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Abstract

We construct a heterogeneous-firm growth model of the data economy, where
data, crucial for business optimization, is at risk of being damaged and destroyed
by cyber criminals. Digitally-savvy firms invest in in-house cybersecurity, which
can be used to improve the quality of their other products, and trade cybersecurity
protection with non-digitally-savvy firms. We use the model to study the impact
of cybercrime risk on firm innovation and aggregate growth. Theoretically, we
find that cyber-crime unequivocally leads to reduced knowledge stocks, decreased
productivity, and slower overall economic growth for all firms. Cybercrime risk
mitigates some of the adverse effects as it ex-ante prompts digitally-savvy firms
to pursue digital innovation that enhances productivity in other domains. We
then test the theoretical prediction using several unique data sets on firms’ in-
vestments in cyber-protection. Empirically, we observe increased innovation rates
in response to higher cyber-crime risk, driven primarily by data-intensive firms
and by firms which intensively pursue in-house cybersecurity protection rather
than third-party cybersecurity delegation.
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1 Motivation

The cost of business data breaches and theft can be significant and long-lasting.

For firms, cybercrime can lead to financial losses, loss of sensitive information, lost

productivity, reputation damage, legal consequences, and decreased customer trust.

Cyberattacks can also disrupt business operations and result in costly downtime. Ad-

ditionally, the resources spent on preventing and mitigating cybercrime could be put

towards other investments that could drive economic growth. For societies, the cost of

cybercrime goes beyond financial losses, and can range from compromised infrastruc-

ture, to national security issues, to missed economic opportunities. In the last 10 years

in the United States, the monetary damage caused by reported cybercrime increased

12 fold from $ 581 million in 2012 to $ 6.9 billion in 2022 (ICCC).1 As cybercrime is

becoming costlier, more frequent and more aggressive over time, regulators are worried

that it could harm U.S. companies’ ability to remain leaders in innovation globally.

In this paper, we develop a framework to study the interactions between cyber-

crime risk and digital innovation, together with the individual and combined effects

of these phenomena on economic growth. We first build a heterogeneous-firm growth

model of the data economy, in which data is information that helps firms optimize their

business processes and is subject to cybercrime risk, meaning that it can be damaged

and destroyed by cyber criminals. Firms are heterogeneous in their data sophistication

levels and are allowed to protect themselves against cybercrime risk. Protection can

occur either by developing in-house security solutions that are specifically tailored to

their needs and/or by delegating their cyber-protection to third-party security compa-

nies that can provide this service. We use the framework to quantify the impact of

cybercrime risk on firm growth and innovation.

We find that cybercrime attacks naturally result in lower stocks of knowledge, lost

productivity and lower growth for all firms in the economy. But, with in-house cyber-

security protection, long-run sustained growth remains achievable even in the presence

of cybercrime risk. The mechanism through which this occurs is that cybercrime risk

ex-ante prompts firms to pursue digital innovation that enhances productivity in other

domains. In other words, cybercrime risk forces companies to improve their in-house

1While accurately estimating the total cost of cybercrime is difficult because the costs comprise
not only of criminal revenue and direct losses, but also indirect losses and defense costs (Anderson
et al. (2012), most recent reports suggest that global damages caused by cybercrime will surpass $8
trillion in 2023 and $10.5 trillion by 2025 (Cybersecurity Ventures 2022). To put it in perspective,
only eighteen countries in the world had a GDP in 2022 larger than one trillion dollars.
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security measures and systems, which can lead to new technology and products being

developed. The need to protect against cyber-threats creates a demand for more se-

cure software, hardware, and services, which lead to technological advancements and

to sustained long-term growth. This positive externality is particularly driven by data-

intensive firms who benefit the most from protecting their data. The technology they

develop to protect themselves, combined with their data sophistication, helps them

make even better predictions to create new products and improve the quality and di-

versity of their other products.

We directly empirically quantify this positive theoretical externality by examining

the impact of cybercrime risk on cybersecurity innovation and overall innovation. We

first create a firm-year measure of cyber risk from 2007 to 2022 using the text-based NLP

method of Florackis et al. (2023), which essentially compares the business description

in a firm’s 10K to the business description of a set of publicly data-breached firms. We

use this measure to investigate whether companies that are highly exposed to cyber risk

hedge themselves against this risk by innovating more. The novelty of our approach is

to examine the endogenous response of firms subject to heterogeneous levels of cyber

risk; and we find that firms do mitigate the negative effects of cyber risk by innovating

more. Moreover, we examine multiple measures of innovation, such as patent counts,

patent varieties, patenting times. In current work, we are expending our analysis to

delve deeper into firm boundaries and firm trademarks.

The direct analysis is complicated by the intertwined relationship where cyberrisk

and innovation mutually influence each other, making it challenging to establish a clear

cause-and-effect relationship. For example, firms that are more innovative might be

more susceptible to cyberrisk to begin with. To address endogeneity concerns, we

then employ an instrumental variables approach. Our instrument is going to be the

staggered adoption of Data Breach Notification Laws in the United States. These laws

have been shown to increase firm risk related to data breaches (Boasiako and Keefe

(2021); Liu and Ni (2023); Huang and Wang (2021)). Our strategy is to compare the

innovation activities of firms located in early-treated states to those of firms located in

late-treated states, taking into account the ”forbidden comparison” mis-specification in

two-way fixed effects diff-in-diff models, unveiled in Goodman-Bacon (2021) and solved

by Borusyak et al. (2022).

Both our direct estimation and our staggered difference-in-difference method sug-

gest that firms experience an increase in patenting activity, and an expansion in the

diversity of the patent fields, in response to an increase in cybercrime risk, controlling
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for a multitude of firm-level characteristics. We also find that firms’ profitability out-

comes do not change with cybercrime risk because the risk is hedged by innovation.

These results are driven by data-intensive digital firms which intensively develop in-

house cybersecurity protection. This is because in digital, data-intensive enterprises

producing mostly digital goods, the IT department in charge of cyberprotection is also

the R&D department in charge of product development. A concrete example is that

in the pursuit of finding ways to securely store and transmit financial information over

internet networks, Amazon used their own-built solution (and the 9th most cited patent

in the world) to offer the new ”1-Click ordering” feature (which is the most cited patent

in the world). Similar products have been developed by Apple, Uber, Alibaba’s various

platforms, such as AliExpress and Taobao, and Walmart which now offer streamlined

checkout experiences, aiming to simplify the purchasing process for their customers,

though not exactly identical to Amazon’s 1-Click due to patent restrictions and each

company’s unique approach to improving the user purchasing experience.2

2 Literature review

Our project contributes to multiple strands of literature. First, we contribute to a

recent literature on data as a main driver of economic growth. We extend the theoretical

framework in Farboodi et al. (2019) and Farboodi and Veldkamp (2021) to include

cybercrime in an endogenous growth model where data is a key input for prediction.

In this literature, data is a valuable asset that helps firms reduce uncertainty about

some optimal production technique, making them approach some optimal benchmark.

In our framework, data has another crucial economic role besides prediction, namely as

an input in the production of ideas. The role of data for innovation, highlighted first

by Jones and Tonetti (2020), is key to justify the presence of endogenous growth in our

setup. In our framework, data is both a valuable information asset used for prediction

but also a technology associated with the production of ideas. Thus, while data can be

stolen and damaged, leading to lower aggregate output and knowledge, it can also be a

vehicle for sustained growth when it is a driver of quality improvements or of increasing

the number of varieties as it expands the innovation possibility frontier.

The way in which data is modeled has non-trivial implications for long-run growth.

2Apple’s iTunes and App Store have a feature called ”Buy with One Click”, the ride-hailing service
Uber introduced ”Uber One Click”, and Walmart, AliExpress and Taobao have all experimented with
a ”Fast Checkout” feature.
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If data is used as an input to expand the innovation frontier, as we consider in this paper,

it can be a vehicle for sustained growth; in opposition, if the role of data is to be used

only in prediction and, therefore, only to reduce uncertainty, there is a lower bound that

cannot be overcome (uncertainty cannot fall below zero), and therefore data, by itself,

cannot be a force conducting to sustained long- term growth. Other growth models,

such as Hou et al. (2022), constrain growth by bounding the economy’s data storage

capacity. Although data may contribute to unlimited growth, data storage is, in itself,

a limit to growth. In our framework, growth is both encouraged and bounded by the

presence of cybercrime risk.

Other studies on the interaction between data and growth examine the trade-

off between trading data with third-parties and privacy concerns. Cong et al. (2021)

and Cong et al. (2022) develop endogenous growth models with consumer-generated

data as a new factor for knowledge accumulation. Canayaz et al. (2022) develop a

model where data privacy laws limit the acquisition, processing, and trade of consumer

personal data in order to examine the heterogeneous affects on firms with and without

previously gathered customer data.

We also contribute to the literature on the consequences of cybercrime on firm

financial and economic outcomes. Florackis et al. (2023) develops a measure of corporate

cyber risk for the period 2007-2018 for approximately 3100 U.S.-based publicly-listed

firms and finds that this risk is priced in the stock market in the form of higher future

returns. Jamilov et al. (2021b) uses quarterly earnings conference calls of listed firms to

build a measure of cyber risk exposure and shows that it predicts cyber attacks, affects

stock returns and profits, and is priced in the equity option market. Kamiya et al.

(2021) studies the financial performance of firms that are successfully cyber-attacked,

as well as the ex-ante characteristics of those firms that are attacked. Both these studies

show that cyberrisk is ex-ante positively correlated with firm size, growth opportunities

(Tobin’s Q), profitability (ROA) and expenditures of research and development (R&D),

but R&D expenses are not correlated with the ex-post probability of a cyberattack.

