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Abstract

We investigate the effects of digital platform commission change on creators’ economic
behaviors, with a focus on pricing strategies and productivity. Utilizing a comprehen-
sive dataset from a leading creator platform in China with over 7,186 creators in 51
months, our research employs two difference-in-differences frameworks to empirically
assess the impact of a staggered commission reduction. The focal platform increased
commission from 5% to 20% in August 2019 uniformly for all creators. Concurrently, a
policy allowing creators to revert to the original 5% commission upon meeting specific
criteria in differential timing was introduced. Our findings reveal that the adoption
of the reduced commission policy led to an 8%-13% increase in subscription prices,
a 31%-70% rise in original content production, and an 8%-26% growth in creator-
subscriber engagement. We test two mechanisms for the price increase given reduced
commission, one through market structure change due to the initial uniform commis-
sion increase policy, and another through the selective nature of staggered commission
reduction to subsidize creators who were more willing to produce content in greater
number and higher quality and therefore incurred higher cost of content production.
These results underline the potential of tailored commission rates to encourage more
economically beneficial content production, thereby enhancing the platform’s vibrancy
and sustainability.
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1 Introduction

Digital marketplaces such as Apple’s App Store, Amazon, and YouTube catalyze business

growth by connecting them to huge, global audiences. Yet, these platforms are in themselves

substantial commercial entities that seek to maximize their own profits by taking commission

from the participants’ revenue. This leads to a constant tension: independent developers,

content creators, and online retailers owe their success to platforms like the App Store,

creator platforms, and e-commerce apps, but they must continually compensate platforms

for the privilege of infrastructure, exposure, and distribution through arguably high platform

commission.

The recent court case, Epic Games vs. Apple, has heightened public discussions on the

necessity and fairness of 30% platform commission, affecting businesses and customers be-

yond these two companies. Apple maintained that its 30% commission on In-App Purchases

was fair, citing its superior marketing efforts, customer service, and distribution services

as benefits. In contrast, Tim Sweeney, Epic Games’ CEO, argued that an 8% commission

would suffice for profitable operations in digital platforms. To demonstrate this argument,

Sweeney launched the Epic Games Store with only 12% commission.

The heated debate in the field led to two streams of research that investigates the effect

of the platform commission on various outcomes of all players in the platform ecosystem.

First, recent studies using structural models demonstrate that the impact of a simultaneous

fixed commission reduction or cap is negative on the welfare of at least party of the platform

ecosystem (e.g., Barwick and Pathak 2015, Robles-Garcia 2019, Sullivan 2022, Lu, Goldfarb,

and Mehta 2023). Our work using an interrupted time series design provides novel empirical

evidence of the effect of a simultaneous fixed increase in commission by a subscription-based

creator platform in a natural experiment setting. Second, among research studies on the

influence of commission caps, very few adopt a casual inference framework. To the best

our knowledge, it is limited to Li and Wang (2024) using the canonical Two-Way Fixed

Effects method. We are the first to conduct a series of more robust causal inference analysis
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of commission reduction that features multiple periods and variation in treatment timing

on a creator platform. Another major distinction of our paper and all others is that the

platform commission reduction in this paper can be considered as a subsidy in favor of big

contributors on the platform, while the platform commission cap in papers like Li and Wang

(2024) works as a heavier platform tax on big businesses.

Understanding the platform commission design is crucial to identifying the optimal busi-

ness strategy of the whole digital platform ecosystem. In this paper, we focus on the impact

of platform commission design on creators’ pricing strategy and their productivity. Supply

side factors such as price and productivity are first order issues that drive the welfare analysis

of our focal platform which links creators and their followers through yearly subscription.

Note that most platforms charge a commission proportional to the transaction value between

creators and their subscribers, and therefore the price set by a creator not only represents the

revenue per subscriber but also affects the platform profitability. This alignment of creators

and the platform’s revenue is especially salient in our case because the creator platform we

utilize in this paper is advertisement-free, and commissions alone contributes to 100% of

platform revenue. In addition, the creators’ productivity with no doubt directly influences

customer experience and the residual traffic to the platform, which ultimately decides the

user base on this platform. In sum, the platform commission change, regardless affecting all

creators or some of them, may move the equilibrium for all players on this platform.

To empirically investigate the impact of platform commission design on creators’ pricing

and productivity, we leverage a comprehensive panel data set of a leading Chinese creator

platforms called “Knowledge Planet”1 which accommodates thousands of creators publishing

highly personalized content and charging yearly subscription fee to their audience in virtual

space called “planet”. Our data consists of 7,186 planets and more than 111,000 observations

for price information as well as more than 224,000 observations for productivity metrics over

1The Chinese pinyin for Knowledge Planet is zhi shi xing qiu. Readers may check out its official website
at https://www.zsxq.com/. Even though Knowledge Planet provides web login-in, its major traffic goes
through the app. Our data records information from all channels.
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a period of 51 months from February 2018 to April 2022.

Knowledge Planet collects a fixed proportion of creator subscriptions as its platform

commission. Before August 2019, the focal platform applied a fixed commission at 5%. In

August 2019, the platform decided to raise the commission from 5% to 20% to all creators

(“Policy 1” henceforth) and at the same time allow eligible creators to enjoy the original

5% commission if they got government-issued business license and passed the platform’s

policy compliance check in differential timing after August 2019 (“Policy 2” henceforth). By

implementing Policy 2, the platform gave up the uniform pricing scheme where it charged

the same fee to all creators, regardless of fixed 5% or fixed 20%, and started to conduct a

third-degree price discrimination as it set different fees (i.e., different commissions between

5% and 20%) to different types of creators based on their eligibility.

In this paper, we focus on measuring the impact of the commission reduction through

adopting Policy 2 using two causal inference methods. For the main analysis, we adapt

the Staggered Difference-in-Differences (Staggered DID) method of Callaway and Sant’Anna

(2021) and the Panel Data Difference-in-Differences with Matching (PanelMatch) method of

Imai, Kim, and Wang (2023). Both Staggered DID and PanelMatch methods accommodate

(1) potential outcomes by constructing appropriate control observations for each focal treated

observation and (2) varying (staggered) treatment times. Further, because planets chose

to adopt Policy 2 by incurring some time and monetary costs for the reduced commission,

selection into treatment may limit the interpretation generalization of the effects we estimate.

To overcome such selection issue, we utilize various ways of matching in PanelMatch method

to rule out the noise from time-varying observables. We also carefully confirm the robustness

of our results by checking necessary identification assumptions and utilizing different sets of

model parameters.

Two major finds emerge from our analysis regarding (1) the overall effect of reduced

commission through adopting Policy 2 and (2) the mechanisms through which the platform

commission change can affect creators’ pricing decision by a less competitive platform market
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structure and improved creators’ quality provision. First, we find causal evidence for positive

main effects of reduced commission on creators’ prices. In our sample, adoption of Policy 2 is

associated with an increase of 8%-13% in price, 31%-70% in the number of post, and 8-26%

in the number of Q&A. The results are robust to using multiple methods including Staggered

DID, PanelMatch with matching only on outcomes, and PanelMatch with Propensity Score

Matching.

Second, we are able to test two mechanisms through which the platform commission

reduction caused soaring subscription price set by creators. We first examine the the change

of market structure due to a sudden platform commission increase through Policy 1 and find a

significant reduction of the share of active planets. This result suggests that remaining active

creators may gain market power to charge higher prices in a less competitive environment.

We then examine the mediation role of content provision to creators’ pricing decision. We

propose that Policy 2 works as a tool to select creators who are more willing to provide

content in larger number and of higher quality, so platform operator can subsidize these

creators by reducing their commission. The creators of these treated planets then raised

their prices to make up the cost from proliferating content production and/or higher-quality

content provision. We observe that upon adopting Policy 2, creators who published their

own original content and responded to subscribers’ questions set up higher prices. We find

similar results for treated creators who produced at least one content on average regardless

of an original post or a personalized Q&A.

