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Abstract

A long-lived consumer interacts with an infinite sequence of short-lived firms in a

stationary Gaussian setting. Firms use the consumer’s rating—an aggregate measure

of her purchase history—to learn about the consumer’s type, and thus set prices. The

focus is on linear Markov equilibria when ratings discount past purchases exponentially.

We find that equilibrium prices are lower in expectation than in a static benchmark due

to the strategic effect of privacy concerns. The precision of the information conveyed

in equilibrium by a rating is non-monotone in its persistence level. Firms may prefer

more persistent ratings than under public histories, whereas high-value consumers may

prefer more or less persistent ratings to uninformative ratings. Total surplus is instead

maximized by uninformative ratings. Finally, hidden ratings that are not observed by

the consumer reduce the sensitivity of demand and increase the firms’ profits. Our

analysis thus sheds light on the role that transparency and persistence of consumer

data can have on market outcomes.

Keywords: Ratings; Price Discrimination; Signaling; Ratchet Effect; Brownian Mo-

tion; Persistence; Transparency.

JEL codes: C73, D82, D83.

∗Bonatti: MIT Sloan School of Management, 100 Main St., Cambridge, MA 02142, bonatti@mit.edu.
Cisternas: MIT Sloan School of Management, 100 Main St., Cambridge, MA 02142, gcistern@mit.edu.
Bonatti gratefully acknowledges support from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant agreement No. 670494), as well as the hos-
pitality of the Toulouse School of Economics. We thank Rossella Argenziano, Johannes Hörner, and Juuso
Toikka for helpful conversations on this topic.

1

http://web.mit.edu/gcistern/www/rating.pdf


1 Introduction

Value creation in online markets depends critically on identifying consumers’ preferences on

the basis of behavioral and contextual data. The data is stored by intermediaries who classify

consumers in “intent groups” or “interest segments” that enable targeting of products and

advertising messages. Thus, the aggregation of large amounts of consumer-generated data

into a succinct rating is a key technological driver of content personalization.

The precision of the consumer-level information available to marketers and retailers can,

however, introduce privacy concerns. These concerns are not necessarily related to leakages

or illicit uses of consumers’ private information: the distributional implications of consumer

categorization—as with all forms of market segmentation—are ambiguous. Furthermore,

when the use of individual information impacts the distribution of surplus, the mechanisms

by which it is collected and transmitted in turn determine consumers’ willingness to reveal

information about their preferences.

In this paper, we investigate the allocation and welfare consequences of rating consumers

based on their purchase histories and using this information for price discrimination pur-

poses. We seek to provide an equilibrium model of privacy concerns. We focus on the effect

of a rating’s persistence and transparency on the level and terms of trade. We then turn

to optimal ratings (within a specific class) and address the following welfare questions: is

a long memory detrimental to consumers? How quickly should consumers’ actions be for-

gotten by the market? Should consumers be aware of the “bucket” firms have placed them

in?1 We address these questions both from consumers’ and firms’ perspectives. The former

perspective can provide insights into guidelines for consumer protection and other types of

regulation. The latter perspective has perhaps greater predictive power, under the assump-

tions that firms trade information without frictions and that consumers do not participate

in the market for their own data.

We cast our analysis in a canonical ratchet-effect setting—where any information col-

lected about a consumer is used to set future prices—with some key modifications. First,

we consider a linear-quadratic-Gaussian model with stationary learning in continuous time.

Second, we introduce noise in the observation of the consumer’s actions, i.e., the quantity

purchased is recorded with error. Third, an intermediary aggregates consumers’ past pur-

chase signals into a one-dimensional rating, and then reveals this rating to short-lived firms

that use it to set prices. Our model can then be seen as one of very sophisticated third-degree

price discrimination. In this setting, the consumer does not control the flow of information

1Data brokers make few attempts at improving transparency. One exception is the Oracle/Bluekai
Registry http://www.bluekai.com/registry/ that reveals to consumers which interest groups they belong to.
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directly. She can, however, distort the level of her purchases away from the myopic optimum,

so to manipulate her own rating, and hence, affect the prices she will face in the future.

In our model, we explicitly ignore any “horizontal” aspect of information revelation. Such

aspects would be directly beneficial to the consumer, by facilitating the matching of content

to her tastes. Instead, we isolate a “vertical” aspect of information revelation that leads to

price discrimination. Furthermore, we choose a formulation where price discrimination is

harmful to consumers in a one-period interaction. This allows us to focus on the equilibrium

effect of information revelation in a dynamic model, which can benefit the consumer by

affecting the dynamics of prices over time.

Main results We derive the following results. For any exponential rating—where the

weight on past signals decays exponentially with time—there exists a unique equilibrium.

Because the incentives to manipulate prices depend on the consumer’s true type, the sensitiv-

ity α of the consumer’s purchases to θ determines the signal-to-noise ration of the quantity

signal. In equilibrium, high types have a stronger incentive to manipulate beliefs down-

ward, resulting in a lower sensitivity of the consumer’s actions to the underlying type, which

reduces the information contained in a rating.

A single rating (i.e., a unique persistence level) yields the same equilibrium outcome as

revealing the full history of signals. The fully revealing rating does not, however minimize

the amount of information revealed by the consumer, nor does it maximize the amount of

information conveyed to the firms. Indeed, a more persistent rating than the fully revealing

one motivates the consumer to reveal more information. This rating transmits more infor-

mation to the firms, as the loss in precision from aggregating the signals is second order.

Conversely, a less persistent rating leads to less information transmitted both due to the

direct technological effect and to the consumer’s equilibrium behavior.

We then turn to the welfare implications of the rating’s persistence. We show that the

firm’s (ex ante) expected profits can be written in terms of the mean and variance of the

equilibrium price. The mean of the equilibrium price is proportional to the mean type and

U-shaped in the persistence of the rating. We interpret the prior mean of the type as an

observable characteristic of a market segment. Thus, for very valuable market segments,

firms would prefer to operate under no information, so to eliminate the ratchet effect and

encourage the consumer to purchase. Conversely, the variance of the equilibrium price is

inverse-U shaped in the persistence parameter. It is related to, but not monotone in the

precision of the firms’ posterior beliefs. Thus, for less valuable segments, firms benefit from

informative ratings. In these cases, the firm-optimal rating is more persistent than the

maximally informative rating: firms are willing to trade-off the precision of the information
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they receive in equilibrium for greater sensitivity of the consumer’s demand to her true type,

which increases the ex ante variance of the price.

Consumer surplus is (almost) the mirror image of producer surplus: if the mean of the

consumer’s type is sufficiently low, the consumer-optimal rating is uninformative. Conversely,

if the mean of the consumer’s type is sufficiently high, consumers prefer an informative rating

to not being tracked, because the presence of an informative rating leads firms to lower prices.

Consumer surplus, however, displays an additional effect, whereby a purchase strategy that

is responsive to the true type (i.e., buys more when the type is high) is per se beneficial.

This third effect can lead the consumer-optimal rating to be more or less persistent than

the unique “public” rating that yields the same equilibrium outcome as observing the full

history of signals. Overall, consumer surplus can be maximized by a more or less persistent

rating, depending on the discount rate and the persistence of the underlying type.

Finally, we turn to the case of ratings that are hidden to the consumer. With hidden

ratings, both the firms and the consumer can signal their private information—the firms

signal the rating and the consumer signals her type. Because prices are observed without

noise, in a pure-strategy equilibrium, the contemporaneous price perfectly reveals the current

rating. Therefore, the current price carries a signal of future prices that affects the consumer’s

incentives to manipulate the rating. The strength of the consumer’s incentive to manipulate

the rating is related to the properties of the consumer’s continuation value, which is a

decreasing and convex function of the current price.2

As a result, the advantage of reducing prices is greater when prices are low and the

consumer buys more units. In particular, a signal of high future prices reduces the value

of manipulation and limits the incentives for the consumer to scale back her purchases.

Conversely, a low price signals a good opportunity to manipulate beliefs downward, and

induces a smaller expansion of the consumer’s purchases. The signaling component is in

addition to the dynamic incentives that affect the consumer’s choice. Therefore, relative to

the case of a publicly observed rating, the consumer’s demand is less sensitive to the current

price when ratings are hidden. Opacity therefore allows firms to maintain higher prices, and

(numerical simulations show that) increases their profits.

Related Literature This paper is most closely related to the literature on behavior-based

price discrimination, e.g., Taylor (2004) and Acquisti and Varian (2005). The main results

in this literature and their implications for consumer privacy are discussed at length in the

surveys by Fudenberg and Villas-Boas (2006, 2015) and by Acquisti, Taylor, and Wagman

(2016). In recent work, Cummings, Ligett, Pai, and Roth (2016) and Shen and Miguel

2This property is the analog of the convexity of the indirect utility function in a static model.
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Villas-Boas (2017) study two-period models in which advertisement messages are targeted

on the basis of the information about consumers’ purchase activity. These papers highlight

trade-offs similar to ours, where the value of targeted advertising (which could be negative)

impacts the equilibrium price of the first-period good and the amount of information revealed

by the consumer.

Our paper leverages the construction of a linear Gaussian rating pioneered in Hörner

and Lambert (2017), which allows us to examine the role of persistence and transparency

of the firms’ information on economic outcomes in a tractable way. Relative to Hörner and

Lambert (2017), we maintain the assumptions of short-lived firms and additive signals. In

other words, the agent does not control the precision of the information directly. However,

while we consider only a restrictive class of ratings, performing equilibrium analysis is more

complex than in the career concerns model of Hörner and Lambert (2017) because we consider

a privately informed agent. This introduces new considerations regarding the equilibrium

precision of signals. Moreover, the value of signaling is not linear in our model, which means

the agent’s optimal action depends on the level of the firms’ beliefs. Therefore, in our paper,

it matters whether the agent knows his own rating.

The reduction and the distribution of surplus when firms learn about the consumer’s type

through an informative rating is due to the ratchet effect (Freixas, Guesnerie, and Tirole,

1985; Laffont and Tirole, 1988). The ratchet effect is also the key economic force underlying

the analysis of privacy in a model with multiple principals. See, e.g., Calzolari and Pavan

(2006) for the case of two principals and Dworczak (2017) for the case of a single transaction

followed by an aftermarket.3. Finally, our welfare analysis addresses the question of optimal

memory and information design in markets (Kovbasyuk and Spagnolo, 2016).

Finally, in related contributions, Heinsalu (2017) analyzes a dynamic game with noisy

signaling and a Gaussian structure, abstracting from information design, while Di Pei (2016)

analyzes performance ratings in a model with privately informed agents and Poisson learning.

2 Model

Players, timing and preferences. A long-lived consumer faces a continuum of short-run

firms in a repeated game in continuous time over an infinite horizon. Firms are indexed by

time t ∈ [0,∞), and each produces a good at zero production costs. At each time t, the

stage game involves firm t as the single supplier of the good at that instant. The timing is

3The ratchet effect appears, with a different interpretation or motivation, in relational contracts with
and without private information (Halac, 2012; Fong and Li, 2016) and in dynamic games with symmetric
uncertainty (Cisternas, 2017b).
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as follows: (i) firm t posts a unit price Pt for its good, and then (ii) the consumer chooses to

purchase a quantity Qt given the observed price. Once the transaction occurs, time evolves

and the same interaction repeats with a different firm.

The consumer discounts the future at rate r > 0. Consuming Qt = q units of the good

at price Pt = p delivers a flow utility

u(θ, q, p) := (θ − p)q − q2

2
(1)

where θt = θ is the consumer’s type at t. We assume that throughout the analysis that the

consumer’s type process is mean-reverting,

dθt = −κ(θt − µ)dt+ σθdZ
θ
t , (2)

and stationary.4 Thus, the consumer’s type is Gaussian, and stationarity implies that

E[θt] = µ and Cov[θt, θs] =
σ2
θ

2κ
e−κ|t−s|. (3)

Because production costs are normalized to zero, firms maximize their expected revenue

from their interaction with the consumer. Namely, if the consumer’s demand for the good

is given by p 7→ Q(p) (and so, the realized purchase at time t is Qt = Q(Pt)), firm t posts a

price that maximizes

pE[Q(p)|Yt], (4)

where Yt is a random variable observed by firm t and that is specified shortly, t ≥ 0 .

Information. We adopt the following information structure. The consumer’s type process

(θt)t≥0 is her private information. The consumer’s purchased quantity is recorded with an

exogenous error by an (unmodeled) intermediary that observes a signal process

dξt = Qtdt+ σξdZ
ξ
t , t > 0,

where (Zξ)t≥0 is a Brownian motion independent of (Zθ)t≥0.

The intermediary aggregates the past signals of the consumer’s action into a one-dimensional

variable Yt, which is the only source of information available to firm t. Building on Hörner

and Lambert (2017), we restrict attention to exponential ratings. Specifically, a consumer

4Mathematically, stationarity boils down to θ0 ∼ N (µ, σ2
θ/2κ) and independent of (Zθt )t≥0.
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rating process (Yt)t≥0 is any Ito process

dYt = −φYtdt+ dξt, t > 0, (5)

where φ > 0. In particular, the linearity of the previous process leads to an exponential

discounting of recorded purchases of the form

Yt = Y0e
−φt +

ˆ t

0

e−φ(t−s)dξs. (6)

where Y0 is the initial value of the rating. We refer to Yt as the consumer’s time-t rating and

to φ > 0 as the persistence level of the rating—the main policy variable under study. We

denote a consumer rating process of persistence φ > 0 by (Y φ
t )t≥0 whenever convenient.

In the baseline specification we assume that the consumer observes the entire history

Y t := (Ys : 0 ≤ s ≤ t). We discuss the cases in which (i) firm t also observes the entire

history Y t (equivalently, ξt) in Section 4, and (ii) firm t observes Yt only, but the rating is

hidden to the consumer in Section 6, t ≥ 0. Finally, the random vector (θ0, Y0) is assumed

to be normally distributed such that the joint process (θt, Yt)t≥0 is a stationary Gaussian

process in equilibrium.

Strategies and Equilibrium Concept At any time t ≥ 0, the consumer observes the

current posted price p, the value of the rating Yt, and her own type θt. A feasible strategy

for the consumer is any process (Qt)t≥0 taking values in R that is measurable with respect

to (p, θt, Yt) and that satisfies standard integrability conditions. Instead, since the firms only

observe the current value of the rating, firm t must choose a price Pt that is measurable with

respect to Yt, t ≥ 0. Given a pair (Pt, Qt), the consumer’s continuation value at time t is

given by

Et
[ˆ ∞

t

e−r(s−t)u(θs, Qs, Ps)ds

]
.

where Et[·] denotes the consumer’s conditional expectation operator.

A linear Markov strategy for the consumer is a feasible strategy Qt that is an affine

function of the current value of (p, θt, Yt), with coefficients that are constant, i.e., independent

of time and of her private history. Similarly for firm t, replacing (p, θt, Yt) by Yt. Abusing

notation, we denote linear Markov strategies by Q(p, θt, Yt) and P (Yt) for the consumer and

firm, respectively, where Q : R3 → R and P : R→ R are linear.

Definition 1 (Linear Markov Equilibrium). A pair (Q,P ) of linear Markov strategies is a

Nash equilibrium if
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(i) At history Yt, p = P (Yt) maximizes pE[Q(p, θt, Yt)|Yt]

(ii) At history (P (Yt), θt, Yt), the process (Q(P (Ys), θt, Ys))s≥t maximizes the consumer’s

continuation utility given Ps = P (Ys), s ≥ t.

In this equilibrium concept, optimality of the consumer’s strategy is verified only on the

path of play, i.e., when firms set prices according to Pt = P (Yt) for all t ≥ 0 (part (ii)).

As a result, the outcome of the game is supported by prices based on the belief that the

consumer’s demand responds to contemporaneous off-path price variation with a sensitivity

that coincides with the weight attached to current posted prices on the path of play. The

justification comes from discrete time, setting in which the consumer’s (linear) best response

given a sequence of prices does not differentiate between a current off-path price versus an

on-path one, as firms do not observe past prices (which leads the continuation game to

remain unchanged after the deviation). The hurdle to confirm optimality off the path of

play in this continuous time setting is thus purely technical.5

Discussion of modeling choices First, instead of studying the reputation dynamics of

a long-lived firm that practices behavior-based price discrimination, we focus on a consumer

who is in the market for different products over time. In other words, the consumer interacts

with a different (imperfectly competitive) industry in each period, and only returns to the

same industry after a long time. In this sense, our simplifying assumptions are that the

consumer is never in the market for the same product twice (i.e., firms are short lived), and

that each firm is a local monopolist. Finally, we observe that the assumption of short-lived

firms is useful to examine the role of ratings but that, under public (noisy) purchase histories,

our Markovian equilibrium remains such in a model with a single firm.

Second, we restrict attention to one-dimensional, continuous ratings. The rating Yt, as

opposed to a coarse categorization of the consumer’s tastes, is an approximation of the

products offered by big-data brokers. Brokers collect data about consumers’ behavior from a

wide variety of sources. Data brokers’ clients (e.g., retail firms) can access information about

several attributes for each individual prospect. However, even a multidimensional map of

a consumer’s preferences does not often contain detailed time-level information. Thus, the

rating does not correspond to a full history of consumers’ actions. On the other hand,

information on each attribute is collected in detailed categories (e.g., point estimates of

annual income vs. coarse income brackets), which we approximate with a continuous rating.

5Specifically, formally defining an auxiliary game with the contemporaneous price p as a parameter. In
discrete time, however, this is straightforward, and so is verifying the optimality of the same linear policy off
the path of play as a byproduct—this is illustrated in Appendix B where a discretized version of the model
is examined.
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Third, an exponential rating as in (6) is the most tractable aggregator of past signals that

retains some attractive properties: it has a natural counterpart in Bayesian updating when

all signals are public (because optimal filtering results in a specific φ that, as we shall see,

depends on equilibrium behavior); it is analogous to stochastic forgetting—perhaps a more

realistic representation of the lifespan of Internet cookies than a deterministic duration.6

3 Equilibrium Analysis

3.1 Firms’ Learning

When the consumer conditions her demand on her type, firm t must form a belief regarding

θt in order to optimally choose a price. But if the time-s realized purchase is linear in

(θs, Ys), s ≤ t, the pair (θt, Yt) is Gaussian, which results in firm t’s posterior belief θt|Yt
being normally distributed. Let Mt := E[θt|Yt] and Σt := E[(θt − Mt)

2|Yt] denote the

corresponding mean and variance.7

Importantly, because in this Gaussian setting Mt is an affine function of Yt, we can ulti-

mately pay attention to strategies that are linear in (θt,Mt). Specifically, will be interested

in linear Markov equilibria in which (i) learning is stationary (in particular, Σt = Σ > 0),

and where (ii) along the path of play, the consumer purchases admit the representation

Qt = αθt + βMt + δµ, (7)

with coefficients that satisfy α > 0, β < 0 and δ ∈ R. As we will see shortly, such an

equilibrium reflects that higher types buy more units of the good (α > 0), and that firms

react with higher prices when they believe the consumer’s type is higher.8 We refer to this

type of equilibrium simply as a linear Markov equilibrium.

