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Motivation

� large literature: potential for revision of climate change
based on citizens’ experience
▷ surveys at smaller geographic areas (e.g., specific states)
▷ surveys at larger geographic areas (e.g., national level)

phone surveys
surveys executed by large, well-know national organizations
internet-based surveys

▷ surveys based on countries outside of North America
▷ some survey at multiple points in time

local- or state-effects from climate events
geographically larger, such as national, scale

▷ most focus on warmer temperatures; some ask whether
either cooler or warmer anomalies matter

▷ occasional focus on other variables (e.g., precipitation)
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Typical results

� most find some evidence that local climate effects
influence beliefs

� some argue that local events are unimportant
� mixed results regarding connection between temperature

trends and public opinion
� a handful argue that “tail events ” play an outsized role

▷ suggestion that “fat tails” in temperature anomalies might
influence increased political activism

� little attention paid to impact of climate on political behavior
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Why politics?

� Peltzman (1984) model: politicians weigh costs and
benefits to their constituency (e.g., from regulatory
intervention)

� some authors look at specific events (e.g.,
Waxman-Markey bill)

� little to no attention to evolving political behavior over time
▷ despite sub-text that citizens’ beliefs are evolving
▷ anticipation of increasing political pressure

our goal: investigate potential for fat tailed events to influence
political behavior across time
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Game plan

1 evaluate climate patterns at US state level over time
▷ allowing for “jumps”, time-varying volatility
▷ also consider levels of anomalies in temps, precip, drought

2 collect state-specific estimates of components
characterizing fat tails

3 construct database with measures of political behavior by
US state across time
▷ League of Conservation Voters (LCV) measures (by US

district)
score 0 - 100; higher scores indicate greater willingness to
engage in environmentally active politics
interpret higher scores as consistent with climate activism

▷ aggregate to state-level measure
4 combine with various socio-economic variables

▷ allow for state-level effects (via random effects)

� ultimate goal: assess influence of state-level fat tail
parameters upon political variable
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Fat tails

� denote temperature anomaly in month t by xt
▷ model as Brownian motion with drift

dxt = µdt + σdzt

▷ dzt : increment of a Wiener process
▷ µ: deterministic trend variance σ2

� allow for transitory anomalous events (‘jumps’)
▷ model as Poisson process, arrival rate λ
▷ size of jump is Normal: mean θ, variance δ2

� allow for time-varying volatility via GARCH
▷ longer-lasting hot (or cold) spells
▷ variance at time t is

ht ≡ Et−1(σ
2) = κ+ α1(xt−1 − µ)

2 + β1ht−1
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Maximum likelihood estimation

� we proceed by maximizing the log-likelihood function:

Maximum likelihood 

• GARCH Jump-diffusion (GJD) process: 
 

         (6) 
 

• Maximum Likelihood Estimation: 
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by choice of the parameter vector (µ, κ, α, β, λ, θ, δ)
� this representation subsumes the four possible stochastic

processes
PD: λ = 0;ht = σ2

JD: λ > 0;ht = σ2

GPD: λ = 0;ht = κ+ α(xt − µ)2 + βht−1
GJD: λ > 0;ht = κ+ α(xt − µ)2 + βht−1
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Data

database combines information from a variety of sources
� political data

▷ LCV observations, annually 2001 - 2020
▷ every US representative scored; aggregate→ state score
▷ political tendencies: ‘Partisan Voting Index’

tabulated annually by Cook Political Report (by district,
aggregate to state level)
https://www.cookpolitical.com/cook-pvi

� temperature anomalies (monthly, by state; 1958-2020)
▷ https://www.ncei.noaa.gov/data/
us-historical-climatology-network/2.5/access/

� demographic data
▷ use variables highlighted in extant literature

population, % older than 65, % white, %male, % urban
▷ American Community Survey (ACS)

https://data.census.gov/all?q=ACS

https://www.cookpolitical.com/cook-pvi
https://www.ncei.noaa.gov/data/us-historical-climatology-network/2.5/access/
https://www.ncei.noaa.gov/data/us-historical-climatology-network/2.5/access/
https://data.census.gov/all?q=ACS
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Fat tails?

C.F. Mason and N.A. Wilmot

Fig. 1. Spatial variation of temperature anomalies fat tails (Kurtosis), by US state.
Note: Monthly observations from 1958–2020; Minimum value 2.6650 (HI); Maximum value 4.8797 (FL).