Our study contributes to a large growing body of research studying the effect of plat-

form commission design. Current research studying commission rate primarily constructed

sophisticated structural models and focused on how reducing the platform commission may

affect demand and/or supply side entry of the market and mixed welfare changes in different

empirical setting. For example, Barwick and Pathak (2015) run a counterfactual study in

the real estate market which keeps agent commission rate fixed, but at lower levels. They

show that under a 50% cut in commissions, there would be 40% fewer agents, social savings
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amount to 23% of industry revenue, and each agent sells 73% more houses (i.e., productivity

increase). Robles-Garcia (2019) utilizes data from the mortgage market where brokers get

a per-sale commission from lenders. She finds in a counterfactual of banning broker com-

mission that such a ban leads to a decrease in consumer surplus because the ban reduces

broker market power at the expense of increasing lender market power. Sullivan (2022) runs

a counterfactual study with and without 15% commission caps on food delivery platforms

in various metro areas and finds that the sum of caps’s effects on the total welfare of restau-

rants, customers, and the platform is negative. On gaming platform Steam, the simulation

analysis of Lu, Goldfarb, and Mehta (2023) implies that lowering the commission from the

current 30% to 20% and to 12% will lead to more updates while fewer games will be released

which results in an over-investment in Steam Early Access Program. Our paper provides

new evidence of significantly increased subscription price and reduced content provision to

consumers on a creator platform in a natural experiment setting where the focal platform

increased2 the commission from 5% to 20%.

There are very few literature utilizing causal inference models to study the effect of plat-

form commission designs. In fact, research on platform commissions is limited to Li and

Wang (2024). They use the data of commission caps for independent restaurants on food

delivery platform and show that even though commission fee caps were intended to support

independent restaurants, delivery platforms become less likely to recommend independent

restaurants to consumers compared to chain restaurants after cities enact policies to cap

platforms’ commission fees, which leads to a decline in independent restaurants’ orders and

revenue. Li and Wang (2024) and our paper both study the third degree price discrimina-

tion in the platform commission design context, but our studies differ in the directions of

which group of players are favored in the price discrimination. Specifically, in Li and Wang

(2024), the price discrimination is in favor of the small businesses (independent restaurants)

2In an auction platform for vintage wines, Marra (2021) finds that doubling commission on sellers’ side
may not benefit bidders as entry and exit of sellers affect bidder’s willingness to use the platform. Her
research, again, utilizes a structural model and runs a counterfactual of increasing the commission, compared
to our direct observation of the focal platform changing commission in the field.
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against big businesses (chain restaurants) while in our case the price discrimination is in

favor of big creators (business planets) against small creators (personal planets). In terms

of methodology, Li and Wang (2024) adopt the canonical two-way fixed effects model with

heteorogeneous covariates. Our study, benefting from a large and comprehensive panel data

set, utilizes the most recent development in difference-in-differences models (e.g., De Chaise-

martin and d’Haultfoeuille (2020), Goodman-Bacon (2021), Sun and Abraham (2021), Call-

away and Sant’Anna (2021), etc.) and provides pioneering works investigating the effect of

the staggered adoption of platform commission changes.

The rest of the paper proceeds as follows. In Section 2, we review the popular platform

commission designs and highlight the commission policy changes on our focal platform.

Section 3 then describes our data. In Section 4, we introduce our empirical approaches and

show results. In Section 5, we discuss mechanisms through which a reduced commission

caused increased price. Section 6 concludes.

2 Institutional Background

2.1 Platform Commission

Online marketplaces allow small businesses and independent creators to flourish. But these

leading platforms do not provide their distribution for free. Instead, they charge various

levels or combinations of commission to make their own profits.

Even though it is widely believed that Apple App Store chose to apply 30% commission

that later became the the industry standard, the adoption of 30% commission can be traced

back to the early 80s when two video game companies, Namco and Hudson Soft, attempted

to have their games distributed on Nintendo’s console. The 30% commission in fact combined

10% licensing fee and 20% manufacturing cost of video game cartridges3, and this commission

has then been used by numerous platforms afterwards until today.

3Source: Epic’s Battle With Apple and Google Actually Dates Back to Pac-Man.
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Given the industry standard commission at 30%, the commission designs by online plat-

forms vary significantly. In Table 1, we list the commission design adopted by popular

platforms in the United States and in China in five categories: app stores, live streaming,

gaming, ride-hailing, and e-commerce. The vast majority of platforms decide a fixed, uni-

form commission for all players. For example, Twitch takes 50% of subscription fees and

ad revenue from the residing creators. YouTube takes 45% from ad revenue and 30% from

memberships. E-Commerce platforms like Amazon and TMALL specifies distinct uniform

commission for certain category of goods. Another common practice adopted by these plat-

forms is applying varying commissions based on certain criteria (e.g., cumulative revenue,

different product types, etc.). This means a player on these platforms may be charged dif-

ferent amounts of commission throughout the time. For example, due to regulatory scrutiny,

many platforms announced the beneficial program which lowered the commission as much

as one half to alleviate the financial burden borne by small developers and creators. The

most famous examples of this beneficial practice are varying commissions for lower income

developers on Apple and Google app stores. In general, the commission of these small de-

velopers is 15% for their first million dollar revenue, and it jumps to 30% once the revenue

exceeds one million dollars.

Steam, the leading PC gaming platforms adopted a quite different commission design

from all others: starting from October 1, 2018, it has charged lower commission for game

developers with higher revenue. In the announcement4 introducing this unusual commission

plan, the Steam Team highlighted the contribution from the big game studios which brings in

the majority of the revenues and players to the platform: “The value of a large network like

Steam has many benefits that are contributed to and shared by all the participants. [...] It’s

always been apparent that successful games and their large audiences have a material impact

on those network effects so making sure Steam recognizes and continues to be an attractive

platform for those games is an important goal for all participants in the network.”

4Steam’s announcement on commission adjustment can be accessed at https://steamcommunity.com/g
roups/steamworks/announcements/detail/1697191267930157838?content_only=true
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Table 1: Commission Design of Major Platforms across the U.S. and China

Type Platform
Commission

Uniform Varying

App Store
Apple App Store 15%, 30%

Google Play 15%, 30%

Live Streaming
Twitch 50%
Douyin 50%

Gaming
Epic 12%
Steam 20%, 25%, 30%

Ride-hailing
Uber 20%

CaoCao 23%
DiDi 20%

E-Commerce

eBay 12.5%
Amazon 8∼20%
TMALL 0.5%∼10%

JD 2%∼10%
Note: The commission interval for an e-commerce platform indicate the range of uniform
commission for a category of goods sold on that platform. In other words, one specific category
of goods is charged the same uniform commission, but commissions may be different across
categories.

We pay special attention to Steam’s commission design because, as we demonstrate in

the following subsection, our focal platform Knowledge Planet adopted a similar commission

design following the same logic of subsidizing big creators who paid more attention to their

subscribers and produced more and higher-quality content. The platform operators believed

a strong positive correlation between content production and subscriber base, and they

were more than willing to reward these creators who brought more traffic to the platform.

In an interview with the platform executives, we are informed that, in the past couple of

years, top 10 superstar creators on Knowledge Planet contributed nearly one third of the

total platform revenue through commissions, and top 100 creators contributed almost all of

the total platform revenue. As discussed below about Knowledge Planet’s business model,

Knowledge Planet resembles many other creator platforms as a typical superstar-driven

digital platform.
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2.2 Knowledge Planet: the Focal Platform

Knowledge Planet is the leading digital platform in China which provides the virtual space

for people who are specialized in certain fields to deliver their knowledge and expertise, to

engage a community of fans, and to monetize through a simple yearly subscription-based

business model. The biggest difference between Knowledge Planet and other content creation

or MOOC platforms lies in its effort in launching, engaging, growing, and monetizing online

communities by more than 8,500 creators who publish exclusive and highly personalized

content in communities called “planet”.

Figure 1: Q&A in Knowledge Planet, adapted from Han, Ryoo, and Zhao (2019)

(a) Questions from a User Tao
to Creator Dr. Wu

(b) Example of an Answer
from Creator Dr. Wu

(c) Comments of Another
User A, Tao, and Dr. Wu

A typical example which reflects the exclusive and personalized content creation in Knowl-

edge Planet is Q&A. Any subscriber to a planet can ask questions directly in the main console

to the creator who will then decide to cite the question and answer accordingly or not. Q&As

enable the interactions between creators and their subscribers. As illustrated in Figure 1,

the content creator Dr. Wu, an oncology specialist, wrote a post in details to answer four

questions about gene mutation from a subscriber named Tao. In the comment section of this
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Q&A post, another subscriber (i.e., “User A”) got involved into the discussion between the

creator Dr. Wu and the subscriber Tao, and provided his own viewpoint. A creator might

receive many in-depth questions from all his or her subscribers, but he or she might not

have time to respond to all of the questions. But as shown in Figure 1, a Q&A is a special

type of post of higher quality since creators will spend particular time and effort to please

their subscribers who may both promote the creators’ knowledge or expertise delivery and

advertise the planet.