Towards stating expressions for (Mt,Σ)t≥0, define the functions

λ(φ, α, β) :=
σ2
θα(α + β) + κσ2

ξ (κ+ φ)−
√

[σ2
θα(α + β) + κσ2

ξ (κ+ φ)]2 − 4κ(σθσξ)2αβφ

2βκσ2
ξ

(8)

G(φ, α, β) :=
αλ(φ, α, β)

φ+ κ− βλ(φ, α, β)
, (9)

6For example, different Internet browsers retain information for varying amounts of time, and different
types of cookies have different automatic expiration dates.

7For notational simplicity, we omit the dependence of the expectation operator—and hence, of (Mt,Σt)—
on the equilibrium strategy.

8That the constant term in the consumer’s equilibrium purchasing process is proportional to µ is just a
convenient normalization. It follows from the type and the beliefs being centered around µ.
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for (φ, α, β) ∈ R2
+×R−. We refer to them as the sensitivity and gain factor, respectively, as

it becomes transparent next.

Proposition 1 (Firm Learning). In a (stationary) linear Markov equilibrium,

Mt = µ+ λ(φ, α, β)[Yt − Ȳ ] and (10)

Σ =
σ2
θ

2κ
[1−G(φ, α, β)], (11)

where (Yt)t≥0 is stationary Gaussian and

Ȳ :=
µ[α + β + δ]

φ

is the expected value of the rating (6) under (7). Moreover, λ(φ, α, β) > 0 and G(φ, α, β) ∈
[0, 1] for all (φ, α, β) ∈ R2

+ × R−.

Because the noise in the rating prevents deviations from equilibrium behavior to be

observed by firms, (10)–(11) hold on and off the path of play. Thus, the consumer can

control future firms’ beliefs by affecting the evolution of the rating. Specifically, given any

feasible purchasing strategy (Qt)t≥0, the law of motion of (Mt)t≥0 is given by

dMt =
[
−φ
(
Mt − µ+ λ(φ, α, β)Ȳ

)
+ λ(φ, α, β)Qt

]
dt+ λ(φ, α, β)σξdZ

ξ
t . (12)

To simplify notation, in what follows we omit the dependence of λ on (φ, α, β) unless needed.

3.2 Consumer’s Problem

The last step required to state the consumer’s problem consists of specifying the price process

that she will face. Because consumers observe their own ratings, they are able to predict the

equilibrium price. However, specifying the consumer’s response to an (off-path) price p 6= Pt

(i.e., the sensitivity of demand) is critical to compute the monopoly price Pt.

Since we are interested in Markov strategies, the weight on p does not depend on whether

we are at an on- or off-path history. Moreover, since firms do not observe past prices, the

continuation game and the other equilibrium coefficients are also unaffected by the deviation.

As will be clear from dynamic programming (e.g., computing the first-order condition from

equation (14)), whenever the candidate equilibrium price is linear in Yt, the consumer’s best-

response problem attaches a weight equal to−1 to the contemporaneous price. Consequently,

we solve for an equilibrium supported by a demand sensitivity of −1 after all histories.9 The

9Refer to Remark 1 by the end of this subsection for more on the Markov assumption and the resulting
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monopoly price in such an equilibrium is characterized in the next lemma.

Lemma 1 (Monopoly Price). Along the path of play of a linear Markov equilibrium with

realized purchases (7), firms choose prices according to

Pt = (α + β)Mt + δµ, t ≥ 0. (13)

The key behind this result is to recognize that the slope of the consumer’s demand is the

same as in a static model. Intuitively, this can be seen from (14) below, noting that (a) the

price Pt enters the flow payoff only, and (b) that Qt affects the continuation value linearly.

Thus, the signaling motive affects the intercept but not the slope of the consumer’s demand.

The consumer then solves the following problem:

max
(Qt)t≥0

E
[ˆ ∞

0

e−rt
[
(θt − Pt)Qt −

Q2
t

2

]
dt

]
subject to

dθt = −κ(θt − µ)dt+ σθdZ
θ
t

dMt = (−φ[Mt − µ+ λȲ ] + λQt)dt+ λσξdZ
ξ
t

Pt = (α + β)Mt + δµ.

In a linear Markov equilibrium, the consumer’s best reply along the path of play is exactly

(7), i.e., Qt = αθt + βMt + δµ. Such an equilibrium can be characterized via dynamic

programming.

Remark 1 (On Markov strategies and the sensitivity of demand). Using the traditional

discretization for (θt, Yt)t≥0, Appendix B examines a sequence of discrete-time versions of the

model indexed by their period length. Along this sequence, it is shown that (i) optimal linear

best-responses along the path of play are also optimal after observing off-path prices, and (ii)

the weight that the linear policy attaches to the current price converges to -1 as the period

length goes to zero. Thus, the Markov assumption places no restriction in discrete time, and

unit demand sensitivity is a limiting property of the consumer’s best-response problem (due

to the impact of its purchase on its continuation value becoming asymptotically linear).

sensitivity of demand that ensues, and their justification via discrete-time versions of the model.
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3.3 Characterization of Linear Markov Equilibria

Let V (θ,M) denote the value of the consumer’s problem when the state’s current value is

(θ,M) ∈ R2. If (α, β, δ) is such that the policy delivered by the HJB equation

rV (θ,M) = sup
q∈R

(θ − [(α + β)M + δµ]︸ ︷︷ ︸
=Pt

)
q − q2

2
− κ(θ − µ)Vθ

+(λq − φ[M − µ+ λȲ ])
∂V

∂M
(θ,M) +

λ2σ2
ξ

2

∂2V

∂M2
+
σ2
θ

2

∂2V

∂θ2

}
(14)

(subject to standard transversality conditions) coincides with (7), then the coefficients (α, β, δ)

fully determine a linear Markov equilibrium.

The combination of (i) quadratic flow payoffs and (ii) Gaussian types and shocks make

the learning and signaling analysis tractable. In particular, the consumer’s best-response

problem is a linear-quadratic optimization problem. It is then natural to look for a quadratic

value function

V (θ,M) = v0 + v1θ + v2M + v3M
2 + v4θ

2 + v5θM

that solves (14), and thus for a linear best response. It is then easy to find equations for the

equilibrium coefficients (α, β, δ) by imposing the condition that the firms correctly anticipate

the consumer’s behavior.

To state the main result of this section, define the auxiliary function

f(φ, α) := − α2(r + 2φ)

2(r + 2φ)α− (r + κ+ φ)(α− 1)
(15)

for (φ, α) ∈ R+ × [0, 1] which is well defined due to −α/2 < f(φ, α) ≤ 0 when α ∈ [0, 1].

Proposition 2 (Existence of a linear Markov equilibrium). There exists a linear Markov

equilibrium with coefficients (α, β, δ) satisfying the following properties:

(i) 0 < α < 1 is the unique solution to the equation

(r + κ+ φ)(x− 1)− xλ(φ, x, f(φ, x))f(φ, x) = 0, x ∈ [0, 1]; (16)

(ii) β = f(φ, α); and

(iii)

δ =
κ(α− 1) + [α + 2f(φ, α)][φ− (α + f(φ, α))λ(φ, α, f(φ, α))]

2(r + φ) + (α + f(φ, α))λ(φ, α, f(φ, α))
. (17)
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Because we are interested in the role of persistence on market outcomes, in what follows,

we make explicit the dependence of (α, β, δ) on φ > 0 whenever required.

3.4 Equilibrium Properties

Before discussing some properties of the equilibrium found, it is instructive to examine a

static benchmark, i.e., a one-shot analog of the dynamic setting under analysis.

A consumer with preferences as in (1) interacts with a firm only once. The firm’s prior

about the consumer’s type has mean µ ∈ R and variance Var[θ] > 0. Finally, suppose that,

before interacting with the consumer, a public signal Y about the consumer’s type is realized.

The signal is general (i.e., it is not necessarily a rating, or Gaussian), and let Y = ∅ if the

signal is uninformative.

Abusing notation, let M := E[θ|Y ]. Given a posted price p, maximization of the con-

sumer’s flow payoff (1) yields a demand of unit slope Q(p) = θ−p. The outcome of the static

Nash equilibrium then entails a purchase and price given by Q = θ −M/2 and P = M/2.

Thus, from an ex ante perspective,

E [P ] =
µ

2
. (18)

We now turn to properties of the equilibrium purchases and prices in the dynamic game

and compare them to the static benchmark. Let P φ
t , Mφ

t denote the equilibrium price and

beliefs as a function of the persistence parameter φ > 0. In particular, observe that

E[P φ
t ] = [α(φ) + β(φ) + δ(φ)]µ (19)

is the equilibrium price from an ex ante perspective.

Proposition 3 (Equilibrium Properties).

(i) The coefficient α(·) satisfies

1/2 <
r + κ+ φ

r + κ+ 2φ
< α(φ) < 1, for all φ > 0.

(ii) The coefficient α(·) is decreasing as φ → 0 and increasing as φ → ∞; and if r ≥ κ,

then α(·) is quasiconvex.10

(iii) Limit coefficients: lim
φ→0

α(φ) = lim
φ→∞

α(φ) = 1; lim
φ→0

β(φ) = lim
φ→∞

β(φ) = −1/2;

and lim
φ→0

δ(φ) = lim
φ→∞

δ(φ) = 0.

10Numerical simulations suggest that this property holds for all (r, κ) ∈ R2
+.
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(iv) Expected price: E[P φ
t ] ∈ (µ/3, µ/2) for all φ > 0 if µ 6= 0, and E[P φ

t ] ≡ 0 if µ = 0.

Moreover, E[(P φ
t − µ/2)2] −→ 0 as φ→ 0 and ∞, for all t ≥ 0.

(v) Exogenous noise: for all φ > 0, the coefficient α(φ) and the expected price E[P φ
t ] are

increasing in σξ/σθ.

In our model, the consumer manipulates the firms’ beliefs to lead them into thinking she

is a lower type. Part (i) shows that the advantage of reducing the firms’ beliefs M (and

thus the price) is higher for higher types, who buy more units. They will thus reduce their

purchases more, resulting in a value of α < 1, i.e., below the static benchmark. Part (ii)

shows this effect is strongest for an intermediate persistence level φ.

Part (iii) studies what happens when ratings become uninformative. With exponential

ratings, this can happen in two ways: the rating can be fully persistent φ = 0, in which

case it is not sensitive to new information; or it can have no memory, in which case new

information is forgotten instantaneously. In other words, the intermediary need not add

noise to the purchase signals (which we do not allow) to generate an uninformative rating,

as extreme persistence levels render Yt useless to the firms. In both cases, the equilibrium

strategies converges to the static benchmark.

Part (iv) shows that, for all ratings φ > 0, the ex ante expectation of the price is below the

static benchmark. Thus, in dynamic contexts, a strategic buyer can induce firms to charge

low prices on average relative to a one-shot interaction. As the rating becomes uninformative,

however, the expected prices converge to their static level.

Finally, part (v) shows that the persistence level of the rating and the exogenous noise

in the purchase signals have dramatically different effects on the equilibrium outcome. As

the noise in the signal σξ increases, the consumer’s incentive to manipulate beliefs decreases,

since firms’ beliefs are less sensitive to the rating. Consequently, the coefficient α becomes

higher, i.e., closer to the static benchmark. Because consumer’s incentives to “hide” are

reduced, the equilibrium price consequently rises in expectation. This contrasts with the

effect of persistence, as both α and the expected price level attain their minimum at some

interior values of φ.

The left panel of Figure 1 (below) illustrates the coefficient α(φ), while the right panel

shows the firms’ posterior variance Σ(φ). In both cases, the dashed line corresponds to values

of φ for which α is increasing.
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Figure 1: (r, σθ, σξ, κ) = (3, 1, 2, 1).

4 Information Revelation

This section examines the interplay between the persistence of a rating and the corresponding

degree of (equilibrium) learning by the firms she faces. Intuitively, since there is a tension

between optimally manipulating prices and signaling willingness to pay, it is useful to evaluate

how much information the consumer strategically transmits via the rating.

We define the “public” persistence benchmark as

ν(α, β) := κ+
γ(α)α(α + β)

σ2
ξ

> 0. (20)

The function γ(α) is the unique positive root of the quadratic x 7→ α2x2/σ2
ξ + 2κx− σ2

θ = 0.

It corresponds to the steady state variance of beliefs for an observer who has access to the

entire history of signals (ξt), when the underlying quantity process places weight α on θt.

The following result establishes that the belief process the outside observer is, in fact,

an exponential rating; and conversely, fixing the consumer’s behavior, those beliefs can be

induced by an exponential rating with the persistence level ν(α, β) defined above.11

Proposition 4 (Learning under Public Histories). Suppose that the purchase process is as in

(7). If firms observe the full history of signals and their beliefs are stationary, their posterior

mean admits the representation

Mt =
µ

ν(α, β)

(
κ− αγ(α)δ

σ2
ξ

)
+
αγ(α)

σ2
ξ

Y
ν(α,β)
t (21)

11Hörner and Lambert (2017) establish an analogous result. Our setup differs from theirs in that (a)
the informativeness of the signal process depends on the consumer’s strategy (α), and (b) the consumer’s
actions—an input into the rating—depend on the level of the firms’ beliefs Mt.
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where (Y
ν(α,β)
t )t≥0 is a (stationary Gaussian) consumer rating process of persistence ν(α, β).

Conversely, if firms only observe a rating of persistence ν(α, β), Mt in (10) satisfies

λ(ν(α, β), α, β) =
αγ(α)

σ2
ξ

and µ− λ(ν(α, β), α, β)Ȳ =
µ

ν(α, β)

(
κ− αγ(α)δ

σ2
ξ

)
.

At this stage, we wish to characterize the ratings φ that induce the same equilibrium

outcome (i.e., allowing the consumer’s behavior to respond) as the observation of the full

history of purchase signals. We formalize this notion as follows.

Definition 2 (Concealing Information). We say that a rating with persistence φ > 0 does

not conceal information about the consumer’s equilibrium behavior if and only if it satisfies

φ = ν(α(φ), f(φ, α(φ))), (22)

where α(φ) is the solution to (16) and β(φ) = f(φ, α(φ)) is given in (15).

Condition (22) can be intuitively understood as follows. If each firm t had observed the

entire history ξt, t ≥ 0, Bayes rule would imply that past observations are discounted at a

rate given by (20). Therefore, if the equilibrium coefficients for a rating with persistence φ

generate a discount factor ν = φ, then the aggregation of signals into a rating does not conceal

any further information about the consumer’s history.12 In other words, any fixed point of

the map φ 7→ ν(α(φ), β(φ)) attains an equilibrium outcome of the game with observable

purchase signals.

A key property of our model is that α(·) is decreasing at any fixed point φ = ν. This

result is instrumental to the welfare analysis in Section 5.

Proposition 5 (Revealing Ratings). Suppose that a rating with persistence φ > 0 does

not conceal information about the consumer’s equilibrium behavior. Then, α(·) is strictly

decreasing at φ.

To understand the result, consider a persistence level φ > 0 that induces the same

beliefs as observing the full history of signals. Then, a marginal reduction of φ has two

effects. First, because beliefs are an affine function of the rating, beliefs also acquire more

persistence. As a result, any change in the rating resulting from a change in demand now

has a more prolonged effect on prices, which makes the consumer more wary of signaling her

type. Second, because now the rating attaches excessively large importance to past behavior,

12In fact, Lemma 4 in the Appendix establishes that φ = ν(α, β) defined in (20) is the unique minimizer
of the firms’ posterior variance Σ defined in (11), given (α, β) fixed.
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it covaries less with the consumer’s current type. Bayesian updating thus punishes this extra

persistence by reducing the sensitivity of the belief—and hence, of prices—to changes in the

rating, which makes the consumer less concerned about purchasing more when her type is

higher.13 The second effect then dominates, reflecting that, due to the inherent linearity of

Gaussian learning, the strength of the impulse-response of beliefs is essentially determined

by the sensitivity with which these react to news.14

We establish the existence and uniqueness of a fixed point in the next Proposition.

Proposition 6 (Uniqueness of Revealing Rating). There exists a unique φ∗ ∈ R+ solving

φ = ν(α(φ), f(φ, α(φ))). Such φ∗ satisfies κ < φ <
√
κ2 + σ2

θ/σ
2
ξ .

Thus, information concealment is a generic property of ratings in the linear Markov

equilibrium under study. Behind the existence of a φ satisfying (22) there is the simple

idea: since (θt, ξt)t≥0 is Gaussian under a linear strategy, observing the full time series of

(ξt)t≥0 leads to a belief process that is also an affine function of a rating determined by

Bayesian updating. Therefore, in a linear Markov equilibrium of this kind, the consumer

does not alter her behavior when firms are instead supplied with the corresponding rating as

a summary statistic of the purchase history; but this means that the firms learn everything

that is available given the coefficient α in the consumer’s strategy and the noise in (ξt)t≥0.

The fact that there is a unique φ∗ satisfying (22) indirectly establishes the uniqueness

of Markovian equilibrium for the case of public signals. Some intuition can be obtained by

considering the consumer’s best reply to the firms’ conjecture about her strategy when all

signals are public: if the firms expect low sensitivity of quantities to the underlying types,

they also view the signals as uninformative, but the consumer then has no reason to hide.

The opposite holds if the firms assign a large weight to the purchase signals. Thus, the firms’

conjecture and the sensitivity of the consumer’s actual behavior are strategic substitutes.

The degree of persistence φ∗ that conceals no information about the consumer’s behavior

does not, however, maximize learning in equilibrium. Intuitively, this is because changing

the persistence of the rating leads to a change in the consumer’s behavior. In particular,

as φ affects α, a different persistence level φ 6= φ∗ may induce the consumer to reveal more

information. As a result, the precision of the firms’ beliefs may increase even if the new rating

conceals some of the information contained in the purchase signals. In the next result, we

establish a property of the gain function G(φ, α, β) defined in (9).

13As shown in the proof of Lemma 4, λφ(φ, α, β) = λ(φ, α, β)/[φ+ κ] > 0 at φ = ν(α, β).
14The trade-off between persistence and sensitivity also arises in signal-jamming models. See, for instance,

Cisternas (2017a) in the context of career concerns.
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Proposition 7 (Maximizing Learning). At (φ, α, β) = (φ∗, α(φ∗), f(φ∗, α(φ∗))), Gφ = Gβ =

0 and Gα > 0. Since α(·) is strictly decreasing at φ∗, there exists a rating φ < φ∗ that

generates more information.

