Platform Tying and its Effects

Leonardo Madio

Fabio M. Manenti

Massimo Motta
ICREA-Universitat Pompeu Fabra
& Barcelona School of Economics

September 22, 2025

The Economics of the Digital Markets Act (DMA)

Brussels

Tying in Digital Markets

Widespread practice: dominant digital platforms frequently integrate specialized services with their core, dominant service.

- Google Comparison Shopping Service: created in Dec. 2002, integrated in Google search in 2007;
- Microsoft Teams: bundled with Office 365 suite, making it a more convenient choice over competitors like Slack or Zoom.

Integration

Provides immediate benefits to users as they can more easily access the service (lower search/inconvenience costs).

Tying in Digital Markets

Widespread practice: dominant digital platforms frequently integrate specialized services with their core, dominant service.

- Google Comparison Shopping Service: created in Dec. 2002, integrated in Google search in 2007;
- Microsoft Teams: bundled with Office 365 suite, making it a more convenient choice over competitors like Slack or Zoom.

Integration

Provides immediate benefits to users as they can more easily access the service (lower search/inconvenience costs).

When service of the dominant platform is in competition with independent services

- → Better integration: also referred to as "self-preferencing" or "platform envelopment"
 - Google displays its CSS in a systematically prominent way on its SERP, making it more visible to users than rival CSSs
- \hookrightarrow Has attracted the attention AAs as it may represent an abuse of dominance

Motivating case: FB Marketplace antitrust case

- In 2016 Facebook launched Marketplace
 - Deeply integrated into the core FB app, granting it visibility advantages over standalone classifieds services
 - → Tying: users on FB have automatic access to FB Marketplace.

- **Rivals:** competing Online Classified Ads Services (e.g. *Subito*, *Vinted*, *eBay*) operate their own independent platforms (aka *direct* channel)
 - → they can also rely on FB to reach its vast user base.
- Anti-competitive concerns: FB Marketplace integration into the core FB app grants FB Marketplace visibility advantages over standalone OCAS
 - the conduct allegedly extends FB's dominance in social networks into the market for online classified ads.

What we do

Short-run vs long-run effects

- Short-run: these practices may reduce users' search, switching, or inconvenience costs.
 - → pro-competitive effects
- **Long-run:** these practices may leverage market power from a core service to an adjacent market. This can deprive rivals of scale and profits, ultimately harming competition, innovation, and long-run consumer welfare.
 - \hookrightarrow anti-competitive effects

Our research

Analyse the trade-off between short and long run effects: which net effect?

What we do

We develop a formal model to analyze this trade-off. Our key contribution is to identify a novel channel for consumer harm:

- Tying (better integration) alters firms' incentives to invest in quality. The dominant firm invests more, but the rival invests less.
- 2 This creates a **negative externality** on users who access the rival platform through a **direct channel** (e.g., a dedicated app).
 - → These users are harmed by the rival's lower quality but receive none of the convenience benefits of the tie.
- Under certain conditions (e.g., direct channel important enough), this adverse effect outweighs the pro-competitive effect and determines a reduction in overall consumer surplus.
- Tying might also lead to entry deterrence (or exit) of the rival platform.

Literature on Anti-competitive Tying

Three main streams of literature (Fumagalli, Motta & Calcagno, 2018)

Imperfect rent extraction:

- ▶ A dominant firm ties to extract profits from a rival's complementary good when direct extraction is imperfect (Carlton & Waldman (2012), Choi & Jeon (2021)).
 - → Our model shares this feature: tying is most profitable when the payment to the dominant platform is low.

2 Commitment to aggressive competition:

- Tying serves as a credible commitment to compete fiercely, deterring rival entry (Whinston, 1990).
- Can also commit to higher R&D, reducing rivals' innovation incentives (Choi & Stefanadis, 2004).

Protect a monopoly:

Tying is used to protect a monopoly by reducing the likelihood of long-run entry in complementary markets (Carlton & Waldman, 1998; Choi & Stefanadis, 2001).