The platform creates an advertisement-free environment and gives creators full pricing

power to decide their subscription price charged to subscribers. As mentioned in last section,

the platform charges a commission upon each transaction from either new subscriber joining

or existing subscriber extending the ongoing subscription.

The analysis in this paper focuses on two platform commission policy changes on Knowl-

edge Planet. From 2015 to August 2019, the platform collected a fixed 5% commission from

all planets. In our previous study about the referral program on the same platform in Han,

Ryoo, and Zhao (2019), we found out the optimal platform commission which maximized

its profit targeted at 20%. Within a week after communicating this finding to the platform

operators, the executives and the engineer team made the adjustment following our advice

in August 2019. We call this simultaneous platform commission increase from 5% to 20%

which applies to all planets as “Policy 1”.

As with many other digital content creation platforms, Knowledge Planet relies on a

limited number of superstar creators to generate the majority of its revenue. The platform

executives follow the same logic as Steam to prioritize the superstar creators and their large

groups of subscribers. Since August 2019 (the same month of Policy 1), any content creator

who ran a planet with a government-issued business license and passed the policy compliance

validation by platform operators could declare themselves as a “business” planet and enjoy

the benefit of the original 5% commission. We call this commission decrease from 20% to 5%

which only applies to part of the planets as “Policy 2”. Note that planets were treated by

11



Policy 2 in a staggered manner up to the time when they submitted the business license to

platform and up to the duration that platform completed the policy compliance validation.

We further specify that all planets running as “personal” planets (even if they might have

been running the planet with the business license) before August 2019, and those planets

which either could not get business license from government or could not pass the platform

policy compliance checks also as “personal” planets since August 2019.

3 Data and Sample Construction

To study the effects of platform commission design on creators’ pricing strategy and produc-

tivity, we collect monthly panel data on Knowledge Planet from July 2016 to April 2022.

Policy 1 took place at month 38 and the first creator adopted Policy 2 at month 39. We

subset the data since February 2018 (i.e., the 20th month in the original data) due to the

data sparsity before this month. In fact, the overwhelming majority (74%) of all planets

were founded since February 2018. This yields the data in total 51 months from February

2018 to April 2022. We end up with 7,186 distinct planets and 111,756 distinct planet-

month observations in pricing related data and 224,618 distinct planet-month observations

for productivity related data. In fact, our final sample of pricing variables is an unbalanced

monthly panel of planet-month observations because the platform data warehouse stored the

pricing-related variables only when transactions took place. We cannot rule out the possi-

bility of one creator running multiple planets, but we assume that one creator makes pricing

and productivity decisions independently across planets if he or she owns multiple ones.

When registering their planets on the platform, creators can utilize nine different tags to

signal which area they are specialized. We then have nine types of knowledge or expertise,

namely, Not Specified, Art, Economics, Education, Entertainment, Fashion, Health, Life,

Science. There were quite a few planets with each of the last four types, and therefore we

group them into “Others”. This results in five types of content, and the distribution is
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reported in Table 2.

Table 2: Distribution of Planet Types

Type Num. Pct. (%)

Not Specified 1981 27.57
Art 1461 20.33
Economics 1957 27.23
Education 1071 14.90
Others 716 9.96

Table 3 provides key descriptive statistics for pricing related variables and productivity

related variables. The revenue and price of each planet-month observation is recorded in

the unit of Chinese Yuan. Since the exchange rate between Chinese Yuan (CNY) and U.S.

Dollar (USD) in the data period from 2018 to early 2022 fluctuates a lot, we decide to stick

with the original currency in Chinese Yuan. In the original data, we cannot directly observe

the price change within each month, if any. We assume that not many creators would adjust

their price in high frequencies within a month, so we calculate the average monthly price by

dividing the total revenue in a month over the number of subscribers joining that planet in

the same month.

Table 3: Descriptive Statistics of Planet-Month Observations

Variable Obs. Mean St. Dev. Min. Med. Max.

Pricing-related variables
Revenue 111,756 9983.65 131250.24 149 1280 15551.5
Num. of Subscribers 111,756 33.11 154.20 1 7 66.0
Price 111,756 329.22 544.71 50 188 666.0

Productivity-related variables
Num. of Post 224,618 62.25 348.93 0 6 115.0
Num. of Q&A 224,618 9.80 85.83 0 0 10.0

Notes: (i) The currency for revenue and price is Chinese Yuan (CNY). (ii) Price equals to Revenue divided by Num. of
subscribers in each month for all planets. (iii) Num. of Q&A only records the number of questions that were ultimately
answered by creators, but not includes the number of questions that were not replied by creators.

On average, a creator attracted 33 subscribers and generated 9,983 CNY revenue in a

month. The average subscription price is 329.22 CNY, 1.07% of the average disposable in-
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come5 of Chinese in 2019 (i.e., the year when both platform commission policy changes took

place or started to take place) and 13.10% of the average expenditure on “Education, Cul-

ture, and Entertainment” category in the same year. This means that from the subscribers’

perspective, they did invest a considerable amount of money on Knowledge Planet, assuming

that they subscribed to only one planet. The productivity-related variables include the num-

ber of post which the creators published and the number of Q&A in response to subscribers.

Note that the latter productivity variable excludes the questions left unanswered. We argue

that the number of Q&A is not only a measure of productivity but also a measure of content

quality, since creators have to apply their own expertise to some highly personalized ques-

tions from their subscribers, as shown in Figure 1. Creators on average produce much fewer

Q&As than their own original posts when we compare the mean of these variables in Table

3, but any response to subscribers’ questions marks creators’ attention to their subscribers

and entails considerable effort and cost.

4 Empirical Strategy and Results

The observational nature of our data have several identification challenges of the treatment

effects. First, every planet is either treated or untreated in each time period, and we do

not observe its counterfactual outcome in the unobserved condition. Second, planets adopt

the Policy 2 in a staggered pattern with differential adoption timing, which requires careful

computation and aggregation of treatment effects across planets and across time period

(De Chaisemartin and d’Haultfoeuille 2020, Goodman-Bacon 2021, Sun and Abraham 2021,

Callaway and Sant’Anna 2021, Imai, Kim, and Wang 2023, etc.). Third, the decision of when

to adopt Policy 2 is endogenous and may be correlated with creators’ differential expectations

of benefit from Policy 2. Fourth, the creator of a given planet could have implemented other

unobserved policies (e.g., discounts) concurrently with adopting Policy 2, and the observed

5According to National Bureau of Statistics of China, the average disposable income of Chinese in 2019
was 30,733 CNY, and the average expenditure on education, culture, and entertainment category was 2,513
CNY. Source: https://www.gov.cn/xinwen/2020-01/17/content_5470095.htm
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effect cannot be separately attributed to the Policy 2.

To address these identification challenges, we utilize two empirical methods: Staggered

DID based on Callaway and Sant’Anna (2021) and PanelMatch based on Imai, Kim, and

Wang (2023). The technical details of these two methods are provided in Subsection 4.1,

but we provide here an overview of how these methods can address the above-mentioned

identification challenges.

The first challenge of unobserved potential outcomes is addressed by constructing a con-

trol group to predict the counterfactual potential outcomes of an adopting planet as if it

did not adopt Policy 2. To do so, we treat the cohorts of planets that adopted Policy 2

in our data collection period as our focal treatment group. The control group for each

adopting cohort comprises data from planets that either haven’t adopted and never adopt

Policy 2 for Staggered DID estimation and from planets that are matched based on observed

characteristics in lagged time periods for PanelMatch estimation.

The second challenge of staggered adoption is addressed by using both Staggered DID

and PanelMatch methods to compute treatment effects for each cohort of adopting plan-

ets separately and then aggregating them in to an overall average treatment effect on the

treated (ATT), resolving issues such as negative weighting of treatment effects identified by

Goodman-Bacon 2021, De Chaisemartin and d’Haultfoeuille 2020, Callaway and Sant’Anna

2021, etc. We also leverage two diagnostics to check for negative weights in treated units and

checked for treatment effect homogeneity, as developed in Jakiela (2021). We show that the

proportion of treated planets with negative weights is considerably low and the treatment

effects are indeed nearly homogeneous across planets and time periods.