Moreover, those firms that are successfully attacked experience negative cumulative

abnormal returns around the attack, and attacks have a significant negative long-term

impact on sales growth, customer confidence, and in operating performance. Relative to

these studies, we examine the impact of cybercrime risk on firms’ innovation activities,

looking in particularly at their issuance of patents and - in ongoing work - trademarks.

Our primary aim is to understand the nexus between cybercrime risk and cyber-

security innovation, and their influence on a firm’s overall innovation. Lattanzio and
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Ma (2023) document that firms exposed to cyber threats file for simpler patents to ac-

celerate their innovation cycle. This strategic adjustment is costly, causing firms’ R&D

activities to decline considerably. Distinct from Lattanzio and Ma (2023), we examine

more closely the channels through which this innovation cycle occurs. We find that it

is driven by data intensive firms, as measured by our unique method that uses compu-

tational linguistics to measure data intensity based on text similarity between the 10Ks

of listed firms relative to a control group of digital AI-intensive firms. In particular,

these data-intensive firms tend to file more cybersecurity patents which are then later

useful for other non-cybersecurity related patents. Moreover, we document that only

in-house cybersecurity innovation sustains this innovation cycle. Firms that delegate

cybersecurity to a third-party do not benefit from the same positive externalities caused

by in-house cybersecurity protection.

The rest of the paper proceeds as follows. Section 3 presents a growth model of the

data economy with cybercrime risk and cyber-protection and derives some predictions.

Section 4 directly tests the model predictions. Section 5 addresses endogeneity concerns

by exploiting the staggered implementation of Data Breach Notification Laws in the

United States. Lastly, Section 6 concludes.

3 Theoretical framework

3.1 Setup

We consider a competitive industry. Time is discrete and infinite. There is a

continuum of firms indexed by i. Each firm i produces a good of quality Ai,t.

yi,t = Ai,t. (1)

Because the single input employed in production is one unit of capital, variable Ai,t also

represents the real value of the producer’s output.

Quality Ai,t depends on a firm’s choice of a production technique ai,t, which can

be interpreted as managing inventories, or learning about consumers’ tastes. In each

period, and for each firm, there is one optimal technique with a persistent and a tran-

sitory components: θi,t + ϵa,i,t. The persistent component θi,t is unknown and follows
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an AR(1) process, where ηi,t is i.i.d. across time and firms:

θi,t = θ̄ + ρ(θi,t−1 − θ̄) + ηi,t. (2)

Firms have a noisy prior about the realization of θ0. The transitory shock ϵa,i,t is

i.i.d. across time and firms and is unlearnable. Deviating from that optimum incurs a

quadratic loss in quality:

Ai,t = Āi − (ai,t − θi,t − ϵa,i,t)
2. (3)

Quality Ai,t is a strictly decreasing function of the difference between the firm’s chosen

production technique, ai,t, and the optimal technique θi,t + ϵa,i,t. A decreasing function

means that techniques far away from the optimum result in worse quality goods.

Data as by-product. Data helps firms infer θi,t The role of ϵa is to prevent firms

from inferring θi,t at the end of each period. It makes the accumulation of past data a

valuable asset. If a firm knew the current value of θi,t, it would maximize quality by

setting ai,t = θi,t.

In our model, similar to Farboodi et al. (2019) and Farboodi and Veldkamp (2021),

data is a by-product of economic activity. Each firm passively obtains z data points as

a by-product of production. Each data point m ∈ [1 : z] reveals

si,t,m = θi,t + ϵi,t,m, (4)

where ϵi,t,m is i.i.d. across firms, time, and signals. For tractability, we assume that all

the shocks are normally distributed: fundamental uncertainty is ηi,t ∼ N(µ, σ2
θ), signal

noise is ϵi,t,m ∼ N(0, σ2
ϵ ), and the unlearnable quality shock is ϵa,i,t ∼ N(0, σ2

a).

Cyber risk. Data is subject to cybercrime risk, meaning that it can be lost and can

no longer be used for prediction. We denote the risk of cybercrime by ϑ ∈ [0, 1]. With

probability ϑ, a firm risks losing all its data, while with probability (1 − ϑ) the firm

keeps its data generated as a by-product of activity, zσ2
θ . Thus, the data endowment

under cyber risk is (1− ϑ)zσ2
ϵ .

Cybersecurity. A key assumption of our model is that firms are heterogeneous

in their capability to protect themselves against cybercrime. High capability (H-type)
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firms can develop in-house cybersecurity protection, while low capability (L-type) firms

cannot develop this security internally, but can buy it externally from H-type firms.

The key distinction between in-house and external cybersecurity is that internal

cybersecurity can also be used to innovate, besides providing protection against cyber-

attacks. This is because in-house cybersecurity is typically more easily integrated with

existing R&D and product development systems, and tends to be more tailored for a

firms’ specific business needs. In the model, innovation is modeled as an increase in the

productivity ceiling Ai.

Low-type capability firms do not generate in-house security, but they can buy it

externally from HigH-type firms. In this case, they can only use it to mitigate the

impact of cyberrisk and not to innovate (i.e., they can use the security software for

protecting their production process, but their R&D department does not know and is

unable to use the security software for product improvements).

Let mH represent the share of H-type firms. Aggregate output is then the sum of

weighted outputs for the two types of firms:

Yt =

∫ 1

0

Ai,tdi = mHAH,t + (1−mH)AL,t. (5)

Let τt ≥ 0 represent the investment in in-house cybersecurity made by a firm of

the H-type. Let also δt ≥ 0 represent the amount of external cybersecurity bought by a

firm of the L-type from the H-type firms at an endogenous price denoted by π. Given

the firms’ shares, the amount of protection that is sold by a H-type producer must be
1−mH

mH
δt. In this case, on the aggregate H-firms sell (1 −mH)δt, which is precisely the

value of protection purchased by the universe of L-type firms.

Nonrivlary. When a company invests in cybersecurity measures such as firewalls,

encryption protocols, or security software, these measures protect the company’s data

and systems without necessarily reducing their effectiveness for other companies that

may use similar security tools. This suggests that cybersecurity is (partially) nonrival.

Thus, we assume that when anH-type firm sells a given amount of cyberprotection,

it retains, for its own use, a share 1− ι of such protection, where ι ∈ (0, 1). Therefore,

the H-firm that invests τt in cybersecurity and trades 1−mH

mH
δt ≤ τt, will retain, for its

own use, τt − ι1−mH

mH
δt. This amount of cyberprotection can be used to mitigate the

impact of cyberrisk, transforming the term (1−ϑ)z into

[
1− ϑe

−
(
τt−ι

1−mH
mH

δt
)]

z. Note
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that if τt − ι1−mH

mH
δt = 0, there is no use of cyberprotection, and the effect of cyberrisk

over data is maximum; if τt − ι1−mH

mH
δt → ∞, then there is full protection, and the

original data endowment maintains its integrity.

Firm problem. With this in mind, we can write firm i’s optimization problem,

where i ∈ {H,L}. As mentioned previously, the H-type firm can use the investment in

cybersecurity to enhance the potential quality of the produced good. Hence, constant

Ai is replaced, for this type of firm, by the term Ae
b
(
τt−ι

1−mH
mH

δt
)
.

An H-type firm chooses a sequence of quality decisions ai,t, in-house cybersecurity

investments τt, and how much cybersecurity δt to sell at price πt to maximize:

E0

∞∑
t=0

βt

[
Ae

b
(
τt−ι

1−mH
mH

δt
)
− (ai,t − θi,t − ϵa,i,t)

2 − τt +
1−mH

mH

δtπt − r

]
(6)

An L-type firm chooses a sequence of quality decisions ai,t, and how much external

cybersecurity protection δt to buy at price π to maximize:

E0

∞∑
t=0

βt
[
Ā− (ai,t − θi,t − ϵa,i,t)

2 − δtπt − r
]

(7)

Note the differences between the two expressions: innovation from cybersecurity

is possible for the H-type firm but not for the L-type firm ; the cost of investment

in cybersecurity is present only in the H-type firm expression; protection trading is a

revenue for those who sell it and a cost for those who buy it.

The stock of knowledge. The information set of firm i ∈ {H,L} when it chooses

its technique ai,t is Ii,t = {Ii,t−1, {si,t−1,m}zm=1, Ai,t−1} where z is the net numbers of

points added each period as a by-product of economic activity. To make the problem

recursive, we construct a helpful summary statistic for this information, called the

“stock of knowledge.” A firm’s stock of knowledge is the inverse of its posterior variance,

or in other words, the precision of firm i’s forecast of θt, which is formally:

Ωi,t = E
[
(E[θt|Ii,t]− θt)

2
]−1

(8)

Note that the inside of the expression is the difference between a forecast, E[θt|Ii,t] and

the realized value, θt, and is therefore a forecast error. An expected squared forecast
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error is the variance of the forecast. It is also called the variance of θt, conditional

on the information set Ii,t, or the posterior variance. The inverse of a variance is a

precision. Thus, this is the precision of firm i’s forecast of θt.

3.2 A law of motion for knowledge

The state variables of the recursive problems in (6) and (7) are the prior mean

and variance of beliefs about θi,t−1, and the new data points. Taking a first order

condition with respect to the technique choice, we find that the optimal technique is

a∗i,t = Ei[θi,t|Ii,t]. Given the posterior variance of beliefs in equation (8), the expected

quality for the H-type and the L-type firms, respectively, are

E[AH,t] = Ae
b
(
τt−ι

1−mH
mH

δt
)
− Ω−1

H,t − σ2
a (9)

E[AL,t] = A− Ω−1
L,t − σ2

a (10)

Deriving the law of motion for the stock of knowledge, Ωi,t, requires adding new data

from two sources: 1) data as a by-product of production, which is subject to cyberrisk

but can be protected through cyber security and 2) data inferred from a firm observing

its own quality at the end of a production period. These two pieces of information are

incorporated into beliefs using Bayes’ law.