3. Background

Our interest lies in examining the relation between the stochastic
process governing temperature anomalies, particularly as those pro-
cesses include the potential for fat tails, and political behavior of
elected representatives. In this section we sketch out the empirical
models we employ for these inquiries; some of the more technical
aspects of the modeling are relegated to Appendix.

3.1. Econometric framework: fat tails

We start by describing the model we use to analyze the stochastic
processes characterizing temperature anomalies in each of the 50 US
states. The foundation for this model is a Brownian motion process with
drift:

d𝑥𝑡 = 𝜇𝑑𝑡 + 𝜎d𝑧𝑡, (1)

where d𝑧𝑡 represents an increment of a Wiener process, 𝜇 is the deter-
ministic trend, and 𝜎 is the square root of the variance of the stochastic
process, and 𝑥𝑡 is the variable of interest (here, temperature anomalies
in a particular state). We refer to this model as ‘‘pure diffusion’’ (𝑃𝐷)
in the pursuant discussion. This model has been analyzed in a wide
range of applications, largely owing to its relative ease of application.
However, there are reasons to think that a more complicated model –
one allowing for fat tails – is appropriate for describing the evolution
of temperatures.9 Periods of abnormally high temperatures (sometimes
referred to as heat waves), or abnormally cold temperatures (e.g., polar
vortex events), would be examples here, as would more extended peri-
ods of ‘‘larger than usual’’ temperatures. The first class of epochs might
reflect transitory events, while the second class could reflect periods
where the variance associated with temperature anomalies becomes
larger than historic norms. Addressing these types of events requires
adjusting the PD model by including elements that are consistent with
fat tails.

To allow for spikes or jumps and time-varying volatility, we utilize
the following framework. Jumps enter into the model in the style
of Merton (1976), by assuming month-on-month changes in tempera-
ture anomalies fall into one of two types: The first type are ‘normal’

9 As we noted above, the concept of fat tails is closely related to kurtosis
values exceeding 3 (the value of kurtosis for a Normal distribution). As
illustrated in Fig. 1, all but four US states exhibit kurtosis levels above
3. Weitzman (2009b) emphasizes the potential importance of fat tails in
variables measuring the climate, such as temperatures. As we discuss later in
this section, fat tails can be explained by both a jump process and a process
that captures time-varying volatility such as the GARCH process.

fluctuations, represented through the PD process, while the second
type are ‘abnormal’ transitory shocks, modeled by a Poisson process.
The key parameter is such a process is the jump intensity, 𝜆, which
describes the mean number of shocks occurring per unit of time; during
an interval of time of length 𝑑𝑡, the probability of observing a jump
is then 𝜆𝑑𝑡. We model the size of these jumps as independently and
normally distributed, with mean 𝜃 and variance 𝛿2. Combining these
two aspects of the jump process into a term 𝐽𝑡, we can describe the
mixed jump-diffusion (𝐽𝐷) process as

d𝑥𝑡 = 𝜇 + 𝜎𝑧𝑡 + 𝐽𝑡. (2)

An alternative explanation for the fat tails described above is that
temperature anomalies follow a time-varying error process. We capture
this effect via the generalized autoregressive conditional heteroskedas-
tic (GARCH) framework. Under this approach, the variance component
𝜎2 above is replaced by a time-varying conditional variance term, ℎ𝑡:

ℎ𝑡 ≡ 𝐸𝑡−1(𝜎2) = 𝜅 + 𝛼1(𝑥𝑡−1 − 𝜇)2 + 𝛽1ℎ𝑡−1. (3)

Allowing for both jumps and time-varying volatility results in the
combined GARCH jump-diffusion (𝐺𝐽𝐷) process:

d𝑥𝑡 = 𝜇 +
√
ℎ𝑡
√
𝑧𝑡 + 𝐽𝑡. (4)

Combining the aspects discussed above, one can express the log-
likelihood function for the GJD model as

𝐿(𝜙𝜙𝜙, 𝐱) = −𝑇𝜆 − 𝑇
2
𝑙𝑛(2𝜋) +

𝑇∑
𝑡=1

[ ∞∑
𝑛=0

𝜆𝑛

𝑛!
1√

ℎ𝑡 + 𝑛𝛿2
𝑒𝑥𝑝

(
−
(𝑥𝑡 − 𝜇 − 𝑛𝜃)
2(ℎ𝑡 + 𝑛𝜃2)