The third challenge of endogenous adoption timing is addressed primarily through the ro-

bust matching in PanelMatch estimation, where we construct the matched set either based

purely on the lagged outcome variables or based on propensity score matching of lagged

observed characteristics. The last challenge of unobserved confounders is addressed by con-

trolling both planet fixed effects and time fixed effects.
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4.1 Effect of Policy 2 on Creator’s Pricing and Productivity

Before we extend our detailed discussion on Staggered DID method and PanelMatch method,

we consider a canonical two-way fixed effects (TWFE) model as our benchmark. We let

i = 1, 2, ..., N denote planet and t = 1, 2, ..., T time period (natural month). The TWFE

model is specified as:

Yit = ηi + τt + αGit + νit, (1)

where Yit denotes the observed outcome of interest, which is either log price of a planet i in

month t, or the log number of post the creator of planet i published in month t, or the log

number of questions that the creator of planet i answered in month t6. For each planet i,

let Git, a binary variable, equals to one if the creator of planet i adopted Policy 2 at month

t. ηi is the unit fixed effect, τt is the time fixed effect, and νit are idiosyncratic, time-varying

unobservables.

Table 4: Two-Way Fixed Effects Model Results

(1) ln(Price) (2) ln(Post + 1) (3) ln(Q&A+1)

Policy 2 0.1532∗∗∗ 0.6075∗∗∗ 0.1176∗∗

(0.0247) (0.0567) (0.0370)

Num. obs. 83782 182693 182693
R2 0.8408 0.7346 0.7321
Planet FE YES YES YES
Time FE YES YES YES
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05. Standard errors are clustered at the planet level.

TWFE model does not guarantee a generally robust casual effect of participating in the

treatment unless under the parallel trends assumption and under the homogeneity assump-

tion (See Callaway (2023) for extensive discussion.). If we can still loosely interpret α as an

overall average treatment effect in case with treatment effect heterogeneity (as in our case of

dynamic treatment adoption), then we have preliminary evidence from Table 4 that Policy

6When taking the log of a count variable, we add a factor of one to avoid taking logs of zero for number
of post and the number of Q&A.
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2 led positive significant increase in all of our outcome variables.

Now in order to tackle with the four challenges stated at the start of this section, we

introduce Staggered DID and PanelMatch methods and discuss how they can properly deal

with each of the identification challenges.

4.1.1 Staggered DID Method

Policy 2 was in fact a third-degree price discrimination if we think of the platform commission

as a fee charged to creators, because the platform sets different fees/commissions to personal

and business planets. We estimate the treatment effects of Policy 2 using the Staggered DID

framework proposed by Callaway and Sant’Anna (2021). This group-time treatment effect

framework fits well in our setting because we have more than 1,000 units of planets that are

eventually treated (i.e., adopting Policy 2) over a period of more than 30 months. Following

the terminology of TWFE model, we let Yit(0) denote i’s potential outcome at month t if

planet i is untreated at month t and Yit(g) denote planet i’s potential outcome at month t if

planet i adopted Policy 2 at month g. This framework allows us for heterogeneous treatment

effects with respect to specific treatment time.

We assume that once a planet had been treated, it remained treated and that the intensity

of treatment was the same for all units7. We assume that there was no anticipation of

treatment, so Yit(0) = Yit(g) for all t < g. The relationship between observed and potential

outcomes is as follows:

Yit = Yit(0) +
T∑

g=1

[Yit(g)− Yit(0)]Gig (2)

We then define the group-time treatment effect of interest as

ATT (g, t) = E[Yit(g)− Yit(0)|Gig = 1], (3)

where ATT (g, t) measures the average treatment effect at month t for the group of planets

7In Subsection 4.2.2, we confirm the homogeneous treatment effect across planets and time.
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that adopted Policy 2 at month g. The group-time treatment effect framework is flexible

enough to accommodate for the estimation of many different types of aggregated treatment

effects. We estimate a weighted average ATT (g, t) conditional on e = t − g where e is the

desired length of exposure, and in this paper, we are particularly interested in estimating

the dynamic event study average treatment effect when e is up to 3.

Callaway and Sant’Anna (2021) show that the group-time treatment effects are identified

from data on Yit and Gig as long as the parallel trend condition holds, in addition to standard

independence and support conditions. Formally, the parallel trend assumption for our setting

is stated as follows:

For each g, h, and t such that g ⩽ t ⩽ h,

E[Yit(0)− Yi,t−1(0)|Gig = 1] = E[Yit(0)− Yi,t−1(0)|Gih = 1].

(4)

This parallel trend assumption requires that if treated groups had instead not been

treated, then their outcome would follow the same pattern as groups that have not yet been

treated. Note that this assumption cannot be directly tested because the left-hand side is

not observed as we are not able to observe the counterfactual outcome for treated planets.

However, we are able to test whether groups of planets have a different trend with respect

to the amount of time left until the month these planets were treated in the pre-treatment

period. We will return to this point in Subsection 4.2.1.

Each group-time treatment effectATT (g, t) is estimated by computing a weighted difference-

in-differences estimate where the reference month is g − 1. The treated group includes the

planets with Gig = 1, and the control group includes the planets where Gig = 0, have

not yet been treated by month t, and were never treated. We refer to Callaway and

Sant’Anna (2021) for technical details on estimation and inference. Here we implement the

estimator in R using the package did (version 2.1.2) developed along the same reference

paper.

We compute the treatment effect by length of exposure to the treatment. We define θ(e)
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as the weighted average of ATT (g, t) for all t and g such that e = t− g:

θ(e) =
1

κe

∑
g

ωgATT (g, g + e), (5)

where ωg is proportional to the number of planets with treatment time g and κe normalizes

the weights so they sum up to one. The parameter θ(e) can be interpreted as a dynamic

event study. For e < 0, θ(e) captures the trend in outcomes for groups that are e periods

away from the being treated by Policy 2 relative to the control groups of planets that are

not yet treated and never treated. For e > 0, θ(e) captures the trend in outcomes of interest

for groups of planets that are e months since being treated by Policy 2 relative to groups

that are not yet treated and never treated.

One challenge in interpreting θ(e) is that the composition of planets varied with e. This

is because not all planets are observed for e periods post-treatment. For example, we can

only estimate the case of θ(e) with e ⩽ 0 for the (group of) planets which were treated by

Policy 2 in the very last month, but cannot estimate θ(e) for any e > 0. To correct for

composition changes of planets according to different e’s and to rule out confounders over a

longer time horizon, we estimate θ(e) by using only the planets that are observed 3-month

post-treatment.

Column (1) in Table 5 presents the estimates of the 4-month ATT’s of Policy 2 based

on dynamic event study aggregation on price, the number of post, and the number of Q&A,

which are valued at 12.69%, 30.72%, and 8.27%, respectively. Note that all these ATT’s are

all statistically significant at 5%. Figure 2 shows the treatment effects of Policy 2 on price,

the number of post, and the number of Q&A over a full 3-month post-treatment period. We

observe that most of the pre-treatment estimates contain zero in their confidence intervals,

with only one violation in period t = −1 for the number of post estimation8. Another

observation is that the treatment effect estimates for price are positive and keep climbing

8We give explanation of how this violation happens for this specific pre-treatment period and this specific
outcome variable in Subsection 4.2.1.
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Table 5: Treatment Effect of Policy 2 on Pricing and Productivity

Methodology SDID PanelMatch

Matching N/A Lag of Outcomes Propensity Score
(1) (2) (3)

ln(Price)
0.1195∗ 0.0894∗ 0.0796∗

(0.0319) (0.0308) (0.0309)

ln(Post + 1)
0.2679∗ 0.3675∗ 0.5295∗

(0.0432) (0.0507) (0.0533)

ln(Q&A + 1)
0.0795∗ 0.1640∗ 0.2275∗

(0.0333) (0.0383) (0.0382)

Notes: (i) ∗p < 0.05. (ii) Control group includes never-treated and not-yet-treated planets. (iii)
For Staggered DID, we constraint the event-study aggregation of ATT’s according to planets’ length
of exposure to Policy 2. We further balances the sample with respect to event time. This ensures
that the composition of groups does not change when event time changes. (iv) In Staggered DID
estimation, we calculate doubly robust standard errors, and in PanelMatch estimation, we use block
bootstrapping procedure to calculate standard errors.

as length of exposure to Policy 2 extends, but the estimates for the number of post and the

number of Q&A are only positive for the immediate few months and decline toward zero in

later periods.

Combining the results in Table 5 and Figure 2, one of our starkest findings is that given

a platform commission reduction by 15% (i.e., from 20% to 5%), the creators did not choose

to cut their prices and passed through9 the profit margin to their subscribers. Instead, they

decided to increase the price by 12.69%, almost as much as they benefit from the reduced

commission by 15%. In Section 5, we discuss two potential mechanisms through which this

observation could possibly occur.