Each firm i ∈ {H,L} observes zi = z data points as a by-product of economic

activity. This means that the sum of the precisions of all the signals (data proints),

ziσ
−2
ϵ is part of the stock of knowledge. Both types of firms, the H-type and the

L-type, are subject to cyberrisk, which can be reduced through protection. The H-

type firm reduces cyberrisk by the amount of cybersecurity it retains for its own use,

τt − ι1−mH

mH
δt ≤ τt, after it invests τt in cybersecurity and trades 1−mH

mH
δt ≤ τt cyber

protection which is non-rival. This amount of cyberprotection can be used to mitigate

the impact of cyberrisk, implying that the weighted sum of precisions of data points

obtained as a byproduct of economic activity, subject to cyberrisk and after optimal

cybersecurity decisions, is

[
1− ϑe

−
(
τt−ι

1−mH
mH

δt
)]

zσ−2
ϵ . L-type firm buys protection in

amount δt and, therefore, the weighted sum of precisions of data points obtained as a

byproduct of economic activity, subject to cyberrisk and after optimal cybersecurity

decisions, is
[
1− ϑe−δt

]
zσ−2

ϵ .

Moreover, each firm i ∈ {H,L} is also learning from seeing its own realization of

quality Ai,t at the end of each period t, with precision σ−2
a . This information is different
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from the produced data because the quality realization is a signal about θt, not about

θt+1. Therefore, σ
−2
a gets added to the time-t stock of knowledge and depreciates, just

like other time-t knowledge that the firm takes with it to time t+ 1.

Lemma (1) expresses the dynamic knowledge constraint that puts together data

depreciation and data inflows.

Lemma 1 The dynamic knowledge constraint is, for the H-type firm:

ΩH,t+1 =
[
ρ2(ΩH,t + σ−2

a )−1 + σ2
θ

]−1
+

[
1− ϑe

−
(
τt−ι

1−mH
mH

δt
)]

zσ−2
ϵ (11)

The L-type firm buys protection in amount δt and, therefore,

ΩL,t+1 =
[
ρ2(ΩL,t + σ−2

a )−1 + σ2
θ

]−1
+
(
1− ϑe−δt

)
zσ−2

ϵ (12)

In this last case, if the firm buys no protection, data loss risk occurs in a share ϑ; if it

buys infinite protection, it faces no cyberrisk.

The demonstration for this lemma and all subsequent lemmas and propositions can

be found in the Appendix. The proof involves utilizing Bayes’ law, or alternatively, the

Ricatti equation within a modified Kalman filter framework. Given the similarity in

information structure to that of a Kalman filter, the sequence of conditional variances

(or conversely, their inverses, the sequence of precisions) is deterministic.

3.3 A recursive representation

We can thus express expected firm value recursively in Lemma (2).

Lemma 2 The optimal sequences of in-house cybersecurity investments {τt} and cy-

bersecurity sales {δt} solve the following current-value Hamiltonian function for the

H-type firm:

HH,t(ΩH,t, τt, δt, pH,t) = Ae
b
(
τt−ι

1−mH
mH

δt
)
− Ω−1

H,t − σ2
a − τt +

1−mH

mH

δtπt − r+ (13)

+ βpH,t+1(ΩH,t+1 − ΩH,t)

where ΩH,t+1 =
[
ρ2(ΩH,t + σ−2

a )−1 + σ2
θ

]−1
+

[
1− ϑe

−
(
τt−ι

1−mH
mH

δt
)]

zσ−2
ϵ (14)

and pH,t is the shadow-price or co-state variable associated with the state variable, and

the transversality condition is lim
t→∞

ΩH,tβ
tpH,t = 0.
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The optimal sequence of cybersecurity purchases {δt} solve the following current-

value Hamiltonian function for the L-type firm:

HL,t(ΩL,t, τt, δt, pL,t) = A− Ω−1
L,t − σ2

a − δtπt − r + βpL,t+1(ΩL,t+1 − ΩL,t) (15)

where ΩL,t+1 =
[
ρ2(ΩL,t + σ−2

a )−1 + σ2
θ

]−1
+
(
1− ϑe−δt

)
zσ−2

ϵ (16)

and pL,t is the shadow-price or co-state variable associated with the state variable, and

the transversality condition is lim
t→∞

ΩL,tβ
tpL,t = 0.

See the Appendix for the proof. This result greatly simplifies the problem by

collapsing it to a deterministic problem with only one state variable, Ωi,t, where i = H

or i = L. The reason we can do this is that quality Ai,t depends on the conditional

variance of θi,t and because the information structure is similar to that of a Kalman

filter, where the sequence of conditional variances is generally deterministic.3 This

Kalman system has a 2-by-1 observation equation, with ni,t = z signals about θi,t and

one signal about θi,t−1. The signal about θi,t−1 comes from observing last period’s

output, which reveals quality Ai,t−1, which, in turn, reveals θi,t + ϵa,i,t.
4

3.4 Equilibrium and steady-state

Equilibrium. From the Hamiltonian functions, and assuming all variances are equal

such that σ2
θ = σ2

a = σ2
ϵ = σ2, we can derive the equilibrium conditions.

∂HH,t

∂τt
= 0 ⇒ βpH,t+1 =

1− bAe
b
(
τt−ι

1−mH
mH

δt
)

ϑe
−
(
τt−ι

1−mH
mH

δt
)
zσ−2

(17)

∂H

∂δt
= 0 ⇒ βpH,t+1 =

πt − bAιe
b
(
τt−ι

1−mH
mH

δt
)

ϑιe
−
(
τt−ι

1−mH
mH

δt
)
zσ−2

(18)

3The optimal choice of technique is always the same: a∗i,t = Ei[θi,t|Ii,t]. The way ai,t enters into

expected quality Ai,t is through E[(E[θi,t|Ii,t]− θi,t)
2], which is the conditional variance Ωi,t. We can

replace the entire sequence of a∗i,t with the sequence of variances, which is deterministic here because
of normality. The only randomness in this model comes from the signals and their realizations, but
they never affect the conditional variance, since normal means and variances are independent. Thus,
given Ωi,t−1, Ωi,t is a sufficient statistic for ni,t = z and Ωi,t+1. The mean E[θi,t|Ii,t] is not a state
variable because it only matters for determining ai,t and does not affect anything else.

4Firms observe (θi,t + ϵa,i,t)
2. For tractability, we assume that firms know whether the root is

positive or negative. For more on this and for the derivation of the belief updating equations, see
online Appendix.
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βpH,t+1 − pH,t = − ∂H

∂ΩH,t

⇒
[
ρ+

σ2

ρ
(ΩH,t + σ−2)

]−2

βpH,t+1 = pH,t − Ω−2
H,t (19)

From (32) and (33), it emerges a constant optimal trading price, which is sim-

ply πt = ι. The price of protection is directly associated with the degree of its own

nonrivalry. If protection is completely non-rival (i.e., ι = 0), then its price is zero; if

protection is fully rival, its price is 1.

For the L-type firm, the equilibrium conditions are:

∂H

∂δt
= 0 ⇒ βpL,t+1 =

πt

ϑe−δtzσ−2
(20)

βpL,t+1 − pL,t = − ∂H

∂ΩL,t

⇒
[
ρ+

σ2

ρ
(ΩL,t + σ−2)

]−2

βpL,t+1 = pL,t − Ω−2
L,t (21)

Steady-state. The steady-state of the economy is characterized by a level of cyber-

security held by H-type firms after trade given by:

τ ∗ − ι
1−mH

mH

δ∗ = − ln

(
z − ΞH

ϑz

)
(22)

where ΞH ≡
{
Ω∗

H − [ρ2(Ω∗
H + σ−2)−1 + σ2]

−1
}
σ2. At steady-state, the amount of pro-

tection bought by L-type firms is given by:

δ∗ = − ln

(
z − ΞL

ϑz

)
(23)

where with ΞL ≡
{
Ω∗

L − [ρ2(Ω∗
L + σ−2)−1 + σ2]

−1
}
σ2.

Figure (1) plots the equilibrium knowledge levels of this economy. The demand

and supply of knowledge for H-type firms intersect at a higher level than the demand

and supply of knowledge for L-type firms. The demand of L-type firms is flatter and

more inelastic than the demand of H-type firms. Thus, in equlibrium, H-type firms

end up with a higher level of knowledge than L-type firms.

Table (1) provides the steady-state equilibrium of this economy. In steady-state,

H-type firms invest 1.296 in in-house cyberprotection, sell 0.130 cyberprotection to L-

type firms and remain with a cyberprotection level of 0.335, which is higher than the

13



Figure 1: Steady-state stocks of knowledge.

Legend: The figure shows the equilibria levels of knowledge for H-type firms (in orange on the right)
and L-type firms (in green on the left) as a function of the cyberrisk index, ϑ, on the X-axis. H-type
firms achieve a higher level of steady-state knowledge than L-type firms. The parameters used in this
simulations are the following: z = 10, ρ = 0.9, σ2

θ = σ2
a = σ2

ϵ = σ2 = 2.5, mH = 1/3, ι = 0.6,
β = 0.96, ϑ = 0.75, A = 25, b = 0.035, and r = 1.

L-type’s level of protection of 0.130. In steady-state, knowledge, quality and profits are

all higher for the H-type firm than for the L-type firm.
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Table 1: Steady-state.