)]
,

(5)

where 𝐱 is the vector of observations on the variable of interest. The
econometric problem is then to maximize this likelihood function by
choice of the parameter vector 𝜙𝜙𝜙 = (𝜇, 𝜅, 𝛼, 𝛽, 𝜆, 𝜃, 𝛿). Such estimates
are known to be consistent and invariant with asymptotically normal
distributions of the parameters. The GJD and PD models defined can
be compared within this framework using the log-likelihood statistic

𝐿𝑅 = 2𝑙𝑛

(
𝐿
(
𝜙̂𝜙𝜙; 𝐱

)

𝐿
(
𝜙𝜙𝜙∗; 𝐱

)
)
, (6)

where 𝜙̂𝜙𝜙 represents the estimated parameter vector under a particular
list of 𝑚 restrictions and 𝜙𝜙𝜙∗ represents the unrestricted parameter vector
estimate. If the parameter restriction is valid 𝐿𝑅 will be distributed
as a Chi-square random variable with 𝑚 degrees of freedom. In our
application, the test that the GJD model does not render a statistically
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Jumps

� general support for combined jump - GARCH model
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Table 3
GARCH-Jump Diffusion estimates: AK – MT.

State Code 𝜇 𝜅 𝛼 𝛽 𝜆 𝜃 𝛿 LR test

Alaska AK −0.0943 1.2055 0.0645 0.4375 0.5983 0.1202 2.6384 236.98
std.err. 0.1116 0.4094 0.0553 0.0687 0.2138 0.2368 0.3992
Alabama AL 0.1653 0.3208 0.3477 0.1254 1.8293 −0.0966 1.1116 84.95
std.err. 0.1627 0.3258 0.0681 0.0670 0.9483 0.1063 0.2335
Arkansas AR 0.2184 0.6043 0.3312 0.1119 2.2860 −0.1091 1.0009 73.30
std.err. 0.2569 0.7926 0.0636 0.0705 1.5081 0.1459 0.2387
Arizona AZ 0.0206 2.2427 0.0113 0.2179 0.0000 23.5910 0.5700 24.48
std.err. 0.0529 0.4469 0.1425 0.0584 . . .
California CA 0.0266 0.9231 0.2839 0.0315 1.9080 −0.0236 0.7336 46.10
std.err. 0.2214 0.8325 0.0614 0.1312 3.0324 0.1338 0.3669
Colorado CO 0.4493 1.6914 0.2500 0.0607 2.2149 −0.2375 0.6616 35.33
std.err. 0.2972 1.0340 0.0622 0.1080 1.9617 0.2396 0.2864
Connecticut CT 0.0485 1.6595 0.0001 0.2687 0.3019 −0.2587 1.8455 81.20
std.err. 0.0937 0.3962 . 0.0545 0.2840 0.3089 0.5973
Delaware DE 0.0525 2.3540 0.0188 0.3350 0.0145 −4.7923 0.0001 78.81
std.err. 0.0609 0.3039 0.0581 0.0613 0.0093 0.9626 .
Florida FL 0.0227 0.1615 0.1530 0.3522 0.6834 −0.0384 1.4460 170.39