9According to Weyl and Fabinger (2013), the pass-through rate is the rise in price to consumers for each
infinitesimal unit of specific tax imposed. In our case, we treat commission as the specific tax that the
platform imposed on planets.
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Figure 2: Treatment Effects of Policy 2 using Staggered DID Method

(a) ln(Price)

(b) ln(Post+1) (c) ln(Questions Answered+1)

4.1.2 PanelMatch Method

Imai, Kim, and Wang (2023) propose a general matching method for causal inference with

panel data where for each treated observation. We first find a set of control observations

that have the identical treatment history up to the pre-specified number of time periods, and

then refine the matched set of treated and control observations by adjusting for observed

confounding via standard matching techniques so that the treated and matched control

observations have similar covariate values. Then we apply the DID estimator to account for

an underlying time trend.
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Following the same terminology used to calibrate TWFE model and Staggered DID

method, we let i denote planet, t denote time period (natural month), Yit denote potential

outcome andGit denote Policy 2 adoption. In addition, let Zit denote a vector of time-varying

covariates, and let F and L denote nonnegative integer of leads and lags. The number of

F represents the outcome Yit measured at F time periods after the adoption of treatment,

and it plays a similar role as e = t − g in Staggered DID method. Specifying F = 3 allows

us to examine a cumulative treatment effects up to 3 months since planets being treated by

Policy 2. The number of L is to adjust for the extent to which past treatment status could

be a confounder affecting the current outcome as well as the current treatment.

Once the two parameters L and F are specified, we define δ(F,L) as the ATT:

δ(F,L) = E[Yi,t+F (Git = 1, Gi,t−1 = 0, {Gi,t−l}Ll=2)

− Yi,t+F (Git = 0, Gi,t−1 = 0, {Gi,t−l}Ll=2)|Git = 1, Gi,t−1 = 0], (6)

where the treated observations are those who adopt Policy 2, i.e., Git = 1 and Gi,t−1 = 0. The

key identification assumption, i.e, the parallel trend assumption, using PanelMatch method

is stated as follows:

E[Yi,t+F (Git = 0, Gi,t−1 = 0, {Gi,t−l}Ll=2)− Yi,t−1|Git = 1, Gi,t−1 = 0, {Gi,t−l, Yi,t−l}Ll=2, {Zi,t−l}Ll=0]

=E[Yi,t+F (Git = 0, Gi,t−1 = 0, {Gi,t−l}Ll=2)− Yi,t−1|Git = 0, Gi,t−1 = 0, {Gi,t−l, Yi,t−l}Ll=2, {Zi,t−l}Ll=0],

(7)

where the conditioning set includes the treatment history Gi,t−l, the lagged outcomes Yi,t−l

(except Yi,t−1), and the covariate history Zi,t−l.

We then define the way to construct the matched set of control observations that share

the identical treatment history from time t−L to t− 1 for each treated observation indexed
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by planet-month pair (i, t). The matched set is defined mathematically as

Mit = {i′ : i′ ̸= i, Gi′t = 0, Gi′t′ = Gi,t′ for all t
′ = t− 1, ..., t− L} (8)

for the treated observation (i, t) with Git = 1 and Gi,t−1 = 0. There are several caveats for

practical purposes. First, the matching happens exactly on the treatment history in order

to control for the carryover effects. Second, only observations from the same time period are

included into the matched set in order to adjust for time-specific unobserved confounders.

We further refine the matched set by using the distance measure based on the estimated

propensity score. The propensity score is defined as the conditional probability of treatment

assignment given pre-treatment covariates. To estimate the propensity score, for each time

period, we consider all treated observations and their matched control observations, and then

utilize the logistic regression model to fit the treatment assignment:

eit({Ui,t−l}Ll=1) = Pr(Git = 1|Ui,t−1, ...,Ui,t−L) =
1

1 + exp(−
∑L

l=1 β
T
l Ui,t−L)

, (9)

where Uit′ = (Git′ ,Z
T
it′)

T . We also adjust for the lagged covariates by matching on the

estimated estimated propensity score, which gives the following distance measure:

Sit(i
′) = |logit{êit({Ui,t−l}Ll=1)} − logit{êi′t({Ui′,t−l}Ll=1)}| (10)

for each matched control observation i′ ∈ Mit, where êit({Ui,t−l}Ll=1) is the estimated propen-

sity score. Once the distance measure Sit(i
′) is computed for all control observations in the

matched set, we refine the matched set by selecting up to J most similar control observations

and the refined matched set for the treated observation (i, t) is defined as:

M∗
it = {i′ : i′ ∈ Mit, Sit(i

′) ⩽ S
(J)
it }, (11)
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where S
(J)
it is the J th-order statistic of Sit(i

′) among the control observations in the original

matched set Mit. Put it simply, we choose a subset of control observations within the original

matched set that are most similiar to the treated observation (i, t) in terms of both treatment

history Git′ and the observed confounders Zit′ .

PanelMatch Results. To perform the PanelMatch analysis, for each adoption group g,

we construct a matched set of treated planets and their associated control planets. When

estimating the ATT’s of Policy 2 on the outcome variables, we condition on 6 months of lag,

that is, L = 6, and estimate the ATT up to 3 months after a planet adopts Policy 2, that

is, F = 1, 2, 3. We further refine the matched set by selecting up to 10 most similar control

observations to each focal treated observation.

Column (2) in Table 5 presents the estimated ATT’s from PanelMatch method using

only treatment history plus the lag of the outcome variable to construct the matched set.

The 4-month ATT’s of Policy 2 on price, the number of post, and the number of Q&A

are valued at 9.35%, 44.41%, and 17.82%, respectively. Column (3) presents the estimated

ATT’s using propensity score matching based on treatment history, outcome variable, and

time-varying covariates to construct the matched set. The 4-month ATT’s of Policy 2 on

price, the number of post, and the number of Q&A are valued at 8.20%, 69.81%, and 25.55%,

respectively. Note that all these estimated ATT’s are statistically significant at 5%, implying

a rise in both pricing and content production.

Figure 3 illustrates the estimated treatment effects of Policy 2 on outcome variables at

each relative length of exposure to Policy 2. The left three subfigures depict the treatment

effects based on matching only by treatment history and the 6-month lags of outcome vari-

ables, while the right three subfigures show the treatment effects based on propensity score

matching that also accommodates 6-month lags of time-varying covariates. The effects are

positive and significant in the immediate month after adoption, and then attenuate in small

magnitude in the later periods.
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Figure 3: Treatment Effects of Policy 2 using PanelMatch Method

(a) Matching on Lag of Outcomes (b) Propensity Score Matching

(c) Matching on Lag of Outcomes (d) Propensity Score Matching

(e) Matching on Lag of Outcomes (f) Propensity Score Matching
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4.2 Robustness Checks

4.2.1 Parallel Trend Assumption

Staggered DID. Figure 2 shows several important implications of parallel trend for Stag-

gered DID regressions. First and foremost, for the treatment effect of Policy 2 on price

and the number of Q&A, there are no differential trends in the pre-Policy 2 period between

groups of planets that are six months away from being treated and other groups of planets

that are not yet treated or never treated. This provides strong evidence in support of the

(unconditional) parallel trend assumption discussed in Equation 4.

The pre-Policy 2 estimate at t = −1 for the number of post deviates significantly from 0.

The creators who applied for the business license in order to enjoy the commission reduction

from Policy 2 might have a strong belief that the final approval of Policy 2 was contingent on

their labor outputs and/or content quality. In addition, creators could be uncertain about

the processing time from applying to the local government for the business license to being

eventually treated by Policy 2. During this processing time period, they might proliferate

their content provision to persuade the platform operator to grant the reduced commission

for Policy 2. In the real world, however, the platform operator, upon receiving their official

business license, only conducted a policy compliance check to make sure these creators had

not involved in any illegal practices such as politically sensitive content, gambling, uncertified

medical devices, etc.

As a robustness check, we estimate the treatment effects by length of exposure allowing

for one month anticipation. In other words, we allow creators to anticipate participating in

Policy 2 one month prior to becoming a business planet which could affect their untreated

potential outcomes. The results are reported in Appendix A. At the first glance of Figure

7, there is still no differential pretrends as in the case when we specify no anticipation for

price and the number of Q&A, so the parallel trend assumption holds. Qualitatively, the

results and patterns are similar to those without anticipation. But the treatment effect on
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price are smaller in magnitude and are estimated with less precision. The treatment effects

on the number of post and the number of Q&A become more salient but still follows the

decreasing pattern.