Parameter Symbol Steady-state
Knowledge H-type Ω⋆

H 3.224
Knowledge L-type Ω⋆

L 1.609
In-house cyberprotection τ ⋆ 1.296
Cybersecurity traded δ⋆ 0.130
Quality H-type A∗

H 23.207
Quality L-type A∗

L 21.879
Profits H-type Π∗

H 21.068
Profits L-type Π∗

L 20.800
Total output Y 22.321

Legend: The parameters used in this simulations are the following: z = 10, ρ = 0.9, σ2
θ = σ2

a = σ2
ϵ =

σ2 = 2.5, mH = 1/3, ι = 0.6, β = 0.96, ϑ = 0.75, A = 25, b = 0.035, and r = 1.
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3.5 Numerical experiments

Cyberrisk is a negative shock. Our first numerical experiment studies how an

increase in firm cyberrisk changes firms’ profits. We start by simulating firm profits in

a model with no cyberprotection. Then, we turn on cybersecurity protection for both

types of firms to observe how their profits change. To compute the change in size of

firms when all firms face increasingly higher cyberrisk, we change the cyberrisk index ϑ

continuously from no cyberrisk (ϑ = 0) to maximum cyberrisk (ϑ = 1) and re-compute

the steady state. Figure (2) shows that the profits of H-type firms with cybersecurity

fall by less than the profits of L-type firms as cyberrisk increases. Moreover, the profits

of both types of firms without cybersecurity protection at all drop dramatically as the

overall level of cyberrisk increases in the economy.

Figure 2: Profits as a function of cyberrisk.

Legend: This figure plots the steady-state profit levels for H-type firms with (in orange, Π⋆
H,sec) and

without cyberprotection (in green, Π⋆
H,cy), and L-type firms with (in yellow, Π⋆

L,sec) and without
cyberprotection (in green, Π⋆

L,cy), as a function of the cyberrisk index, ϑ, on the X-axis. The
parameters used in this simulation are the following: the data endowment z = 10, the coefficient of
the AR(1) process ρ = 0.9, all variances σ2

θ = σ2
a = σ2

ϵ = σ2 = 2.5, the share of H-type firms
mH = 1/3, the non-rivalry parameter ι = 0.6, the intertemporal discount factor β = 0.96, the
cyberrisk index ϑ = 0.75, the maximum quality threshold A = 25, the innovation externality
b = 0.035, and the cost of capital r = 1.

Without protection, the profits (in green) of H-type firms are the same as the prof-

its of L-type firms and decreasing in the cyberrisk index ϑ. Initially, the profits without
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cybersecurity decline slowly, but after the second threshold, they decline rapidly be-

cause the cost incurred in knowledge loss increases exponentially with cyberrisk without

protection. With protection, however, the profits of H-type firms (in orange) are al-

ways higher than the profits of L-type firms (in yellow). And, as cyberrisk increases,

the profits H-type firms decrease at a smaller rate than the profits of L-type firms (in

yellow). An interesting observation is that initially, with protection, the profits of H-

type firms first increase because the benefit of protection (which is cybersecurity-driven

innovation) is initially higher than the cost of cybercrime.

What governs the steady-state size of firms is firms’ cyberprotection levels as a

function of the cyberrisk index, ϑ, plotted in Figure (3).

Figure 3: Cyberprotection as a function of cyberrisk.

Legend: The figure plots in-house cybersecurity investment, τt, by H-type firms (in orange), and
external cybersecurity acquisition by L-type firms (in yellow). Notice the two critical thresholds at
which in-house cyberprotection and external cyberprotection become strictly positive. The
parameters used in this simulations are the following: the data endowment z = 10, the coefficient of
the AR(1) process ρ = 0.9, all variances σ2

θ = σ2
a = σ2

ϵ = σ2 = 2.5, the share of H-type firms
mH = 1/3, the non-rivalry parameter ι = 0.6, the intertemporal discount factor β = 0.96, the
cyberrisk index ϑ = 0.75, the maximum quality threshold A = 25, the innovation externality
b = 0.035, and the cost of capital r = 1.

Evaluating the model for different values of ϑ, and letting all other parameters be as

before, we find two critical thresholds: at ϑ = 0.6583, optimal cybersecurity purchases,

δ∗, changes from negative to positive, implying that L-type firms buy protection only

for ϑ > 0.6583. For ϑ ≤ 0.6583, H-type firms have to choose whether to invest in
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protection or not, knowing that they cannot sell any cyber protection. H-type firms

are indifferent between investing in protection or not at a critical threhold level of

ϑ = 0.3. For ϑ > 0.3, H-type firms invest in protection, otherwise they do not.

Cyberrisk can also sustain growth. Surprisingly, while one expects aggregate eco-

nomic output to be decreasing in cyberrisk, there is a counteracting force that works

especially at high levels of risk. This is shown in Figure (4).

Firms with a high capacity for in-house cybersecurity protection (in orange) use

this protection to innovate, which raises the quality and quantity of production. Indeed,

output is increasing in cyberrisk for H-type firms at moderate to high levels of cyberrisk.

L-type firms do not have this positive spillover, because they only use cybersecurity for

their own protection, to mitigate the negative effects of cybercrime. The aggregate

output is a weighted average of the output of the two types of firms. Concerning the

evolution of Y ∗ as ϑ increases, one notices that an initial fall is counteracted when H-

type firms start to invest in protection, and this process gains momentum when L-type

firms start protecting as well.

Figure 4: Output as a function of cyberrisk.

Legend: The parameters used in this simulations are the following: the data endowment z = 10, the
coefficent of the AR(1) process ρ = 0.9, all variances σ2

θ = σ2
a = σ2

ϵ = σ2 = 2.5, the share of H-type
firms mH = 1/3, the non-rivalry parameter ι = 0.6, the intertemporal discount factor β = 0.96, the
cyberrisk index ϑ = 0.75, the maximum quality threshold A = 25, the innovation externality
b = 0.035, and the cost of capital r = 1.
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We can recover the representation of profits in Figure (2), to plot the actual profits,

given the choices of firms on whether to get protection or not. Figure (5) clarifies again

the existence of three stages and the fact that cybercrime is much less harmful for

H-type firms, because these make use of the innovation externality that cybersecurity

allows for.

Figure 5: Realized (equilibrium) profits.

Legend: The parameters used in this simulations are the following: the data endowment z = 10, the
coefficent of the AR(1) process ρ = 0.9, all variances σ2

θ = σ2
a = σ2

ϵ = σ2 = 2.5, the share of H-type
firms mH = 1/3, the non-rivalry parameter ι = 0.6, the intertemporal discount factor β = 0.96, the
cyberrisk index ϑ = 0.75, the maximum quality threshold A = 25, the innovation externality
b = 0.035, and the cost of capital r = 1.

This model is simple, but it generates some powerful predictions. Cyberrisk hurts

firms in the modern economy and firms make lower profits at increasingly high levels

of risk. However, there is a silver lining: cyberrisk can sustain growth and innovation

when it allows firms to use cybersecurity protection for innovation. We allowed some

firms in the economy the potential to use cybersecurity to improve their productivity

ceiling. When given this opportunity, cyberrisk can sustain firm growth and innovation

because there are innovation externalities that arise from cyberrisk protection.

In the following sections we test these theoretical predictions: in Section (4) we

examine these predictions directly and in Section (5) we use a staggered difference-in-
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difference method to address endogeneity and empirically verify our theoretical predic-

tions.

4 Empirical Analysis

A key result of our model is that firms can effectively address the negative con-

sequences of cyber risk through innovation. In this section, we empirically examine

this proposition. Specifically, we investigate whether firms facing higher cyber risk

demonstrate greater innovation. To quantify the mechanisms discussed in our paper,

we analyze whether firms with elevated cyber risk engage in innovative practices related

to cybersecurity. Additionally, we explore whether these firms exhibit higher overall in-

novation levels, encompassing both cybersecurity and non-cybersecurity domains. We

further test whether the data intensive firms are the main drivers of our results.

4.1 Data

Answering our research question requires two things. First, a measure of firm level

cybercrime risk. Second, a measure of innovation at the firm level.

We source our measure of cybercrime risk for US-based publicly listed firms from

Florackis et al. (2023). The authors have designed a cybersecurity risk score based on

a textual analysis of the annual 10-K filings of these companies. For any given year, a

firm’s risk measure is derived from the similarity between the language used to detail

cyber risk-factors in its current-year 10-K filings and the previous-year 10-K filings of

a chosen ’training’ set of firms. The firms in this training set are those that endured

actual cyberattacks in the same year. The assumption is that firms that have fallen

prey to actual cyberattacks likely had existing vulnerabilities, which would have been

reflected in their risk disclosures in the previous year. As such, if a firm’s language in its

risk-factor disclosures strongly resembles the previous-year risk disclosures of firms that

were indeed attacked, it is inferred to bear a high cybersecurity risk. The similarity

score, which also serves as the cyber risk score, ranges from zero to one, with a higher

score indicating a greater cyber risk.5 These cyber risk scores are available for the period

5We believe these are good measures of firm cyber-risk because all US firms are required by law
to report data breaches in all 50 states, the District of Columbia, Guam, Puerto Rico and the Virgin
Islands, and therefore they are highly likely to be forthcoming about their cyber risk and risk mitigation
in their 10-Ks (Murciano-Goroff (n.d.)). Moreover, we are confident in the validity of this measure
because, according to our calculations, it correlates highly (86%) with the cyber-risk measure based
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from 2007 to 2018. Accordingly, we calculate all other remaining variables within this

same period.

We capture innovation in various complementary ways. The first measure we use is

the knowledge capital accumulation calculated by Ewens et al. (2020). Knowledge cap-

ital is the stock of research and development (R&D) expenditure net of the knowledge

capital depreciation. Knowledge asset can also be thought of as an input to innovation,

rather than output, as it represents expenditure on producing innovation. Our next set

of measures explicitly capture innovation output.

Firms’ patent activity represent their innovation output. Following the literature

on innovation, we count patents filed by the firms by taking into account their scientific

and economic value (Kogan et al., 2017; Aghion et al., 2013; Howell, 2017). In our

first patent measure, we count number of patents filed by the weighing it with the

number of forward citations it receives. The idea is that the more important a patent

is scientifically, the more citations it receives (Hall et al., 2005; Kogan et al., 2017).