std.err. 0.0461 0.0646 0.0501 0.0699 0.1553 0.1005 0.1605
Georgia GA 0.0931 0.2798 0.3254 0.1380 1.6078 −0.0586 1.1641 83.17
std.err. 0.1397 0.2767 0.0697 0.0705 0.7809 0.1014 0.2358
Hawaii HI −0.0317 0.0557 0.1065 0.2090 0.6155 0.0623 0.3399 51.65
std.err. 0.0240 0.0244 0.1749 0.0558 0.4685 0.0569 0.0855
Iowa IA −0.0818 3.6786 0.1415 0.2443 0.0865 1.4786 3.8490 84.77
std.err. 0.1069 0.7158 0.1073 0.0648 0.0728 1.1552 1.1111
Idaho ID −0.0479 3.4286 0.0001 0.2683 0.0015 6.1802 0.0001 32.31
std.err. 0.0645 0.2788 . 0.0618 0.0025 2.9672 .
Illinois IL 0.0775 3.6335 0.1000 0.3308 0.0116 −5.4170 0.0070 81.65
std.err. 0.1119 0.6570 0.0895 0.0613 0.0303 4.5310 0.6781
Indiana IN 0.0809 3.3011 0.1258 0.3177 0.0162 −5.3055 0.0096 79.10
std.err. 0.0951 0.5892 0.0906 0.0584 0.0224 2.4427 0.5336
Kansas KS −0.0422 3.7394 0.0001 0.2098 0.1158 0.5814 3.1675 59.83
std.err. 0.0988 0.5040 . 0.0560 0.1082 0.7316 0.9870
Kentucky KY 0.4018 0.0091 0.3177 0.1489 2.5817 −0.1867 1.1875 82.43
std.err. 0.0921 0.0322 0.0583 0.0802 0.5903 0.0619 0.1420
Louisiana LA 0.0379 0.5564 0.1456 0.3929 0.7081 −0.0467 1.4269 93.68
std.err. 0.0864 0.2082 0.0579 0.0764 0.3439 0.1501 0.2731
Massachusetts MA 0.0695 1.7064 0.0001 0.2601 0.3967 −0.2701 1.8288 80.40
std.err. 0.1171 0.5787 . 0.0531 0.4297 0.2807 0.6572
Maryland MD 0.5298 1.2184 0.3246 0.0659 2.5158 −0.2534 0.7275 73.80
std.err. 0.3937 0.9442 0.0604 0.0822 1.3065 0.2334 0.3085
Maine ME 0.0603 1.8058 0.0001 0.2927 0.2247 −0.4397 2.4685 111.71
std.err. 0.0740 0.3312 . 0.0564 0.1352 0.4143 0.5325
Michigan MI −0.0904 3.8281 0.0001 0.2018 0.0270 4.5037 0.0001 40.99
std.err. 0.1223 0.4079 . 0.0579 0.0318 1.5629 0.5750
Minnesota MN −0.1857 2.4169 0.1693 0.2401 0.3783 0.5593 2.9358 88.12
std.err. 0.1352 0.9415 0.1044 0.0603 0.2869 0.4572 0.7376
Missouri MO 0.6761 1.3882 0.3139 0.1404 2.3646 −0.3339 0.9426 86.90
std.err. 0.3678 1.2668 0.0597 0.0769 1.5516 0.2734 0.2696
Mississippi MS 0.1236 0.7561 0.3678 0.1344 1.0967 −0.1252 1.2355 83.01
std.err. 0.2522 0.8830 0.0698 0.0629 1.8435 0.1514 0.6969
Montana MT 0.0547 4.3148 0.0001 0.3635 0.0934 −1.4734 3.7521 132.33
std.err. 0.1091 0.7138 . 0.0606 0.1019 1.2767 1.3146