By definition of φ∗, Gφ(φ∗, α(φ∗), f(φ∗, α(φ∗))) = 0, so changing the persistence of the

rating only has a second-order effect on learning, everything else equal. Increasing α, how-

ever, has a first-order positive effect on learning, as the rating now covaries more with the

consumer’s type. Interestingly, increasing β marginally at (φ∗, α(φ∗), f(φ∗, α(φ∗))) has no

first-order effect on the amount of information transmitted. In fact, since β is corresponds

to the coefficient on the firm’s belief in the consumer’s purchase process, a small change in it

does not affect the informativeness of (ξt) in the case when the whole history of such signals

is revealed. But since at φ∗ the rating perfectly accounts for the contribution of past beliefs

to (ξt), a small change in β has negligible effects on learning.15

From now on we refer to G∗(φ) := G(φ, α(φ), f(φ, α(φ))) ∈ [0, 1] as the equilibrium gain

factor given a rating φ > 0. Figure 2 (parametrically) plots the latter as a function of the

difference φ− ν(φ). It shows that the gain factior attains it unique maximum to the left of

the vertical axes. The vertical axes corresponds to the fixed point of the ν(·) map, i.e., to

the fully revealing rating φ∗ (in this example, this is attained by φ ≈ 1.5).
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G
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Figure 2: (r, σθ, σξ, κ) = (3, 1, 2, 1).

15This need not be the case at other degrees of persistence different from φ∗. When φ conceals information
about the consumer’s behavior, increasing β can lead to a first-order change in G due to the information
conveyed by regressing θt on (unobserved to the firm) past beliefs (Ms)s≤t embedded in the rating.
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5 Welfare Effects of Persistence

5.1 Static Benchmark

We revisit the static benchmark and derive its welfare properties. Recall that the equilibrium

price and quantity in the static benchmark are given by P = M/2 and Q = θ −M/2,

respectively, where M = E[θ|Y ] and Y is the public signal available.

As a result, ex ante consumer surplus and profits are given by

CSstatic

Y =
1

2
E
[
(θ − P )2

]
and Πstatic

Y = E[PQ] = E[P 2].

However, using that E[P ] = µ/2 and Cov[θ,M ] = Var[M ] (consequence of the law of iterated

expectations), these expressions can be conveniently rewritten as

CSstatic

Y =
1

4
Var[θ] + E[P ]

(
µ− 3

2
E[P ]

)
︸ ︷︷ ︸

=µ2/8

−3

8
Var[M ], (23)

Πstatic

Y =
µ2

4
+

Var[M ]

4
. (24)

In a static model, finer information structures, induce greater variability in the firm’s

posterior mean, which unambiguously hurts the consumer and benefits the firms.16 From

the firm’s perspective, better information allows it to better tailor its price to the demand θ,

thus improving profits from an ex ante perspective. From the consumer’s perspective, more

precise information results in a higher degree of correlation between her type and the price.

In other words, the consumer is now more likely to face a higher price whenever her demand

is high, which reduces her surplus on average.

5.2 Dynamic Setting

We now analyze the effect of the rating’s persistence on firm profits and consumer sur-

plus separately, beginning with the former. Omitting the dependence of (α, β, δ) on φ for

notational convenience, firm’s t ex ante profits are given by

Π(φ) := E
[

[(α + β)Mt + δµ]︸ ︷︷ ︸
=Pt

) [αθ + βMt + δµ]︸ ︷︷ ︸
=Qt

]
= E[(P φ

t )2] = E[P φ
t ]2 + Var[P φ

t ],

16For G1 ⊆ G2 two sigma algebras, Var[E[θ|Gi]] = E[(E[θ|Gi])2] − µ2, i = 1, 2. But since E[θ|G1] =
E[E[θ|G2]|G1], Jensen’s inequality yields E[(E[θ|G1])2] ≤ E[E[(E[θ|G2])2|G1]] = E[(E[θ|G2])2].
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where the second equality follows E[Qt|Yt] = Pt. By stationarity, both Π(φ) and CS(φ)

(below) are independent of time.

The expression for Π(φ) highlights two drivers of firm profits in our environment, i.e., the

ex ante mean and variance of the equilibrium price. Recall that expected prices are given by

E[P φ
t ] = [α(φ) + β(φ) + δ(φ)]µ,

where α(φ) + β(φ) + δ(φ) ∈ (1/3, 1/2) for all φ > 0 from Proposition 3. In other words, all

three coefficients in the consumer’s strategy determine the behavior of the average price.

Proposition 8 (Average Equilibrium Price). Suppose that κ ≥ max{r, σθ/
√

3σξ}. Then,

α′(φ∗) + β′(φ∗) + δ′(φ∗) > 0. Thus, E[P φ
t ] > E[P φ∗

t ] in a neighborhood to the right of φ∗.

Under the conditions of Proposition 8, concealing some information by making the rating

φ less persistent than the fully revealing benchmark φ∗ can actually increase the expected

price. This is slightly surprising in light of the fact that α′(φ∗) < 0, and hence, making the

rating less persistent conceals information and reduces the amount of information revealed

by the consumer. But this result is about the average price, not the extent of learning, and

the constant term δ(φ) increases sufficiently to offset the first effect.

Now we turn to the role of learning. By the projection theorem for Gaussian random

variables,

Var[P φ
t ] = Var[Mt](α(φ) + β(φ))2 = Var[θt]G

∗(φ)(α(φ) + β(φ))2.

Thus, the ex ante variance of the firms’ posterior beliefs is proportional to the variance

of the fundamental, scaled by the equilibrium gain factor G∗ that measures the extent of

the firms’ learning. However, the variance of the equilibrium price also depends by the

sensitivity of the consumer’s actions to θ and M . Therefore, the shape of the equilibrium

coefficients determine the relationship between the amount of learning and the variance of

the equilibrium price.

Proposition 9 (Variance of the Equilibrium Price).

(i) α′(φ∗) + β′(φ∗) < 0. Thus, Var[P φ
t ] > Var[P φ∗

t ] in a neighborhood to the left of φ∗.

(ii) If r ≥ κ, α(φ) + β(φ) is decreasing over (0, φ∗]. Thus, Var[P φ
t ] > Var[P φ†

t ] for some

φ < φ† := arg max
φ∈[0,φ∗]

G∗(φ).

This result shows that the variance of the equilibrium price increases locally if ratings

become more persistent than the fully revealing one. Furthermore, if r ≥ κ (a condition
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that does not appear necessary from numerical simulations), firms would prefer a rating

even more persistent than the learning-maximizing one, as this induces a more sensitive

equilibrium purchase process (i.e., a higher α + β).

We now turn to the consumer’s side. In particular, let

CS(φ) := E
[ ˆ ∞

t

e−r(t−s)
{

(θ−[(α + β)Ms + δµ]︸ ︷︷ ︸
=Ps

) (αθ + βMs + δµ)︸ ︷︷ ︸
=Qs

− (αθ + βMs + δµ)2

2︸ ︷︷ ︸
=Q2

s/2

}
ds
]

denote the (normalized) ex ante discounted consumer surplus from a time-t perspective.

Proposition 10 (Consumer Surplus). Ex ante consumer surplus is given by

CS(φ) = α(φ)

(
1− α(φ)

2

)
σ2
θ

2κ
+ E[P φ

t ]

(
µ− 3

2
E[P φ

t ]

)
+ A(φ)

σ2
θ

2κ
G∗(φ).

where

A(φ) :=
α(φ)2

2
+ β(φ)− 3

2
(α(φ) + β(φ))2 < 0, for all φ > 0.

Because we know (Proposition 3) that E[P φ
t ] > µ/3, the second term in CS(φ) is negative

and decreasing in the expected price. In other words, the ratchet-type forces identified here

help the consumer through a lower price. Opposing this dynamic benefit are two forces.

First, by shading down her demand (α < 1), the consumer moves away from her static

optimum. This reduces consumer surplus, as reflected in the first term, which is increasing

in α since we know from Proposition 3 that α(φ) ∈ (1/2, 1). And second, the consumer

transmits information about her willingness to pay to future firms. This makes the price

positively vary with the consumer’s type and reduces her surplus proportionally to the firms’

information gain G∗(φ).

5.3 Optimal Persistence

The results in the previous subsection have implications for the consumer- and firm-optimal

persistence level. Because both consumer and producer surplus can be written in the form

a+ bµ2, we now concentrate on the extreme cases of µ = 0 and µ→∞. Each case helps us

isolate one dimension of the conflicting interests of firms and consumers. Furthermore, these

two cases correspond to market segments where, based on publicly observable variables, the

consumer’s average willingness to pay is very low (high). In particular, the case µ = 0

identifies the role information transmission, and the case µ → ∞ focuses our attention on

the average price level.
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Proposition 11 (Optimal Persistence).

(i) If µ = 0, the consumer’s optimal rating is φCS is either zero or infinite, and the firm’s

optimal rating φPS is interior.

(ii) As µ → ∞, the consumer’s optimal rating is φCS is interior, and the firm’s optimal

rating φPS is either 0 or infinite.

(iii) For any µ ≥ 0, total surplus is maximized by φ = 0 or φ→∞.

To summarize, under some conditions, firms do not want intermediaries to reveal the

entire history of signals. Every numerical simulation suggests that the firm’s optimal rating

in the case µ = 0 is, in fact, φPS < φ†.17 That is, for markets with low average willingness

to pay, the firms’ ideal rating is more persistent than the one maximizing learning. For

markets with high average willingness to pay, firms would prefer to commit to not observing

any information. Because firms always suffer a dynamic loss due to consumers strategically

manipulating prices—i.e., α+ β + δ < 1/2—they would prefer uninformative ratings in this

case, as equilibrium prices rise to the static benchmark on average.

Consumers prefer anonymity to tracked purchases when their average willingness to pay

is low. When µ = 0, prices are identically equal to zero in expectation in both the static

and the dynamic cases; the benefit of lowering prices from an ex ante perspective is thus

absent. The consumer then prefers either φ = 0 or infinite, as no learning takes place in

either case (G∗(φ) → 0 as φ → 0,∞). But the equilibrium price is constant as a result,

which induces the consumer to choose her static optimum. However, consumers prefer an

informative rating to anonymous purchases when their average willingness to pay is high.

The limit case µ → ∞ highlights the main tension present in market segments with high

willingness to pay: more than information transmission, it is the desire of consumers (firms)

to pay low (charge high) prices.

Whether consumers benefit from low or high persistence depends on parameter values.

Numerical simulations suggest the consumer’s ideal persistence level (for the case µ → ∞)

can be higher or lower than the learning-maximizing φ† and the fully revealing φ∗. Further-

more, as is intuitive, the optimal persistence level appears to be increasing in the discount

rate r. Figure 3 illustrates the expected price level (normalized by µ) as a function of the

firms’ posterior variance: in the left panel, the discount rate is low (1/2 = r < κ), and the

price attains its minimum for a rating that is more persistent than the variance-minimizer;

conversely, in the right panel (κ < r = 3), the price is minimized by a less persistent rating

17And every numerical simulation shows that φ† := arg max
φ∈[0,φ∗]

G∗(φ) is the global maximizer of G∗.
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than the one that maximizes the firms’ learning. In both cases, the parameter φ increases

in the direction of the arrow.
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Figure 3: Expected Price Level, (σθ, σξ, κ) = (1, 2, 1); r = 1/2 (left); r = 3 (right)

The intuition for the comparative statics with respect to r is based on the the value of

manipulating the firms’ beliefs. Very patient consumers value having a long-term impact

on the price. Thus, a very persistent rating increases their benefit of reducing the quantity

they purchase today and leads firms to lower the current price. These consumers may then

prefer ratings with high persistence, i.e., ratings that can potentially “trap them” for long

in a specific category, in the hope of manipulating the category they end up in. Conversely,

impatient consumers care about having an immediate effect on the price; consequently, a

higher rating that is very sensitive to new information, but forgets it quickly, maximizes

their incentives to manipulate—and minimizes the price.

6 Hidden Ratings

In this section we study the case in which the rating Yt observed by firm t is hidden to the

consumer. When this occurs, firms’ beliefs are private, and hence, observing a price today

can provide the consumer with information about future prices.

In this context, we say that a strategy for the consumer is linear Markov if it corresponds

to a linear function of (θt, p), where p is the contemporaneous price. Because the information

set for each of the firms remains unchanged, the notion of linear strategy for the firms is as

in the previous section. Thus, the objects of interest are

Q(θ, p) = q0 + q1θ + q2p and

P (Y ) = p0 + p1Y.

Under a pricing strategy of this form, the consumer learns her categorization in real time
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along the path of play. In discrete time, with full-support noise, deviations in the posted

price cannot be detected, as the noise in ξ could have taken the rating to take any value;

i.e., all prices are on path. In continuous time, however, the price process that results from

a linear Markov pricing strategy will have continuous paths; thus deviations in posted prices

can be detected.

Because this issue is a consequence of continuous time only, we assume that the consumer

simply ignores the deviation (and thus responds to both the current deviation and future

prices with the same strategy Q(θ, p)). Consequently, we see the program solved in this

section as the limiting case of a sequence of discrete-time games in which the period length

shrinks to zero under appropriately scaled noise.

Definition 3 (Equilibrium with Hidden Rating). A profile (Q,P ) of linear Markov strategies

is a Nash equilibrium if

(i) P (Yt) = p0 + p1Yt maximizes pEt[q0 + q1θt + q2p|Yt], and

(ii) Qt = Q(θt, Pt), t ≥ 0, is optimal for the consumer when firms price according to

P (Yt) = p0 + p1Yt, t ≥ 0.

It is easy to see that firm t will choose a price of the form P (Y ) = −[q0 + q1Mt(Yt)]/2q2.

We therefore look for an equilibrium in which Mt = m0 +m1Yt that yields

p0 = −q0 + q1m0

2q2

and p1 = −q1m1

2q2

. (25)

With this in hand, the on-path purchases process can be written as

Qt = q0 + q1θt + q2

[
−q0 + q1Mt

2q2

]
︸ ︷︷ ︸

Pt=

=
q0

2︸︷︷︸
δ:=

+ q1︸︷︷︸
α:=

θt +−q1

2︸︷︷︸
β:=

Mt,

which is again of the form (7) with, in addition, β = −α/2. The price process, however,

differs from the public ratings case.

Recall from Proposition 2 that the linear Markov equilibrium under study reduced to a

single equation (16) in the variable α. Moreover, we had β = f(φ, α) ∈ (−α/2, 0) for all

α ∈ [0, 1]. While in this case, β = −α/2, interestingly, an almost identical characterization

holds for α = q1 in this hidden case.

Proposition 12 (Equilibrium Characterization). There exists a unique linear Markov equi-

librium with q1 > 0. In this equilibrium, q1 ∈ (0, 1) is given by the unique solution to

ghidden(α) := (r + κ+ φ)(α− 1) + αλ(φ, α,−α/2)
α

2
= 0, α ∈ R+. (26)
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In addition, m1 = λ(φ, q1,−q1/2) and

q2 = − 2(r + 2φ)

2(r + 2φ) + q1λ(φ, q1, q1/2)
.18

The previous Proposition states that there is always a unique equilibrium in which de-

mand has positive sensitivity to changes in the consumer’s type. Moreover, such sensitivity

is determined by the same equation for α in the public case replacing f(φ, α) by −α/2.

We conclude the analysis by comparing the equilibrium outcomes in the hidden- vs.

observable-rating case, as a function of the observable variables (θt, Pt) for the consumer,

and Yt for the firms. To unify notation, let

Qt = qobs0 + qobs1 θt + qobs2 Pt

Pt = pobs

0 + pobs

1 Yt (27)

denote the realized demand and prices along the path of play of a linear Markov equilibrium

when the rating is observed by the consumer (in particular, qobs1 = α) and replace ‘obs’ by

‘hidden’ when the rating is hidden. Observe that all these coefficients are a function of φ:

Proposition 13 (Role of Transparency). In the linear Markov equilibria, for all φ > 0:

(i) Signaling: qobs1 (φ) > qhidden1 (φ).

(ii) Sensitivity of demand: −1 < qobs2 (φ) < qhidden2 (φ) < 0.

(iii) Price volatility: 0 < pobs
1 (φ) < phidden

1 (φ).

With hidden ratings, both the firms and the consumer can signal their private informa-

tion. In particular, the contemporaneous price reveals the current rating. Thus, the price

carries a signal of future prices. In particular, a high price signals the rating is high, which

reduces the value of manipulation and limits the extent to which the consumer scales back.

This is due to a convexity property of the consumer’s value, as a function of the current

price. This property is the analog of the convexity of the indirect utility function in a static

model. Thus, the advantage of reducing prices is greater when prices are low and the con-

sumer buys more units. Conversely, a low price signals a good opportunity to manipulate

beliefs downward, and induces a smaller expansion of the consumer’s purchases. Therefore,

demand is less sensitive to price when ratings are hidden.

18Refer to the proof for the expression for q0.
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7 Conclusion

In this paper, we investigate the allocation and welfare consequences of rating consumers

based on their purchase histories and using the information so-gained to price discrimi-

nate. Strategic consumers react to the possibility of firms ratcheting up prices by taking

actions that reduce the amount of information revealed to the market via the rating. More

specifically, we have focused on the effects of a rating’s persistence and transparency on the

level and terms of trade in a setting where a consumer purchases a good from a different

monopolist in every period.

In the future, it would be useful to relax several of our simplifying assumptions. For

instance, we could contrast the leading case of exponential ratings, i.e., a stochastic memory,

with the case of a moving window, i.e., a deterministic memory (Hörner and Lambert, 2017).

Deriving the fully optimal rating in our setting appears challenging but not entirely out of

reach. Perhaps the most interesting direction would involve formalizing a market demand

for consumer ratings, and so endogenizing the intermediary’s equilibrium persistence and

transparency policy.
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Appendix A: Proofs

Proofs for Section 3

Proof of Proposition 1. Suppose that the firms expect the consumer to purchase according

to (7), and that M = ρ+ λYt, some λ0 ∈ R and λ > 0. In this case, we can write (7) as

Qt = δµ+ αθt + βMt = δµ+ βρ︸ ︷︷ ︸
δ̂:=

+αθt + βλ︸︷︷︸
β̂:=

Yt. (A.1)

We seek for a stationary Gaussian solution to (θt, Yt)t≥0 under the previous purchase process.

Given the linear dynamics

dYt = [−(φ− β̂)Yt + δ̂ + αθt]dt+ σξdZ
ξ
t︸ ︷︷ ︸

=−φYtdt+dξt under (A.1)

(A.2)

dθt = −κ(θ − µ)dt+ σθdZ
θ
t , t > 0,

this boils down to (Y0, θ0) being normally distributed with mean ~µ ∈ R2 and covariance

matrix Λ suitably chosen. In particular, observe that under any such solution,

Yt = Y0e
−φt +

ˆ t

0

e−φ(t−s)[(δ̂ + αθs + β̂Ys)ds+ σξdZ
ξ
t ] = Y0e

−φt +

ˆ t

0

e−φ(t−s)dξs.