Relation to the literature on Self-Preferencing

- The practice we model (better integration) can be seen as "self-preferencing" or "platform envelopment".
- This connects our work to a vast recent literature on how hybrid platforms may favor their own products and services. (De Corniere & Taylor (2019); Motta (2023), Padilla, Perkins & Piccolo (2022); Farronato, Fradkin & MacKay (2023); Waldfogel (2024), Chen & Tsai (2024))

The Model: Market Structure

Figure: Market Configuration

- Two firms, 1 & 2, and two markets, A & B.
- Market A (Primary): Firm 1 is a monopolist with platform A1 (e.g., Search Engine or a Social Network).
- Market B (Specialized): Firm 1 and Firm 2 compete with their specialized platforms (B1 and B2) (e.g., CSS, marketplaces).

The Model: Market Structure

Figure: Market Configuration

- Two firms, 1 & 2, and two markets, A & B.
- Market A (Primary): Firm 1 is a monopolist with platform A1 (e.g., Search Engine or a Social Network).
- Market B (Specialized): Firm 1 and Firm 2 compete with their specialized platforms (B1 and B2) (e.g., CSS, marketplaces).

Two access channels:

- Mediated channel: users on A1 can access both B1 and (if present) B2.
 - ▶ to appear Firm 2 pays an access fee $a \ge 0$ (exogenous).
- **Direct** channel: a separate group of users can access *B*2 directly (e.g., via app).

The Model: Market Structure

Figure: Market Configuration

- Two firms, 1 & 2, and two markets, A & B.
- Market A (Primary): Firm 1 is a monopolist with platform A1 (e.g., Search Engine or a Social Network).
- Market B (Specialized): Firm 1 and Firm 2 compete with their specialized platforms (B1 and B2) (e.g., CSS, marketplaces).

Two access channels:

- Mediated channel: users on A1 can access both B1 and (if present) B2.
 - ▶ to appear Firm 2 pays an access fee $a \ge 0$ (exogenous).
- **Direct** channel: a separate group of users can access *B*2 directly (e.g., via app).

Key Parameters:

- Firms' quality investments: x_1, x_2 .
- Inconvenience costs on A1: σ_1 and σ_2 .

The Model: Inconvenience costs and Tying

Inconvenience costs (σ_J)

- Users on the primary platform (A1) incur an inconvenience cost, σ_J , when accessing a specialized service, BJ, J=1,2.
 - \hookrightarrow i.e. when transiting from, say, A1 to B2: extra clicks, different interface, and so on...

Tying

We model tying as a **reduction** in the inconvenience cost for the dominant firm's own service, σ_1 .

- \hookrightarrow This can be achieved through better integration, prominent placement, or default settings that make B1 easier to access for A1's users.
- \hookrightarrow This provides a direct, short-run benefit to A1's users who choose B1.

The Model: demands on the direct/mediated channels

We build a reduced-form model based on a set of standard assumptions.

Assumption 1: Demand on the direct channel, $q_{2D}(x_2)$

 $q_2(x_2)$ increases and is concave with respect to Firm 2's quality investment, x_2 .

Assumptions 2-4: Demand on the mediated channel, $q_{JM}(x_J, x_{-J}; \sigma_J, \sigma_{-J})$

- q_{JM}(·):
 - i) increases with own quality (x_J) and decreases with rival's quality (x_{-J}) ,
 - ii) decreases with own inconvenience cost (σ_J) and increases with rival's (σ_{-J}) .
- (Own effects dominate) The absolute impact of a firm's own variables (x_J, σ_J) on its demand is stronger than the cross-effect.
- (Separability & Concavity) The marginal impact of investment on demand is independent of inconvenience costs; demands are concave.

The Model: Timing

- **1** Tying decision: Firm 1 decides whether to tie (i.e., reduce σ_1).
- 2 Investment stage: 1 and 2 simultaneously choose quality investments x_1, x_2 .
- 3 Access decision: Firm 2 decides whether to be present on platform A1.
- **②** Pricing stage: platforms B1 and B2 set fees (r_1, r_2) for sellers (no users fees). Sellers observe and decide which platform to patronize.
- 5 Consumption: consumers make choices and demands are realized.