Fig. 2. Spatial variation of the estimated jump intensity from the GJD model (𝜆̂), by US state.
Note: 𝜆̂ value for each state based on estimates in Tables 3, 4. Minimum (nonzero) value 0.0015 (ID); Maximum value 2.8400 (TN).

C.F. Mason and N.A. Wilmot

Table 4
GARCH-Jump Diffusion estimates: NC – WY.

State Code 𝜇 𝜅 𝛼 𝛽 𝜆 𝜃 𝛿 LR test

North Carolina NC 0.0672 1.0423 0.1181 0.3134 0.9828 −0.0736 1.2498 75.18
std.err. 0.2405 1.4210 0.0730 0.0640 2.7228 0.1893 1.1245
North Dakota ND 0.0412 2.0352 0.1256 0.2760 0.7690 −0.0944 2.6507 90.38
std.err. 0.1652 0.9653 0.0941 0.0613 0.4117 0.2521 0.5335
Nebraska NE −0.0089 3.8217 0.0001 0.2735 0.1663 0.1501 3.1616 77.38
std.err. 0.1094 0.8014 . 0.0668 0.1831 0.6841 1.1537
New Hampshire NH 0.0608 1.9561 0.0001 0.2683 0.3445 −0.2962 2.1671 88.07
std.err. 0.0958 0.5142 . 0.0525 0.2684 0.3186 0.5719
New Jersey NJ 0.0587 2.5309 0.0001 0.3198 0.0164 −4.6289 0.0001 70.49
std.err. 0.0634 0.2182 . 0.0605 0.0109 1.0084 .
New Mexico NM 0.0166 1.7103 0.1165 0.1698 0.0000 −0.4972 6.5013 23.18
std.err. 0.0499 0.3495 0.1433 0.0479 . 32.9977 696.5189
Nevada NV −0.0642 2.9092 0.0398 0.2308 0.0150 3.6596 0.0001 29.11
std.err. 0.0945 0.6399 0.1447 0.0562 0.0312 2.4059 .
New York NY 0.0602 2.1677 0.0001 0.2938 0.3594 −0.2435 2.1402 81.67
std.err. 0.1134 0.5949 . 0.0592 0.3238 0.3253 0.6661
Ohio OH 0.5883 1.0720 0.3195 0.1246 2.5827 −0.2754 0.9534 79.07
std.err. 0.3348 1.1466 0.0595 0.0885 1.1845 0.1811 0.2672
Oklahoma OK 0.0491 2.1900 0.1324 0.2396 0.2400 −0.1757 2.1031 59.05
std.err. 0.1145 0.9408 0.1330 0.0593 0.5770 0.6720 1.3829
Oregon OR −0.0477 2.521 0.0483 0.2599 0.000 −0.4949 6.4871 35.43
std.err. 0.0567 0.5725 0.1598 0.0599 . 42.1162 993.8855
Pennsylvania PA 0.0613 2.9893 0.3269 0.0412 0.0154 −4.5971 0.0016 70.63
std.err. 0.0854 0.5178 0.0617 0.0910 0.0211 2.0418 0.4362
Rhode Island RI 0.0487 1.6251 0.0001 0.2672 0.3067 −0.2581 1.8267 81.89
std.err. 0.0934 0.3933 . 0.0542 0.2879 0.3034 0.5890
South Carolina SC 0.0423 0.4790 0.3148 0.1440 1.8668 −0.0217 1.0340 72.40
std.err. 0.2006 0.7496 0.0676 0.0702 2.0578 0.1222 0.3761
South Dakota SD 0.1568 1.6267 0.2750 0.1001 1.1004 −0.1808 2.0949 83.24
std.err. 0.1954 1.3020 0.0625 0.0943 0.8474 0.2186 0.5557
Tennessee TN 0.3842 0.0864 0.3473 0.1166 2.8400 −0.1597 1.0346 81.06
std.err. 0.1714 0.2985 0.0626 0.0691 0.7397 0.0749 0.1319
Texas TX 0.0314 1.2361 0.1841 0.3030 0.1212 −0.3717 1.9954 59.83
std.err. 0.0669 0.3016 0.0797 0.0673 0.1674 0.7452 0.7537
Utah UT 0.0070 3.1391 0.0615 0.1594 0.0000 −0.4859 6.4884 16.39
std.err. 0.0645 0.7468 0.1795 0.052 . 18.3544 323.9952
Virginia VA 0.5990 1.4215 0.3324 0.0947 2.4594 −0.2874 0.6506 73.27
std.err. 0.4777 1.3912 0.0614 0.0661 1.7215 0.3688 0.4955
Vermont VT 0.0511 2.1368 0.0001 0.2798 0.3157 −0.2922 2.3383 93.54
std.err. 0.0958 0.5321 . 0.0539 0.2423 0.3381 0.6150
Washington WA −0.0394 2.2164 0.0001 0.3321 0.0245 −0.7001 3.0941 72.59
std.err. 0.0582 0.1983 . 0.0658 0.0300 1.4192 1.4289
Wisconsin WI −0.1237 2.6634 0.0828 0.2231 0.4154 0.3436 2.4520 66.97
std.err. 0.1358 1.0187 0.1549 0.0620 0.3444 0.3863 0.6587
West Virginia WV 0.6185 0.8956 0.3339 0.1357 2.6699 −0.2793 0.8861 78.30
std.err. 0.5037 1.4660 0.0612 0.0735 1.1423 0.2695 0.3952
Wyoming WY 0.3204 2.7522 0.0001 0.3544 0.1982 −2.2315 0.5277 71.17
std.err. 0.2482 0.6262 . 0.0645 0.4013 3.7935 5.1901

Sample: 755 observations for each state. Sample range: Feb. 1958 – Dec. 2020. 1% critical value for likelihood ratio test is 15.09.
LR test statistic exceeds 1% critical value for all states.

