Engineering-Based Modeling of Scale Efficiencies in Telecommunications

Paul T. Scott

Spectrum Auctions and Market Structure Conference Zurich, June 2025

Plan

Elliott, J. T., Houngbonon, G. V., Ivaldi, M., & Scott, P. T. (2025). Market structure, investment, and technical efficiencies in mobile telecommunications. *Journal of Political Economy*, 133(5), 1401-1459.

- ► Sources of Efficiencies in JPE Paper
 - Path loss
 - Pooling
 - ► Base station fixed costs
- ► Results from JPE paper
- ► Sources of Efficiencies NOT in JPE Paper
 - ► Backbone network
- ► Econometric vs Engineering Approaches

Why Do We Need Accurate Models of Efficiencies?

- ► Classic trade-off in merger analysis is market power vs scale efficiencies.
- ▶ Other market structure changes—e.g., through spectrum allocation or RAN sharing—have impacts through scale efficiencies.
- ► After building a model that captures scale efficiencies, we can quantify the value of spectrum in mobile telecom.

Path Loss

Path Loss and Population density

Channel capacity and cell size

Pooling

Queuing Theory and Pooling Efficiencies

- ► *Q*: delivered download speed
- $ightharpoonup \bar{Q}$: channel capacity
- $ightharpoonup Q^D$: demand arrival rate
- ▶ When consumers request data at the same time, they create congestion, reducing download speeds
- ightharpoonup Assume M/M/1 queue and Poisson arrivals (open issue here!), then

$$Q$$
 = Q - Q^D delivered download speed channel capacity demand arrival rate

Queuing Theory and Pooling Efficiencies

- ► *Q*: delivered download speed
- $ightharpoonup \bar{Q}$: channel capacity
- $ightharpoonup Q^D$: demand arrival rate
- ▶ When consumers request data at the same time, they create congestion, reducing download speeds
- ightharpoonup Assume M/M/1 queue and Poisson arrivals (open issue here!), then

$$\underbrace{Q}_{\text{delivered download speed}} = \underbrace{\bar{Q}}_{\text{channel capacity}} - \underbrace{Q^D}_{\text{demand arrival rate}}$$

ightharpoonup Combining the customer bases and spectrum of two symmetric firms would double both \bar{Q} and Q^D , which would lead to a doubling of delivered download speed Q.

Queuing Theory and Pooling Efficiencies

- ► *Q*: delivered download speed
- $ightharpoonup \bar{Q}$: channel capacity
- $ightharpoonup Q^D$: demand arrival rate
- ▶ When consumers request data at the same time, they create congestion, reducing download speeds
- ► Assume M/M/1 queue and Poisson arrivals (open issue here!), then

$$\underbrace{Q}_{\text{delivered download speed}} = \underbrace{\bar{Q}}_{\text{channel capacity}} - \underbrace{Q^D}_{\text{demand arrival rate}}$$

- ightharpoonup Combining the customer bases and spectrum of two symmetric firms would double both \bar{Q} and Q^D , which would lead to a doubling of delivered download speed Q.
 - ightharpoonup Demand model gives us Q^D , which depends on delivered download speed Q
 - ightharpoonup Q and Q^D form a simultaneous system
 - ightharpoonup Endogeneity of Q^D limits speed improvement in equilibrium, but there will still be improvement

Base Station Fixed Costs

Base Station Costs

- ▶ In our main specification, there are no cost synergies associated with fixed costs.
- ▶ Base station costs scale linearly with bandwidth, so the total costs of operating a base station are the same for
 - ▶ One firm operating *B* units of spectrum,
 - ▶ Two firms each operating B/2 units of spectrum at the same site.
- ▶ We also have a specification with duplicated fixed costs. In Peha (2017), cost synergies come exclusively from avoiding duplicated fixed costs.

Results from Elliot et al. (2025)

Demand Model Overview

- Consumers choose mobile plan (operator, price, data limit) and how much data to consume
- ► Quite standard: mixed logit model
- ▶ Not standard: download speed is an endogenous product characteristic
- ► Estimated using detailed data from Orange in France, 2015.
- ▶ Important aspects: how price sensitive are consumers, and how do they value data consumption and download speeds?

Supply Side

- Firms set prices and choose number of base stations (or cell size)
- Supply-side modeling is very engineering-based. Model of data transmission derived from
 - ▶ Path loss telling us how SINR depends on cell size/number of base stations
 - ▶ Shannon-Hartley Theorem telling us how SINR and spectrum allocation matter for channel capacity
 - Queuing model telling us how download speeds depend on channel capacity and consumer demand
- ► On supply side, only role for econometrics is to back out two cost parameters: cost per base station and cost per consumer.

Equilibrium Simulations

Two kinds of simulations:

- ► Vary number of firms, imposing symmetric firms
 - ► Total industry spectrum held fixed across simulations, spectrum divide evenly across firms
 - ► Many firms ⇒ each firm has a small spectrum endowment
 - ► Number of base stations endogenously determined
- Bilateral merger simulations based on (asymmetric) market conditions in data
 - Base station network fixed, but merged firms combine the networks of the merging parties

Varying Number of Firms: Equilibrium Outcomes

Varying Number of Firms: Welfare

Welfare levels are relative to monopoly case

Varying Number of Firms: Distributional Impact

Backbone Network

Optimal Transport/Allometric Scaling

- Suppose that the cost of a telecommunications network was proportional to the distance of connections, and that at a constant population density, the cost was linearly proportional to the area served.
- ► Then, the cost of a network will have the form

$$C \propto D^{-1/2}A$$

where C is cost, D is population density, and A is area served.

► However, there are many models in science and engineering where costs are less-than-linearly proportional to area served. For instance, we can derive an optimal transport model in which

$$C \propto D^{-1/3} A^{2/3}$$

Econometrics vs Engineering

Optimal Transport/Allometric Scaling

► If our engineering model tells us that

$$C = \theta D^{-1/3} A^{2/3},$$

then all we need from data is the value of θ , which can be determined from cost data, or potentially backed our from first-order conditions

► In contrast, old econometric studies of scale efficiencies in telecommunications estimated equations like

$$ln(C/customers) = \theta_0 + \theta_1 D$$

- ► This comes with extra challenges:
 - ► Population density (and other RHS variables) may be correlated with unobservables. This can create bias in either direction.
 - Population density (and other RHS variables) is measured with error. This will tend to bias us towards having constant returns to scale.

Thank you!