each class, since the classes are balanced in our data (52% of ar-
restees were rearrested).

For the gradient boosted trees, we trained the model with the following values of hyperpa-
rameters for a total of 81 models:

1. number of estimators (100, 300, or 500)

2. learning rate (.05, .1, .5)

3. max depth (3, 5, 10)

4. minimum samples split (2,4,8)

All the gradient-boosted tree models use deviance as the loss function to be optimized
and the Friedman mean squared error as the measure of the quality of a split.

Our best-performing final gradient boosted trees model used 500 tree estimators, a learn-
ing rate of 0.05, a maximum depth of 5, and a minimum samples split threshold of 4. The
associated validation F-score is 0.7694, which is .12 higher than the validation F-score of
the baseline model. A comparison of the final model to the baseline shows the substantial
improvement achieved.

The final confusion matrix for the optimized model is below.

Prediction: Not Rearrested Prediction: Rearrested

Not Rearrested 3905 1391
Rearrested 1265 4433

Note that all results are from the validation set. Because we plan to continue our research,
we have not evaluated our model on the test set.

Results and Evaluation

We assessed the actual risk of arrestees compared to the predicted risk returned by our
model. Using the validation set, we grouped the arrestees into quintiles by their estimated
risk and found that the predicted riskiest arrestees have higher rearrest rates. This shows
that the arrestees that were released by a screener and predicted by our model to be risky
were in fact risky.

We also assessed the performance of our model against human screeners (as in [2]) using
the concept of implicit risk ranking. We do not directly observe how the screeners rank
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Figure 1: The figure above shows the precision-recall curves of three models: (1) the
decision tree baseline model, (2) the gradient boosted trees model with optimal features
and default hyperparameters, and (3) the final model with optimized hyperparameters.
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the risk of the arrestees that they see. However, we can assess their implicit risk ranking
from the variation in charge rates between “strict” and “lenient” screeners by comparing
the distribution of predicted risk of the arrestees charged by the “strict” and the“lenient”
screeners. The NODA dataset provided sufficient variation in screener charge rates for us
to assess the implicit risk ranking (see appendix). We find that the actual risk distribution
of risk amongst strict and lenient screeners to differ from what we would expect to see if
the screeners were releasing defendants based on their predicted risk.

Furthermore, we assess the potential improvement in outcome from using our model by
analyzing the “marginal” defendant. Given a screener (or a group of screeners), we define
the marginal defendant as the defendant with the highest predicted risk that was seen and
released by that screener (or group of screeners).

We group screeners into two bins based on the percent of arrestees that they charge.
Then we calculate the additional number of arrestees that would need to be charged for the
“lenient” group of screeners to reach the same charge rate as the “strict” group of screeners.
Using the fitted gradient boosted tree model, we choose these “marginal” defendants based
on estimated risk. We assess the outcome, in terms of rearrest rates, of charging these
additional “marginal” defendants. If we arrive at a lower rearrest rate than the strict
human screeners, then our model results in improvements in rearrest rates. The potential
improvements in rearrest rates are summarized in the chart below.

To test the robustness of our results, we compared our results with the rearrest rates if
we were to choose which the additional “marginal” defendants to charge at random. We
conducted 1,000 iterations of this test and were not able to reduce the rearrest rates to the
same level as when using the predicted risk ranking.

Discussion

Error Analysis and Time to Rearrest

We conducted error analysis to identify unusual features. We divided the observations ac-
cording to whether they were correctly predicted and those that were incorrectly predicted
and compared the distributions of every feature using box plots for continuous variables and
bar plots for categorical variables. The result of the full comparison is in the appendix. We
discuss one substantive finding here.

We observed that the incorrectly predicted observations had a similar distribution to
correctly predicted observations for almost all features, with the exception of time to rearrest.
The box plot below shows the distribution of time to rearrest for correctly predicted and
incorrectly predicted observations in the positive class.

To explain this pattern, we examined the top features by feature importance. Below, we
include the top 5:

Column Name Importance

AGE 0.281481
BAR ADMIT DAYS 0.167391
ARREST TO SCREEN 0.115987
SCREENING DAYS 0.072958
CRIMINAL FLAG 0.048115
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Figure 2: The top graph shows the actual distribution of risk of the defendants released by
screeners of increasing strictness (from left to right). The bottom graph shows what we
would expect the distribution to be if screeners were releasing defendants based on their
predicted risk. If screeners were to release defendants at random, we would expect to see
an even distribution of predicted risk for each set of screeners.
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Figure 3: The graph shows the improved outcome, without changing the percent of
defendants charged, if defendants are charged based on their predicted risk.