Fig. 3. Spatial variation of the estimated jump impact from the GJD model (𝜆̂𝜃̂), by US state.
Note: 𝜆̂, 𝜃̂ values for each state based on estimates in Tables 3, 4; Minimum value −0.7895 (MO); Maximum value 0.2116 (MN).
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Fig. 4. Spatial variation of the average estimated variance (ℎ), by US state.
Note: ℎ𝑡 values calculated for each state using Eq. (3) and estimates in Tables 3, 4. Average taken for each state using 20 observations from 2001–2020. Minimum value 0.0956
(HI); Maximum value 6.7802 (MT).

Table 5
Correlation Matrix: LCV, 𝜆̂𝜃̂ and ℎ𝑡.

Panel A: US states

LCV 𝜆̂𝜃̂ ℎ𝑡

LCV 1.0000
𝜆̂𝜃̂ 0.1148 1.0000
ℎ𝑡 −0.2661 0.1703 1.0000

Panel B: Geographic US Regions

LCV 𝜆̂𝜃̂ ℎ𝑡

LCV 1.0000
𝜆̂𝜃̂ 0.2842 1.0000
ℎ𝑡 −0.3649 −0.0909 1.0000

𝜆̂, 𝜃̂ based on estimates in Tables 3, 4. State ℎ𝑡 values calculated using Eq. (3) and
estimates in Tables 3, 4.
Correlations using all 50 US states in panel A; 6 regions in panel B described in footnote
20.

with states in the middle latitudes of the continental US and the
southeast. Fig. 3 displays 𝑙𝑡, the multiple of estimated values of 𝜆 and 𝜃
across the US states; one can think of this construct as showing the
induced impact of jumps upon temperature anomaly changes. Here
again we see that there is significant spatial variation with estimates
ranging from values that are very small in magnitude (generally, for
more northerly states) to values that are larger in magnitude and
are negative — suggesting a prevalence of downward jumps. These
latter states tend to fall in the middle and southern latitudes of the
continental US. The prevalence of negative impacts is interesting in
light of Deryugina’s (2013) result that abrupt changes in temperature
towards colder levels seem to have a more pronounced effect of in-
dividuals’ perspective towards climate change. We supplement these
visuals with a display of the spatial variation in average values of the
variance induced by the GARCH model, ℎ; this is contained in Fig. 4.
Here we see an interesting spatial pattern — with larger values of
the induced variance often occurring in the coldest states (the upper
midwest, Alaska and Maine).

To expand on our discussion of the geographic variation in the
estimated parameters we focus on two constructs that capture the
essence of our stochastic models: 𝑙𝑡 (the imputed impact from jumps)
and ℎ (the average of the imputed value of time-varying variance, taken
over the 240 months in the twenty years 2001–2020). For each of these
two constructs, using the sample of all 50 states we identify correlation
with the state’s LCV score; these correlations are presented in panel A
of Table 5. There is a seemingly positive relation between LCV and 𝑙𝑡,
whose correlation is .1148; this is consistent with the prior notion that a

Table 6
Regional Averages: LCV, 𝜆̂𝜃̂ and ℎ𝑡.

Region LCV 𝜆̂𝜃̂ ℎ𝑡

Mountain 16.1300 −0.2194 4.1598
MidWest 37.0125 −0.1021 5.1836
NorthEast 76.9083 −0.1871 2.9929
SouthEast 29.7545 −0.2247 2.2539
SouthWest 37.2700 −0.0064 3.1119
West 60.4700 0.0096 2.4435
US 45.2740 −0.1405 3.4298

𝜆̂, 𝜃̂ based on estimates in Tables 3, 4. ℎ𝑡 values calculated for each state using Eq. (3)
and estimates in Tables 3, 4. Average taken for each state using 20 observations 2001
– 2020.

greater tendency towards jumps coincides with more political activism
aimed at addressing climate change. However, the correlation between
LCV and higher ℎ is negative, suggesting that states with fat tails due to
greater variation have lower LCV scores. While at first blush this might
appear somewhat surprising, we believe it is consistent with the results
from Deryugina (2013) discussed above. To provide additional insights,
we next sort the states into six geographical regions in the US.21 Using
this classification scheme, we calculate the correlation between average
LCV score, 𝑙𝑡, and ℎ for each of the six regions; these correlations are
presented in panel B of Table 5. The key takeaway message from this
information is that the correlations discussed above using the sample
of 50 states are amplified when we focus on regions, suggesting that
there may be more going on than is apparent at first blush.