Following the best practice in the literature, we adjust the count for the truncation

bias. As the citations occur over time, a simple counting of cites underestimates the

importance of the patents that were issued towards the end of our sample period (Lerner

and Seru, 2022; Dass et al., 2017; Hall et al., 2001). We correct for that using the well-

established methodology proposed by Hall et al. (2001).

We also calculate value-weighted count of number of patents filed. We do so by

weighing each patent by the economic value it creates. The economic value of a patent is

the dollar amount of wealth generated for the patenting firm’s shareholders, calculated

from the stock market response to the news about the patent award. We scale the

patent value by the firm’s total assets, following Kogan et al. (2017).

In an additional analysis, we examine whether firms exposed to more risks expand

their areas of innovation. To do that, we extract the Cooperative Patent Classification

(CPC) code for each filed patent. We then count the number of unique ‘fields’ in which

a firm files patents in a year. We define number of fields at different level of coarseness.

A CPC code consists of five hierarchical parts: section, class, sub-class, group, and

sub-group. Section is the highest level in hierarchy, and the most aggregative level,

followed by class, subclass, and so on. For our purpose, we define patent fields at three

alternative levels: section, class, and sub-class. We do not differentiate patents along

the group or subgroup levels because we want to make sure that we are counting patent

on conference calls from Jamilov et al. (2021a).
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fields that are somewhat distinct from each other.

All our patent data is from the publicly available database maintained by the

authors of Kogan et al. (2017).

We measure cybersecurity innovation using the citation-weighted and value-weighted

count of cybersecurity patents a firm files within a year. A patent is classified as a cy-

bersecurity patent if the USPTO assigns it CPC codes associated with cybersecurity.

For instance, CPC code G06F21/ is titled ”Security arrangements for protecting com-

puters, components thereof, programs or data against unauthorised activity”. Our

cybersecurity patent measure indicates a consistent growth in cybersecurity innovation

over time, currently accounting for approximately seven percent of all patent filings (as

depicted in Figure 6).

Figure 6: Cybersecurity innovation

To identify data-intensive firms, we create a measure grounded on two fundamental

premises. First, we propose that firms involved in the creation of AI technology are,

by nature, data-intensive. Second, we posit that any firm, including those not directly

engaged in AI development, can be considered data-intensive if the language used to de-

scribe its business mirrors that of AI-creating firms. In accordance with these premises,

our measure is crafted in two steps. For the initial step, we utilize a newly published
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dataset by the USPTO, a product of their internal research, which classifies AI patents

within the entire spectrum of patents filed at the USPTO Giczy et al. (2022). This

helps us identify those US public firms that have submitted AI patent applications. In

the second step, we employ a dataset curated by Hoberg and Phillips, which quantifies

the textual similarity in the Business Description between any two firms (Hoberg and

Phillips, 2016). The underlying principle here is that data-intensive firms are likely to

portray their businesses in a similar light. Therefore, a firm not holding an AI patent is

also considered data-intensive if its business description more closely aligns with those

firms possessing AI patents.

We obtain firm level financial information from the merged CRSP-Compustat

database. We calculate various financial variables and ratios to use them as control

variables in our baseline regressions. Specifically, we use the following variables as con-

trols: log of total assets, tobin’s Q, asset tangibility, book-to-market ratio, cash-to-asset

ratio, leverage, and return on assets. We winsorize all the variables at 0.5% on both

sides of the distribution.

Table 2 presents summary statistics on our cyber risk and innovation measures.

We see that more than a quarter of the firms do not face cyber risk. Further, as is

well-known innovation activity is quite skewed. For instance, more than 50 percent of

firm-years do not record any positive knowledge capital accumulation or any patent

activity.

4.2 Empirical strategy

We conduct regression analysis to uncover the relationship between cyber risk and

innovation. We rely on two aspects of our regression specification to identify the causal

relation between cyber risk and innovation. First, we regress innovation measures on

the lagged value of cyber risk score. Doing so addresses the simultaneity concerns.

Second, we include firm fixed effects to absorb time invariant characteristics of firms

that might affect this relationship. Moreover, we include year fixed effects to absorb

shocks occurring over time and that are common across firms. Finally, we control for

various financial factors.

As visible from Table 2, our innovation variables have a right skew and contain

high share of zeros. Therefore, applying ordinary least squares (OLS) estimation in

a regression of the patent counts might result in inefficient parameter estimates. One

possible solution could be using OLS estimation after a log transformation of our patent
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Table 2: Summary statistics on cyber-risk score and innovation variables

N mean sd p10 p25 p50 p75 p90 p99

Cyber-risk score 44972 0.2 0.2 0 0 0.3 0.4 0.5 0.6
Log(Knowledge stock) 41479 1.6 2.2 0 0 0 3.4 5.0 8.0
Log(R&D expenditure) 44972 1.3 1.9 0 0 0 2.6 4.2 7.2
Patents filed: simple count 44972 9.2 49.9 0 0 0 0 8.0 291.0
Patents filed: citation-weighted count 44972 18.3 100.4 0 0 0 0 15.3 549.4
Patents filed: value-weighted count 44881 0.05 0.20 0 0 0 0 0.11 1.17
Number of patent sections 10616 3.3 2.0 1 2 3 4 6 9
Number of patent classes 10616 7.5 10.3 1 2 4 8 17 57
Number of patent subclasses 10616 14.1 25.0 1 3 6 14 31 145

N refers to the total number of firm-year. p10-p99 refer to the 10th to 99th percentile values. Cyber risk
score lies between zero and one, with higher values indicating higher risk. Cyber risk score measure is
obtained from Florackis et al. (2023). Knowledge stock is based on the estimates of knowledge stock net
of knowledge depreciation from Ewens et al. (2020). Simple patent count refers to number of patents filed
by the firm in a year. Citation-weighted patent count weighs each patent with the forward citation the
patent receives, adjusting for the filing vintage. Value-weighted patent count is the sum of stock market
value generated over all the patents filed by a firm in a year, scaled by total assets. Number of patent
sections refers to the number of unique CPC sections associated with all the patent the firm files in a
year. Similar explanation applies to patent classes, and subclasses, respectively.

count variables. However, given a large number of zeros, a log transformation excludes

substantial number of observations when estimating log-linear regressions. More impor-

tantly, log-linear regressions may even produce inconsistent estimates of the parameters

(Silva and Tenreyro, 2011). Alternatively, we could log transform after adding one to

each patent count, or apply inverse hyperbolic sine transformation. These transfor-

mations would retain zeros, however, they may also produce inconsistent estimates.

Moreover, they may even have the opposite sign of the true relationship, as shown by

Cohn et al. (2022).6

Econometricians recommend the Poisson model to explicitly take into account

many zeros and the right skew of the dependent variables. Because, in such a setting

too, a Poisson model produces consistent estimators without requiring any assump-

tions about higher order model error moments (Cohn et al., 2022). In addition, and

importantly for us, Poisson regression allows for separable group fixed effects (Correia

et al., 2020; Cohn et al., 2022). Moreover, even though the Poisson model is generally

considered to be useful for count data (such as patents), actually, it is valid even when

the dependent variable is continuous with a non-negative domain (such as knowledge

asset) (Silva and Tenreyro, 2011; Wooldridge, 1999).7

6Though, less fatal than other flaws the parameter estimates are also hard to interpret after the
transformations (Cohn et al., 2022; Silva and Tenreyro, 2006).

7Well-known works employing Poisson regression with patent data include Azoulay et al. (2019);
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To study the relationship between the lagged value of cyber risk score (crscoreit−1)

and innovation measure (innovationit) we fit the following conditional expectation of

an innovation measure that follows a Poisson distribution:

E[innovationit|crscoreit−1,xit−1, ηi, τt] = exp (βccrscoreit−1 + βxit−1 + ηi + τt) (24)

where crscoreit−1 is the lagged value of cyber-risk score, xit−1 are lagged control vari-

ables, including size (log of total assets), Tobin’s Q, asset tangibility, book-to-market

ratio, cash-to-asset ratio, leverage, and return on assets. ηi is the firm fixed effect, and

τt is the year fixed effect.

We perform Poisson pseudo-maximum likelihood estimation to estimate the pa-

rameters of the model in (24).

We also study whether cyber risk score affects the R&D productivity. To do that,

we follow Aghion et al. (2013), and in some specifications of (24) include R&D stock as

a right hand side variable. In such specifications, the coefficient βc tells us whether firms

with higher score innovate more per dollar of R&D stock. In specifications, where R&D

stock is not included as a control variable, βc contains the effect of R&D productivity

and additional effect of higher cyber risk on innovation.

Finally, we cluster standard errors at the firm level, to take into account the possi-

bility of autocorrelation and hetereskedasticity in the error terms. Clustered standard

errors are additionally useful because they are also robust to ‘overdispersion’ (and ‘un-

derdispersion’) issues countered in Poisson regression (Cohn et al., 2022; Wooldridge,

1999).

4.3 Baseline results

In what follows, we report the results from our preferred Poisson estimation. We

also report estimates from OLS regression of our innovation measures.8

Table 3 presents the results of regressing knowledge capital and R&D stock on

lagged cyber-risk score. We find that firms accumulate more knowledge capital and

R&D stock in response to a rise in cyber risk. Although, in the regression of knowledge

capital, the Poisson model does not give a significant coefficient for cyber risk at the

conventional 10% significance level, it is quite close. Moreover, the results are also

Aghion et al. (2013); Amore et al. (2013); Blundell et al. (1999); Hausman et al. (1984).
8Although, fully recognizing that this might not be the correct model specification.
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confirmed by the regression of R&D stock, which shows a significant rise. The increase is

also economically meaningful. For instance, one standard deviation change in cyber risk

would lead to an increase in R&D by about 3% [= 0.22(e0.124 − 1)], keeping everything

else the same.

