The Efficiency Effects of Platform Ranking Regulation

Imke Reimers

Cornell University

Joel Waldfogel

University of Minnesota

Workshop on the Economics of the DMA Brussels, September 22, 2025

DMA: "Self-preferencing" is now illegal

- Urgent need to detect and measure welfare consequences of platform ranking choices
- Current regulatory attention to "self-preferencing" in rankings at powerful platforms
- <u>But</u>: even without first-party products, platform incentives may be misaligned with the social planner

General setting: potential for other inefficiencies

→ How "bad" are platform ranking objectives for welfare?

Observability and ideal regulation

We provide definitions of <u>inefficiency</u> and <u>self-preferencing</u> in platform rankings

- Regulating to efficiency requires observing some hard-to-observe things
 - marginal costs, product quality, commissions,...

→ Ideal (or actual) regulation will be difficult to implement

→ What types of (feasible) regulations are most effective?

Preview

- Main question 1: How "bad" are platform ranking choices?
 - Platform profit maximization generates a welfare cost (mostly) neglected by regulation
 - ... even when self-preferencing is impossible
 - Big costs especially to third-party sellers

- Main question 2: What types of (feasible) regulations are most effective?
 - Feasible regulation of ranking behavior can prevent big welfare losses

Coming up

- Model of platform sales and rankings
- Welfare analysis of commission and ranking arrangements
 - Constant and variable commission
 - Integrated platforms (potential for self-preferencing)
- Regulation implementation and challenges
 - Model-based detection and data needs
- Feasible regulation approaches
 - Behavioral generally beats structural

Model

A model of platform sales and rankings

- Three parties
 - Consumers choose among ranked alternatives
 - <u>Sellers</u> choose prices
 - The <u>platform</u> chooses the ranks
- Ranks, prices, and welfare outcomes (CS & PS) are the results of...
 - Selling arrangements (commissions)
 - How the platform ranks products (whether it pursues its own profit)

Consumers

• Ex-post, realized utility from product *j*: Rank-independent mean utility

$$u_{ij} = \delta_j^0 + \alpha p_j + \epsilon_{ij}$$

• Purchase probability also depends on rank:

$$s_j = \frac{e^{\delta_j + \gamma r_j}}{1 + \sum_{j=1}^{\infty} e^{\delta_j + \gamma r_j}}$$

• Sales depend on prices and ranks of all products: $q_j = q_j(p_j, r_j; P, R)$

Payoffs to sellers and the platform

• Third-party products:

• First-party products:

• Platform gets:

$$p_j - mc_j$$

• \rightarrow PS and its components:

total
$$PS = \sum_{j \in J} (p_j - mc_j)q_j = \underbrace{\sum_{j \in J_p} (p_j - mc_j)q_j + \sum_{j \in J_{3p}} c_j p_j q_j}_{\text{platform PS}} + \underbrace{\sum_{j \in J_{3p}} \left((1 - c_j)p_j - mc_j \right)q_j}_{3^{\text{rd party PS}}}$$

The platform's ranking choice

- Big combinatoric problem (*N*! choices)
 - See Compiani, Lewis, Peng, Wang (2021)
- Simplify, starting with two welfare frontier extremes:
- a) Maximize CS: rank in descending order of rank-independent mean utility δ_i
- b) Maximize PS: rank by rank-independent var. profit $(p_j mc_j)e^{\delta_j}$
- → The welfare frontier comes from weighted sums of these two

Welfare frontier

- Ranks according to $(p_j mc_j)e^{\delta_j}$ maximize PS
- Ranks according to e^{δ_j} maximize CS

• Hence, define the welfare frontier as ranking based on

$$I_j^* = \delta_j + \kappa \ln(p_j - mc_j)$$

- Endpoints
 - $\kappa = 1 \Leftrightarrow PS \max$
 - $\kappa = 0 \Leftrightarrow CS \max$

- Welfare frontier lives in a "commodity space"
- Suggests a regulator utility function

Platform locus

- Ranks according to $c_i p_i e^{\delta_j}$ maximize platform π
- Ranks according to e^{δ_j} maximize CS

• Hence, define the **platform locus** as ranking based on

$$I_j^* = \delta_j + \kappa \ln(c_j p_j)$$

- $\kappa = 1 \Leftrightarrow \text{Platform } \pi \text{ max}$
- $\kappa = 0 \Leftrightarrow CS \max$

- Platform locus interior to welfare frontier
- Note the upward-sloping region
 - Improvements in CS & overall PS available

Welfare analysis

Model solution

- Numerical example
 - $mc_i \sim U(0,5)$
 - $\alpha \sim N(-0.1, 0.01)$
 - $\delta_i \sim N(-4, 0.1)$
 - $\gamma = -0.5$, (-0.75 to -0.25)
 - $c_j = N(0.2)$, std. dev. between 0 & 0.05

Sensitivity analyses:

- correlated mc & α
- Range of commissions
- Range of commission variability

- 50 products × 50 "markets"
- Given selling arrangement (c), solve simultaneously for prices and ranks
 - ... on the welfare frontier
 - ... on the platform locus

Overview: what do we examine?