We next list the average values of LCV, 𝑙𝑡, and ℎ for the six regions,
along with the US as a whole, in Table 6. We see that the imputed
effect of jumps is largest on the West Coast (and in fact is the only
region where this effect is positive) and smallest numerically in the
Mountain and Northeast regions, while the imputed variance is largest
in the Mountain and Midwest regions and smallest in the and Southeast
and West Coast regions. These broad characterizations suggest smaller

21 The six regions are ‘‘West’’, containing the five states that border the
Pacific Ocean; ‘‘SouthWest’’, consisting of the five the states in the southern tier
lying to the west of the Mississippi River, all of whom have hot, arid climates;
the ‘‘Mountain’’, consisting of five states, each of which contain part of the
Rocky Mountain range; ‘‘SouthEast’’, consisting of all states n the southern
tier lying to the east of the Mississippi River, all with hot and humid climates;
‘‘NorthEast’’, containing all states north of the Southeast cohort that are on
or near the Atlantic Ocean (all of which tend to have cold and we winters);
and ‘‘MidWest’’, consisting of all states east of the Rocky Mountains, north of
Southwest and Southeast, and west of the Northeast.
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LCV results, 1

Region LCV λ̂θ̂ ht
Mountain 16.1300 -0.2194 4.1598
MidWest 37.0125 -0.1021 5.1836
NorthEast 76.9083 -0.1871 2.9929
SouthEast 29.7545 -0.2247 2.2539
SouthWest 37.2700 -0.0064 3.1119
West 60.4700 0.0096 2.4435
US 45.2740 -0.1405 3.4298

λ̂, θ̂ based on ML estimates. ht values calculated for each
state using GARCH eqn, ML estimates. Average taken for each
state using20 observations 2001 – 2020.
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LCV results, 2

variable Regression 1 Regression 2 Regression 3 Regression 4 Regression 5
population 0.0688 0.0942 0.0802 0.0673 0.0919
percent white -0.2798∗∗ -0.2997∗∗∗ -0.2927∗∗ -0.2708∗∗ -0.2900∗∗

percent male -9.8918∗∗∗ -9.5417∗∗∗ -9.9266∗∗∗ -9.7492∗∗∗ -9.2484∗∗∗

percent below age 65 0.1199 -0.0440 0.1314 0.1382 -0.0156
percent population urban -0.1780∗ -0.1824∗ -0.1793∗ -0.1709∗ -0.1697
coal for electricity 0.0383 0.0286 0.0447 0.0343 0.0258
PVI 1.0999∗∗∗ 1.0604∗∗∗ 1.0826∗∗∗ 1.1085∗∗∗ 1.0788∗∗∗

µ 15.0860 14.0771 15.1910 15.0368 13.9242
κ -8.6226∗∗∗ -8.4167∗∗∗ -8.5256∗∗∗ -8.6351∗∗∗ -8.3300∗∗∗

α -183.3736∗∗∗ -184.8393∗∗∗ -185.1314∗∗∗ -182.2579∗∗∗ -182.6718∗∗∗

β -141.6037∗∗∗ -139.9853∗∗∗ -142.4806∗∗∗ -141.6787∗∗∗ -139.2644∗∗∗

δ 0.6527 0.6687 0.7164 0.6811 0.7661
θ -1.1753∗∗∗ -1.1964∗∗∗ -1.1617∗∗∗ -1.1608∗∗∗ -1.1507∗∗∗

λ -4.6818 -4.1186 -4.6379 -4.7387 -4.1592
Temperature anomaly 0.3047 0.2897
(Temperature anomaly)2 -1.2606∗ -1.2643∗

Precipitation anomaly 0.5014 0.8564
(Precipitation anomaly)2 1.0689 1.0522
DSCI anomaly 0.0031 0.0066
(DSCI anomaly)2 -0.0001 -0.0001
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Implications

� compelling evidence of fat tails in temperature anomalies
▷ across space
▷ heterogeneous effects

� evidence that estimated fat tail parameters influence
political decisions by elected representatives
▷ some evidence longer-lasting impacts are more important

most apparent in GARCH parameters
little indication that jump intensity influences results

▷ average jump size does seem to influence political
decisions

responding to high-profile events?
▷ jump impact (λθ) may be important

� with exception of jump impact, all of these effects are in
opposite direction to that anticipated

� overall, evidence does not support hypothesis that
increasing impacts from climate change influence
politicians to adopt more aggressive climate policies
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