PanelMatch. Figure 4 illustrates the outcome and time-varying covariate balance in terms

of the standardized mean differences due to matching over the pre-treatment time period.

The solid black lines represent the balance of the lagged outcome variables whereas other

colored lines in red, green, and blue show the balance of covariates. Again, the left three

subfigures depict the pre-treatment matching of outcome variables based on matching only by

treatment history and the 6-month lags of outcome variables, while the right three subfigures

show the pre-treatment matching of both outcome variables and time-varying covariates

based on propensity score matching that also accommodates 6-month lags of time-varying

covariates. In particular, we specify different set of time-varying covariates when conducting

Propensity Score Matching. For PanelMatch analysis on price, we control for 6-month lags

of the number of subscribers, the number of post, and the number of Q&A. For PanelMatch

analyses on the number of post and on the number of Q&A, we control for 6-month lags of

price as well as the number of subscribers.

In all these cases corresponding to three outcome variables, we find that some degree

of imbalance remains for the constructed matched sets only based on the treatment history

and lagged outcome variables, even though the standardized mean differences are already

as low as 0.5. In contrast, the improvement of balance due to Propensity Score Matching is

substantial. In particular, Propensity Score Matching eliminates almost all imbalance in the

number of post and the number of Q&A in pre-treatment period.

We also observe in Figure 4 that the standardized mean difference for the lagged out-

comes, regardless of the matching methods, stays relatively constant over the entire pre-

treatment period. This suggests that the parallel trend assumption for the PanelMatch

estimations may be appropriate.
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Figure 4: Outcome and Covariate Balance due to Matching over the Pre-Treatment Time
Period using PanelMatch Method

(a) ln(Price), Matching on Lag of Outcomes (b) ln(Price), Propensity Score Matching

(c) ln(Post+1), Matching on Lag of Outcomes (d) ln(Post+1), Propensity Score Matching

(e) ln(Q&A+1), Matching on Lag of Outcomes (f) ln(Q&A+1), Propensity Score Matching
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4.2.2 More Evidences against Negative Weighting Concerns

A typical feature of Policy 2 is the differential timing of adoption for different planet. This

may raise some concerns with the negative weighting in treated planets, particularly in (1)

early adopter planets, since the planet-level treatment mean may be high, and (2) later

months, since the month-level treatment mean may be high. According to Jakiela (2021),

having negative weights on treated planets is not a big problem if we have (1) enough

never-treated planets, and (2) enough pre-treatment data, and (3) the treatment effects are

homogeneous across all planets.

In our panel dataset, more than 80% of planets (more than 75% of observations) that

were never treated by Policy 2. For those planets that are treated by Policy 2, more than

27% of observations took place before the planet had been treated by Policy 2. Therefore,

the first two criteria of diagnostics in Jakiela (2021) are met. We are now left to test the

homogeneous treatment effects hypothesis. This hypothesis testing is particularly important

when we consider price as our outcome variable, since we are about to explore mechanisms

for pricing decision following Policy 2 using two-way fixed effects model in Section 5.

The diagnostic tests for homogeneous treatment effect in Jakiela (2021) is based on

the mathematical relationship between the residuals of the outcome variable (Ỹit) and the

residuals of the treatment variable (G̃it). Essentially, if there is no difference in slopes across

treated and untreated observations in a regression of Ỹit on G̃it, there is no evidence for

heterogeneity and all is well. Mathematically, we have

Ỹit = δ0 + δ1G̃it + δ2Git + δ3G̃it ×Git + εit. (12)

If we specify log(Price) as our outcome variable, then the p-value for δ3 (i.e., the interaction

term between the treatment variable and its residual) is 0.805, which shows the change in

slope between the treated group and the untreated group is statistically insignificant. So for

regressions using log(Price) as outcome variable, there is not enough evidence to reject the
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hypothesis that the slope between the treated groups and untreated groups are the same. In

other words, we fail to reject the hypothesis that the treatment effects of Policy 2 on price

is homogeneous. This also means we do not need to worry too much about the negatively

weighted treated planet-month observations.

5 Mechanisms

The most counter-intuitive finding from our analysis of the effect of adopting Policy 2 is the

increased price of treated planets given their reduced platform commission. To uncover the

driving forces of this unusual price change, we consider two mechanisms. The first mechanism

comes from the fact that at the same month when Policy 2 was announced (i.e., month 38),

the platform raised its commission uniformly for all planets from 5% to 20%. We argue that

this one-shot, uniform commission increase (i.e., Policy 1) drastically changed the market

structure on the platform, making the number of active planets decline and enlarging market

power for those creators of the remaining active planets to set up higher prices. The second

mechanism comes from the fact that Policy 2 works as a platform tool to select those who

are more willing to provide more and high-quality content, and the platform subsidizes these

planets by reducing their commission. For these treated planets, the creators raised their

prices to cover the cost from proliferating content production and/or higher-quality content

provision. We illustrate the two mechanisms in Figure 5.

Figure 5: Mechanisms of Policy 1 and Policy 2 on Price Change

In this section, we first examine the effect of Policy 1 on the market structure and on

creators’ pricing decision, and we further examine whether those who were more willing to
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provide content in greater number and of higher quality did increase their prices following

Policy 2.

5.1 Effect of Policy 1 on Price

We estimate the effect of Policy 1 using a interrupted time series model which accommodates

panel data and captures the immediate level change of outcome variables due to Policy 1.

Our model allows more data granularity than the classic interrupted time series model since

we can directly observe the outcomes of interest for each planet in each month instead of

the average of outcomes of all planets per month. Note that (1) we have longitudinal data

of outcomes of interest for a considerably long time period over 51 months before and after

Policy 1, and (2) all planets were affected at one specific time in August 2019. We include the

planet fixed effects to adjust for unobserved, planet-specific and time-invariant confounders.

Let Yit be the same set of observed outcome of interest as in Section 4.1. For each planet

i, we let timeit be the linear time trend that a specific month t passed from the start of the

observation period. We let policy1it be the binary treatment variable which equals to 0 if

planet i was before the implementation of Policy 1 at month t or equals to 1 if planet i was

after the implementation of Policy 1 at month t. Finally, we let since policy1it indicate the

number of month passed since the implementation of Policy 1 to month t, and we set its

value to 0 if month t was before the implementation of Policy 1. Since Policy 1 was applied

to all planets at the same time in August 2019 and no comparison group existed, the model

takes the following form:

Yit = αi + β1timeit + β2policy1it + β3since policy1it + εit, (13)

where αi denotes the planet fixed effects and εit is the error term. The coefficient of timeit

(i.e., β1) indicates the trend of outcomes of interest before the Policy 1, or the pre-Policy

1 time trend. The coefficient of policy1it (i.e., β2) indicates the the immediate level change
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of outcomes of interest after Policy 1, or the immediate effect of Policy 1. The coefficient

of since policy1it (i.e., β3) indicates the difference in linear trends after Policy 1, or the

sustained effect of Policy 1.

To estimate the model specified in Equation 13, we only consider planets with data

both before and after August 2019. Since Policy 2 started in the same month as Policy 1

took place, some planets took the staggered adoption of Policy 2 and enjoyed the platform

commission reduction. We eliminate the observations of these planets since the month when

they were treated by Policy 2. To eliminate the seasonality concerns, we restrict our model

estimation within 6 months before and after August 2019 when Policy 1 applied to all planets

and report the results based on this 6-month window as the main results in Table 6.

Table 6: Interrupted Time Series Model Results with 6-Month Window around Policy 1

(1) ln(Price) (2) ln(Post + 1) (3) ln(Q&A + 1)

Time 0.0218∗∗∗ −0.0111∗ −0.0204∗∗∗

(0.0020) (0.0053) (0.0034)
Policy 1 0.0251∗∗∗ −0.1439∗∗∗ 0.0018

(0.0073) (0.0174) (0.0109)
Since Policy 1 −0.0168∗∗∗ −0.0762∗∗∗ −0.0248∗∗∗

(0.0027) (0.0071) (0.0045)

Num. obs. 23625 40807 40807
R2 0.9160 0.7842 0.8266
Planet FE YES YES YES
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05. Standard errors are clustered at the planet level.

