Interoperability between Ad-Financed Platforms with Endogenous Multi-Homing

Marc Bourreau - Telecom Paris, Institut Polytechnique de Paris, CREST Adrien Raizonville - La Poste Groupe

Guillaume Thébaudin - European Commission*

 * The views expressed are those of the authors and do not reflect the official position of the European Commission.

JRC conference on DMA, Brussels, 22-23 September 2025

Interoperability in digital markets

Networks or systems are *interoperable* if they can "work together"

- → Horizontal vs. vertical interoperability
- → Some common functionalities can be used across different services

Digital Markets Act

- Interoperability between messaging services (Art. 7)
- Restricted to a few "basic functionalities" (Art. 7.2)
- Applies only to dominant players ("gatekeepers")
- → WhatsApp and Facebook Messenger designated

Idea that interoperability does not emerge as market outcome, hence the need for regulatory intervention

This paper

When platforms are ad-funded and users can multi-home:

- What are the incentives for ad-funded messaging platforms to make their services interoperable?
- How do these incentives compare to the social optimum?
- Symmetric vs. asymmetric platforms?

Main results:

- Interoperability reduces multi-homing on the consumer side
- When platforms are symmetric, interoperability emerges and is efficient
- If one platform has a large installed base advantage, interoperability does not arise in equilibrium, whereas it would be efficient...
- ... but mandating interoperability may not be efficient in very asymmetric markets.

Related litterature and contributions

Compatibility between networks and possibility of multi-homing

- Katz and Shapiro (1985); Crémer, Rey and Tirole (1999); De Palma, Leruth and Regibeau (1999); Doganoglu and Wright (2006)
- Contributions:
 - Effect of interoperability on equilibrium with endogenous multihoming
 - Ad-funded business model → effect of interoperability on advertising side

Multi-purchasing, ad-funded business models and differentiation

- Ambrus and Reisinger (2006); Anderson, Foros and Kind (2016);
 Athey, Calvano and Gans (2016); Haan, Stoffers and Zwart (2021)
- Contribution:
 - Exposure to advertising depends on the (endogenous) amount of time consumers spend online

The model

Two horizontally differentiated **messaging platforms**, *A* and *B*

- Symmetric (for the moment)
- Purely ad-funded → no fee for users, but ads are a nuisance
- Charge advertisers a price p_i per ad
- Decide non-cooperatively on an interoperability level $\phi_i \in [0,1]$
 - \rightarrow Quality of communications on-net = 1, off-net \leq 1

Mass 1 of consumers

- Can single-home on A or B, or multi-home
 - → Care about how many users to interact with (network effects)
- Decide how much time spent communicating on-net and off-net

Mass 1 of homogeneous advertisers

• Expected value of exposing users to ads ↑ linearly with time spent

Timing

- 1. Platforms non-cooperatively choose their level of interoperability ϕ_i
 - \rightarrow resulting level of interoperability $\phi = \min\{\phi_A, \phi_B\}$
- 2. Platforms simultaneously choose their price per ad p_i , and advertisers decide which platform(s) to buy ad space on
- 3. Consumers decide which platform(s) to join and how much time they want to spend communicating on-net and off-net

Time spent online

Consumers decide to **single-home** on platform *A* or *B*, or **multi-home**

Then, decide **how much time** to spend communicating on-net and offnet:

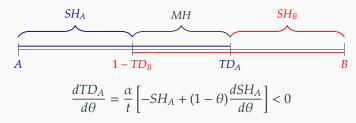
$$\tau_{on}^* \equiv \underset{\tau}{\operatorname{argmax}} u(\tau) - \gamma r_i \tau \quad \text{and} \quad \tau_{off}^* \equiv \underset{\tau}{\operatorname{argmax}} \phi u(\tau) - \gamma r_i \tau$$

with $u(\tau) = \kappa \frac{\tau^{1-\frac{1}{\beta}}}{1-\frac{1}{\alpha}}$, with β elasticity to ad nuisance.

Denoting $\theta \equiv \phi^{\beta}$, we have:

$$\tau_{off}^*(\theta, r_i) = \frac{\theta}{\theta} \tau_{on}^*(r_i)$$

and the net utility from on-net and off-net coms can be written:


$$\alpha(r_i)$$
 and $\theta\alpha(r_i)$, with $\alpha'(\cdot) < 0$

 \rightarrow e.g., utility from single-homing on i: $v_0 + \alpha(r_i)(n_i + \theta n_j)$

Interoperability and multi-homing

Effect of interoperability on multi-homing

An increase in the level of interoperability θ reduces consumer multihoming

- For given single-homing demands, ↑ interoperability improves the quality of off-net coms ⇒ multi-homing less attractive
- Countervailing effect: single-homing ↑ ⇒ multi-homing more attractive
- The first effect always dominates the second effect

