Electrification in the Long Run

Stephen Holland¹ Erin Mansur² Andrew Yates³

¹UNC-G and NBER

²Dartmouth College and NBER

3UNC

Motivation: Climate change requires substantial transformation of electricity sector

- ► Electrify everything
 - ▶ Space heating in homes: 22 percent increase in electricity load
 - ▶ Light duty vehicles: 21 percent increase in electricity load
- Technological changes
 - Renewables and Storage
 - EVs, Heat pumps, hydrogen generation
- ► Electricity sector of future may look nothing like today

This Paper

- Develop long run model of electricity sector and electrification
 - No fixed inputs or legacy plants: completely rebuild the grid
 - Focus on long-run equilibrium (not transition dynamics)
 - Theoretical results
 - Calibrated model illustrates relevance of theory results and additional insights

Preview of Findings

- ► Theory Results
 - Electrification may decrease total emissions from the grid (negative emissions)
 - Electrification may decrease renewables (supra-max emissions)
 - Cheaper storage can drive out renewables
- Calibration: Divide US into 13 electricity regions
 - Negative emissions most likely to occur for electrification that increases demand on summer days
 - EV charging timing matters a great deal (can get negative emissions or supra-max emissions)

Model: Overview

- ▶ Long run competitive equilibrium model with capacity investment
- ► No explicit dates, but fixed unit of time (year)
- T periods within the year (hours)
 - Model does not have explicit uncertainty
 - But in each period t there is different value of electricity demand, sun, and wind
 - ► Interpretation: agents have perfect foresight about the distribution of these variables
- ▶ Electricity produced by I different techs (Sun, Wind, Gas, Nuclear,...)

Model Details: No Storage

$$\max_{Q_t,q_{it},K_i} \sum_t [U_t(Q_t) - \sum_i c_i q_{it}] - \sum_i r_i K_i$$

Endogenous choice of

- \triangleright Q_t consumption
- $ightharpoonup q_{it}$ generation by tech
- K_i capacity by tech Constraints
 - **System Balance** $Q_t = \sum_i q_{it}$
 - ▶ Generation $q_{it} \leq f_{it}K_i$

Technology i has

- ► Constant marginal cost *c_i*
- Unit capital cost r_i
- ightharpoonup Capacity factor f_{it}

Model Details: With Storage

$$\max_{Q_t,q_{it},b_t,S_t,K_i,\bar{S}} \sum_t [U_t(Q_t) - \sum_i c_i q_{it}] - \sum_i r_i K_i - r_s \bar{S}$$

Additional endogenous choice of

- \triangleright b_t battery charge
- $ightharpoonup \bar{S}$ battery capacity
- \triangleright S_t battery state

Constraints

- System Balance is now $Q_t + b_t = \sum_i q_{it}$
- ▶ Battery $S_t = S_{t-1} + b_t$ and $0 \le S_t \le \bar{S}$.

Battery has

ightharpoonup Unit capital cost r_s

Electrification

- ► *E*_t is electricity consumption from activity that switches from fossil fuels to electricity
- Assume exogenous (avoid taking stand on change in CS)
- ▶ System balance is now $Q_t + b_t + E_t = \sum_i q_{it}$.
- ▶ Define *electrification* as ΔE_t (typically from zero).
- \triangleright Let β_i be emissions rate for tech i
- ▶ Long run emissions change (LREC) defined as

$$\frac{\sum_{i} \sum_{t} \beta_{i} \Delta q_{it}}{\sum_{t} \Delta E_{t}}.$$

Theory Result 1: Electrification can reduce emissions

Notes: Two periods: h and l, and two technologies: renewable (1, green) and fossil (2, black). Electrification in period l decreases emissions.

Calibration: Data and Parameters

Table: Capital and Operating Costs for Different Technologies

	Annual	Marginal	Carbon
	Capital Cost	Operating costs	Emissions
	\$ per MW	\$ per MWh	tons/MWh
Gas Combustion Turbine	54,741	44.13	0.526
Gas Combined Cycle	79,489	26.68	0.338
Advanced Nuclear	528,307	2.38	0
Wind (onshore)	132,602	0	0
Solar PV	83,274	0	0
Battery Storage	18,935	0	0

Notes: Source EIA "Table 1b. Estimated unweighted levelized cost of electricity (LCOE) and levelized cost of storage (LCOS) for new resources entering service in 2026 (2020 dollars per MWh)".

Calibration: Data and Parameters

We use 13 electricity regions

Calibration: Data and Parameters

To determine demand (U'_t) we

- ► Assume linear demand curves with elasticity = -0.15
- ➤ Obtain hourly quantities from EIA 930, reference prices from SNL and FERC 714 lambas

To determine capacity factors (f_{it}) we

 Obtain wind and solar capacity (from EIA 860) and hourly generation (from EIA 930)

Results: 2 x 2 classification

- Capture differing policy and innovation
- ▶ BAU High Cost: No carbon tax, baseline renewable costs
- ▶ BAU Low Cost : No carbon tax, 25 percent reduction in renewable costs
- Pigouvian High Cost: Carbon tax, baseline renewable costs
- ▶ Pigouvian Low Cost : Carbon tax, 25 percent reduction in renewable costs
- ► Assume SCC = \$100

Results: No Electrification

Electrification: small increase in consumption in one hour

- Every day, at hour h, load increases by 1 unit
- ► BAU Low Cost case
- ▶ What happens to generation?

LREC for small increase in consumption in one hour

▶ Both negative and supra-max emissions are possible

LREC for small increase in consumption in multiple hours

Electrification: Light duty vehicle fleet

- ► Replace all light duty gasoline vehicles with EVs
- ► When are they charged?
 - ► EPRI mostly at night, consistent with Burlig et al 2021.
 - ► Flat evenly spaced over all hours
 - Carbon Min
 - Welfare Max
 - Charge Cost Min

Electrification: Light duty vehicle fleet

- Possible negative emissions (no gas vehicle emissions and lower electricity emissions)
- ▶ Timing matters (charging during the day induces solar).
- Place chargers at shopping areas and workplaces rather than apartments?

LREC's for light duty fleet electrification

Conclusion

- ▶ Model and calibration illustrates that long run effects can differ in surprising ways from short run analogs.
- ► Emissions effect in short run may be different than in long run. When is best time to charge EV?
- Simple and transparent model useful supplement to literature. Allows integration of theory results.