Note. We extent the model also at the case of **Demotion**:

 \hookrightarrow in stage 1, Firm 1 decides whether to increases σ_2 .

Pricing stage

- In the last stage demands are realized; anticipating, B1 and B2 set per-transaction fees, r_1 and r_2 :
 - Sellers wtp for platforms services is increasing in the number of customers; we assume: $\rho q_{1M}(\cdot)$ and $\rho[q_{2M}(\cdot)+q_{2D}(\cdot)], \, \rho>0$: network effect from buyers to sellers
 - → In equilibrium
 - \star platforms extract full surplus: $r_1 = \rho q_{1M}(\cdot)$ and $r_2 = \rho [q_{2M}(\cdot) + q_{2D}(\cdot)]$
 - ★ all sellers (mass 1) join both platforms

Pricing stage

- In the last stage demands are realized; anticipating, B1 and B2 set per-transaction fees, r_1 and r_2 :
 - \hookrightarrow Sellers wtp for platforms services is increasing in the number of customers; we assume: $\rho q_{1M}(\cdot)$ and $\rho [q_{2M}(\cdot) + q_{2D}(\cdot)], \ \rho > 0$: network effect from buyers to sellers
 - → In equilibrium
 - \star platforms extract full surplus: $r_1 = \rho q_{1M}(\cdot)$ and $r_2 = \rho [q_{2M}(\cdot) + q_{2D}(\cdot)]$
 - ★ all sellers (mass 1) join both platforms
- Assuming that each seller transact with each buyer on a platform, $\rho(q_{1M}(\cdot))^2$ and $\rho[q_{2M}(\cdot)+q_{2D}(\cdot)]^2$ are the platform revenues
- Hence, conditional on B2 being on platform A1, profit functions are

-
$$\Pi_1 = \underbrace{\rho(q_{1M}(x_1, x_2, \sigma_1, \sigma_2))^2}_{\text{revenues from sellers}} + \underbrace{aq_{2M}(x_1, x_2, \sigma_1, \sigma_2)}_{\text{access revenues}} - \underbrace{C(x_1)}_{\text{inv. cost}}$$
- $\Pi_2 = \underbrace{\rho(q_{2D}(x_2, \sigma_2) + q_{2M}(x_1, x_2, \sigma_1, \sigma_2))^2}_{\text{revenues from sellers}} - \underbrace{aq_{2M}(x_1, x_2, \sigma_1, \sigma_2)}_{\text{access cost}} - \underbrace{C(x_2)}_{\text{inv. cost}}$

Investment stage

• In stage 3 firms choose x_1 and x_2 :

$$\begin{split} \frac{\partial \Pi_{1}(\cdot)}{\partial x_{1}} &= a \; \frac{\partial q_{2M}(\cdot)}{\partial x_{1}} + 2\rho \; q_{1M}(\cdot) \frac{\partial q_{1M}(\cdot)}{\partial x_{1}} - \frac{\partial C(x_{1})}{\partial x_{1}} = 0 \\ \frac{\partial \Pi_{2}(\cdot)}{\partial x_{2}} &= 2\rho \; \left[q_{2D}(\cdot) + q_{2M}(\cdot) \right] \left[\frac{\partial q_{2D}(\cdot)}{\partial x_{2}} + \frac{\partial q_{2M}(\cdot)}{\partial x_{2}} \right] - a \frac{\partial q_{2M}(\cdot)}{\partial x_{2}} - \frac{\partial C(x_{2})}{\partial x_{2}} = 0 \end{split}$$

Investment stage

• In stage 3 firms choose x_1 and x_2 :

$$\frac{\partial \Pi_{1}(\cdot)}{\partial x_{1}} = a \frac{\partial q_{2M}(\cdot)}{\partial x_{1}} + 2\rho \ q_{1M}(\cdot) \frac{\partial q_{1M}(\cdot)}{\partial x_{1}} - \frac{\partial C(x_{1})}{\partial x_{1}} = 0$$

$$\frac{\partial \Pi_{2}(\cdot)}{\partial x_{2}} = 2\rho \ \left[q_{2D}(\cdot) + q_{2M}(\cdot) \right] \left[\frac{\partial q_{2D}(\cdot)}{\partial x_{2}} + \frac{\partial q_{2M}(\cdot)}{\partial x_{2}} \right] - a \frac{\partial q_{2M}(\cdot)}{\partial x_{2}} - \frac{\partial C(x_{2})}{\partial x_{2}} = 0$$