Table 6 reports the main effect of Policy 1 on price, number of post, and number of

Q&A. Here, we are mainly interested in the immediate effect of Policy 1 on price. Column

(1) in Table 6 confirms that at the month of Policy 1 implementation, there was a significant

level increase in price by 2.54%. In other words, creators pass through 16.95% of the 15%

commission increase to their subscribers. We also examine the impact of a sudden commis-

sion increase due to Policy 1 on creators’ content provision. Column (2) in Table 6 shows

a significant immediate level decrease in the number of post by 13.40%. Given a sudden,

uniform commission increase, creators made less money from subscription, and reduced their
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labor output as a response to this commission change. Column (3) in Table 6 implies that

there was no significant immediate level change in the number of Q&A, because this out-

come variable only records the number of questions that have been answered by creators in

a specific month, which are presumably held stable given no obvious change in subscribers’

behavior of asking questions.

As robustness checks, we run the same analysis in Equation 13 but (1) restrict the

estimation within 3 months before and after Policy 1 took place, and (2) relax the estimation

within 9 months before and after Policy 1 took place. Table 11 reports the coefficients of

immediate level change due to Policy 1 for price, the number of post, and the number of Q&A

under these two time windows around Policy 1. We obtain qualitatively and quantitatively

similar results for the immediate effect of Policy 1 on price. When we only consider 3 months

before and after Policy 1, there was a significant level increase in price by 3.98%. When we

extend the time window to 9 months before and after Policy 1, there was a significant level

change in price by 2.64%.

5.2 Effect of Policy 1 on Market Structure

To explore the effect of Policy 1 on market structure, we need to define some key measurement

of planets’ activity and their exit decisions. We first define a planet’s activity (i.e., the

condition in which planets were producing content on the platform) by checking whether or

not the sum of the number of post and the number of Q&A is larger than 1. The state of

being active or not for a planet is measured in a given month t. In other words, in a certain

month t, if the creator of a planet produced at least one content regardless of a post or a

Q&A, we think of this planet as being active.

Alike many other creator platforms, our focal platform Knowledge Planet does not have

a clear way of determining whether or not a creator permanently exits. We thus define a

planet’s exit by observing its creator not producing any content for three consecutive months

after its last month being active. For example, if a planet had been detected to be active
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in month 50 and its creator did not post anything or answer any questions from his or her

subscribers since then, then this planet is considered to exit the platform in month 53. Since

we have data of the exact time when a planet was registered on the platform, we are able

to calculate the life cycle of each planet and their existence in each month. In fact, 41.32%

of the planets ever existed in our dataset exit the platform by the end of the data collection

period (i.e., month 70).

Now for each month t, we have both the number of active planets and the number of

existing planets, we are able to construct the share of active planets by dividing the former

measure over the latter one. Subfigure 6a illustrates the aggregate share of active planets

over time before and after Policy 1 at month 38. In subfigure 6b, we plot the same measure

separately according to their types of content. The share of active planets oscillates around

84% before Policy 1, but it plunges sharply right after Policy 1 to 72% at month 44, and

climbs back to the pre-Policy 1 level nearly at the end of data collection period.

Figure 6: Share of Active Planets over Time

(a) at Aggregate Level (b) w.r.t. Planet Type

Table 7 reports the OLS coefficients for the effect of Policy 1 on the share of active

planets. In column (1), we consider the full 51 time periods from month 20 to month 70, and

the share of active planets plummeted by 5.19% due to Policy 1. In column (2), we zoom

into a shorter time window by considering only half year before and after Policy 1, and the
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share of active planets dropped by 7.82% over this period of time.

Table 7: Aggregate Effect of Policy 1 on Share of Active Planets

(1) Full Time (2) Half Year around Policy 1

(Intercept) 0.8340∗∗∗ 0.8312∗∗∗

(0.0064) (0.0076)
Policy 1 −0.0533∗∗∗ −0.0814∗∗∗

(0.0080) (0.0104)

Num. obs. 51 13
R2 0.4757 0.8489
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.

Combining our analyses of the effect of Policy 1 on both price and the market structure,

we conclude that the commission decrease due to Policy 1 is associated with a jump of

creators’ prices by 2.54% and a fall of the share of active planets by 7.82%. One explanation

is that the drastically soaring platform commission by 15% significantly reduced the share of

planets whose creators were still willing to provide content. For those who remained active

on the platform after Policy 1, especially over the immediate couple of months since Policy 1,

they were competing with much fewer creators for attracting and acquiring new subscribers,

which gave them market power to charge higher prices without producing more content than

before.

5.3 Effect of Policy 2 with Heterogeneous Content Provision

We expect that the focal platform has utilized Policy 2 as a selection process for those who

were willing to produce content in greater number and/or higher quality. In Section 4.1, we

have shown robust results of how the staggered adoption of Policy 2 led to significant increase

in content provision of both post and Q&A. We now examine how different quantities and

qualities of content provision can mediate the effect of Policy 2 on price.

We use the following two binary variables to measure the quantity and quality of content

provision for planet i in month t: (1) Post and Q&Ait that equals to 1 if the product of
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the number of post and the number of Q&A in that specific month t is larger than 0; (2)

Content 30 that equals to 1 if the sum of the number of post and the number of Q&A is

larger than 30. Post and Q&Ait shows whether or not a creator of planet i indeed produced

his or her own post AND answer questions from his or her subscribers. Content 30 measures

whether or not a creator could, on average, produce at least one content regardless of post

or Q&A on a daily basis.

Table 8: Effects of Policy 2 on Price w.r.t. Heterogeneous Content Provision

(1) (2)

Policy 2 0.1260∗∗∗ 0.1274∗∗∗

(0.0277) (0.0283)
Post and Q&A 0.0112

(0.0076)
Policy 2×Post and Q&A 0.0437∗

(0.0196)
Content 30 0.0143

(0.0096)
Policy 2×Content 30 0.0383†

(0.0214)

Num. obs. 83782 83782
R2 0.8409 0.8408
Planet FE YES YES
Time FE YES YES
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; †p < 0.1. Standard errors are clustered at the planet level.

Table 8 reports the TWFE estimation results of the effect of Policy 2 on price in which

these three measures work as mediators. Column (1) in Table 8 suggests that upon adopting

Policy 2, if the creator of a planet provided both original post and personalized response to

specific questions from subscribers, his or her price was 4.47% higher compared to those who

either failed to provide one type of content or did not produce content at all.

From Column (2) in Table 8, we find evidence that for those adopting Policy 2, if a

creator of a treated planet produced content on a daily basis so his or her average number of

monthly content was more than 30, this creator charged 3.90% higher than those who failed

to reach this monthly production threshold.
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These results are consistent with the expectation of general subscribers on a creator

platform. Subscribers pay for a creator’s own ideas, thoughts, and experiences and they

value the personalized responses that a creator give to their unique questions.

5.4 Effect of Policy 2 on Price given Competition among Planets

In Subsection 5.2, we associate Policy 1 with the market structure and provide evidence

that Policy 1 intensified the competition among existing planets by significantly reducing

the share of active planets, which ultimately led to higher price. One may wonder whether

or not Policy 2 is associated with any potential market structure change that caused price

fluctuations for certain creators. In this subsection, we examine the potential mediation

effect of Policy 2 on price through various measures of market competitiveness.

Due to differential timing of Policy 2 treatment, we need to define properly the market

and related competition metrics. We define a market mktTt by both time t and type of

content T , where t ∈ {38, 39, ..., 69, 70}. For example, creators in market mktT =Economics
t=50

only compete with others in the same month t = 50 and the same type T = Economics.

It is very likely to be time- and resource- infeasible for a focal creator to explore all other

planets and keep track of their content provision to figure out who the potential competitors

are. We thus assume that creators leverages the prices of other planets in the same market

as a tool to determine potential competitors, because price in creator platforms often signals

quality provision.

We use the following two variables as proxies for the competition among planets: (1) the

number of planets in the same market with similar price, and (2) the number of subscribers

in planets in the same market with similar price. The similarity of prices between a focal

planet and other planets is defined by a radius of 5 CNY. That is, if the difference between

the price P
mktTt
i of a focal planet i and the price P

mktTt
j of another planet j is no larger than

5, then we consider planet j as a competitor of planet i in market mktTt .

