Seller-Side Tying of Platform Services

Alexandre de Cornière¹ Kinshuk Jerath² Greg Taylor³

¹Toulouse School of Economics ²Columbia Business School ³Oxford Internet Institute, University of Oxford

Workshop on the Economics of the DMA Brussels, 22 September 2025

Roadmap

Introduction

Model

Results

Extensions and discussion

Ancillary platform services

Online platforms enable transactions (core service) between buyers and sellers.

Amazon Marketplace, Android/iOS, eBay, AirBnB, Etsy, etc.

Ancillary platform services

Online platforms enable transactions (core service) between buyers and sellers.

Amazon Marketplace, Android/iOS, eBay, AirBnB, Etsy, etc.

Marketplaces also provide ancillary services to sellers that increase value of trade.

- ▶ Fulfillment by Amazon (\sim 75–90% of sellers), Walmart (\sim 66% of sellers).
- ► Payment system for app stores.
- Customer service.
- Insurance.
- Product photography.

Tying or bundling of services

Very often, these services are tied to the core service, or sellers with these services are preferenced, e.g. Amazon cases, Android app bundling, iOS/Android payments.

Competition concerns and cases:

- Amazon (Italy, US).
- ▶ Apple & Google payment systems (investigations in EU, UK, US, Korea).
- ► DMA restricts some of these practices Article 5.7 (tying of payment systems); Article 6.5 (self-preferencing).

Tying or bundling of services

Very often, these services are tied to the core service, or sellers with these services are preferenced, e.g. Amazon cases, Android app bundling, iOS/Android payments.

Competition concerns and cases:

- Amazon (Italy, US).
- ▶ Apple & Google payment systems (investigations in EU, UK, US, Korea).
- ▶ DMA restricts some of these practices Article 5.7 (tying of payment systems); Article 6.5 (self-preferencing).

What is the impact of bundling services to sellers?

Our contribution — analysis of seller-side bundling

There is a large literature on bundling/tying but almost all of it is on tying on the *consumer* side.

Our contribution — analysis of seller-side bundling

There is a large literature on bundling/tying but almost all of it is on tying on the *consumer* side.

We study seller-side tying.

- ► Consumers visit a platform to buy from sellers there.
- ▶ *Sellers* choose whether to buy only intermediation (A) or intermediation + ancillary service (A + B).
- ▶ Why would a platform want to force sellers to choose A + B?
- ightharpoonup A new efficiency argument.
- Quite different results to consumer-side tying.

Questions and preview

Questions:

- ▶ When does the platform want to offer the ancilliary service?
- Profitability of tying?
- Effects of a ban on tying? Of a break-up?
- Analysis of foreclosure of competing providers of ancillary services.

Questions and preview

Questions:

- ▶ When does the platform want to offer the ancilliary service?
- Profitability of tying?
- Effects of a ban on tying? Of a break-up?
- Analysis of foreclosure of competing providers of ancillary services.

Key idea:

- ▶ Sellers under-adopt the ancillary service (cf. Shaked & Sutton, 1982).
- ightharpoonup Few consumers join the platform \implies externality.
- ► Tying resolves this problem of under-adoption.
- ► Good for consumers, and maybe for sellers too.

Roadmap

Introduction

Model

Results

Extensions and discussion

The model - players

Sellers

- Large number of markets. Two homogeneous sellers per market.
- ► Marginal cost *c*.

The model - players

Sellers

- ► Large number of markets. Two homogeneous sellers per market.
- ► Marginal cost *c*.

Monopoly platform

- Core service *A*: enabling transaction. Essential facility. Zero marginal cost.
- Ancillary service *B*: increases quality of seller's product by Δ. Cost to platform is $k < \Delta$.
- ▶ Unit fees: f_A , f_B paid by sellers.

The model - players

Sellers

- Large number of markets. Two homogeneous sellers per market.
- ► Marginal cost *c*.

Monopoly platform

- Core service *A*: enabling transaction. Essential facility. Zero marginal cost.
- Ancillary service *B*: increases quality of seller's product by Δ. Cost to platform is $k < \Delta$.
- ▶ Unit fees: f_A , f_B paid by sellers.