Figure 4: This figure represents the distribution of years to rearrest for arrests followed by
a subsequent arrests. The left side of the figure corresponds to instances incorrectly
classified and the right side of the figure corresponds to instances correctly classified.
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Figure 5: The partial dependence plots of the top 5 features provide a clearer sense of the
direction of the relationship.

We also examine the non-categorical features correlated with time to rearrest among
the observations that were rearrested within five years. Below are the correlations between
time to rearrest and the five non-binary, non-categorical features that have the strongest
correlation with time to rearrest:

Column Name Correlation with Time to Rearrest

CRIMINAL FLAG 0.229738
JUVENILE FLAG -0.184845
AGE 0.135949
INITIAL DETENTION FLAG -0.037101
ARREST TO SCREEN 0.034602

Time to rearrest is positively correlated with criminal flag, and criminal flag is associated
with a higher predicted probability of rearrest, which may explain in part why recall is higher
among observations with a higher time to rearrest. The correlation between time to rearrest
and criminal flag is statistically significant according to the Pearson correlation coefficient’s
p-value. Our results suggest that those arrested for criminal charges who were rearrested
were rearrested later than those arrested for non-criminal charges. This finding may seem
slightly counterintuitive, but further investigation may explain why the two are correlated.
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Demographic Analysis

In order to choose which features would optimize the model (including both categorical and
non-categorical variables), we removed individual features one at a time and observed how
the F-score changed. Sex, age, and race were consistently among the features whose removal
had the highest negative impact on model performance. That criminality is associated with
male gender and youth might not be especially surprising or concerning, but it is necessary
to assess whether the model is exacerbating racial disparities by, for example, ascribing
disproportionately less risk to white defendants.

While we did find that the algorithm tended to predict higher riskiness for black defen-
dants (see below), the false positive rate (i.e., the percent of defendants predicted by the
algorithm to be rearrested but were not rearrested) for white defendants was 24% while it
was 21% for black defendants. Furthermore, we found evidence that screeners may have
some racial bias that may be improved upon by using our model. 75% of the white de-
fendants that were released were rearrested within 5 years while 42% of black defendants
released were rearrested within 5 years. Out of these defendants that were released, our
model predicted that 88% of the white defendants to be rearrested and 38% of the black
defendants to be rearrested within 5 years. This suggests that it is possible that the human
screeners may be too lenient on white defendants and too strict on black defendants. We
also note that in our training data, only 11% of the defendants are white and 86% of the
defendants are black. It is possible that our model would have improved performance if
provided more instances of white defendants.

It is all but certain that there are unobserved variables at play which add bias to our
model; educational background, socioeconomic status, and a host of other factors may
affect the rearrest outcome but are only indirectly observable to the model through the race
variable to which such class markers are related. Finding ways to include such unknowns
would be an important way to develop this analysis.

Aligning the screener’s and the algorithm’s prediction

An important distinction between screeners and the algorithm is that while our model is
classifying declined cases that result in rearrest to be ‘wrong’ decisions, a screener might not
have been making the same prediction. It is possible that different predictions (e.g., whether
or not a case can be tried and won) are actually driving the decisions at this node.[4] This
does not, however, invalidate the comparison that we present. If a prosecutor’s office cares
about rearrest rates, and one would assume that they all do, then the results of a successful
rearrest algorithm should still be relevant to them.

Potential Impact and Additional Steps

Given that the algorithm we developed predicted rearrest rates with relatively more accuracy
than screeners, a potential implication would be to make it available to screeners as they
consider declinations in real time. As pointed out by Kleinberg et al. in seminal research
on the analysis of judicial bail decisions, such a model could provide decision makers with a
risk score or flag for individual cases and serve as an aid, though not a replacement, for their
judgment. Alternatively an algorithm could be used to rank entire populations of defendants
for larger-scope recommendations. [2] Large-scale ranking could be important when districts
have to make assessments about the feasibility of caseloads and prison populations. While
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Figure 6: These two figures show the distribution of predicted risk by for black defendants
and white defendants that were released by the screeners.
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our model’s success rate is promising to this end, an extensive amount of further research
is required before a practical application could materialize.