Table 9 reports the TWFE estimation results when using two competition proxies and
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Table 9: Heterogeneous Effects of Policy 2 on Price w.r.t. Competition among Planets

(1) (2)

Policy 2 0.1711∗∗∗ 0.1216∗∗

(0.0407) (0.0446)
ln(Num. Competitor + 1) −0.1007∗∗∗

(0.0077)
Policy2×ln(Num. Competitor + 1) −0.0124

(0.0132)
ln(Subscriber of Competitor + 1) −0.0871∗∗∗

(0.0042)
Policy2×ln(Subscriber of Competitor + 1) 0.0026

(0.0078)

Num. obs. 83782 83782
R2 0.8453 0.8501
Planet FE YES YES
Time FE YES YES
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05. Standard errors are clustered at the planet level.

their interaction terms with Policy 2 as independent variables. The raw number of com-

petitors and the number of subscribers in competitor planets significantly reduced the price

by 9.58% and 8.34%, respectively. However, we do not find evidence of mediation effect of

either competition proxies on the effect of Policy 2 on price according to the insignificant

coefficients for the interaction terms. Table 12 in Appendix C reports consistent results of

the insignificant coefficients of the interaction terms between Policy 2 and our competition

proxies, when |PmktTt
i − P

mktTt
j | is no larger than 10 or 20 CNY for i ̸= j. We therefore

rule out the potential mechanism that the competition among planets mediates the effect of

Policy 2 on price.

6 Conclusion

This research analyzes the impact of a staggered platform commission reduction on the

pricing strategy and productivity of creators, using the data of a leading Chinese creator
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platform, Knowledge Planet. This commission change policy reflected platform executives’

intention to maximize the platform profits while keeping large subscriber base brought by

the superstar creators.

By employing two robust methodological frameworks of Staggered DID and PanelMatch,

our investigation has illuminated the nuanced interplay between platform commissions and

the economic behaviors of content creators, specifically in terms of pricing strategies and

productivity. The results of our analysis show that the adoption of a reduced commission

significantly increased creator price, the number of post, and the number of Q&A by an

average of 8%-13%, 31%-70%, and 8-26% in the four months after adoption, respectively.

Although these ranges are wide and result from using multiple estimations, we demonstrate

that the positive effects are substantial and robust using multiple methods and analyses.

We further demonstrate two mechanisms for a price increase given a commission reduction

policy through (1) decreasing competition among planets due to market structure change

and (2) the selective nature of this policy that subsidized those who were more willing to

provide content in larger number and higher quality.

Framing these stark results in the third-degree price discrimination literature in two-sided

market, we find no theoretical models that accommodate the case where the platform sets

up higher fees/commissions to small businesses (in terms of revenue, participant, or market

share) while lowers the fees/commissions to big businesses. Instead, recent industrial orga-

nization literature have put effort to solve for the welfare analysis of the case where platform

favors the small businesses by lower their fees/commission. For example, Wang and Wright

(2017) argue that ad valorem fees10 are a way for platforms to efficiently price discriminate

heterogeneous merchants. Motivated by the app store controversies, Bhargava, Wang, and

Zhang (2022) show that a small-business oriented (SBO) differential revenue sharing design

can increase total welfare and outputs on the platform. In addition, although smaller pro-

ducers almost always benefit from the shift in revenue sharing design, spillover effects can

10Ad valorem fees increase proportionally with transaction prices. In the platform commission context,
this means the platform charges higher commissions for higher transaction values.
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also make large producers better off under some conditions. de Cornière, Mantovani, and

Shekhar (2023) find out that, driven by the existence of network effects across buyers and

sellers, third-degree price discrimination set by the platform on the seller side can increase

participation on both sides, increase total welfare, and may result in a Pareto improvement

with all sellers being better-off (regardless of the different levels of commission charged on

them) than under uniform pricing. Our paper calls for theoretical modelling which fills the

gap in the literature to consider the case where the price discrimination works in favor of

bigger producers/sellers/creators and against the smaller counterparts.

Throughout this paper, we also ignore the network effects across creators and subscribers

as described in Bhargava, Wang, and Zhang (2022) and de Cornière, Mantovani, and Shekhar

(2023). We also only emphasize short-run changes due to platform commission changes and

preclude any long-term market structure conducts such as competition among planets. In

turn, this research suggests future avenues for researchers to create better modelling and

analytical solutions to solve these challenges for all players in the platform ecosystem.

In sum, our findings demonstrate that the introduction of a differentiated commission

structure, moving from a uniform rate to a varying rates, significantly enhanced the creators’

ability to monetize their content more effectively if they were more willing to provide more

content and content of higher-quality. This was evidenced by an uptick in content production

volumes and a strategic elevation in subscription prices, contributing to a healthier platform

ecosystem where quality content generation is incentivized, and financial rewards are more

directly aligned with creators’ contributions to the platform.

This research contributes to the burgeoning discourse on the economic implications of

platform policies, providing empirical evidence that challenges prevailing assumptions about

the one-size-fits-all approach to platform commission rates. Our study highlights the po-

tential of tailored commission structures to serve as a catalyst for both enhanced creator

productivity and increased platform revenue.
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Appendices

A Robustness Checks of Staggered DID with Antici-

pation of 1 Time Period

Table 10: Treatment Effect of Policy 2 with Anticipation of 1 Month

Methodology SDID

ln(Price)
0.0336
(0.0519)

ln(Post+1)
0.4947∗

(0.0630)

ln(Q&A+1)
0.1417∗

(0.0459)

Notes: (i) ∗p < 0.05. (ii) Con-
trol group includes never-treated and
not-yet-treated planets. (iii) We con-
straint the event-study aggregation of
ATT’s according to planets’ length of
exposure to Policy 2. We further bal-
ances the sample with respect to event
time. (iv) We calculate doubly robust
standard errors.
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Figure 7: Treatment Effects of Policy 2 with Anticipation of 1 Month

(a) ln(Price)

(b) ln(Post+1) (c) ln(Q&A+1)
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B Robustness Checks of Estimation for Studying the

Impact of Policy 1: Using Different Time Windows

around Policy 1

Table 11: Interrupted Time Series Model Results with Various Time Windows

3-Month Window around Policy 1 9-Month Window around Policy 1

(1) ln(Price) (2) ln(Post + 1) (3) ln(Q&A + 1) (4) ln(Price) (5) ln(Post + 1) (6) ln(Q&A + 1)

Time 0.0265∗∗∗ −0.0826∗∗∗ −0.0435∗∗∗ 0.0178∗∗∗ −0.0180∗∗∗ −0.0124∗∗∗

(0.0032) (0.0091) (0.0065) (0.0015) (0.0043) (0.0026)
Policy 1 0.0390∗∗∗ −0.0690∗∗∗ −0.0272∗ 0.0261∗∗ −0.2425∗∗∗ −0.0696∗∗∗

(0.0072) (0.0167) (0.0109) (0.0080) (0.0181) (0.0108)
Since Policy 1 −0.0249∗∗∗ −0.0124 0.0238∗∗ −0.0133∗∗∗ −0.0342∗∗∗ −0.0150∗∗∗

(0.0045) (0.0113) (0.0078) (0.0022) (0.0056) (0.0033)

Num. obs. 13409 22805 22805 32594 57525 57525
R2 0.9492 0.8602 0.8846 0.8904 0.7303 0.7909
Planet FE YES YES YES YES YES YES

Notes: (i) ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. (ii) For all six models, we consider planets which have data before and after August 2019 when the platform increases its
commission from 5% to 20% simultaneously to every planet, and we constrain the time window to be either 3 or 9 months before and after August 2019. For planets whose
platform commission decrease from 20% to 5% after August 2019, we eliminate their observations since the month of platform commission reduction. (iii) Standard errors are
clustered at the planet level.

C Robustness Check of the Effect of Policy 2 given

Competition among Planets

Table 12: Robustness Check: Heterogeneous Effects of Policy 2 w.r.t. Planet Competition

Price Range is 10 Price Range is 20

(1) (2) (3) (4)

Policy 2 0.1853∗∗∗ 0.0936† 0.1976∗∗∗ 0.0538
(0.0497) (0.0527) (0.0578) (0.0605)

ln(Num. Competitor + 1) −0.1693∗∗∗ −0.2472∗∗∗

(0.0099) (0.0124)
Policy2×ln(Num. Competitor + 1) −0.0177 −0.0218

(0.0154) (0.0163)
ln(Subscriber of Competitor + 1) −0.1316∗∗∗ −0.1760∗∗∗

(0.0053) (0.0063)
Policy2×ln(Subscriber of Competitor + 1) 0.0060 0.0102

(0.0088) (0.0093)

Num. obs. 83782 83782 83782 83782
R2 0.8499 0.8555 0.8553 0.8597
Planet FE YES YES YES YES
Time FE YES YES YES YES
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; †p < 0.1. Standard errors are clustered at the planet level.
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