Consumers

- ightharpoonup Baseline value v. Assume market is fully covered in all cases.
- ► Heterogenous taste for quality: $\theta \Delta$. $\theta \sim \mathcal{U}(0,1)$ (indep. across markets).
- ▶ Elastic participation with U(0,1) outside option.
- Remark: uniformity is dispensible.

The model - timing

- 1. Platform chooses whether to tie *A* and *B*. Chooses unit fees.
- **2**. Sellers choose whether to buy *B*.
- 3. Sellers choose their prices.
- 4. Consumers choose whether to use the platform.
- 5. Consumers learn their θ and choose which seller to buy from.

The model - timing

- 1. Platform chooses whether to tie *A* and *B*. Chooses unit fees.
- 2. Sellers choose whether to buy *B*.
- 3. Sellers choose their prices.
- 4. Consumers choose whether to use the platform.
- 5. Consumers learn their θ and choose which seller to buy from.

Note: Because there are many markets, participation is independent of a single seller's actions \Rightarrow Sellers choose actions taking participation (Q) as given.

Roadmap

Introduction

Model

Results

Extensions and discussion

If neither seller buys B, they are undifferentiated; under Bertrand competition they price at $c + f_A$ and make zero profit.

If neither seller buys B, they are undifferentiated; under Bertrand competition they price at $c + f_A$ and make zero profit.

If both sellers buy B, they are again undifferentiated; under Bertrand competition they price at $c + f_A + f_B$ and make zero profit.

If neither seller buys B, they are undifferentiated; under Bertrand competition they price at $c + f_A$ and make zero profit.

If both sellers buy B, they are again undifferentiated; under Bertrand competition they price at $c + f_A + f_B$ and make zero profit.

If only seller 1 buys *B*, vertical differentiation (Shaked and Sutton, 1982).

- consumers with $\theta > \theta^*$ buy from seller 1 (*AB*).
- consumers with $\theta \leq \theta^*$ buy from seller 2 (*A*).
- $p_1 = c + f_A + \frac{2(f_B + \Delta)}{3}, p_2 = c + f_A + \frac{f_B + \Delta}{3}.$
- ▶ Both profits positive if $f_B < 2\Delta$.

If neither seller buys B, they are undifferentiated; under Bertrand competition they price at $c + f_A$ and make zero profit.

If both sellers buy B, they are again undifferentiated; under Bertrand competition they price at $c + f_A + f_B$ and make zero profit.

If only seller 1 buys *B*, vertical differentiation (Shaked and Sutton, 1982).

- consumers with $\theta > \theta^*$ buy from seller 1 (*AB*).
- consumers with $\theta \leq \theta^*$ buy from seller 2 (*A*).
- $p_1 = c + f_A + \frac{2(f_B + \Delta)}{3}, p_2 = c + f_A + \frac{f_B + \Delta}{3}.$
- ▶ Both profits positive if $f_B < 2\Delta$.

Lemma If the ancillary service is offered without tying there is asymmetric adoption of it by sellers if $f_B < 2\Delta$.

Suppose that one seller adopts *B*.

Expected CS (= consumer participation):

$$Q(f_A,f_B) = \int_0^{\theta^*} (v - p_2) d\theta + \int_{\theta^*}^1 (v + \theta \Delta - p_1) d\theta.$$

Suppose that one seller adopts *B*.

Expected CS (= consumer participation):

$$Q(f_A,f_B) = \int_0^{\theta^*} (v - p_2)d\theta + \int_{\theta^*}^1 (v + \theta \Delta - p_1)d\theta.$$

Platform's profit:

$$\max_{f_A, f_B} [f_A + (1 - \theta^*)(f_B - k)] Q(f_A, f_B).$$

Suppose that one seller adopts *B*.

Expected CS (= consumer participation):

$$Q(f_A,f_B) = \int_0^{\theta^*} (v - p_2) d\theta + \int_{\theta^*}^1 (v + \theta \Delta - p_1) d\theta.$$

Platform's profit:

$$\max_{f_A, f_B} [f_A + (1 - \theta^*)(f_B - k)] Q(f_A, f_B).$$

$$\implies \Pi_{\text{no tying}} = \left(\frac{v-c}{2} - \frac{\Delta^2 - k^2 + 6k\Delta}{20\Delta}\right)^2.$$

Suppose that platform requires sellers to buy the ancillary service.