How do firms respond with their patenting output when they face a higher cyber

risk? Do they file more patents because they accumulate more R&D stock, or do they

also respond by increasing their R&D productivity? To test that, we regress patent-

count variables on lagged cyber-risk in Table 4 and Table 5. The first two columns

of both the tables exclude R&D as a control variable. Therefore, these specifications

test the change in firm’s innovation output to cyber risk. The change includes the

effect of cyber risk on innovation input, as well is its effect on the R&D productivity.

In columns (3) and (4) we also include the stock of R&D capital as an explanatory

variable. Therefore, the coefficient on cyber-risk score give us the estimate of how

in response to an increase in cyber risk, a firm’s patent count changes keeping its

innovation input (R&D capital) unchanged.

Table 4 presents the regression results with citation-weighted patent count as the

dependent variable. The first observation we make is that in all the specification in the

table, the coefficient on Cyber-risk score is positive, indicating that firms patent more

in response to a cyber-risk shock. From our Poisson estimate in column (2), we can

quantify the effect. A one standard deviation increase in cyber risk in a year leads the

firm to file 5% [= 0.22(e0.201−1)] more patents the next year. We observe from column

(4) that firms file more patents per dollar of R&D stock. We estimate that in response

to a one standard-deviation shock in cyber risk, firm’s R&D productivity rises by about

4.2%.

We arrive at similar conclusion when we use value-weighted patent count in Table

5. A one standard-deviation shock in cyber risk leads to the firm filing about 7% more

patents in value-weighted terms (column 2). Out of this increase, about 6% is due to

the increase in R&D productivity (column 4).

4.4 Cyber risk and cybersecurity innovation

To thoroughly investigate the mechanisms underpinning the relationship between

cybersecurity and innovation, we delve into the remaining parts of the loop we devel-

oped in theoretical framework earlier. Our initial inquiry centers around whether firms

exposed to heightened cyber risk are more likely to increase their focus on cybersecu-
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Table 3: Regression of knowledge stock and R&D stock

Knowledge stock R&D stock

OLS Poisson OLS Poisson
(1) (2) (3) (4)

Cyber-risk score 21.38** 0.0868 9.755** 0.124*
(9.223) (0.0542) (4.468) (0.0659)

ln(Asset) 60.23*** 0.486*** 32.03*** 0.551***
(9.959) (0.0381) (5.202) (0.0339)

Tobin’s Q 2.894** 0.0300*** 2.557*** 0.0537***
(1.359) (0.00622) (0.697) (0.00773)

Tangibility -2.051 0.484* -9.190 0.286
(30.26) (0.253) (13.67) (0.271)

Book-to-market -0.781 -0.0224** 0.319 0.00190
(1.013) (0.0109) (1.018) (0.0413)

Cash-to-asset -45.29*** -0.169* -24.91*** -0.195*
(16.80) (0.0895) (6.908) (0.106)

Leverage -5.477 -0.150* -3.998 -0.212**
(15.01) (0.0798) (6.407) (0.0841)

ROA -45.97*** -0.216*** -18.87*** 0.00708
(11.22) (0.0716) (5.475) (0.0749)

Firm FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
N 31601 14921 34592 15038

∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. Standard errors are in paren-
theses. Standard errors are clustered at the firm level. N refers to
the total number of firm-year. Cyber score, and control variables
are lagged by one year. Cyber-risk score measure is obtained from
Florackis et al. (2023). Knowledge stock is based on the estimates
of knowledge stock net of knowledge depreciation from Ewens et al.
(2020). Other control variables are computed using WRDS CRSP-
Compustat merged data. Tobin’s Q is defined as Total assets (at)
minus common equity (ceq) plus market value of equity (prcc f ×
csho), as a ratio of total assets (at). ROA is defined as operating
income before depreciation (oibdp) to total assets (at). Tangibility is
defined as total property, plant and equipment (ppent) scaled by to-
tal assets (at). Leverage is long-term debt (dltt) plus debt in current
liabilities (dlc), as a ratio of total assets (at). Book-to-market ratio
is book value of common equity (ceq) divided by the market value
of common equity (prcc f × csho). Cash-to-asset is the ratio of cash
and short-term investments (che) to total assets (at).
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Table 4: Regression of citation-weighted patent count

Citation-weighted patent count

OLS Poisson OLS Poisson
(1) (2) (3) (4)

Cyber-risk score 4.060* 0.201** 3.784* 0.176*
(2.135) (0.101) (2.138) (0.0994)

ln(Asset) 2.064** 0.141*** 1.190* 0.0352
(0.824) (0.0493) (0.716) (0.0516)

Tobin’s Q 0.282 0.0159 0.268 0.0139
(0.283) (0.0153) (0.282) (0.0154)

Tangibility 3.032 0.0758 2.834 -0.0657
(5.990) (0.559) (5.979) (0.538)

Book-to-market -0.00283 0.0186 0.0392 0.0233
(0.247) (0.0516) (0.248) (0.0516)

Cash-to-asset -3.186 -0.00373 -2.717 0.0565
(2.590) (0.150) (2.570) (0.148)

Leverage -4.420* -0.163 -4.257* -0.107
(2.297) (0.189) (2.295) (0.191)

ROA -0.371 0.105 0.603 0.151
(1.295) (0.184) (1.289) (0.181)

ln(R&D stock) 2.978*** 0.190***
(0.757) (0.0441)

Firm FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
N 34592 12900 34592 12900

∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. Standard errors are in paren-
theses. Standard errors are clustered at the firm level. Cyber
score, and control variables are lagged by one year. Cyber-risk
score measure is obtained from Florackis et al. (2023). Citation-
weighted patent count weighs each patent with the forward cita-
tion the patent receives, adjusting for the filing vintage. For the
description of control variables, see notes for Table 3.
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Table 5: Regression of value-weighted patent count

Value-weighted patent count

OLS Poisson OLS Poisson
(1) (2) (3) (4)

Cyber-risk score 0.0182*** 0.277** 0.0186*** 0.238**
(0.00703) (0.122) (0.00699) (0.116)

ln(Asset) -0.0266*** -0.301*** -0.0252*** -0.413***
(0.00449) (0.0489) (0.00406) (0.0568)

Tobin’s Q 0.00197 0.00296 0.00199 -0.00128
(0.00184) (0.00836) (0.00183) (0.00826)

Tangibility 0.0171 0.351 0.0173 0.135
(0.0211) (0.455) (0.0211) (0.456)

Book-to-market 0.00190** -0.0961 0.00184* -0.0955
(0.000943) (0.0644) (0.000941) (0.0639)

Cash-to-asset 0.0466*** 0.468*** 0.0459*** 0.501***
(0.0161) (0.160) (0.0163) (0.155)

Leverage 0.0162 -0.00786 0.0160 0.0386
(0.0116) (0.111) (0.0115) (0.107)

ROA 0.00119 0.0900 -0.000269 0.202**
(0.0113) (0.0878) (0.0111) (0.0879)

ln(R&D stock) -0.00446 0.178***
(0.00449) (0.0530)

Firm FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
N 34579 12896 34579 12896

∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. Standard errors are in parentheses.
Standard errors are clustered at the firm level. N refers to the total
number of firm-year. Cyber-risk score, and control variables are lagged
by one year. Cyber risk score measure is obtained from Florackis et al.
(2023). Value-weighted patent count is the sum of stock market value
generated over all the patents filed by a firm in a year, scaled by total
assets. For the description of control variables, see notes for Table 3.
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rity innovation. Subsequently, we explore if an uptick in cybersecurity innovation could

stimulate a broader surge in overall innovation. In the ensuing regression tables, we

restrict our focus to the pertinent coefficient estimates, suppressing those associated

with the controls. Further, we now work exclusively with our preferred Poisson model.

Table 6 displays the regression of the number of filed cybersecurity patents against

the lagged cyber risk, across different specifications. All regression models incorporate

the controls used in previous analyses, log of R&D stock, and year fixed effects. In-

dustry fixed effects are included in columns (1) through (4), while firm fixed effects are

applied in specifications (5) and (6). The industry fixed effects are used in the initial

specifications due to the fact that a relatively small number of firms file cybersecurity

patents. This leads to a reduced number of observations if we apply firm fixed effects,

which complicates the task of obtaining precise estimates. Within the first four speci-

fications, we alternate between the exclusion and inclusion of the lagged count of both

cybersecurity and overall patents.

Our analysis indicates that an increase in cyber risk prompts firms to file a greater

number of cybersecurity patents. This positive effect is still evident in the most restric-

tive specification featuring firm fixed effects. However, due to the limited number of

observations, we cannot assert our conclusions with complete confidence.