Lemma 1

A sufficient condition for an equilibrium $(x_1^{\star}, x_2^{\star})$ to exist is that

$$a \le \rho \left[\min \{ 2q_{2D}(0) + q_{2M}(0, x_1), 2q_{JM}(0, x_{-J}) \} \right], \quad \forall x_J \ge 0, \ J = 1, 2.$$

That is a should not be too high:

- **1** as otherwise B2 may have no incentive to invest or to be present at all on A1;
- ② as high revenues from hosting B2 may reduce Firm 1 incentive to invest in its own product.

Tying and Investments

If $\sigma_1 \downarrow$, B1 services in the mediated channel are more attractive and:

• Firm 1:

- Demand for B1 increases.
- ▶ This raises the marginal return on its quality investment.
- Firm 1 has an incentive to **invest more**.
 - $\hookrightarrow x_1(x_2)$ shifts outwards.

• Firm 2:

- ▶ Demand for *B*2 on the mediated channel decreases.
- ▶ This lowers the marginal return on Firm 2 quality investment (x_2) .
- Firm 2 has incentive to invest less.
 - $\hookrightarrow x_2(x_1)$ shifts inward.
 - Tying on the mediated channel has a negative effect on consumers on the direct channel as well

Tying and Investments

If $\sigma_1 \downarrow$, B1 services in the mediated channel are more attractive and:

• Firm 1:

- Demand for B1 increases.
- ▶ This raises the marginal return on its quality investment.
- Firm 1 has an incentive to **invest more**.
 - $\hookrightarrow x_1(x_2)$ shifts outwards.

• Firm 2:

- Demand for B2 on the mediated channel decreases.
- ▶ This lowers the marginal return on Firm 2 quality investment (x_2) .
- Firm 2 has incentive to **invest less**.
 - $\hookrightarrow x_2(x_1)$ shifts inward.

Proposition 1

Tying leads to an **increase** in the equilibrium investment by Firm 1, x_1^* , and a **decrease** in the equilibrium investment by Firm 2, x_2^* .

Tying: Effect on Quantities

Tying has a direct effect on quantities

→ on top of this is the indirect effect, which is transmitted through the effect on investments.

Proposition 2

- Firm 1's quantity unambiguously increases.
 - This is due to the <u>direct</u> effect of lower σ_1 and the <u>indirect</u> effects of its own higher investment (x_1^*) and its rival's lower investment (x_2^*) .
- Firm 2's quantity unambiguously decreases.
 - This reduction occurs in **both** the mediated channel (q_{2M}) and, critically, the direct channel (q_{2D}) .
 - The harm from reduced investment spills over to users outside the dominant platform's ecosystem.
 - → This is a **negative externality** on users on the direct channel.

Tying: Effect on Firms Profits

• Firm 2: The combination of lower demand and reduced investment incentives directly impacts its profits.

Lemma 2: Rival's Profit

Tying leads to an unambiguous decrease in Firm 2's profit.

Tying: Effect on Firms Profits

• Firm 2: The combination of lower demand and reduced investment incentives directly impacts its profits.

Lemma 2: Rival's Profit

Tying leads to an unambiguous decrease in Firm 2's profit.

- Firm 1: faces a Trade-Off
 - + Tying increases demand for Firm 1's own specialized service, B1
 - Tying reduces demand for the rival service (B2): if Firm 2 pays an access fee (a > 0), this reduces Firm 1 revenue.

Proposition 4: Profitability of Tying

- If a is small, tying is always profitable. The gain in own-revenue dominates the negligible loss from access fees.
- If a is large, tying may not be profitable. Firm 1 is better off by collecting rents from Firm 2.
- → imperfect rent extraction: tying is a tool to capture surplus that cannot be extracted through access fees alone.