One way to make the model more versatile would be to make it capable of identifying if
lower charge rates can result in the same rearrest rate. This would allow policy makers to
lessen the burden of cases with minimal impact on the level of rearrests.

Finally, we were not able to analyze the relationship between screener traits and the
characteristics of their declinations. Analyzing variation across screeners could identify
whether or not biases exist based on screeners’ political affiliation, age, experience, race,
etc. One way of addressing this problem is to fit a model to predict screener declinations
and to compare the feature most predictive in that model with the predictive features in
the rearrest model.

Limitations

Incomplete data was a limitation in our study. We were unable to track the arrest registry
beyond 1999 and unfortunately our requests for more recent data were not fruitful. Having
access to the arrest records of the Orleans Parish jurisdiction would also have improved the
model; it is highly likely that at least some of the defendants in the registry were rearrested
in the future in another district but were identified by our model as correct decisions.

Conclusion

The decision to decline or pursue charges against a defendant has been identified as an
potentially underemphasized point in the criminal justice process [1, 3]. Using eventual
rearrest as an indicator of a successful decliniation decision, we created a model that out-
performed human screeners on data from the NODA database. Applying this model to
decisions at the declination node would have achieved lower rearrest rates between 5% and
9%, depending on the strictness level of the screeners we compared. Underlying biases in
the model need to be addressed by including more explanatory variables, particularly with
respect to demographic data of defendants and screeners. Using machine learning prediction
algorithms to assess human decisions is a promising field of research in the court context
and beyond, and further research such as this will hopefully have meaningful impacts on
policy discussions.
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Appendix

Fall in rearrest rate as charge rate increases

To get a sense of the volume of decisions made by screeners of a given strictness level, we
determined the cumulative percentage of cases seen as strictness increased. This revealed
that the bulk of cases (roughly 60%) are seen by screeners with charge rates between 35%
and 60%. Narrowing our focus to those screeners, we looked at the rearrest rates of their
declinations across various time frames. As shown in the following plot, the rearrest rate
reaches a peak at a charge rate of around 40% across several rearrest time frames. Then,
remarkably, the rearrest rate falls before rising again and steadying. A possible explanation
for this outcome is that cases are not randomly assigned to screeners, but rather they might
be divided based on type of crime or some other factor. Screeners at charge levels from
0.4 to approximately 0.48 might be focusing on types of crime that are not associated with
repeated criminal behavior.

Aside from the question of random assignment, this decrease in rearrest rate might be
explained by separating these plots according to type of crime.
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Figure 7: The first graph shows the cumulative percentage of cases that are seen as more
strict screeners are included. The bottom graph has the same x-axis, and shows the
rearrest rate vs screener charge rate for 5 different rearrest time frames. Notice that over
65% of all cases are seen by screeners with charge rates between 30% to 60%.
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Data Lost To Create Target

In order to create the target variable, we removed arrests from the last 5 years of the
dataset, because we did not have data on whether the arrestee was rearrested within the
next 5 years. This removed 36,246 records (45%) from our training data, which originally
consisted of 80,217 records. The table below summarizes the year in which each arrest
occurred, and the number of records we’d remove to set the target variable based on a
number of years:

Records Cumulative Total
ARREST DATE y

1999.0 7329 7329
1998.0 9432 16761
1997.0 8450 25211
1996.0 5929 31140
1995.0 5106 36246
1994.0 6093 42339
1993.0 4770 47109
1992.0 6598 53707
1991.0 7280 60987
1990.0 9769 70756
1989.0 7783 78539
1988.0 1678 80217

Error Analysis

We presented substantive findings from the error analysis in the Discussion section. These
plots demonstrate that time to rearrest was the only variable for which the distribution
among correctly predicted observations noticeably differs from the distribution among in-
correctly predicted observations.

Figures

15



Figure 8: Box plots of the distributions of each continuous variable for correctly and
incorrectly classified instances.
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Figure 9: Bar graphs of the distributions of each categorical or binary variable for
correctly and incorrectly classified instances, limited to the five most common values of the
categorical variable for simplicity.
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Rearrest Rates by Quintiles of Predicted Risk

Figure 10: This shows that the arrestees that were released by a screener and predicted by
our model to be risky were rearrested at a higher rate

Figure 11: These two charts show the variation in charge rates across different screeners.
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