Equilibrium level of interoperability

Equilibrium on the advertising market

In equilibrium, $r_i = 1$ and platforms set advertising price

$$p_i = \sigma \tau^{SH} S H_i + \frac{\sigma \tau_{on}^*}{2} M H$$
 with $\tau^{SH} = T D_i \tau_{on}^* + S H_j \tau_{off}^*$

Then, platforms choose their level of interop. to maximize their profit:

$$\Pi_i(\theta_i,\theta_j) = \sigma \tau^{SH}(\theta) SH_i(\theta) + \frac{\sigma \tau_{on}^*}{2} MH(\theta) \quad \text{with } \theta = \min\{\theta_i,\theta_j\}$$

Equilibrium level of interoperability

In equilibrium, platforms implement perfect interoperability (θ^{\star} = 1)

 \Rightarrow Socially-optimum level of interoperability is also $\theta^w = 1$

Intuition for the equilibrium outcome

Platforms' profit increases with the level of interoperability:

$$\frac{d\Pi_A}{d\theta} = \left(\sigma\tau^{SH}(\theta) - \frac{\sigma\tau_{on}^*}{2}\right)\frac{dSH_A}{d\theta} + \frac{\sigma\tau_{on}^*}{2}\frac{dTD_A}{d\theta} + \sigma\frac{d\tau^{SH}(\theta)}{d\theta}SH_A > 0$$

- Market power effect (+): Some multi-homers become exclusive users of
 A → increases market power over advertisers
- 2. **Total viewership effect (-)**: Less multi-homing → lower total user base to be monetized
- 3. **Usage intensification effect (+)**: ↑ interoperability ⇒ single-homers spend more time communicating on *A* ⇒ increases exposure to ads and thus ad revenues

Consumer surplus increases with the level of interoperability:

$$\frac{dCS}{d\theta} = 2\alpha S H_A S H_B + \alpha (1-\theta) \left[S H_A \frac{dT D_A}{d\theta} - S H_B \frac{dS H_A}{d\theta} \right] > 0$$

• ↑ quality off-net coms. effect (+) > ↓ multi-homing effect (-)

Platform asymmetry

Assume now that there is a mass $\delta > 0$ of users located at 0

• Will always choose to single-home on $A \rightarrow installed base$ of A

A larger **installed base** makes platform *A*...

- More attractive to users in the "competitive" segment
- More attractive to advertisers: it can charge higher ad prices

Higher **interoperability** levels the playing field...

- In terms of total user demand
- In terms of ad prices

Equilibrium level of interoperability with asymmetry

Platforms' interoperability choices

- The small platform always prefers **perfect interoperability**
- The large platform prefers **no** interoperability if the installed base is large enough ($\delta > \delta_{\Pi_A}$), and **perfect interoperability** otherwise ($\delta \leq \delta_{\Pi_A}$)

Intuition: *B* benefits more and is hurt less by interoperability than *A*.

- Market power effect: (+) for B, (-/+) for $A o p^{SH} p^{MH}$ higher for B than for A; and stronger increase in SH_B than SH_A (which can decrease for low θ).
- Total viewership effect: (+/-) for B, (-) for $A \to p_A^{MH} > p_B^{MH}$ and stronger decrease in TD_A than TD_B (which can increase for low θ).
- Usage intensification effect: (+) for B, (-/+) for A → Increase in time spent on B, reflected in higher ad price for B, lower for A.

Comparison with social optimum with asymmetry

Comparison with social optimum

The equilibrium level of interoperability is weakly too low from a welfare point of view

Intuition:

Consumer surplus is maximized with full interoperability if $\delta < \delta_{CS}$, and no interoperability otherwise. This is because high δ :

- reduces volume of off-net interactions, weakening the \(\ \) quality off-net interactions effect (+).
- induces stronger shifts towards market single-homing (-).

Advertiser surplus always fully extracted by platforms.

Therefore, we have:

Conclusion

Interoperability...

- Increases the market power of platforms over advertisers
- Stimulates the engagement of single-homers due to higher quality interactions, increasing their exposure to advertising
- Reduces the total viewership that the platforms can monetize on the advertiser side

Symmetric platforms: positive effects outweigh negative effect, and perfect interoperability emerges w/o regulatory intervention

Asymmetric platforms: negative effect may outweigh positive effects for large platforms \rightarrow interop. doesn't emerge w/o intervention

Policy implications:

- interoperability may increase the market power of platforms in the advertising market
- mandating interop. may not be efficient in very asymmetric mkts

guillaumethebaudin@gmail.com

Thank you for your attention!