To this end, define the matrices

X :=

[
Y

θ

]
; A0 :=

[
δ̂

κµ

]
; A1 :=

[
φ− β̂ −α

0 κ

]
; B :=

[
σξ 0

0 σθ

]
Z :=

[
Zξ
t

Zθ
t

]

and notice that dXt = [A0 − A1Xt]dt+BdZt, t > 0, and that A1 is invertible. Because this

stochastic differential equation is linear and X0 is Gaussian, we conclude that

Xt = e−A1tX0 +

ˆ t

0

e−A1(t−s)A0dt+

ˆ t

0

e−A1(t−s)BdZs.

is Gaussian. Imposing that X0 is independent of (Zt)t≥0, stationarity then requires

E[Xt] = µ̂ ⇔ e−A1tµ̂+ [A−1
1 − e−A1tA−1

1 ]A0 = µ̂ and

Var[Xt] = Λ ⇔ e−AttΛe−A
T
1 t + e−A1tVar

[ˆ t

0

eA1sBdZs

]
e−A

T
1 t = Λ,

where Var[·] denotes the covariance matrix operator.
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Observe that the first condition leads to ~µ = A−1
1 A0. Regarding the second condition,

differentiating this one and using that Var
[´ t

0
eA1sBdZs

]
=
´ t

0
eA1sB2eA

T
1 sds reduces it to

−A1Λ− ΛAT1 +B2 = 0.

Using that ~µ = (E[Yt],E[θt])
T and that Λ11 = Var[Yt], Λ12 = Λ21 = Cov[θt, Yt] and Λ22 =

Var[θt], it is then easy to verify that the previous stationary system has as solution

E[θt] = µ, E[Yt] =
δ̂ + αµ

φ− β̂
, Var[θt] =

σ2
θ

2κ
, (A.3)

Var[Yt] =
1

2(φ− β̂)

[
σ2
ξ +

α2σ2
θ

κ(φ− β̂ + κ)

]
and Cov[θt, Yt] =

ασ2
θ

2κ(φ− β̂ + κ)
. (A.4)

Thus, when (Y0, θ0) is jointly Gaussian with (~µ,Λ) as defined above, the process (θt, Yt) is

stationary Gaussian under (7).

To finish the proof, we need to determine ρ ∈ R and λ > 0 that are consistent with Bayes’

rule and make learning (i.e., (Mt,Σt)t≥0) stationary. Let Ȳ := E[Yt]. By the projection

theorem for Gaussian random variables,

Mt = E[θt] +
Cov[θt, Yt]

Var[Yt]
(Yt − Ȳ )

= µ+ λ

(
Yt −

δ̂ + αµ

φ− β̂

)
= µ− δ̂ + αµ

φ− β̂
λ+ λYt,

which leads to the following system of equations for (ρ, λ):

ρ = µ− δ̂ + αµ

φ− β̂
λ = µ− δµ+ βρ+ αµ

(φ− βλ)
λ

⇒ ρ = µ
[φ− βλ]− [δ + α]λ

φ
, and (A.5)

λ =
ασ2

θ(φ− βλ)

α2σ2
θ + κσ2

ξ (φ+ κ− βλ)
. (A.6)

In particular, ρ = µ− λȲ , where

Ȳ =
µ

φ− βλ

[
α + β + δ − βλ[β + α + δ]

φ

]
=
µ[α + β + δ]

φ
.
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Also, since β < 0, the previous equation for λ has two real roots given by

λ± =
−`±

√
`2 − 4κσ2

ξαβσ
2
θφ

−2κσ2
ξβ

where ` := ασ2
θ [α+β]+κσ2

ξ (φ+κ). Since the denominator is positive, the only positive root

is λ+, which we simply denote as λ hereafter.

Finally, by the projection theorem for normal random variables

Σ := Var[θt|Yt] = Var[θt]−
Cov[θt, Yt]

2

Var[Yt]

=
σ2
θ

2κ
− λ ασ2

θ

2κ(φ+ κ− βλ)︸ ︷︷ ︸
=Cov[θt,Yt]

=
σ2
θ

2κ
[1−G(φ, α, β)] .

Also, G(·) ∈ [0, 1] follows from α > 0 and the Cauchy-Schwarz inequality. This concludes

the proof. �

Proof of Lemma 1. Consider a linear Markov strategy Q(p, θ, Y ) for the consumer with

weight equal to −1 on the contemporaneous price. Fix t > 0. Because all firms s < t

assumed that (7) is followed along the path of play, Mt = ρ + λYt from the perspective of

firm t. Thus, we can write

Qt = Q(p, θt,Mt) = q0 + αθt + q2Mt − p

for some coefficients q0, α and q2. Importantly, the weight on the price does not change under

this linear transformation.

Firm t therefore solves

max
p

pE[q0 + αθt + q2Mt − p]⇔ P (Mt) =
q0

2︸︷︷︸
p0:=

+
α + q2

2︸ ︷︷ ︸
p1:=

Mt. (A.7)

Along the path of play of a Markov equilibrium, therefore, firms expect

Qt = q0 + αθt + q2Mt − Pt
=

q0

2
+ αθt +

q2 − α
2

Mt.

But this shows that if the firms expect a purchase process Qt = δµ + αθt + βMt to be
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realized, they will price according to Pt = δµ+ (α+ β)M . Once the coefficients (α, β, δ) are

determined, simple algebra shows that prices are supported by the belief that the consumer

follows the Markov strategy

Q(p, θt, Yt) = 2δµ+ ρ[α + 2β] + αθt + λ(φ, α, β)[α + 2β]Yt − p,

where λ(φ, α, β) is given in (8). This concludes the proof. �.

Proof of Proposition 2. Guess a quadratic solution V = v0 +v1θ+v2M+v3M
2 +v4θ

2 +v5θM

to the HJB equation (14), i.e.,

rV (θ,M) = sup
q∈R

{
(θ − [(α + β)M + δµ])q − q2/2− κ(θ − µ)Vθ

+(λq − φ[M − ρ])
∂V

∂M
(θ,M) +

λ2σ2
ξ

2

∂2V

∂M2
+
σ2
θ

2

∂2V

∂θ2

}
where we have used that µ− λȲ = ρ in the drift of (Mt)t≥0, and ρ is defined in (A.5).

The first-order condition reads

q = θ − [δµ+ (α + β)M ] + λ[v2 + 2v3M + v5θ]

= −δµ+ λv2 + [1 + λv5]θ + [2λv3 − (α + β)]M (A.8)

which leads to the following system matching coefficient conditions:

δµ = −δµ+ λv2

α = 1 + λv5

β = 2λv3 − (α + β). (A.9)

By the envelope theorem, moreover,

(r + φ)[v2 + 2v3M + v5θ] = −(α + β)[δµ+ αθ + βM ]− κ(θ − µ)v5

+[λ(δµ+ αθ + βM)− φ(M − ρ)]2v3 (A.10)

which yields the following system

(r + φ)v2 = −(α + β)δµ+ κµv5 + [λδµ+ φρ]2v3

(r + 2φ)2v3 = −(α + β)β + 2v3λβ

(r + κ+ φ)v5 = −(α + β)α + 2v3λα (A.11)
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and using that v2, v3 and v5 can be written as a function of α, β and δµ, this system becomes

(r + φ)
2δµ

λ
= −(α + β)δµ+ κµ

α− 1

λ
+ [λδµ+ φρ]

α + 2β

λ

(r + 2φ)
α + 2β

λ
= −(α + β)β + β(α + 2β)︸ ︷︷ ︸

=(β)2

(r + κ+ φ)
α− 1

λ
= −(α + β)α + α(α + 2β)︸ ︷︷ ︸

=αβ

(A.12)

From the last two equations

(r + 2φ)α(α + 2β) = (r + κ+ φ)β(α− 1)

⇒ β = f(φ, α) :=
−(α)2(r + 2φ)

2(r + 2φ)α− (r + κ+ φ)(α− 1)
∈ (−α

2
, 0) when α ∈ (0, 1).

Plugging this in the expression for λ(φ, α, β) yields

λ(φ, α, f(φ, α)) =

[
`2(φ, α, f(φ, α))− 4κσ2

ξσ
2
θf(φ, α)αφ

]1/2 − `(φ, α, f(φ, α))

−2κσ2
ξf(φ, α)

> 0, (A.13)

where

`(φ, α, β) = σ2
θα[α + β] + κσ2

ξ (φ+ κ). (A.14)

Observe also that α2 +αf(φ, α) = α[α+f(φ, α)] ≥ α2/2 > 0 when α ∈ [0, 1], and so `(α) > 0

over the same range.

Letting g(α) := (r + κ + φ)(α − 1) − λ(φ, α, f(φ, α))αf(φ, α) for α ∈ [0, 1], we are then

left with α satisfying the equation

g(α) = 0. (A.15)

Lemma 2. There is a unique α ∈ [0, 1] satisfying the previous equation.

Proof : Fix φ > 0. Observe that

• As α → 1: f(φ, α) → −1/2 and lim
α→1

λ(φ, α, f(φ, α)) > 0 for all φ > 0. Hence,

lim
α→1

g(α) > 0.

• As α → 0: f(φ, α) → 0 and f(φ, α)λ(φ, α, f(φ, α)) → 0 for all φ > 0. Hence,

lim
α→0

g(α) < 0.
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The existence of α ∈ (0, 1) then follows from continuity of g(·).
To show uniqueness, we prove that α 7→ −λ(φ, α, f(φ, α))αf(α) is strictly increasing in

[0, 1]. To this end, notice first that since −λ(φ, α, f(φ, α))f(φ, α) > 0 in [0, 1], it suffices

to show that α 7→ H(φ, α) := −λ(φ, α, f(φ, α))f(φ, α) is strictly increasing. Towards a

contradiction, suppose that there is α̂ ∈ (0, 1) s.t. Hα(φ, α̂) = 0, where Hα denotes the

partial derivative of H with respect to α. But this occurs if and only if

`α(φ, α̂) [`(φ, α̂)−
(
`2(φ, α̂)− 4κσ2

ξσ
2
θf(φ, α̂)(φ, α̂)φ

)1/2
]︸ ︷︷ ︸

<0, as f<0

= 2κ(σθσξ)
2[fα(φ, α̂)α̂ + f(φ, α̂)]φ.

Moreover, straightforward algebra shows that

fα(φ, α)α = f(φ, α)︸ ︷︷ ︸
<0

− α2(r + 2φ)(r + κ+ φ)

[2α(r + 2φ)− (r + κ+ φ)(α− 1)]2︸ ︷︷ ︸
>0

< 0 for α ∈ [0, 1]

Thus, `α(φ, α̂) = σ2
θ [2α+fα(φ, α̂)α̂+f(φ, α̂)] > 0, otherwise the left-hand side of the previous

condition is positive, while the right-hand side is negative.

Rearranging terms, squaring both sides, and dividing by 4κ(σθσξ)
2φ in the first-order

condition yields

0 = `α(φ, α̂){`(φ, α̂)[−fα(φ, α̂)α̂− f(φ, α̂)] + `α(φ, α̂)f(φ, α̂)α̂}︸ ︷︷ ︸
A:=

(A.16)

+κ(σθσξ)
2[−fα(φ, α̂)α̂− f(φ, α̂)]2φ︸ ︷︷ ︸

>0

so we must have that A < 0. Using that `(φ, α) = σ2
θα[α + f(φ, α)] + κσ2

ξ (φ + κ) and that

−fα(φ, α̂)α̂− f(φ, α̂) > 0, we conclude that

[α̂2 + α̂f(φ, α̂)][−fα(φ, α̂)α̂− f(φ, α̂)] + [2α̂ + α̂fα(φ, α̂) + f(φ, α̂)]α̂f(φ, α̂) < 0

⇔ α̂2[−α̂fα(φ, α̂) + f(φ, α̂)] < 0

But −α̂fα(φ, α̂) + f(φ, α̂) = α2(r+ 2φ)(r+κ+φ)/[2α(r+ 2φ)− (r+κ+φ)(α− 1)]2 > 0, we

reach to a contradiction. Since Hα(φ, α) > 0 must hold for some α ∈ [0, 1], the continuity of

Hα implies that α 7→ H(φ, α) is strictly increasing, which concludes the proof. �

Now we turn to δ. Recall from the first equation in (A.12) that

(r + φ)
2δµ

λ
= −(α + β)δµ+ κµ

α− 1

λ
+ [λδµ+ φρ]

α + 2β

λ
,
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where ρ defined in (A.5) is itself a function of δ:

ρ = µ
[φ− βλ]− [δ + α]λ

φ
.

Plugging this expression in the previous equation, straightforward algebra shows that[
2(r + φ)

λ
+ α + β

]
︸ ︷︷ ︸

>0

δµ = µ

[
κ(α− 1)

λ
+
α + 2β

λ
[φ− (α + β)λ]

]
.

If µ = 0 this equation is trivially satisfied (and v2 = 0, leaving the rest of the system

unaffected). In this case, the price and purchase process along the path of play have no

intercept. If µ 6= 0, we have that

⇒ δ =
κ(α− 1) + [α + 2β][φ− (α + β)λ]

2(r + φ) + (α + β)λ

∣∣∣∣∣
(λ,β)=(λ(φ,α,f(φ,α)),f(φ,α))

(A.17)

and so δ admits a solution for all range of parameters. Thus, we can always write the

intercept of the purchase process as δµ.

To conclude the proof of the proposition:

1. From the three matching coefficient conditions (A.9), v2, v3 and v5 are determined using

δ, α and β:

v2 =
2δµ

λ
, v3 =

α + 2β

2λ
> 0, and v5 =

α− 1

λ
< 0.

As for v1 and v4 (corresponding to θ and θ2 in the value function) these can be obtained

via the envelope theorem in the HJB equation. Namely:

(r + κ)[v1 + 2v4θ + v5M ] = (δµ+ αθ + βM) [1 + v5λ]− v5φ [M − ρ]

−2v4κ(θ − µ)

leads to the system

(r + κ+ φ)v5 = β [1 + v5λ]︸ ︷︷ ︸
=α from (A.9)

= αβ which we already had, and

2(r + κ)v4 = α[1 + λv5]− 2v4κ⇒ v4 =
α2

2(r + 2κ)

(r + κ)v1 = δµα + v5φρ⇒ v1 =
δµα

r + κ
+

φραβ

(r + κ+ φ)(r + κ)
(A.18)
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The coefficient v0 can be found by equating the constant terms in the HJB equation

(and there is no constraint on it).

2. Finally, the equilibrium law of motion of the firms’ beliefs is given by

dMt = (λ[δµ+ αθt + βMt]− φ(Mt − ρ))dt+ λσξdZ
ξ
t (A.19)

and so the belief is mean reverting (with rate φ− λβ > 0) around the trend

1

φ− λβ
(λδµ+ αθt − φ(Mt − ρ)) .

We conclude that standard transversality conditions hold as (θt)t≥0 is also mean re-

verting and the flow payoff quadratic. This concludes the proof. �.

Proof of Proposition 3. (iii) Limit value of the coefficients. Recall that α(φ) ∈ (0, 1) is

uniquely defined as

g(α(φ)) := (r + κ+ φ)(α(φ)− 1)

+
α(φ)

2κσ2
ξ

[
√

[`(φ, α(φ))]2 − 4κ(σξσθ)2f(φ, α(φ))α(φ)φ− `(φ, α(φ))]︸ ︷︷ ︸
L(φ):=

= 0

where `(φ, α) := α2σ2
θ + κσ2

ξ (φ+ κ) + σ2
θαf(φ, α). Since |f(φ, α)| < 1/2 for all α ∈ [0, 1] and

α(φ) ∈ (0, 1) for all φ > 0, we have that 0 ≤ −4κ(σξσθ)
2f(φ, α(φ))α(φ)φ → 0 as φ → 0. In

addition, `(φ, α) > κ2σ2
ξ . Thus,

0 ≤ L(φ) =
−4κ(σξσθ)

2f(φ, α(φ))α(φ)φ√
[`(φ, α(φ))]2 − 4κ(σξσθ)2f(φ, α(φ))α(φ)φ+ `(φ, α(φ))

<
−4κ(σξσθ)

2f(φ, α(φ))α(φ)φ

2κ2σ2
ξ

→ 0 as φ→ 0. (A.20)

We conclude that lim
φ→0

α(φ) exists and takes value 1.

As for the limit, notice that since `(φ, α(φ)) ≥ κσ2
ξφ and αf(·) < 0

0 ≤ L(φ) =
−4κ(σξσθ)

2f(φ, α(φ))α(φ)√[
`(φ,α(φ))

φ

]2

− 4κ(σξσθ)2f(φ,α(φ))α(φ)

φ
+ `(φ,α(φ))

φ

≤ −4κ(σξσθ)
2f(φ, α(φ))α(φ)

4σ2
ξκ
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But since α(·) and f(φ, α) are bounded, L(φ) is bounded, and using g(α(φ)) = 0,

α(φ)L(φ)

2κσ2
ξ︸ ︷︷ ︸

bounded

1

(r + κ+ φ)︸ ︷︷ ︸
→0 as t→∞

= 1− α(φ)→ 0 as φ→∞.

Regarding the limit value of β(φ), this one follows directly from

β(φ) = f(φ, α(φ)) =
−α(φ)2(r + 2φ)

2(r + 2φ)α(φ)− (r + κ+ φ)(α(φ)− 1)

As for δ(φ), recall that

δ(φ) =
κ(α(φ)− 1) + [α(φ) + 2β(φ)][φ− (α(φ) + β(φ))λ(φ)]

2(r + φ) + (α(φ) + β(φ))λ(φ)
.

However, Lemma 3 below shows that λ → 0 as φ → 0. Using that α(φ) → 1 and α(φ) +

2β(φ)→ 0 as φ→ 0, and that α(φ) + β(φ) > 0, we conclude that δ(φ)→ 0 as φ→ 0. The

same lemma shows that λ→ σ2
θ/κσ

2
ξ as φ→∞. Thus,

δ(φ) =

→0︷ ︸︸ ︷
κ(α(φ)− 1)

φ
+

→0︷ ︸︸ ︷
[α(φ) + 2β(φ)]

→1︷ ︸︸ ︷
[1− (α(φ) + β(φ))λ

φ
]

2(r + φ) + (α(φ) + β(φ))λ

φ︸ ︷︷ ︸
→2

→ 0 as φ→∞.