- Two environments:
 - Platform selling only third-party products (e.g., Booking)
 - Integrated platforms also selling their own (e.g., Amazon)
- Two mechanisms:
 - Selling arrangements (e.g., commission) affect feasible welfare
 - \(\rightarrow\) Location of welfare frontier
 - Platform ranking choices affect deviations from frontier
 - → Location of the platform locus

Summary of welfare results (1)

- Variable commissions:
 - Welfare frontier location depends on which products pay high commission
 - Platform profit incentives are especially harmful

Panel A: High comm for high qual

welfare frontier
platform locus
constant comm

Panel B: High comm for low qual

Summary of welfare results (2)

- Integrated platforms:
 - Welfare frontier shifts out without double marginalization
 - Platform locus depends on quality of platform products

<u>Panel A</u>: high-qual platform products

<u>Panel B</u>: low-qual platform products

Compliance and detection

Efficient rankings are on the welfare frontier

• Welfare frontier:

$$I_j = \delta_j + \kappa \ln(p_j - mc_j)$$

• But there are more potential rank determinants:

$$I_{j} = \underbrace{\beta_{1}\delta_{j} + \beta_{2}\ln(p_{j} - mc_{j})}_{\text{efficient}} + \underbrace{\beta_{3}\ln(p_{j}) + \beta_{4}\ln(c_{j}) + other}_{\text{inefficient}}$$

• Without platform products, this is not "self-preferencing"

Integrated platform and self-preferencing

- Suppose regulators required efficient rankings
- Then inefficiency and self preferencing are present if

$$I_{j} = \delta_{j} + \kappa \ln(p_{j} - mc_{j}) + \psi D_{j}$$
efficient
platform product indicator

- But DMA doesn't explicitly forbid, say, revenue max
- So, self-preferencing, for legal purposes, might be present if

$$I_{j} = \delta_{j} + \kappa \ln(p_{j} - mc_{j}) + \beta_{k} \ln(p_{j}) + \psi D_{j}$$
allowed

Note: hard to find "selfpreferencing" if we also allow differential payoffs/commissions

Inferring index function parameters

Suppose we observe all terms in the index function

- Three approaches:
 - Regress rankings on RHS terms (e.g., Jürgensmeier & Skiera, 2025; Farronato et al. 2023)
 - Requires linearity and cardinality of the index function
 - Rank-ordered logit of rankings on RHS terms (Hausman-motivated)
 - Still requires linearity in $X\beta$
 - Solve for δ_i to compare qualities at similar rankings (e.g., Aguiar et al., 2021)

Observability challenges

Some terms in the index function are hard to observe

- Challenge 1: mc_i
 - Sellers have no incentive to report truthfully
 - Econometric approaches require conduct assumptions, etc.
- Challenge 2: δ_j
 - Can likely observe q_j , which includes the rank effects

assume observed

assume unobserved

- Need causal rank effect γ : $q_j \propto \delta_j + \gamma r_j$
 - Run experiments (e.g., Expedia)
 - FE approaches based on appearance at different ranks (e.g., Reimers and Waldfogel, 2023)
 - Borrow $\hat{\gamma}$ from literature (e.g., Ursu, 2018)

Regulation challenges

- Without observing mc_i , efficiency in rankings cannot be enforced
- But unregulated rankings can lead to bad welfare outcomes

- So, what can regulators do?
 - Behavioral regulations regulate rankings
 - Structural regulations regulate commissions/selling arrangements

Feasible regulation

Behavioral regulation

- Allow variable commission for price setting
- Allow ranking only according to revenue locus
 - According to p_j , instead of $c_j p_j$
- Choose κ to maximize regulator utility U(CS, PS)

Structural regulation

- Allow only constant commissions
 - All products yield the same platform revenue
- Allow the platform to rank as it wishes

Hybrid regulation

- Allow only constant commissions
 - All products yield the same platform revenue
- Choose κ to maximize regulator utility U(CS, PS)

- Here: hybrid regulation is most effective
- More generally: effectiveness depends on selling arrangements
- (but not on other obvious parameters)

Commissions and product quality

Panel A: High qual, high comm

Panel B: Low qual, high comm

Integrated platform product quality

Panel A: High qual platform prods

Panel B: Low qual platform prods

Conclusion

- Policy is focused on self preferencing
 - This is only part of the problem
 - Rankings based on variable commissions (also) have large welfare costs
- Data challenges make regulations difficult to enforce
 - Some structural and behavioral rules can be enforced
 - These avoid big inefficiencies while delivering meaningful improvements
- We hope this analysis can help regulators dealing with dominant platforms