Table 6: Regression of cyber security innovation

Cit-wtd CS patent # Val-wtd CS patent # Cit-wtd CS patent # Val-wtd CS patent #

(1) (2) (3) (4) (5) (6)

L.Cyber risk 1.155*** 0.664*** 1.780*** 1.170*** 0.0921 0.0108
(0.352) (0.246) (0.400) (0.401) (0.238) (0.286)

L.# cit-wtd CS patent No Yes No No No No
L.# val-wtd CS patent No No No Yes No No
L.# cit-wtd patent No Yes No No No No
L.# val-wtd patent No No No Yes No No
Size + other controls Yes Yes Yes Yes Yes Yes
NAICS-3 FE Yes Yes Yes Yes No No
Firm FE No No No No Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
N 29283 29283 29273 29273 3502 3501

In order to examine the next segment of the loop, we investigate whether firms

with a higher degree of innovation in cybersecurity also exhibit a greater level of overall

innovation. We undertake regression analyses where we regress citation-weighted and

value-weighted patent counts against both the lagged counts of cybersecurity patent

filings and the lagged cyber risk scores (as presented in Table 7).
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Table 7: Regression of counts of patent filed

# Cit-wtd patent # Val-wtd patent # Cit-wtd patent # Val-wtd patent

(1) (2) (3) (4) (5) (6)

L.Cyber risk 0.199** 0.276** 0.0764 0.0716 0.220** 0.233**
(0.101) (0.122) (0.0728) (0.0736) (0.0991) (0.0984)

L.# cit-wtd CS patent 0.00286** 0.00135*
(0.00114) (0.000802)

L.# val-wtd CS patent 2.487*** 1.607***
(0.554) (0.591)

# cit-wtd CS patent No No No Yes No No
# val-wtd CS patent No No No No No Yes
L.# cit-wtd patent No No Yes Yes No No
L.# val-wtd patent No No No No Yes Yes
Size + other controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
N 12900 12896 12900 12900 12896 12896

Columns (1) and (2) in Table 7 mirror our previous baseline findings. In the

subsequent models, we also investigate the effect of the lagged counts of cybersecurity

patents. We ascertain that an increase in cybersecurity patents leads to an overall surge

in innovation, as reflected in both measures of innovation. To refine our results, we also

account for the contemporaneous counts of cybersecurity patents in specifications (4)

and (6). Our results maintain their significance and positive orientation. This suggests

that, even when the number of cybersecurity patents is held constant, there is an

increase in the total number of patents when firms engage in cybersecurity innovation.

This implies that firms also augment their portfolio of non-cybersecurity patents in

response to cybersecurity innovation.

4.5 Data intensive firms and their response to cybersecurity

risk

Next we study how this dynamic differs between the data-intensive and non-data

intensive firms. Our model posits a feedback loop for the data economy, i.e. an economy

reliant on the data that is subject to the risk of being stolen. We therefore, expect this

mechanism to apply on data-intensive firms and not on the non-data-intensive firms.

We construct an dummy variable that takes value 1 if the firm is identified as a

data intensive firm by our method described earlier. We then run the regressions similar

to as in the previous section, however now we interact the lagged cybersecurity score

with the dummy on data intensity. The results are presented in Table 8.

We find that even though the data intensive firms account only for a minority of

the observations (roughly 40%), our baseline results are driven by them. Indeed, the
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regressions show that cyber risk score has even sometimes negative effects on innovation

in the non-data intensive firms, although, the results are never significant.

Table 8: Regression with data intensity

Cit-wtd patent # Val-wtd patent # Cit-wtd patent # Val-wtd patent #

(1) (2) (3) (4) (5) (6)

L.Cyber risk*(data int =0) -0.0872 0.186 -0.0607 -0.0463 0.215 0.260
(0.156) (0.191) (0.109) (0.111) (0.157) (0.162)

L.Cyber risk*(data int = 1) 0.289** 0.293** 0.121 0.110 0.221** 0.228**
(0.115) (0.126) (0.0802) (0.0807) (0.104) (0.103)

L.# cit-wtd CS patent 0.00281** 0.00131
(0.00114) (0.000804)

L.# val-wtd CS patent 2.487*** 1.611***
(0.554) (0.590)

# cit-wtd CS patent No No No Yes No No
# val-wtd CS patent No No No No No Yes
L.# cit-wtd patent No No Yes Yes No No
L.# val-wtd patent No No No No Yes Yes
Size + other controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
N 12900 12896 12900 12900 12896 12896

4.6 Cyber risk and patent fields

Do firms broaden the fields in which they innovate in response to the cyber risk?

To answer that, we regress the number of patent fields in a firm’s patent filings on cyber

risk scores (Table 9). We use different definitions of patent fields representing various

levels of aggregation in CPC codes. Patent sections are at the top level, with different

sections representing very distinct areas. Patent classes have smaller distinction across

them, and so on.

We find that while point estimates are positive, they are not significant for section

count or class count. For subclasses, there is a positive and significant effect of cyber

risk when we estimate an OLS model. However, we cannot estimate it precisely with

Poisson regression. Quantitatively, the change in number of subclasses in response to

a rise in cyber risk is positive and non-negligible. A one standard deviation shock in

cyber risk leads to a 0.4% increase in patent fields when we define fields in terms of the

count of patent subclasses.

Overall, we find some evidence that firms expand the areas of innovation in response

to cyberrisk, even though we are reluctant to place a lot of confidence in this finding.
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Table 9: Regression of patent-field count

Count patent sections Count patent classes Count patent sub-classes

OLS Poisson OLS Poisson OLS Poisson
(1) (2) (3) (4) (5) (6)

Cyber-risk score 0.0566 0.0106 0.583 0.00726 1.958** 0.0193
(0.116) (0.0338) (0.424) (0.0484) (0.960) (0.0521)

ln(Asset) 0.154*** 0.0508*** 0.839*** 0.122*** 2.086*** 0.159***
(0.0502) (0.0168) (0.265) (0.0351) (0.735) (0.0468)

Tobin’s Q 0.0118 0.00437 0.0133 0.00454 0.0365 0.00730
(0.00875) (0.00318) (0.0299) (0.00543) (0.0732) (0.00690)

Tangibility -0.0134 0.00267 1.837 0.250 5.774 0.402
(0.345) (0.107) (1.622) (0.215) (4.662) (0.315)

Book-to-market 0.0162 0.00482 0.124 0.00926 0.378 0.0105
(0.0426) (0.0149) (0.165) (0.0241) (0.418) (0.0283)

Cash-to-asset 0.0686 0.0257 0.626 0.0911 1.026 0.0684
(0.136) (0.0469) (0.443) (0.0709) (1.086) (0.0851)

Leverage -0.183 -0.0609 -0.254 -0.0581 -0.535 -0.0729
(0.126) (0.0438) (0.401) (0.0720) (0.886) (0.0876)

ROA -0.00596 0.0117 -0.478 -0.000475 -1.462* -0.00603
(0.0870) (0.0324) (0.315) (0.0519) (0.798) (0.0652)

ln(R&D stock) 0.0946** 0.0282** 0.195 0.0426* 0.160 0.0402
(0.0373) (0.0124) (0.144) (0.0230) (0.364) (0.0296)

Firm FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
N 8641 8641 8641 8641 8641 8641

∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. Standard errors are in parentheses. Standard errors are
clustered at the firm level. N refers to the total number of firm-year. Cyber-risk score, and
control variables are lagged by one year. Cyber risk score measure is obtained from Florackis et
al. (2023). Number of patent sections refers to the number of unique CPC sections associated
with all the patent the firm files in a year. Similar explanation applies to patent classes, and
subclasses, respectively. For the description of control variables, see notes for Table 3.
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4.7 Cyber risk and financial variables

Does a rise in cyber risk affect a firm’s profitability? Cyber risk can reduce a firm’s

profitability by diverting its resources towards cyber protection measures. It might

even go up if the higher innovation in response to cyber risk creates new profitable

opportunities. However, the two forces might counteract each other as well.

Table 10 presents results of a set of regressions on different financial variables.

The first column regresses return on assets (ROA) on lagged cyber risk measure and

other controls. We find no negative effect of cyber risk on profitability, indicating that

innovation helps firms to hedge their profits against cyber risk.

Table 10: Regression of financial variables

ROA Tobin’s q Book-to-market Leverage
(1) (2) (3) (4)

Cyber-risk score 0.00885 0.0709 -0.0161 -0.00787
(0.00851) (0.0621) (0.0372) (0.00813)

ln(Asset) 0.0200*** -0.403*** 0.232*** 0.0366***
(0.00543) (0.0351) (0.0184) (0.00403)

Tobin’s Q 0.0152*** -0.0360*** -0.00217
(0.00251) (0.00401) (0.00179)

Tangibility -0.0905*** -0.326* 0.282** 0.0792***
(0.0312) (0.184) (0.113) (0.0278)

Book-to-market -0.0233*** -0.167*** -0.0180***
(0.00282) (0.0177) (0.00287)

Cash-to-asset -0.126*** 0.493*** -0.116** -0.108***
(0.0208) (0.150) (0.0525) (0.0162)

Leverage -0.0107 0.284** -0.618***
(0.0192) (0.124) (0.0574)

ln(R&D stock) -0.0245*** 0.0482 -0.0270* 0.000962
(0.00496) (0.0311) (0.0138) (0.00445)

ROA 0.0187 -0.0782* -0.0819***
(0.121) (0.0417) (0.0138)

Firm FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
N 34591 34564 34564 34577

∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. Standard errors are in parentheses.
Standard errors are clustered at the firm level. N refers to the total number
of firm-year. Cyber-risk score, and control variables are lagged by one year.
Cyber risk score measure is obtained from Florackis et al. (2023). ROA
stands for return on assets. All estimations are based on OLS regression. For
the description of variables, see notes for Table 3.

In a similar regression given in columns (2)-(4), we find no significant effect of

cyber-risk shock on a firm’s Tobin’s Q, Book-to-market ratio, and Leverage.
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4.8 General innovation and cyberrisk

Our model suggests that a firm’s reaction to cyber risk extends to broader innova-

tion, beyond just cybersecurity innovation. We explore this by examining how a firm’s

non-cybersecurity innovation is affected by cyber risk. We analyze this relationship by

regressing the non-cybersecurity patents of firms against their lagged cyber risk. Here,

non-cybersecurity patents are described as those distinct from the set of cybersecurity

patents identified earlier.

Our findings, presented in Table 11, indicate that firms increase their non-cybersecurity

innovation by approximately eight percent in response to a one standard deviation

(s.d.) increase in cyber risk (Column 1). When evaluating the impact in terms of

value-weighted patent count, we observe a positive effect, with a one s.d. increase in

cyber risk contributing to a four percent rise in non-cybersecurity innovation, although

this effect is not statistically significant (Column 2).