(i) Bounds on α. To simplify notation, denote λ(φ, α(φ), f(φ, α(φ))) by λ

λ =
2σ2

θα(φ)φ√
`2(φ, α(φ))− 4κ(σθσξ)2α(φ)f(φ, α(φ))φ+ `(φ, α(φ))

<
σ2
θα(φ)φ

`(φ, α(φ))
(A.21)

<
2φ

α(φ)

where in the last inequality we used that `(φ, α(φ)) > σ2
θα(φ)[α(φ)+f(φ, α(φ))] > σ2

θα(φ)2/2

(which follows from f(φ, α(φ)) > −α/2).
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On the other hand, using the definition of α and that −f(φ, α) > 0

0 = (r + κ+ φ)(α(φ)− 1) + λ(φ)︸︷︷︸
≤2φ/α(φ)

α(φ) [−f(φ, α(φ))]︸ ︷︷ ︸
≤α(φ)/2

< (r + κ+ φ)(α(φ)− 1) + φα(φ)

⇒ α(φ) >
r + κ+ φ

r + κ+ 2φ
>

1

2
, for all φ > 0.

(ii) 1. Limiting properties of α′(·): To be completed.

2. Quasiconvexity of α. Consider the system of three equations (A.12) that characterizes

an equilibrium. To prove the property, it is now more useful to solve the last two equations

for λ and β. We obtain

λ(φ, α) = −(α− 1)(κ+ r + φ)(κ+ α(−κ+ r + 3φ) + r + φ)

α3(r + 2φ)
,

β(φ, α) = − α2(r + 2φ)

κ+ α(−κ+ r + 3φ) + r + φ
.

Substituting into equation (A.6) defining λ, we obtain

λ(φ, α) =
ασ2

θ(φ− β(α, φ)λ(φ, α))

κσ2
ξ (φ+ κ− β(α, φ)λ(φ, α)) + α2σ2

θ

,

and thus the equilibrium locus becomes

g(φ, α) :=
ασ2

θ(κ− α(κ+ r) + r + φ)

α3σ2
θ − ακrσ2

ξ + κσ2
ξ (κ+ r + φ)

+
(α− 1)(κ+ r + φ)(κ+ α(−κ+ r + 3φ) + r + φ)

α3(r + 2φ)
= 0.

Now let s := σ2
ξ/σ

2
θ . The partial derivative ∂g/∂α can be written as

∂g(α, φ)

∂α
= −(κ+ r + φ) (4α(κ− φ) + α2(−κ+ r + 3φ)− 3(κ+ r + φ))

α4(r + 2φ)

+
α3(3α(κ+ r)− 2(κ+ r + φ)) + κs ((κ+ r + φ)2 − α2r(κ+ r))

(α3 + κs(κ− αr + r + φ))2 .

The numerator in the first term is quadratic in α. Because r ≥ κ, the coefficient on α2 is

negative. It is then easily verified that the entire expression is positive when evaluated at

α ∈ {1/2, 1}. Therefore, the first term is positive. Moreover, both the denominator and the
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numerator of the second term are increasing in s. Thus, if the numerator is negative, the

whole expression can be bounded from below by setting s = 0. In this case we obtain

∂g(α, φ)

∂α

∣∣∣∣
s=0

= α−3
(
α2
(
κ(κ+ r)− 2rφ− 3φ2

)
− 2α(2κ+ r)(κ+ r + φ) + 3(κ+ r + φ)2

)
.

The term in parentheses on the right-hand side is quadratic in α. One can then verify that

this expression is positive when evaluated at α = 1/2, α = 1, and at the unique critical point

α = −(2κ+ r)(κ+ r+ φ)/(−κ2 − κr+ 2rφ+ 3φ2). Therefore, g(φ, α) is increasing in α (for

α ∈ [1/2, 1]).

Next, consider the second partial derivative

∂2g(α, φ)

(∂φ)2
= −2(α− 1)2(2κ+ r)2

(r + 2φ)3
− 2α5κs (α2 + κ2s)

(α3 + κs(κ− αr + r + φ))3 .

By inspection, the first term is nonpositive and the second term is strictly negative. There-

fore, the second partial with respect to φ is strictly negative. Combined with the fact that

g is increasing in α, the Implicit Function Theorem implies that the solution α(φ) to the

equation g(α, φ) = 0 is increasing in φ at every critical point.

(iv) 1. Average price between µ/3 and µ/2. Omitting the dependence on φ, observe that

E[Pt] = δµ + (α + β)E[Mt] = [δ + α + βµ]. Now, adding the second and third equation in

the system (A.12) that (δ, α, β) satisfies (proof of Proposition 2) yields

(α + 2β)(α + β)λ = (r + 2φ)(α + 2β) + (r + κ+ φ)(α− 1) + (α + β)2λ.

Thus,

δ =
κ(α− 1) + [α + 2β][φ− (α + β)λ]

2(r + φ) + (α + β)λ

=
κ(α− 1) + (α + 2β)φ− (r + 2φ)(α + 2β)− (r + κ+ φ)(α− 1)− (α + β)2λ

2(r + φ) + (α + β)λ

=
−(r + φ)[2(α + β)− 1]− (α + β)2λ

2(r + φ) + (α + β)λ
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We conclude that

E[Pt] = [δ + α + β]µ

= µ
−(r + φ)[2(α + β)− 1]− (α + β)2λ+ 2(r + φ)(α + β) + (α + β)2λ

2(r + φ) + (α + β)λ

= µ
r + φ

2(r + φ) + (α + β)λ
<
µ

2
if µ 6= 0,

where the last inequality comes from (α + β)λ > 0 for all φ > 0.

On the other hand, from (A.21), and omitting the dependence of α and β on φ,

(α + β)λ < (α + β)
σ2
θαφ

`(φ, α)
< (α + β)

σ2
θα(φ)φ

σ2
θα[α + β]

= φ

where in the second inequality we used that `(φ, α) > σ2
θα[α+ f(φ, α)] = σ2

θα[α+ β]. Thus,

E[P φ
t ]

µ
=

r + φ

2(r + φ) + (α + β)λ
>

r + φ

2(r + φ) + φ
> 1/3

if µ 6= 0, where the last inequality follows from r > 0.

2. Convergence of prices. To show the convergence of prices, we start with a preliminary

Lemma, where we use the notation λ(φ) for λ(φ, α(φ), f(φ, α(φ))):

Lemma 3. lim
φ→0

λ(φ) = 0, lim
φ→∞

λ(φ) = σ2
θ/κσ

2
ξ and lim

φ→0
λ(φ)/φ = 2σ2

θ/[σ
2
θ + 2σ2

ξκ
2].

Proof. We first show that lim
φ→0

λ(φ) = 0. To this end, recall that

λ(φ) = −
√

[`(φ, α(φ))]2 − 4κ(σξσθ)2f(φ, α(φ))α(φ)φ− `(φ, α(φ))

2κσ2
ξf(φ, α(φ))

Denote the numerator of −λ(φ) by L(φ), and recall from (i.1) in the proof of the proposition

that L(φ) → 0 as φ → 0. Moreover, since α(·) is strictly bounded away from zero and

converges to 1 as φ → 0, we have that φ 7→ f(φ, α(φ)) is also strictly bounded away from

zero and converges to -1/2 as φ→ 0. It follows that λ(φ)→ 0 when φ→ 0.
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On the other hand,

λ(φ) = − L(φ)

2κσ2
ξf(φ, α(φ))

=
4κ(σξσθ)

2α(φ)

2κσ2
ξ

(√[
`(φ,α(φ))

φ

]2

− 4κ(σξσθ)2f(φ,α(φ))α(φ)

φ
+ `(φ,α(φ))

φ

)

→ 4κ(σξσθ)
2

2κσ2
ξ [κσ

2
ξ + κσ2

ξ ]
=

σ2
θ

κσ2
ξ

as φ→∞,

and thus the second limit holds.

Finally, observe that since `(φ, α) := α2σ2
θ + κσ2

ξ (φ + κ) + σ2
θαf(φ, α) and α(φ) +

f(φ, α(φ))→ 1/2 as φ→ 0, we have that `(φ, α(φ))→ σ2
θ/2 + σ2

ξκ
2 as φ→ 0. Also,

λ(φ)

φ
=

4κ(σξσθ)
2α(φ)

2κσ2
ξ

(√
[`(φ, α(φ))]2 − 4κ(σξσθ)2f(φ, α(φ))α(φ)φ+ `(φ, α(φ))

) ,
from where it is straightforward to conclude that lim

φ→0
λ(φ)/φ = 2σ2

θ/[σ
2
θ + 2σ2

ξκ
2]. This ends

the proof of the lemma. �

Using the lemma, we first show that lim
φ→∞

Var[λ(φ)Yt] = lim
φ→0

Var[λ(φ)Yt] = 0, where λ(φ)

stands for λ(φ, α(φ), f(φ, α(φ))). In fact, from the proof of Proposition 1,

Var[Yt] =
1

2(φ− β(φ)λ(φ))

[
σ2
ξ +

α(φ)σ2
θ

κ[φ− β(φ)λ(φ) + κ]

]
.

Since, (β(φ), λ(φ)) → (−1/2, σ2
θ/κσ

2
ξ ) as φ → ∞, it follows that lim

φ→∞
Var[Yt] = 0 and so

lim
φ→∞

Var[λ(φ)Yt] = 0 as φ→∞. As for the other limit,

Var[λ(φ)Yt] =
λ2(φ)

2(φ− β(φ)λ(φ))

[
σ2
ξ +

α(φ)σ2
θ

κ[φ− β(φ)λ(φ) + κ]

]
=

1

2( φ
λ(φ)
− β(φ))︸ ︷︷ ︸

→ constant

λ(φ)︸︷︷︸
→0

[
σ2
ξ +

α(φ)σ2
θ

κ[φ− β(φ)λ(φ) + κ]

]
︸ ︷︷ ︸

→σ2
ξ+σ2

θ/κ
2

→ 0 as φ→ 0.

Using this, and recalling thatMt = ρ(φ)+λ(φ)Yt, Pt = δµ+(α+β)Mt, and (α(φ), β(φ))→
(1,−1/2) as φ→ 0,∞, we conclude that

lim
φ→0

Var[Pt] = lim
φ→∞

Var[Pt] = lim
φ→∞

Var[Mt] = lim
φ→0

Var[Mt] = 0.
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Finally, by the projection formula for Gaussian random variables, E[Mt] = µ, and so

E[(Mt − µ)2] = Var[Mt]→ 0 as φ→ 0,∞. In addition,

E[P ∗t ] = δµ+ (α + β)E[Mt] = δ + (α + β)µ.

But since δ(φ)→ 0 as φ→ 0 and ∞, E[Pt]→ µ/2. Using that

(E[(Pt − µ/2)2])1/2 ≤ (E[(Pt − E[Pt])
2]︸ ︷︷ ︸

=Var[Pt]

)1/2 + [(δ(φ) + (α(φ) + β(φ))µ︸ ︷︷ ︸
=E[Pt]

−µ/2)2]1/2 → 0

as φ→ 0 and ∞, we conclude.

(v) To be completed.

�

Proofs for Section 4

Proof of Proposition 4. When realized purchases (Qt)t≥0 follow (7), recorded purchases obey

dξt = (δµ+ αθt + βMt)dt+ σξdZ
ξ
t ,

where the process (Mt)t≥0 satisfies the filtering equation

dMt = −κ(Mt − µ)dt+
αγ(α)

σ2
ξ

[dξt − (δµ+ [α + β]Mtdt)] (A.22)

and γ(α) is the unique positive solution to x 7→ −2κx + σ2
θ − (αx/σξ)

2 = 0 (Liptser and

Shiryaev, 1977). As a function of (Zθ
t , Z

ξ
t )t≥0, therefore,

dMt =

(
−

[
κ+

α2γ(α)

σ2
ξ

]
Mt + κµ+

α2γ(α)

σ2
ξ

θt

)
dt+

αγ(α)

σξ
dZξ

t .

Now, let

λ =
αγ(α)

σ2
ξ

and ρ =
1

ν(α, β)

(
κµ− αγ(α)δµ

σ2
ξ

)
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where ν(α, β) is defined by (20), i.e.,

ν(α, β) := κ+
αγ(α)[α + β]

σ2
ξ

.

In particular, observe that dMt = [−(κ+ λα)Mt + κµ+ λαθt]dt+ λσξdZ
ξ
t .

With this in hand, consider (Yt)t≥0 evolving according to

dYt = [−ν(α, β)Yt + δµ+ βρ+ αθt + βλYt]dt+ σξdZ
ξ
t .

From the proof of Proposition 1, if (Y0, θ0) are independent of (Zθ
t , Z

ξ
t )t≥0 and

E[Y0] =
δµ+ βρ+ αµ

ν(α, β)− βλ
, Var[Y0] =

1

2(ν(α, β)− βλ)

[
σ2
ξ +

α2σ2
θ

κ(ν(α, β)− βλ+ κ)

]
and

Cov[θ0, Y0] =
ασ2

θ

2κ(ν(α, β)− βλ+ κ)
,

the pair (θt, Yt)t≥0 is stationary Gaussian (cf. (A.1)–(A.4)). Denote by (Y ν(α,β))t≥0 the

ratings process satisfying these conditions.

Defining Xt = ρ+ λY
ν(α,β)
t , it is easy to verify that

dXt = [λ(δµ+ αθt + βXt)− ν(α, β)[Xt − ρ]] + λσξdZ
ξ
t

= [−(κ+ λα)Xt + κµ+ λαθt]dt+ λσξdZ
ξ
t

where in the last equality we used that ν(α, β) = κ+λ(α+β) and that λδµ+ ν(α, β) = µκ.

We conclude that Mt −Xt satisfies d[Mt −Xt] = −(κ+ λα)[Mt −Xt]dt, and therefore that

Mt −Xt = [M0 −X0]e−(κ+λα)t for all t ≥ 0.

Notice, however, that since (Xt)t≥0 is stationary, stationarity of (Mt)t≥0 implies that

M0 − X0 ≡ 0 a.s. To see this, notice first that M0 − X0 cannot be random: otherwise

Var[Mt] = constant ∀t ≥ 0 becomes

Var[Xt]︸ ︷︷ ︸
independent of t

+e−2[κ+λα]tVar[M0 −X0] + 2e−[κ+λα]t Cov[Xt,M0 −X0]︸ ︷︷ ︸
independent of t

= constant ∀t ≥ 0,

which cannot hold for all t ≥ 0. Thus, M0 −X0 = C ∈ R, from where it is easy to see that

E[Mt] = constant implies that C = 0. Consequently, if beliefs are stationary,

Mt = Xt = ρ+ λY
ν(α,β)
t =

[
1

ν(α, β)

(
κµ− αγ(α)δµ

σ2
ξ

)]
+
αγ(α)

σ2
ξ

Y
ν(α,β)
t , for all t ≥ 0.
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where Yt is stationary Gaussian.

To prove the converse, we show that under a rating of persistence φ = ν(α, β), (A.5) and

the unique strictly positive root of (A.6) in the proof of Proposition 1 are given by

ρ =
1

ν

(
κµ− αγ(α)δµ

σ2
ξ

)
and λ =

αγ(α)

σ2
ξ

respectively.

We start with the first equality (and since (A.6) has a unique positive root, it coincides

with αγ(α)/σ2
ξ ). In what follows, we omit the dependence of ν on (α, β) and of γ on α.

Rewrite (A.6) evaluated at φ = ν as

−κσ2
ξβλ

2 + λ[α2σ2
θ + κσ2

ξ (ν + κ) + ασ2
θβ]− ασ2

θν = 0.

However,

λκσ2
ξ (ν + κ) = λκσ2

ξ

(
2κ+

αγ

σ2
ξ

[α + β]

)

ασ2
θν = ασ2

θ

(
κ+

αγ

σ2
ξ

[α + β]

)

So,

0 = λα2σ2
θ + 2κ2σ2

ξλ+ 2κλα2γ + κλαγβ − κλ2σ2
ξβ − ασ2

θκ

−α
3γσ2

θ

σ2
ξ

− α2γσ2
θβ

σ2
ξ

+ ασ2
θβλ

= λα2σ2
θ + 2κ2σ2

ξλ+ κλα2γ − ασ2
θκ−

α3γσ2
θ

σ2
ξ

+β

[
κλαγ − κλ2σ2

ξ −
α2γσ2

θ

σ2
ξ

+ ασ2
θλ

]

Setting λ = αγ/σ2
ξ , the first and last term of the first line in the second equality cancel out,

and the last bracket vanishes. Thus, we are left with

0 = 2κα

[
2κγ +

α2γ2

σ2
ξ

− σ2
θ

]
︸ ︷︷ ︸

≡0

,
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which is true by definition of γ. Finally, multiplying both sides of (A.5) by φ = ν yields

νρ = µ{(ν − βλ)− [δ + α]λ}

But since λ = αγ/σ2
ξ ,

ν = κ+
αγ

σ2
ξ

(α + β) = κ+ λ (α + β)⇒ ν − βλ = κ+ λα

yielding νρ = µ{κ+ λα− [δ+ α]λ} = κµ− δµαγ/σ2
ξ as desired. This concludes the proof.�

Before proceeding with the rest of the results, we state the following lemma, which is

at the heart of Definition 2. As a byproduct, we obtain a useful result about the partial

derivative of λ(φ, α, β) with respect to its first argument at φ = ν(α, β), and which is used

subsequently in the analysis. Let λφ(ν(α, β), α, β) denote such derivative.

Lemma 4. φ 7→ G(φ, α, β) has a unique minimizer located at φ = ν(α, β) defined in (20).

Moreover, λφ(ν(α, β), α, β) = λ(ν(α, β), α, β)/(ν + κ).

Proof. For notational simplicity, we omit any dependence on variables unless it is strictly

necessary. We first verify that ν is an extreme point of φ 7→ G(φ, α, β), and verify the desired

equality in the process. To this end, let λ denote the unique positive solution to

λ =
ασ2

θ(φ− βλ)

α2σ2
θ + κσ2

ξ [φ+ κ− βλ]
,

and recall that

G =
αλ

φ+ κ− βλ
.

Thus, Gφ = 0 if and only if λφ(φ+κ) = λ. We now check that the desired equality is satisfied

at (ν(α, β), α, β).

From the proof of Proposition 4, λ = αγ/σ2
ξ at φ = ν, and hence, the claim reduces to

showing that λφ(ν(α, β), α, β) = αγ(α)/σ2
ξ (ν + κ). However, it is easy to check that

λφ =
ασ2

θ [1− βλφ][α2σ2
θ + κ2σ2

ξ ]

[α2σ2
θ + κσ2

ξ (φ+ κ− βλ)]2
.