Suppose that platform requires sellers to buy the ancillary service.

Bertrand competition: $p = c + f_A + f_B$

Suppose that platform requires sellers to buy the ancillary service.

Bertrand competition: $p = c + f_A + f_B$

Expected CS:

$$Q(f_A,f_B) = \int_0^1 (v + \theta \Delta - p) d\theta = v + \frac{\Delta}{2} - (c + f_A + f_B).$$

Suppose that platform requires sellers to buy the ancillary service.

Bertrand competition: $p = c + f_A + f_B$

Expected CS:

$$Q(f_A,f_B) = \int_0^1 (v + \theta \Delta - p) d\theta = v + \frac{\Delta}{2} - (c + f_A + f_B).$$

Profit:

$$\max_{f_A,f_B}(f_A+f_B-k)Q(f_A,f_B).$$

Suppose that platform requires sellers to buy the ancillary service.

Bertrand competition: $p = c + f_A + f_B$

Expected CS:

$$Q(f_A,f_B) = \int_0^1 (v + \theta \Delta - p) d\theta = v + \frac{\Delta}{2} - (c + f_A + f_B).$$

Profit:

$$\max_{f_A, f_B} (f_A + f_B - k) Q(f_A, f_B).$$

$$\implies \Pi_{\text{tying}} = \left(\frac{v - c}{2} + \frac{\Delta - 2k}{4}\right)^2.$$

Suppose that platform does not offer service B (or sets f_B prohibitively high)

► Neither seller has the service.

Suppose that platform does not offer service B (or sets f_B prohibitively high)

► Neither seller has the service.

Bertrand competition: $p = c + f_A$

Suppose that platform does not offer service B (or sets f_B prohibitively high)

► Neither seller has the service.

Bertrand competition:
$$p = c + f_A$$

Expected CS:

$$Q(f_A) = \int_0^1 (v - p) d\theta = v - (c + f_A)$$

Suppose that platform does not offer service B (or sets f_B prohibitively high)

► Neither seller has the service.

Bertrand competition: $p = c + f_A$

Expected CS:

$$Q(f_A) = \int_0^1 (v - p) d\theta = v - (c + f_A)$$

Profit:

$$\max_{f_A} f_A Q(f_A)$$

Suppose that platform does not offer service B (or sets f_B prohibitively high)

► Neither seller has the service.

Bertrand competition:
$$p = c + f_A$$

Expected CS:

$$Q(f_A) = \int_0^1 (v - p) d\theta = v - (c + f_A)$$

Profit:

$$\max_{f_A} f_A Q(f_A)$$

$$\implies \Pi_{\text{no service}} = \left(\frac{v-c}{2}\right)^2$$

Equilibrium

Proposition

- ▶ The platform never offers the ancillary service as an option.
- ▶ If $k \le \Delta/2$, the platform ties the core and ancillary services.
- ▶ If $k > \Delta/2$, the platform does not offer the ancillary service.

Discussion

Tying and no service are more profitable than offering service without tying *despite* inducing inefficient over/under-consumption.

- ▶ Inefficiency is offset by an increase in consumer participation.
- ▶ Platform internalises the negative externality on consumers when seller competition is softened.

Ban on tying

If tying is banned:

- 1. Platform doesn't offer the service
 - ▶ Remark: hinges on assumption that $\theta \sim \mathcal{U}(0,1)$.
 - ▶ General point: ban can reduce incentive to offer ancilliary service.
- 2. Consumer surplus weakly decreases
 - ▶ Robust to non-uniform (but log-concave distributions).
 - ► Tying benefits consumers whenever it is profitable.
- 3. Seller surplus is unchanged, so 'total user surplus' falls.

Suppose ancillary service divested to a competitive fringe (avoids double marginalization).

Like no-tying, but with $f_B = k$. One firm offers the service.

- Like no-tying, but with $f_B = k$. One firm offers the service.
- Good news: Consumers can self-select into ancillary service supplied at marginal cost.
- ▶ Bad news: under-adoption of ancillary service, inducing higher prices.

- Like no-tying, but with $f_B = k$. One firm offers the service.
- Good news: Consumers can self-select into ancillary service supplied at marginal cost.
- ▶ Bad news: under-adoption of ancillary service, inducing higher prices.
- Overall: Consumer surplus decreases.
 - ▶ Break-up is harmful even without double marginalization.
 - Result holds, even if platform can impose a minimum quality requirement.