An Illustrative Example: Hotelling Model

To evaluate consumer surplus and welfare, we use a specific microfoundation:

- Consumers on market *B* are uniformly distributed with unit density on the real line.
- Mediated channel (users on platform A1)
 - users access market B either through B1 (located at $l_1=0$) or B2 (located at $l_2=1$)
 - their utility is $U_{JM}(\theta) = 1 + x_J \sigma_J t \mid I_J \theta \mid + \omega N_J$
 - ★ N_J : sellers on platform BJ, ω : network effect from sellers to buyers
- Direct channel:
 - their utility is $U_{2D}(\theta) = 1 + x_2 t \mid l_2 \theta \mid + \omega N_2$
 - the relative size of the direct channel is $\alpha \in [0,1]$
- Mass 1 of homogeneous sellers:
 - ▶ they join BJ if $\pi_J^s \ge 0 \Rightarrow$ if $r_J \le \rho Q_J$, where $\rho > 0$ is the network effect from buyers to sellers.
 - in equilibrium BJ sets r_J so that all sellers join and multi-home: $N_J = 1$.

Illustrative Example: CS and W (a = 0.1, $\omega = 0.2$, $\rho = 0.4$, $\sigma_J = 0.3$)

Figure: Effect on CS

Figure: Effect on W

- Tying decreases CS and W when the direct channel is large (high α) and competition is intense (low t).
 - ▶ The negative externality on a large direct-user base can easily outweigh the convenience benefits for mediated-channel users.
 - ▶ If competition is strong, tying hurts *B*2 more; this induces it to decrease its investment even further exacerbating the negative effect of tying.

Extension: Demotion of Rivals

We consider an alternative strategy: **Demotion**

- \hookrightarrow Instead of reducing its own inconvenience cost (σ_1) , the dominant firm actively increases the inconvenience cost for its rival (raises σ_2).
 - Example: Google demoting rival CSS links on its SERP.

Effects of Demotion

- Like tying, demotion leads to higher investment by Firm 1 and lower investment by Firm 2.
- It unambiguously reduces the quantity sold by the rival (Firm 2) in both the direct and mediated channels.
- It is profitable for the dominant firm when a is low.

Extension: Tying vs. Demotion

Which strategy is more harmful?

Tying (Reduces σ_1)

- Provides a direct benefit to users choosing B1 (lower inconvenience cost).
- Indirect harm to B2 users via lower investment.
- Welfare effect is ambiguous.

Demotion (Increases σ_2)

- Imposes a direct harm on users who would choose B2 (higher cost).
- Indirect harm to B2 users via lower investment.
- Welfare effect is unambiguously negative.

Extension: Entry Deterrence

Tying can can also lead to foreclosure

- **①** Assume Firm 2 must pay a fixed cost $\kappa > 0$ to enter the market.
- ② We know from Lemma 2 that tying reduces Firm 2's expected profits, Π_2^* .
- **3** If tying reduces profits sufficiently such that Π_2^* (with tie) $< \kappa$, Firm 2 will not enter.

Incentive to foreclose: Firm 1 again faces a trade-off:

- ↑ Foreclosure grants Firm 1 a monopoly position in Market B.
- \downarrow Firm 1 forgoes any access revenue it would have earned from Firm 2.

In our linear model

Foreclosure is a profitable strategy for Firm 1 when the when competition is intense (low t) and the direct channel is not too large (low α).

Conclusion and Policy Implications

- Platform tying creates a trade-off: short-run convenience benefit for some users vs long-run harm from distorted investment incentives.
- The key mechanism for harm is a negative externality on a direct channel. Tying reduces the rival's quality investment, harming users who receive none of the tying's benefits.
- This harm is the most severe when the rival's direct channel is large and when competition is intense.
- Policy Implications
 - Antitrust analysis of tying should go beyond static price effects to consider dynamic impacts on quality and innovation.
 - Regulators should recognize the importance of independent,
 direct-to-consumer channels as a crucial source of competitive discipline
 that can be harmed by on-platform conduct.
 - ► A clear distinction should be made between ambiguous practices like tying and more clearly harmful practices like **demotion**.
- Semedies (work in progress)

Thank You

Comments and questions are welcome.