Also, ν+κ−βλ(ν(α, β), α, β) = 2κ+α2γ/σ2
ξ = σ2

θ/γ, where the last equality comes from
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the definition of γ. Thus,

[α2σ2
θ + κσ2

ξ (φ+ κ− βλ)]2
∣∣∣
φ=ν

=
σ4
θ [α

2γ + κσ2
ξ ]

2

γ2
=

σ4
θ [α

2

=σ2
θσ

2
ξ , by def. of γ︷ ︸︸ ︷

(α2γ2 + 2κγσ2
ξ ) +κ2σ4

ξ ]

γ2

=
σ4
θσ

2
ξ [α

2σ2
θ + κ2σ2

ξ ]

γ2
.

We conclude that at (ν(α, β), α, β),

λφ =
γ2α

σ2
θσ

2
ξ

[1− βλφ]⇒ λφ [σ2
θσ

2
ξ + γ2αβ]︸ ︷︷ ︸

=2κγσ2
ξ+γ2α2+γ2αβ

= γ2α⇒ λφ =
γα

σ2
ξ︸︷︷︸

λ(ν)

1

2κ+ αγ(α+β)

σ2
ξ︸ ︷︷ ︸

1/(ν+κ)

,

which shows that ν is an extreme point of φ 7→ G(φ, α, β).

On the other hand, it is easy to verify that at an extreme point φ,

Gφφ = −ασ
2
θ

2κ

λφφ(φ+ κ)

[φ+ κ− βλ]2
,

so the sign of Gφφ is determined by λφφ at that point. We now show that λφφ(φ) < 0 for all

φ > 0, and hence that any extreme point of φ 7→ G(φ, α, β) must be a strict local minimum.

But this is enough to guarantee that φ 7→ G(φ, α, β) has a unique extreme point, and hence

a global minimum that corresponds to ν.

Recall that λ(φ, α, β) = [
√
`2(φ, α, β)− 4κ(σξσθ)2βαφ−`(φ, α, β)]/[−2κσ2

ξβ] where `(φ, α, β) :=

α2σ2
θ + ασ2

θβ + κσ2
ξ (φ+ κ). Thus

λφ =
1

[−2κσ2
ξβ]︸ ︷︷ ︸

=:A>0

[
κσ2

ξ`(φ, α, β)− 2κ(σξσθ)
2βα√

`2(φ, α, β)− 4κ(σξσθ)2βαφ
− κσ2

ξ

]

⇒ λφφ = B(φ)
{

(κσ2
ξ )

2(`2(φ, α, β)− 4κ(σξσθ)
2βαφ)− (κσ2

ξ`(φ, α, β)− 2κ(σξσθ)
2βα)2

}︸ ︷︷ ︸
L(φ):=

where B(φ) := A/[`2(φ, α, β)− 4κ(σξσθ)
2βαφ]3/2 > 0. However,

L(φ) = −4κ3σ6
ξσ

2
θβαφ+ 4κ2σ4

ξσ
2
θβα`(φ, α, β)− 4κ2(σξσθ)

4β2α2

= −4κ2σ4
ξσ

2
θαβ︸ ︷︷ ︸

>0, as β<0

[κσ2
ξφ− `(φ, α, β) + σ2

θβα]︸ ︷︷ ︸
=−α2σ2

θ−κ2σ
2
ξ by def. of `(φ,α,β)

< 0
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concluding the proof. �

Proof of Proposition 5. Recall that α(φ) is defined as the unique α ∈ (0, 1) solving

(r + κ+ φ)(α(φ)− 1) + α(φ)H(φ, α(φ)) = 0.

where

H(φ, α) := −λ(φ, α, f(φ, α))f(φ, α) =

√
`2(φ, α)− 4κ(σξσθ)2αf(φ, α)φ− `(φ, α)

2κσ2
ξ

and `(φ, α) = σ2
θα[α + f(φ, α)] + κσ2

ξ [φ + κ]. Also, recall from the proof of Lemma 2 in the

proof of proposition 2 that α 7→ H(φ, α) is strictly increasing over [0, 1].

Thus, denoting the partial derivatives of H with respect to variable x ∈ {φ, α} as Hx,

α′(φ) [r + κ+ φ+H(φ, α(φ)) +Hα(φ, α(φ))] = 1− α(φ)− α(φ)Hφ(φ, α(φ))

Consequently, because H > 0, we conclude that the sign of the derivative of α is determined

by the sign of the right-hand side of the previous expression. We now show that the latter

side is negative at any point φ s.t. φ = κ+ α(φ)γ(α(φ))[α(φ)+β(φ)]

σ2
ξ

.

To simplify notation, let ∆ :=
√
`2(φ, α)− 4κ(σξσθ)2αf(φ, α)φ and denote the partial

derivative of ` and f wrt to φ as `φ and fφ. Omitting the dependence on (φ, α(φ)),

Hφ =
1

2κσ2
ξ

[
``φ − 2κ(σξσθ)

2α[φfφ + f ]

∆
− `φ

]
. (A.23)

Using that `φ = σ2
θαfφ + κσ2

ξ we can write

Hφ =
κσ2

ξ [`−∆]− 2κ(σξσθ)
2αf

2κσ2
ξ∆

+
σ2
θαfφ[`−∆]− 2κ(σξσθ)

2αφfφ
2κσ2

ξ∆
(A.24)

But observe that the first term satisfies

κσ2
ξ [`−∆]− 4κ(σξσθ)

2αf

2κσ2
ξ∆

= −f ∂λ
∂φ

(φ, α, f),

i.e. it is the sensitivity of the belief to a change in the persistence of the rating holding

(α, β) = (α(φ), f(φ, α(φ))) fixed. From the proof of proposition 4, we know that

∂λ

∂φ
(ν, α, β) =

λ(ν, α, β)

ν + κ
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at ν = κ+αγ(α+β)/σ2
ξ ; we conclude therefore the previous equality at the point of interest.

On the other hand, the second term can be written as

σ2
θfφ
∆

[
α
`−∆

2κσ2
ξ

− φα

]
=
σ2
θfφ
∆

[(r + κ+ φ)(α− 1)− φα]

where we used that αH = α(∆− `)/2κσ2
ξ . We deduce that

1− α− αHφ = 1− α +
λαβ

φ+ κ︸ ︷︷ ︸
A:=

− σ
2
θαfφ
∆

[(r + κ+ φ)(α− 1)− φα]︸ ︷︷ ︸
B:=

(A.25)

Straightforward differentiation shows that

fφ =
∂

∂φ

(
−α2(r + 2φ)

2(r + 2φ)α− (r + κ+ φ)(α− 1)

)
=

α2(α− 1)(r + 2κ)

[2(r + 2φ)α− (r + κ+ φ)(α− 1)]2
< 0,

so B > 0. As for the other term, we use that (r + κ+ φ)(α− 1)− λαβ = 0 to conclude

A =
(φ+ κ)(1− α) + λαβ

φ+ κ
=
r(α− 1)

φ+ κ
< 0.

This concludes the proof. �

To prove Proposition 6 we need a preliminary lemma regarding the behavior of α+ β at

any φ where information is not concealed. Recall that this condition was given by (22):

φ = ν(φ) = κ+
α(φ)γ(α(φ))[α(φ) + β(φ)]

σ2
ξ

.

Lemma 5. α(φ) + β(φ) is strictly decreasing at any φ > 0 satisfying (22). Moreover, if

r > κ, α(φ) + β(φ) is decreasing when α(φ) is decreasing.

Proof. Omitting the dependence of α and β on φ, write

α + β = α

[
1− α(r + 2φ)

2(r + 2φ)α− (r + κ+ φ)(α− 1)

]
=: αh(φ, α), (A.26)

and observe that
d(α + β)

dφ
= α′[h+ αhα] + αhφ,

where

hφ(α, φ) =
α(α− 1)(r + 2κ)

[2(r + 2φ)α− (r + κ+ φ)(α− 1)]2
< 0.
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Consequently, it suffices to show that h+ αhα > 0 at any φ where α(·) is decreasing.

To prove the first part of the Proposition, we show the stronger result that h+ αhα > 0

over [κ,∞), the set where any point satisfying (22) must lie in, as α, γ and α + β are all

positive. To this end, notice that

h+ αhα > 0 ⇔ [2(r + 2φ)α− (r + κ+ φ)(α− 1)][(r + 2φ)α− (r + κ+ φ)(α− 1)]

−α(r + 2φ)[2(r + 2φ)α− (r + κ+ φ)(α− 1)]

+α2(r + 2φ)[2(r + 2φ)− (r + κ+ φ)] > 0

⇔ 2(r + 2φ)2α2 + (r + κ+ φ)2(α− 1)2 − α(3α− 2)(r + 2φ)(r + κ+ φ) > 0.

If φ ≥ κ, however,

2(r + 2φ)2α2 − α(3α− 2)(r + 2φ)(r + κ+ φ) + (r + κ+ φ)2(α− 1)2︸ ︷︷ ︸
>0

≥ α(r + 2φ)[2 (r + 2φ)︸ ︷︷ ︸
>r+κ+φ

α− 3α(r + κ+ φ) + 2(r + κ+ φ)]

≥ α(r + 2φ)(r + κ+ φ)[2− α] > 0.

which concludes this part of the proof.19

To prove the second statement, notice that since φ > 0 and α < 1,

2(r + 2φ)2α2 − α(3α− 2)(r + 2φ)(r + κ+ φ) + (r + κ+ φ)2(α− 1)2︸ ︷︷ ︸
>0

≥ α(r + 2φ)[α(φ− r − 3κ) + 2(r + κ+ φ)]

≥ α(r + 2φ)[−r − 3κ+ 2(r + κ)] = α(r + 2φ)[r − κ].

which is non-negative when r ≥ κ. This concludes the proof. �

Proof of Proposition 6. To show existence, let L(φ) := φ − ν(φ). Also, recall that γ(α) is

defined as the unique strictly positive root of 0 = σ2
θ − 2κγ − (αγ/σξ)

2, and so

γ(α) =
σ2
ξ

α2

[√
κ2 + α2

σ2
θ

σ2
ξ

− κ

]
.

Since α ∈ (1/2, 1), γ is bounded and we have L(0) < 0 and L(φ) > 0 for φ large. We

conclude the existence of φ s.t. L(φ) = 0 by continuity of L(·).
19Observe that when α ∈ [1/2, 2/3] the desired inequality trivially holds, as all the terms involved are

non negative.
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To establish the bounds, observe first that since α > 0 and α + β > α/2, φ > κ. On the

other hand, since β < 0 and α < 1,

ν(φ) < κ+
α(φ)2γ(α(φ))

σ2
ξ

=

√
κ2 + α(φ)2

σ2
θ

σ2
ξ

<

√
κ2 +

σ2
θ

σ2
ξ

.

Finally, we address uniqueness. To this end, we show now that at any point φ > 0 where

L(φ) = 0, ν ′(φ) < 0, which in turn implies uniqueness (as two of such points would imply the

existence of an intermediate point where L(·) vanishes satisfying ν ′ > 0, a contradiction).

Notice that

ν ′(φ) =
d

dφ

(
α(φ)γ(α(φ))

σ2
ξ

)
(α(φ) + β(φ)) +

(
α(φ)γ(α(φ))

σ2
ξ

)
d(α(φ) + β(φ))

dφ
.

Moreover, from Lemma 5, α(φ) + β(φ) is strictly decreasing at a φ > 0 s.t. L(φ) = 0. Since

α + β > 0 and αγ(α(φ)) > 0 is suffices to show that

d

dφ

(
α(φ)γ(α(φ))

σ2
ξ

)
< 0

at any such point. But,

αγ(α)

σ2
ξ

=
1

α

[√
κ2 + α2

σ2
θ

σ2
ξ

− κ

]
=
σ2
θ

σ2
ξ

1√
κ2

α
+

σ2
θ

σ2
ξ

+ κ
α

which is a strictly increasing function of α. Since α(·) is strictly decreasing at any point

satisfying (22), the proof is completed. �

Proof of Proposition 7. Denote partial derivatives with subindices. We already know from

Lemma 4 that Gφ(φ∗, α(φ∗), f(φ∗, α(φ∗))) = 0. On the other hand, straightforward differen-

tiation shows that Gβ = 0 if and only if αλβ(φ+ κ) + αλ2 = 0, where

λβ =
κσ2

ξλ
2 − λσ2

θα

−2κσ2
ξβλ+ σ2

θα[α + β] + κσ2
ξ (φ+ κ)

.

Since αλ > 0, we aim to show that

[κσ2
ξλ− σ2

θα][φ+ κ] + λ[−2κσ2
ξβλ+ σ2

θα[α + β] + κσ2
ξ (φ+ κ)] = 0
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at φ∗. However, recall that σ2
θ = 2κγ − (αγ/σξ)

2, and that, at φ∗, λ = αγ/σ2
ξ . Thus,

ασ2
θ = 2κγα + α

α2γ2

σ2
ξ

= 2κσ2
ξλ+ ασ2

ξλ
2.

Plugging this in the first bracket and factoring by λ > 0 reduces the desired equality to

−κσ2
ξ (φ+ κ)− ασ2

ξλ(φ+ κ)− 2κσ2
ξβλ+ σ2

θα[α + β] + κσ2
ξ (φ+ κ) = 0

⇔ −ασ2
ξλ(φ+ κ)− 2κσ2

ξβλ+ σ2
θα[α + β] = 0,

where the last equivalence results from the first and last terms canceling out. However, using

that φ+ κ = 2κ+ αγ(α + β)/σ2
ξ = 2κ+ λ(α + β) and ασ2

θ = 2κσ2
ξλ+ ασ2

ξλ
2 at φ∗,

−ασ2
ξλ(φ+ κ)− 2κσ2

ξβλ+ σ2
θα[α + β]

= −2κσ2
ξαλ− ασ2

ξλ
2(α + β)− 2κσ2

ξβλ+ 2κσ2
ξλ(α + β) + ασ2

ξλ
2(α + β) = 0.

On the other hand, it is easy to verify that Gα > 0 if and only if αλα(φ + κ) + [λ(φ +

κ)− βλ2] > 0, where

λα =
σ2
θ [φ− 2λα− λβ]

−2κσ2
ξβλ+ σ2

θα[α + β] + κσ2
ξ (φ+ κ)

As a result, we are interested in the sign of

ασ2
θ(φ+ κ)[φ− 2λα− λβ] + λ[φ+ κ− βλ][−2κσ2

ξβλ+ σ2
θα[α + β] + κσ2

ξ (φ+ κ)]

at φ∗. But again using that φ + κ = 2κ + αγ(α + β)/σ2
ξ = 2κ + λ(α + β) and ασ2

θ =

2κσ2
ξλ+ ασ2

ξλ
2 at that point, we have that

ασ2
θ(φ+ κ)[φ− 2λα− λβ] = λσ2

ξ [2κ+ αλ](φ+ κ)[κ− λα]

φ+ κ− βλ = 2κ+ αλ, (A.27)

so the expression of interest can be written as

λ[2κ+ αλ]{[κσ2
ξ − σ2

ξαλ](φ+ κ)− 2κσ2
ξβλ+ σ2

θα[α + β] + κσ2
ξ (φ+ κ)}.

Since λ[2κ+ αλ] > 0, it suffices to show that

[κσ2
ξ − σ2

ξαλ](φ+ κ)− 2κσ2
ξβλ+ σ2

θα[α + β] + κσ2
ξ (φ+ κ) > 0
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However, from the first part of this proof, −2κσ2
ξβλ+ σ2

θα[α + β] = ασ2
ξλ(φ+ κ). Thus,

[κσ2
ξ − σ2

ξαλ](φ+ κ)−2κσ2
ξβλ+ σ2

θα[α + β]︸ ︷︷ ︸
=ασ2

ξλ(φ+κ)

+κσ2
ξ (φ+ κ) = 2κσ2

ξ (φ+ κ) > 0.

This concludes the proof. �

Proofs for Section 5

Proof of Proposition 8. Recall from the proof of Proposition 3 that

α(φ) + β(φ) + δ(φ) =
r + φ

2(r + φ) + [α(φ) + β(φ)]λ(φ, α(φ), β(φ))
,

where β(φ) = f(φ, α(φ)). Also, E[P φ
t ] = [α(φ) + β(φ) + δ(φ)]µ.

Thus, omitting the dependence on variables,

[α + β + δ]′ > 0⇔ (α + β)λ− (r + φ)[λ(α + β)′ + (α + β)Dφλ] > 0.

where Dφλ denotes the total derivative λ(φ, α(φ), f(φ, α(φ))).

However, (α + β)′ = α′[1 + fα] + fφ and

Dφλ = λφ + α′[λα + λβfα] + λβfφ.

Thus, we want to show that at φ∗,

(α + β) [λ− (r + φ)λφ]︸ ︷︷ ︸
(i)

−(r + φ)fφ [λ+ (α + β)λβ]︸ ︷︷ ︸
(ii)

−(r + φ)α′ [(1 + fα)λ+ (λα + λβfα)(α + β)]︸ ︷︷ ︸
(iii)

> 0.

To this end, notice that since α + β and

−(r + φ)fφ = −(r + φ)
α2(α− 1)(r + 2κ)

[2(r + 2φ)α− (r + κ+ φ)(α− 1)]2

are strictly positive, and α is strictly decreasing at φ∗ (so −(r + φ∗)α′(φ∗) > 0), it suffices

to show that (i)–(iii) are non-negative under the condition stated in the Proposition.

(i): From the proof of Lemma 4, λφ = λ/(φ+ κ) at (φ∗, α(φ∗), f(φ∗, α(φ∗))). Thus, at this
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point,

λ− (r + φ∗)λφ =
λ

r + φ∗
[κ− r],

which is non-negative when κ ≥ r.

(ii): Using that

G(φ, α, β) =
αλ(φ, α, β)

φ+ κ− βλ(φ, α, β)
⇒ λ(φ, α, β) =

(φ+ κ)G(φ, α, β)

α + βG(φ, α, β)

we have that

λβ = (φ+ κ)
Gβ[α + βG]−G[G+ βGβ]

(α + βG)2
.

However, we know from Proposition 7 that Gβ = 0 at (φ∗, α(φ∗), f(φ∗, α(φ∗))). We

conclude that at (φ∗, α(φ∗), f(φ∗, α(φ∗))),

λβ = − (φ+ κ)G2

(α + βG)2
= − λ2

φ∗ + κ
< 0.

As a result, using that φ = κ+ λ[α + β] at (φ, α, β) = (φ∗, α(φ∗), f(φ∗, α(φ∗))),

λ+ (α + β)λβ =
1

φ∗ + κ
[λ(φ∗ + κ)− λ2(α + β)]

=
2κλ(φ∗, α(φ∗), β(φ∗))

φ∗ + κ
> 0.

(iii): From the proof of Lemma 5, 1 + fα(φ, α(φ)) > 0 at φ = φ∗.20 On the other hand, since

fα < 0 (proof of Lemma 2), λβfα > 0 at φ∗. Thus, it suffices to show that λα > 0 .