- Like no-tying, but with $f_B = k$. One firm offers the service.
- Good news: Consumers can self-select into ancillary service supplied at marginal cost.
- ▶ Bad news: under-adoption of ancillary service, inducing higher prices.
- Overall: Consumer surplus decreases.
 - ▶ Break-up is harmful even without double marginalization.
 - Result holds, even if platform can impose a minimum quality requirement.
- ▶ But total user surplus can increase because sellers earn more profit.

Roadmap

Introduction

Model

Results

Extensions and discussion

Discussion: Tying on the consumer side

- \triangleright *B* \Longrightarrow vertical differentiation.
- Sellers compete à la Bertrand with or without tying.
- ▶ Tying not profitable with covered market (~ standard model of tying).

Discussion: effect of tying on sellers

In baseline model, tying harms sellers

- ▶ Bertrand competition.
- ► Can be construed as bad for "fairness" (DMA definition).

Discussion: effect of tying on sellers

In baseline model, tying harms sellers

- ▶ Bertrand competition.
- ► Can be construed as bad for "fairness" (DMA definition).

But this is not a general result

- ► Suppose sellers are initially differentiated.
- ► Tying does not eliminate all market power.
- ▶ With high elasticity of participation, sellers can be better-off with tying.

We then have a situation where tying is a Pareto improvement because it resolves a competitive externality.

Other extensions in brief

Competition on *B* market

- ▶ Can interpret baseline as a model where a competitive fringe is efficiently foreclosed.
- ► Can also have 'inefficient' foreclosure of superior rivals, but benefits consumers.
- ▶ This is a static efficiency, but obvious potential for dynamic harms.

Other extensions in brief

Competition on B market

- ► Can interpret baseline as a model where a competitive fringe is efficiently foreclosed.
- Can also have 'inefficient' foreclosure of superior rivals, but benefits consumers.
- ▶ This is a static efficiency, but obvious potential for dynamic harms.

Ad valorem fees for service A (cf Teh, 2022)

- Give platform a reason to want high seller profit.
- Numerical analysis suggests tying never harms consumers (i.e., competition reduction effect of tying dominates).

Other extensions in brief

Competition on B market

- ▶ Can interpret baseline as a model where a competitive fringe is efficiently foreclosed.
- ► Can also have 'inefficient' foreclosure of superior rivals, but benefits consumers.
- ▶ This is a static efficiency, but obvious potential for dynamic harms.

Ad valorem fees for service *A* (cf Teh, 2022)

- ▶ Give platform a reason to want high seller profit.
- Numerical analysis suggests tying never harms consumers (i.e., competition reduction effect of tying dominates).

Two-part tariffs, i.e., fixed fee + unit fee for both services (these are optimal contracts in our model)

- ▶ Platform has enough instruments to efficiently sort consumers with unit fees and extract profit with fixed fees.
- ► Tying no longer profitable for platform banning tying is neutral.

Conclusion

Simple model of marketplace provision of ancillary service, and tying on seller side.

Under-adoption of service to increases sellers' market power.

- ▶ Platform has incentives to tie ancillary and core service to increase competition among sellers this benefits consumers as well.
- ▶ Basically, platform is better than sellers at internalising participation externalities.

Regulation like banning tying and platform break-up restores sellers' market power and harm consumers (and maybe sellers too).

Literature on tying

Rich intellectual history around tying. 3 main motives:

- 1. Transaction or production cost savings (e.g., operating system components);
- 2. Price discrimination/surplus extraction (E.g., Netflix/Spotify);
- 3. Leverage (e.g., MSFT/IE, Google-Android).

Literature on tying in digital markets

- ➤ Zero marginal cost (Bakos and Brynjolfson, 1999).
- Tying and data (Condorelli and Padilla, 2024).
- ▶ Steering and takeovers (Heidhues, Köster and Köszegi, 2024).
- ▶ Non-Negative Pricing Constraint (Choi and Jeon, 2021).
- ▶ Network effects (Carlton and Waldman 2002, Choi and Jeon, 2021, Choi, Jeon and Whinston; 2021).