However, from the proof of Proposition 7,

λα > 0 at φ∗ ⇔ φ∗ − 2λα− λβ > 0 at φ∗.

20In fact, in that section (α + β)′ = (α)′[h + αhα] + αhφ, where h(φ, α) = α(α − 1)(r + 2κ)/[2(r +
2φ)α− (r + κ+ φ)(α− 1)]. But since fφ(φ, α) = αhφ(φ, α) and (α+ β)′ = (α)′[1 + fα] + fφ, it follows that
1 + fα = h+ αhα, and the right-hand side is strictly positive for φ ≥ κ.
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Since φ∗ = κ+ (α(φ) + β(φ))λ(φ, α(φ), β(φ))|φ=φ∗ ,

φ∗ − [2λα + λβ]|φ=φ∗ = κ− λα|φ=φ∗ = κ− [α]2γ(α)

σ2
ξ

∣∣∣
φ=φ∗

= 2κ−

√
κ2 + α

σ2
θ

σ2
ξ

∣∣∣
φ=φ∗

>︸︷︷︸
α<1

2κ−

√
κ2 +

σ2
θ

σ2
ξ

∣∣∣
φ=φ∗

and the latter is non-negative when κ > σθ/
√

3σξ. This concludes the proof. �

Proof of Proposition 9. Part (i) follows directly from: 1) Gφ = Gβ = 0 and Gα > 0 at

(φ∗, α(φ∗), f(φ∗, α(φ∗))) (Proposition 7); 2) α′(φ∗) < 0 (Proposition 5); and 3) α′(φ∗) +

β′(φ∗) < 0 (Lemma 5). Part (ii) instead follows from α being strictly decreasing between

zero and arg minα > φ∗ (quasiconvexity result in Proposition 3 coupled with Proposition

5), and from α + β decreasing if α is decreasing (Lemma 5). �

Proof of Proposition 10. Recall that Var[θt|Yt] = σ2
θ/2κ−Cov[θt, Yt]

2/Var(Yt), λ := Cov[θt, Yt]/Var(Yt)

and that Mt = µ+ λ(Yt − Ȳ ). Thus, E[θ2] = σ2
θ/2κ+ µ2, and

E[M2
t ] = E[θtMt] =

Cov[θt, Yt]
2

Var(Yt)︸ ︷︷ ︸
=Var[Mt]

+µ2 =
σ2
θ

2κ
G∗(φ) + µ2.

By stationarity, CS(φ) = E[Qt(θt − Pt − Qt/2)] where Pt = δµ(φ) + (α(φ) + β(φ))Mt and

Qt = δ(φ)µ+ α(φ)θt + β(φ)Mt. Thus, omitting the dependence on φ,

CS(φ) = δµ

[
E[θt]

(
1− α

2

)
−
(
α +

3β

2

)
E[Mt]−

3δµ

2

]
+ α

[
E[θ2

t ]
(

1− α

2

)
−
(
α +

3β

2

)
E[Mtθt]−

3δµ

2
E[θt]

]
+ β

[
E[θtMt]

(
1− α

2

)
−
(
α +

3β

2

)
E[M2

t ]− 3δµ

2
E[Mt]

]
(A.28)
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and so, using the expressions for the first two moments of (θt,Mt),

CS(φ) =
σ2
θ

2κ
G∗(φ)

[
−α
(
α +

3β

2

)
+ β

(
1− α

2

)
− β

(
α +

3β

2

)]
︸ ︷︷ ︸

=−3(α+β)2/2+(α)2/2+β=:AG(φ)

+
σ2
θ

2κ

[
α(φ)

(
1− α(φ)

2

)]

+µ2

[
−α
(
α +

3β

2

)
+ β

(
1− α

2

)
− β

(
α +

3β

2

)
+ α

(
1− α

2

)]
︸ ︷︷ ︸

=−3(α+β)2/2+α+β

+ δµ2

[(
1− 3(α + β)

2
− 3α

2
− 3β

2

)
− 3δ

2

]
︸ ︷︷ ︸

=µ2δ[(1−3(α+β))−3δ/2]

.

Collecting terms in the last two lines yields

µ2

[
−3(α + β)2/2 + α + β + δ − 3δ(α + β)− 3δ2

2

]
= µ2

[
α + β + δ − 3

2

{
(α + β)2 + 2δ(α + β) + δ2

}︸ ︷︷ ︸
(α+β+δ)2

]

= µ2(α + β + δ)

[
1− 3

2
(α + β + δ)

]
,

= E[P φ
t ]

(
µ− 3

2
E[P φ

t ]

)
.

Finally, notice that we can rewrite

A(φ) := −3(α + β)2/2 + α2/2 + β = −α[α + 2β]︸ ︷︷ ︸
<0

+ β[1− α]︸ ︷︷ ︸
<0

−3(β)2/2 < 0.

On the other hand, since −1/2 < β < 0 and α > 0, and 0 < α + β < 1,

A(φ) =
α(φ)2

2
+ β(φ)− 3

2
(α(φ) + β(φ))2 > 0− 1

2
− 3

2
= −2.

Obs. When κ > r, it can be guaranteed that A(φ) < −3/8. To see this, straightforward

algebra shows that if A(φ) < −3/8 and only if 12(α + β)2 − 8β ≥ 3 + 4α2, where the

dependence on φ is omitted. Using that β = f(φ, α), the previous condition translates to

12[α2(r + 2φ)− (r + κ+ φ)α(α− 1)]2 + 8α2(r + 2φ)[2(r + 2φ)α− (r + κ+ φ)(α− 1)]

> (3 + 4α2)[2(r + 2φ)α− (r + κ+ φ)(α− 1)]2.
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which can be further transformed to

(α− 1)
{
−4α2(α− 3)(r + 2φ)2 − 8α3(r + 2φ)(r + κ+ φ) + 8(r + κ+ φ)2α2(α− 1)

−8α2(r + 2φ)(r + κ+ φ) + 12(r + κ+ φ)(r + 2φ)α− 3(r + κ+ φ)2(α− 1)
}
> 0

Letting φ→ 0, the expression inside {·} converges to 8r2−16r(r+κ)+12(r+κ)r = 4r[r−κ],

which is negative is κ > r. Since α < 1, we conclude that the desired inequality holds for φ

small enough. This concludes the proof.

�

Proof of Proposition 11. To show (i), notice that A(φ) < 0 and α(1 − α/2) < 1/2. Thus,

CS(φ) is bounded from above by its static counterpart with Y = ∅ when µ = 0. However,

recall that α(φ)→ 1, β(φ)→ −1/2. In addition, from Lemma 3, lim
φ→0

λ(φ, α(φ), f(φ, α(φ))) =

0 and lim
φ→∞

λ(φ, α(φ), f(φ, α(φ))) = σ2
θ/κσ

2
ξ . Thus,

G∗(φ) =
αλ

φ+ κ− βλ
→ 0 as φ→ 0,∞. (A.29)

Thus, the upper bound can be achieved asymptotically as φ → 0 and ∞ in this case. In

the firm’s case, the interior maximum follows from Var[P φ
t ] = σ2

θ [α + β]2G∗(φ)/2κ > 0 and

Var[P φ
t ]→ 0 as φ→ 0,∞.

Regarding (ii), the consumer will prefer an interior optimum in this case due to

E[P φ
t ]

(
µ− 3

2
E[P φ

t ]

)
∈
(
µ2

8
,
µ2

6

)
and E[P φ

t ]

(
µ− 3

2
E[P φ

t ]

)
→ µ2

8
as φ→ 0,∞.

The firm instead prefers a corner solution due to E[P φ
t ] ∈ (µ/3, µ/2) and E[P φ

t ] → µ/2 as

φ→ 0,∞.

Finally, to show (iii), observe that ex ante total surplus is given by

CS(φ)+Π(φ) =
σ2
θ

2κ
α(φ)

(
1− α(φ)

2

)
︸ ︷︷ ︸
<1/2, as α∈(1/2,1)

+E[P φ
t ]

(
µ− E[P φ

t ]

2

)
︸ ︷︷ ︸
<µ2/8 as E[Pφt ]<µ/2

+

[
α2

2
+ β − (α + β)2

2

]
︸ ︷︷ ︸

=β[1−α]−β2/2<0

σ2
θ

2κ
G∗(φ)

from where ex ante total surplus achieves its upper bound σ2
θ/4κ + µ2/8 asymptotically as

φ→ 0,∞. �
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Proofs for Section 6

Proof of Proposition 12. Recall from the proof of Proposition 1 that, starting from

Qt = δµ+ αθt + βMt and Mt = ρ+ λYt

ρ and λ satisfy (A.5)–(A.6) given by

ρ = µ− δ̂ + αµ

φ− β
λ = µ− δµ+ βρ+ αµ

φ− βλ
λ

λ =
ασ2

θ(φ− β)

α2σ2
θ + κσ2

ξ (φ+ κ− β)

Replacing (δµ, α, β) by (q0/2, q1,−q1/2) and (ρ, λ) by (m0,m1) yields

ρ =
1

φ

[
µ
(
φ− q1m1

2

)
− q0m1

2

]
m1 = λ(φ, α,−α/2).

We can then write

dPt = −q1m1

2q2

dYt = −q1m1

2q2

[(Qt − φYt)dt+ σξdZ
ξ
t ]

=

[
−q1m1

2q2

Qt − φ
(
Pt +

q0 + q1m0

2q2

)]
dt− q1m1

2q2

σξdZ
ξ
t , (A.30)

and the consumer’s problem is to maximize her utility as in Section 3 with prices given by

(25), subject to (2) and the previous law of motion of prices.

We guess a value function V = v0 + v1θ + v2P + v3P
2 + v4θ

2 + v5θP , which gives the

first-order condition

q = θ − P − q1m1

2q2

[v2 + 2v3P + v5θ]︸ ︷︷ ︸
VP

= −q1m1

2q2

v2 +

[
1− q1m1

2q2

v5

]
θ +

[
−1− q1m1

q2

v3

]
P.

As a result, we obtain the matching coefficients conditions

q0 = −q1m1

2q2

v2, q1 = 1− q1m1

2q2

v5 and q2 = −1− q1m1

q2

v3 (A.31)

Moreover, by the envelope theorem

(r + φ)[v2 + 2v3P + v5θ] = q

[
−1− v3

q1m0(q1)

q2

]
− 2v3φ

[
P +

q0 + q1m0

2q2

]
− κv5(θ − µ)
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which leads to the system

(r + φ)v2 = q0

[
−1− v3

q1m1

q2

]
− 2v3φ

q0 + q1m0

2q2

+ κµv5

2(r + φ)v3 = q2

[
−1− v3

q1m1

q2

]
− 2v3φ

(r + φ)v5 = q1

[
−1− v3

q1m1

q2

]
− κv5. (A.32)

Using that v2, v3, v5 can be written as a function of q0, q1, q2, and dividing by q2 in each

equation, we obtain the following system

−(r + φ)
2q0

q1m1

= q0 + 2φ
q2 + 1

q1m1

q0 + q1m0

2q2

+ κµ
2(1− q1)

q1m1

−2(r + 2φ)
q2 + 1

q1m1

= q2

(r + φ+ κ)
2(1− q1)

q1m1

= q1. (A.33)

Observe that the last equation is independent of the other two, while the second one is linear

in q1. Thus, we can solve for q1 and q2 sequentially. Finally, sincem0 = 1
φ

[
µ
(
φ− q1m1

2

)
− q0m1

2

]
,

the equation for q0 turns out to be linear too. We proceed by finding q1 first.

The last equation reads ghidden(q1) := (r+κ+φ)(q1−1)−q1λ(φ, q1,−q1/2)[−q1/2] = 0 (i.e.,

exactly as stated in the proposition) where we used that m1 = λ(φ, q1,−q1/2). Moreover,

m1 =
−`(q1) +

√
`(q1)2 + 8q2

1κσ
2
ξσ

2
θφ

q1κσ2
ξ

, where `(q1) =
q2

1

2
σ2
θ + κσ2

ξ (φ+ κ),

⇒ m1q
2
1 = − q

3
1σ

2
θ

2κσ2
ξ

− q1(φ+ κ) + q1

( q2
1σ

2
θ

2κσ2
ξ

+ φ+ κ

)2

+
2q2

1σ
2
θφ

κσ2
ξ

1/2

. (A.34)

Thus, we can rewrite ghidden(q1) = 0 as

q1

{[(
q2

1σ
2
θ

2κσ2
ξ

+ φ+ κ

)2

+
2q2

1σ
2
θφ

κσ2
ξ

]1/2

− q2
1σ

2
θ

2κσ2
ξ

}
︸ ︷︷ ︸

H(q1):=

+q1(2r + φ+ κ)− 2(r + φ+ κ) = 0.
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It is clear that H(·) > 0. To show that H ′(q1) > 0 when q1 > 0 observe that g′ > 0

g′ > 0 ⇔ 2

(
q2

1σ
2
θ

2κσ2
ξ

+ φ+ κ

)
q1σ

2
θ

κσ2
ξ

+
4q1σ

2
θφ

κσ2
ξ

>
2q1σ

2
θ

κσ2
ξ

[(
q2

1σ
2
θ

2κσ2
ξ

+ φ+ κ

)2

+
2q2

1σ
2
θφ

κσ2
ξ

]1/2

⇔

(
q2

1σ
2
θ

2κσ2
ξ

+ φ+ κ

)
+ 2φ >

[(
q2

1σ
2
θ

2κσ2
ξ

+ φ+ κ

)2

+
2q2

1σ
2
θφ

κσ2
ξ

]1/2

⇔

(
q2

1σ
2
θ

2κσ2
ξ

+ φ+ κ

)2

+ 4φ

(
q2

1σ
2
θ

2κσ2
ξ

+ φ+ κ

)
+ 4φ2 >

(
q2

1σ
2
θ

2κσ2
ξ

+ φ+ κ

)2

+
2q2

1σ
2
θφ

κσ2
ξ

⇔ 4φ(φ+ κ) + 4φ2 > 0

which is true. Thus, H is strictly increasing in R+. Also, H(0) < 0 and H(q1) ↗ ∞ as

q1 ↗∞. Thus, there is a unique q∗1 > 0 such that H(q∗1) = 0. Moreover, setting q1 = 1,

H(1) =

[(
σ2
θ

2κσ2
ξ

+ φ+ κ

)2

+
2σ2

θφ

κσ2
ξ

]1/2

− σ2
θ

2κσ2
ξ

− φ− κ > 0

and so q∗1 < 1. In addition, H(q1) → q1κ + q1(2r + κ) − 2(r + κ) as φ → 0, so q∗1 = 1.

Similarly, as φ→∞, fφ(q1) ≈ q1φ+ φ(q1 − 2), so q∗1 = 1 also holds.

Returning to q2, it is easy to see from the second equation in (A.33)

q2 = − 2(r + 2φ)

q1m1 + 2(r + 2φ)
∈ (−1, 0).

Finally, recall that q0 satisfies the equation

−(r + φ)
2q0

q1m1

= q0 + φ
q2 + 1

q2q1m1

[q0 + q1m0] + κµ
2(1− q1)

q1m1

and that

m0 =
1

φ

[
µ
(
φ− q1m1

2

)
− q0m1

2

]
.

Also, from the equation for q2, (q2 + 1)/q2q1m1 = −1/2(r + 2φ). Thus, the coefficient that

accompanies q0 is given by

1

q1m1

[
−2(r + φ)− q1m1 +

φ

2(r + 2φ)
q1m1 −

φ

2(r + 2φ)
q2

1m
2
1

]
.

But observe that φq1m1/2(r + 2φ) ∈ (0, q1m1/4), and so the second term dominates the

third. We conclude that the previous expression is strictly negative, which implies that
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the equation for q0 admits a solution under no restriction over the set of parameters. To

conclude:

1. The rest of the unknowns are determined as follows. First, v2, v3 and v5 are determined

from the matching coefficient conditions (A.31) using q0, q1 and q2 (all these equations

admit a solution). v1 and v4 can be obtained via the envelope theorem. Namely:

(r + κ)[v1 + 2v4θ + v5P ] = (q0 + q1θ + q2P )

[
1− v5

q1m1

2q2

]
− v5φ

[
P +

q0 + q1m0

2q2

]
−2v4κ(θ − µ)

yields two additional equations

2(r + κ)v4 = q1

[
1− v5

q1m1

2q2

]
︸ ︷︷ ︸

=q1 from (A.31)

−2v4κ⇒ v4 =
q2

1

2(r + 2κ)

(r + κ)v1 = q0q1 − v5φ
q0 + q1m0

2q2

⇒ v1 =
q0q1

r + κ
− v5φ(q0 + q1m1)

2q2(r + κ)

The coefficient v0 in turn corresponds to

v0 =
1

r

[
−q2

0 + v2

(
q0
q1m1

2q2

− φq0 + q1m0

2q2

)
+ v1κµ+ σ2

θv3 +

(
q1m1σξ

2q2

)2

v4

]

which is determined comes from equating the constant terms in the HJB equation.

2. The law of motion of equilibrium prices is given by

dPt =

−q1m1

2q2

(q0 + q1θt + q2P
∗
t )︸ ︷︷ ︸

qt=

−φ
(
Pt +

q0 + q1m0

2q2

) dt− q1m1

2q2

σξdZ
ξ
t

=

[
−
(q1m1

2
+ φ
)
Pt −

q2
1m1

2q2

θt −
(
q0q1m1

2q2

+ φ
q0 + q1m0

2q2

)]
dt− q1m1

2q2

σξdZ
ξ
t .

Since q1m1/2 + φ > 0 prices are mean reverting with sensitivity to new information

given by −q1m1/2q2 > 0. Because the equilibrium dynamics (θ, P ∗) are (coupled)

mean reverting, usual transversality conditions hold hold.

�
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Proof of Proposition Recall that qobs1 = α and qhidden1 are defined solutions to

−2(r + κ+ φ) + α (2r + κ+ φ)

+α


(σ2

θα[α + f(α)]

κσ2
ξ

+ φ+ κ

)2

− 4σ2
θαf(α)φ

κσ2
ξ

1/2

− σ2
θα[α + f(α)]

κσ2
ξ

 = 0, and

−2(r + φ+ κ) + α(2r + φ+ κ)

+α


(α2σ2

θ

2κσ2
ξ

+ φ+ κ

)2

+
2α2σ2

θφ

κσ2
ξ

1/2

− α2σ2
θ

2κσ2
ξ

 = 0,

respectively (in the observable case, g(·) can be rearranged to appear as above). Also, recall

that f(α) ∈ (−α/2, 0), where we have omitted the dependence on φ. Thus, define

y 7→ hα(y) :=

(σ2
θα[α + y]

κσ2
ξ

+ φ+ κ

)2

− 4σ2
θαyφ

κσ2
ξ

1/2

− σ2
θα[α + y]

κσ2
ξ

and notice that the first equation can be written as gobs(α) := −2(r+κ+φ)+α (2r + κ+ φ)+

αhα(f(α)) = 0, whereas the second can be written as ghidden(α) := −2(r+κ+φ)+α (2r + κ+ φ)+

αhα(−α/2) = 0. We now show that hα(·) is strictly decreasing over (−α/2, 0).

To this end, observe that h′α(y) < 0 if and only if

(
σ2
θα[α + y]

κσ2
ξ

+ φ+ κ

)
σ2
θα

κσ2
ξ

− 2σ2
θαφ

κσ2
ξ

<
σ2
θα

κσ2
ξ

(σ2
θα[α + y]

κσ2
ξ

+ φ+ κ

)2

− 4σ2
θαy

κσ2
ξ

1/2

⇔

(
σ2
θα[α + y]

κσ2
ξ

+ φ+ κ

)
− 2φ <

(σ2
θα[α + y]

κσ2
ξ

+ φ+ κ

)2

− 4σ2
θαy

κσ2
ξ

1/2

.

If the left-hand side is negative, the result follows immediately.

Suppose to the contrary that
(
σ2
θα[α + y]/κσ2

ξ + φ+ κ
)
− 2φ > 0. Squaring both sides

of the inequality under study yields

−4

(
σ2
θα[α + y]

κσ2
ξ

+ φ+ κ

)
φ+ 4φ2 < −4σ2

θαyφ

κσ2
ξ

⇔ 0 <
σ2
θα

2

κσ2
ξ

+ κ, (A.35)

which is true. We conclude that gpub(α) < ghidden(α) for all α ∈ [0, 1]. But since gobs(α) and

ghidden(α) are increasing (proofs of Propositions 2 and 12), it follows that qobs1 (φ) > qhidden1 (φ).

As for (ii) and (iii), recall that in the observable case Qt = δµ + αθt + βMt and Pt =
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δµ+ (α + β)Mt, and thus

qobs1 (φ) = α, qobs2 (φ) =
β

α + β
and pobs

1 (φ) = (α + β)λ(φ, α, β).

(ii): From the second equation for the system that defines (δ, α, β) in the observable case,

(r + 2φ)
α + 2β

m1

= β2 ⇒ qobs2 (φ) =
β

β + α
=

−2(r + 2φ)

2(r + 2φ)− 2λβ
.

On the other hand, from the private case,

q2 =
−2(r + 2φ)

2(r + 2φ) + q1m1

.

Thus, we must compare −2λβ with q1m1. However, from the third equation for the

system that defines (δ, α, β),

(r + κ+ φ)
α− 1

λ
= αβ ⇒ (r + κ+ φ)

2(1− α)

α
= −2λβ.

Also, from the third equation in the system (A.33) for (q0, q1, q2) in the private case,

(r + κ+ φ)
2(1− q1)

q1m1

= q1 ⇒ (r + κ+ φ)
2(1− q1)

q1

= q1m1

But since 1 > qobs1 > qhidden1 > 0 we conclude that 0 < −2λβ < q1m1, from where

−1 < qobs2 < qhidden2 < 0.

(iii) Finally, from the second equation for (δ, α, β) in (A.12)

pobs

1 (φ) = (α + β)λ =
[λβ]2

r + 2φ
− βλ =

4[λβ]2 − 4βλ

4(r + 2φ)

[−2λβ + (r + 2φ)]2 − (r + 2φ)2

4(r + 2φ)
.

However, using the expression for q2 in the private case,

phidden

1 := −q1m1

2q2

=
[q1m1]2 + 2(r + 2φ)q1m1

4(r + 2φ)
=

[q1m1 + (r + 2φ)]2 − (r + 2φ)2

4(r + 2φ)
.

Since 0 < −2m1β < q1m1, we deduce that 0 < pobs
1 < phidden

1 , concluding the proof. �
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Appendix B: Discretized Public Ratings Model

This appendix introduces a sequence of discrete-time counterparts of the continuous-time

setting examined in which each game is indexed by the length of the interaction between the

consumer and any myopic firm. The purpose is twofold. First, to illustrate that the Markov

“restriction” (i.e., the study of history-independent coefficients) has no bite in discrete time.

Second, that a sensitivity of demand equal to -1 is the limiting value of the sensitivities of

demand along the sequence of games studied as the period length shrinks to zero.

A consumer interacts with a sequence of short-run firms in a stochastic game of period

length ∆ > 0. Specifically, at each t ∈ {0,∆, 2∆, 3∆, ...} the consumer shops for a product

that is supplied by a single firm (firm t). The timing of events over [t, t+ ∆) is as in Section

2: first, firm t posts a price; second, having observed this price, the consumer chooses how

much to buy; third, the purchase is recorded with noise, and subsequently incorporated in

the rating. The same sequence of events then repeats at [t+ ∆, t+ 2∆), but now with a firm

different from firm s ∈ {0,∆, ..., t}.
The discretized model consists of the dynamics

θt+∆ = θt − κ∆(θt − µ) +
√

∆εθt+∆

Yt+∆ = Yt − φ∆Yt +Qt∆ +
√

∆εξt+∆

where εθt ∼ N (0,
√

∆σ2
θ) and εξt ∼ N (0,

√
∆σ2

ξ ) are independent across time, and the se-

quences independent from one another. Finally, the consumer’s utility over period [t, t+ ∆)

given (θt, Pt, Qt) = (θ, p, q) is given by

u∆(θ, p, q) =

(
(θ − p)q − q2

2

)
∆.

As in the main body of the paper, if the firms conjecture a consumer strategyQ(p, θ,M) =

q0 + q1θ + q2M − q3p, q3 > 0, they will set a price according to P (M) = q0+(q1+q2)M
2q3

, which

leads to realized purchases along the path of play simply following

Qt =
q0

2
+ q1θt +

q2 − q1

2
Mt.

Letting δ := q0/2, α := q1 and β := (q2 − q1)/2, we can then write

Pt =
δ + (α + β)Mt

q3

and Qt = δ + αθt + βMt, t ∈ {0,∆, 2∆, ...}, (∗)

and we are interested in the natural case α > 0, β < 0 and α + β > 0.
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We now proceed in three steps. First, we find an expression for the weight that the

consumer’s best-response attaches to the current price when firms conjecture a consumer

linear strategy and set prices as in (*). Call this weight q̂3. Second, we show that at

any history where firm t sets a price different than the one prescribed by (*), the consumer

optimally responds with the same linear strategy from the previous step; thus q̂3 is effectively

the sensitivity of demand. Third, we show that q̂3 goes to 1 as ∆ ↘ 0. Importantly, these

steps hold under any linear conjecture by the firms (in particular, for q3 6= q̂3), and thus,

q̂3 = 1 is a property of the consumer’s best response along the sequence of games.

Step 1. Since from each firm’s perspective Yt was driven by past purchases that followed

(*), Mt := E[θt|Yt] = ρ + λYt for some ρ ∈ R and λ > 0, where Yt carries information up to

the time t−∆ purchase. In this case,

Mt+∆ −Mt = λ[Yt+∆ − Yt] = λ[−φ∆(Mt − ρ)/λ+Qt∆ +
√

∆εξt+∆]

⇒ Mt+∆ = Mt − φ∆(Mt − ρ) + λQt∆ + λ
√

∆εξt+∆ (A.36)

Let V denote the consumer’s value function when facing prices given by prices as just stated.

Then, the following Bellman equation holds

V (θ,M) = max
q∈R

{[(
θ − δ + (α + β)M

q3

)
q − q2/2

]
∆ + e−r∆E[V (θ′,M ′)|(M, θ)]

}
s.t.

θ′ = θ − κ∆(θ − µ) +
√

∆εθ

M ′ = M − φ∆(M − ρ) + λq∆ + λ
√

∆εξ. (A.37)

We look for a quadratic value, i.e., V (θ,M) = v0+v1θ+v2M+v3M
2+v4θ

2+v5θM . Leting

X := (θ,M), we have that V (X ′) = V (X) +DV (X)(X ′ −X) + 1
2
(X ′ −X)>D2V (X ′ −X),

and straightforward algebra shows that the Bellman equation further reduces to

V (θ,M) = max
q∈R

{[(
θ − δ + (α + β)M

q3

)
q − q2/2

]
∆ + e−r∆V (θ,M)

+e−r∆∆(−κ[θ − µ]Vθ + [−φ(M − ρ) + λq]VM +
1

2
Vθθ[∆κ

2(θ − µ)2 + σ2
θ ])

+e−r∆∆VθM [−κ(θ − µ)(−φ∆(M − ρ) + qλ∆)]

+e−r∆∆
1

2
VMM [φ2∆(M − ρ)2 + λ2q2∆ + λ2σ2

ξ − 2φλ∆(M − ρ)q])

}
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The first-order condition then reads

[1−e−r∆λ2∆VMM ]q = θ− δ + (α + β)M

q3︸ ︷︷ ︸
p=

+e−r∆(λVM+∆VθM [−κ(θ−µ)λ]−VMMφ∆(M−ρ)λ)

Thus, the contemporaneous price has weight −q̂3 in the consumer’s linear best-response,

where

q̂3 =
1

1− e−r∆λ2∆VMM

=
1

1− 2e−r∆λ2∆v3

.

In step 3, we show that, fixing q3 (which enters as a parameter in the consumer’s best-

response problem and thus affects v3), ∆v3 ↘ 0. Thus, for ∆ > 0 small, (ii) the right-hand

side of the Bellman equation is a concave problem, and (ii) any linear best-response exhibits

q̂3 ≈ 1.

Step 2. Consider now a history at which firm t posts a price p 6= [δ + (α + β)Mt]/q3. In

this case, it is easy to see that the consumer’s problem is of the form

max
q∈R

{[
(θ − p) q − q2/2

]
∆ + e−r∆E[V (θ′,M ′)|(M, θ)]

}
s.t. θ′ = θ − κ∆(θ − µ) +

√
∆εθ

M ′ = M − φ∆(M − ρ) + λq∆ + λ
√

∆εξ. (A.38)

In fact, since the deviation is not observed by subsequent firms, the consumer’s continuation

value following the deviation is precisely given by V found by solving the Bellman equation

of the previous step. As a result, the consumer’s optimal strategy is determined by the same

first-order condition.

Step 3. Straightforward algebraic manipulation shows that v3 is determined by setting to

zero the coefficient on M2 in the Bellman equation. Specifically, the condition is

4q2
3∆λ2v2

3 + 2q3v3[q3[(1−∆φ)2 − e∆r]− 2∆(1−∆φ)λ(α + β)] + e∆r∆(α + β)2 = 0.

Letting Γ := q3[(1−∆φ)2 − e∆r]− 2∆(1−∆φ)λ(α + β), the two solutions are given by

v±3 =
−Γ±

√
Γ2 − 4∆2λ2e∆r(α + β)2

2q3∆λ2
.

We now show that ∆v±3 ↘ 0 as ∆ ↘ 0 (but as we show below, v−3 is the root associated

with the equilibrium examined in the paper).
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To this end, observe that λ also depends on ∆. A calculation presented at the end of

this appendix in fact shows that this value is defined as the positive root of the equation

F (∆, λ) := λ− σ2
θα(1− κ∆)[2(φ− βλ)− (φ− βλ)2∆]

σ2
ξ [2κ− κ2∆][(φ− βλ)(1− κ∆) + κ] + σ2

θα
2[2− κ∆− (φ− βλ)(1− κ∆)∆]

= 0.

It is easy to verify that at ∆ = 0 the previous equation reduces to the quadratic function

that determines the sensitivity of beliefs in the continuous-time game analyzed. Call such

sensitivity λ0, and thus F (0, λ0) = 0. Moreover, since β < 0 and λ0 > 0

∂F

∂λ
(0, λ0) =

(σ2
θα

2 + σ2
ξκ[φ+ κ− βλ0])2 + βσ2

θα[σ2
θα

2 + κ2σ2
ξ ]

(σ2
θα

2 + σ2
ξκ[φ+ κ− βλ0])2

>
σ4
θα

3[α + β] + σ2
ξσ

2
θακ

2[2α + β]

(σ2
θα

2 + σ2
ξκ[φ+ κ− βλ0])2

> 0 (A.39)

where the last inequality follows from α+β > 0. By the implicit function theorem, therefore,

the exists ε > 0 and a unique continuously differentiable function λ(∆) such that λ(0) = λ0,

F (∆, λ(∆)) = 0, and λ(∆) > 0, for all ∆ ∈ [0, ε].

Since λ(·) is bounded in that set, we conclude that

∆v±3 =
−Γ±

√
Γ2 − 4∆2λ2(∆)e∆r(α + β)2

2q3λ2(∆)
→ 0

as ∆↘ 0, due to Γ := q3[(1−∆φ)2− e∆r]− 2∆(1−∆φ)λ(α+β) also vanishing in the limit.

This concludes step 3.

Before showing that F (∆, λ) = 0 defines the sensitivity of beliefs consistent with Bayesian

updating, two observations.

1. It is easy to see that when q3 = 1, then, as ∆↘ 0,

v±3 →
2λ0(α + β) + (r + 2φ)±

√
[2λ0(α + β) + (r + 2φ)]2 − 4λ2(α + β)2

4λ2
0

the right-hand side being the two roots for the equation that v3 must satisfy in the

continuous-time program.21 However, an equilibrium condition of the continuous time

model is 2λv3 = α + 2β, and so either

2λv+
3 = α + 2β or 2λv−3 = α + 2β

21This follows from inserting the first-order condition (A.8) as a function of the v’s in (A.10), and then
solving the quadratic equation for v3 that results from equating the coefficient on M to zero.
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must hold. However, the previous conditions reduce to

r + 2φ±
√

(r + 2φ)2 + 4λ(α + β)(r + 2φ) = 2βλ.

Since β < 0 in the equilibrium found, only v−3 converges to the value of v3 in the

equilibrium studied.

2. Rational expectations implies that q̂3 = q3. Straightforward algebra shows that, using

v−3 , this condition reduces to

2(q3 − 1) = −Γ(q3)−
√

Γ2(q3)− 4∆2λ2(∆)er∆(α + β)2

=
4∆2λ2(∆)er∆(α + β)2

−Γ(q3) +
√

Γ2(q3)− 4∆2λ2(∆)er∆(α + β)2
. (A.40)

where the dependence of Γ on q3 is being made explicit. For sufficiently small ∆,

however, (1−∆φ)2 − e∆r < 0 and so −Γ(q3) > 0 for all q3 ≥ 1. The linearity of both

2(q3− 1) and Γ(q3) in q3 then yields the existence of q∗3 such that the previous equality

holds.

Equation for λ. For notational simplicity, we show this for µ = ρ = δ = 0 as the means

and intercepts do not affect the sensitivity of beliefs.

Define the matrices

X :=

[
θ

Y

]
; A∆ :=

[
1− κ∆ 0

α∆ 1− (φ− βλ)∆

]
; B :=

[
σθ 0

0 σξ

]
~ε :=

[
εθ

εξ

]

where the shocks are orthogonal Gaussian white noise processes, and notice that

X(j+1)∆ = A∆Xj∆ +
√

∆B~ε(j+1)∆, j ∈ N.

The solution to this difference equation is given by

X(j+1)∆ = Aj+1
∆ X0 +

√
∆Aj+1

∆

j∑
i=0

A
−(j+1−i)
∆ B~ε(j+1−i)∆.

To obtain a stationary Gaussian process, therefore, we impose first that X0 is Gaussian and

independent of (~εj∆)j∈N. Moreover, stationary requires that ~µ := E[X0] = 0, so as to obtain

E[Xj∆] = 0 for all j ∈ N. In addition, letting Λ∆ denote the candidate covariance matrix of
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(Xj∆)j∈N, we must have that

Λ∆ = Aj+1
∆ Λ∆(Aj+1

∆ )> + ∆Aj+1
∆

[
j∑
i=0

A
−(j+1−i)
∆ B2(A

−(j+1−i)
∆ )>

]
(Aj+1

∆ )>, ∀j ∈ N.

Moreover, taking consecutive differences leads to

0 = Aj∆
{
A∆Λ∆A

>
∆ − Λ∆ (A.41)

+ ∆A∆

[
j∑
i=0

A
−(j+1−i)
∆ B2(A

−(j+1−i)
∆ )>

]
A>∆ −∆

[
j−1∑
i=0

A
−(j−i)
∆ B2(Aj−i∆ )>

]
︸ ︷︷ ︸

=∆B2

 (Aj∆)>

and thus Λ∆ is defined by the equation

A∆Λ∆A
>
∆ − Λ + ∆B2 = 0.

Straightforward algebra leads to the following equations for the unknowns Λ11 = θj∆, Λ12 =

Λ21 = Cov[θj∆, Yj∆], and Λ22 = Var[Yj∆], j ∈ N:

Λ11(1− κ∆)2 − Λ11 + ∆σ2
θ = 0

Λ11α∆(1− κ∆) + Λ12(1− (φ− βλ)∆)(1− κ∆)− Λ12 = 0

Λ11(α∆)2 + 2Λ12(1− (φ− βλ)∆)α∆ + Λ22(1− (φ− βλ)∆)2 − Λ22 + ∆σ2
ξ = 0.(A.42)

This system has as a solution

Λ11(∆) =
σ2
θ

2κ− κ2∆

Λ12(∆) =
ασ2

θ(1− κ∆)

[2κ− κ2∆][φ− βλ+ κ− (φ− βλ)κ∆]

Λ22(∆) =
1

2(φ− βλ)− (φ− βλ)2∆

[
σ2
ξ +

σ2
θα

2∆

2κ− κ2∆
+

2α[1− (φ− βλ)∆]σ2
θα(1− κ∆)

[2κ− κ2∆][φ− βλ+ κ− (φ− βλ)κ∆]

]
.

(in particular, observe that we recover the continuous-time expressions for all the Λ’s by

letting ∆→ 0 and replacing λ by λ0.) To conclude, by the projection theorem for Gaussian

random variables,

Mt = µ1 +
Cov[θt, Yt]

Var[Yt]
[Yt − µ2] =︸︷︷︸

µ1=µ2=0

Cov[θt, Yt]

Var[Yt]
Yt
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which leads to λ∆ satisfying the equation

λ =
Λ12(∆, λ)

Λ22(∆, λ)
.

After straightforward algebra, the equation reduces to

λ =
σ2
θα(1− κ∆)[2(φ− βλ)− (φ− βλ)2∆]

σ2
ξ [2κ− κ2∆][(φ− βλ)(1− κ∆) + κ] + σ2

θα
2[2− κ∆− (φ− βλ)(1− κ∆)∆]

.
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