Moreover, we notice that advancements in cybersecurity innovation (lagged cyber-

security patent counts) are associated with heightened non-cybersecurity innovation,

regardless of the regression specification employed.

4.9 In-house cybersecurity innovation and cyberrisk

We hypothesize that innovation response to cyberrisk is more pronounced for firms

that undertake in-house cybersecurity innovation. This assertion stems from the notion

that firms with in-house cybersecurity innovation are positioned to realize the benefits

of the externality of innovation in response to cyber risks. To identify firms that develop

cybersecurity in-house, we examine the backward citations of the public firms’ patents.

Backward citations refer to the citations a patent makes to preceding patents, which

serve as references or foundational works for the current patent.

We sourced the dataset on backward patent citations from the USPTO, and for

each patent by the firms in our sample, we ascertain (i) whether the patent they cite

is a cybersecurity patent, and (ii) whether the cited patent belongs to the firm itself.

Firms that cite their own cybersecurity patents are likely employing their own cyber-

security technology in other innovative areas. Thus, we designate a firm that cites

its own cybersecurity patent in any of its patents as an in-house cybersecurity firm.

Similarly, we designate a firm as an in-house firm by a narrow measure which cites its

own cybersecurity patent in its non-cybersecurity patent. These designations remain

unchanged across years for a given firm.

35



Table 11: Regression of non-cybersecurity patent count

Citation-weighted count Value-weighted count
(1) (2)

Cyberrisk score 0.248∗∗ 0.142
(0.111) (0.109)

Cit-wtd CS patent Yes No
Val-wtd CS patent No Yes
Size + other controls Yes Yes
Firm FE Yes Yes
Year FE Yes Yes
N 14122 13704

∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The coefficient estimates are derived from the
Poisson pseudo-maximum likelihood estimation. Standard errors are in parentheses.
Standard errors are clustered at the firm level. Dependent variable is count of non-
cybersecurity patents. Where a non-cybesecurity patent is a patent that is not clas-
sified as cybersecurity patent using our methodology. N refers to the total number
of firm-year. Cit-wtd CS patent and Val-wtd CS patent are one-year lagged counts of
cybersecurity patents. Cyber-risk score, and control variables are lagged by one year.
Cyberrisk score measure is obtained from Florackis et al. (2023) and extended up to
2022. Value-weighted patent count is the sum of stock market value generated over
all the patents filed by a firm in a year, scaled by total assets. For the description of
control variables, see notes for Table 3.

Table 12: Regression with in-house cybersecurity firms

Overall patent count Non-CS patent count

Cit-wtd count Val-wtd count Cit-wtd count Val-wtd count
(1) (2) (3) (4)

Cyber risk score * (in-house CS = 0) 0.185 0.0390 0.147 0.0673
(0.166) (0.125) (0.157) (0.123)

Cyber risk score * (in-house CS = 1) 0.303∗∗ 0.287∗ 0.304∗∗ 0.294∗

(0.139) (0.154) (0.138) (0.154)

Cit-wtd CS count Yes No Yes No
Val-wtd CS count No Yes No Yes
Size + other controls Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
N 13757 13757 13704 13704

∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01.The coefficient estimates are derived from the Poisson pseudo-maximum likelihood
estimation. Standard errors are denoted in parentheses and are clustered at the firm level. Here, N represents the total
number of firm-year observations. A non-cybersecurity patent is defined as a patent that does not fall under the classification
of cybersecurity patent according to our established methodology. The terms Cit-wtd CS patent and Val-wtd CS patent refer
to one-year lagged counts of cybersecurity patents. Both the cyber risk score and control variables are lagged by one year.
The measure for the cyberrisk score is derived from Florackis et al. (2023) and is extended up to 2022. Firms characterized
as in-house cybersecurity firms are those that foster cybersecurity innovation internally. They are identified based on the
citation of their own cybersecurity patents in their other patents. Value-weighted patent count encapsulates the aggregate
stock market value generated by all the patents a firm files within a year, adjusted by total assets. For a detailed description
of control variables, refer to the notes accompanying Table 3.
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To evaluate our hypothesis, we regress the innovation outcomes against cyberrisk,

interacting with a dummy variable identifying in-house firms. Table 12 lays out the

results, employing our two measures of innovation as dependent variables: citation-

weighted patent count and value-weighted patent count. Column 1 reveals that the

innovation of in-house firms reacts almost 1.7 times more robustly to cyber risk com-

pared to out-house firms. When observing value-weighted patent counts (Column 2),

the response disparity is even more pronounced—a staggering 13 times of the out-house

firms.

Columns 3 and 4 of Table 12 delve deeper into how anti-cyber risk innovation

diffuses to general innovation among in-house and out-house firms. Confirming our

model prediction, our findings suggest that the growth in non-cybersecurity innova-

tion in response to cyber risk is predominantly driven by in-house firms. Column 3

demonstrates that the response of in-house firms’ non-cybersecurity innovation to cy-

ber risk is twice as robust as that of out-house firms, in both citation-weighted and

value-weighted counts. This trend remains consistent even when we apply a narrower

definition to categorize in-house firms (results not presented).

4.10 Cyberrisk and product innovation

In our model, innovation fundamentally manifests as an expansion in product va-

rieties or enhancement in product quality. Hence, the innovation outcomes explored

should also reflect in product innovation. To verify this, we pinpoint product patents

filed by the firms in our sample. Product patents symbolize both the genesis of new

products and enhancements in the quality of existing ones (Babina et al., 2023). Utiliz-

ing the patent claims dataset shared by Ganglmair et al. (2022), which classifies patent

claims into product and process claims, we label a patent as a product patent if 50

percent or more of its claims are designated as product claims (Babina et al., 2023),

and similarly define process patents.

We examine whether an escalation in cyber risk triggers an uptick in product

patenting. Our testing methodology is twofold: initially, we regress product patent

counts, and subsequently, we regress the ratio of product patent counts to process patent

counts. Table 13 unveils the results of these regressions. Columns 1 and 2 affirm that a

one s.d. hike in cyber risk catalyzes around a 7 percent increase in product innovation

in terms of citation-weighted patent counts, and approximately a 9.7 percent increase in

value-weighted terms. Further, we scrutinize whether the surge in product innovation
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supersedes process innovation by analyzing the proportion of product patent counts in

the aggregate (product patent count + process patent count). Columns 3 and 4 reveal

that the fraction of product patents indeed ascends as firms confront elevated cyber

risk.

Table 13: Regression of product patent count and share

Product patent count Share of product patents

Cit-wtd count Val-wtd count in cit-wtd count in val-wtd count
(1) (2) (3) (4)

Cyberrisk score 0.244∗∗ 0.293∗∗∗ 0.0981∗∗ 0.0899∗∗

(0.106) (0.113) (0.0419) (0.0406)

Cit-wtd CS count Yes No Yes No
Val-wtd CS count No Yes No Yes
Size + other controls Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
N 11804 11804 8504 8504

∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The coefficient estimates are derived from the Poisson pseudo-maximum
likelihood estimation. Standard errors are denoted in parentheses and are clustered at the firm level. Here, N
represents the total number of firm-year observations. Product patents are defined as those having at least 50%
of their claims categorized as product claims according to Ganglmair et al. (2022). The term ’Share’ represents
the proportion of product patents in the total patent count, which includes both product and process patents.
The terms Cit-wtd CS patent and Val-wtd CS patent refer to one-year lagged counts of cybersecurity patents.
Both the cyber risk score and control variables are lagged by one year. The measure for the cyberrisk score is
derived from Florackis et al. (2023) and is extended up to 2022. Value-weighted patent count encapsulates the
aggregate stock market value generated by all the patents a firm files within a year, adjusted by total assets.
For a detailed description of control variables, refer to the notes accompanying Table 3.

To delve into the mechanism at play, and in alignment with our model, we lay

our focus on the firms with in-house cybersecurity innovation. Additionally, we aim

to discern if, among the in-house firms, it’s the data-intensive entities that exhibit

the most pronounced product market innovation. To achieve this, we perform a triple

interaction involving the in-house dummy, a dummy for data-intensiveness, and the

cyber risk score. Table 14 illustrates that the most substantial response to cyber risk

emanates from data-intensive firms possessing in-house cybersecurity, followed by non-

data-intensive firms with in-house cybersecurity innovation, and then by data-intensive

firms lacking in-house cybersecurity. Conversely, non-data-intensive firms devoid of

in-house cybersecurity innovation trail in product innovation in reaction to cyber risk.
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Table 14: Regression of product patent count and share with in-house and data-
intensive firms

Product patent count Share of product patents

Cit-wtd count Val-wtd count in cit-wtd count in val-wtd count
(1) (2) (3) (4)

Cyberrisk score * (in-house = 0 & dataint = 0) -0.0185 0.0957 0.0604 0.0467
(0.169) (0.151) (0.0456) (0.0444)

Cyberrisk score * (in-house = 0 & dataint = 1) -0.154 0.0420 0.0466 0.0388
(0.338) (0.225) (0.0964) (0.0942)

Cyberrisk score * (in-house = 1 & dataint = 0) 0.300∗ 0.624∗∗∗ 0.139∗∗ 0.141∗∗

(0.170) (0.228) (0.0571) (0.0582)
Cyberrisk score * (in-house = 1 & dataint = 1) 0.480∗∗∗ 0.628∗∗∗ 0.257∗∗∗ 0.256∗∗∗

(0.157) (0.189) (0.0862) (0.0783)

Cit-wtd CS count Yes No Yes No
Val-wtd CS count No Yes No Yes
Size + other controls Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
N 11804 11804 8504 8504

∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The coefficient estimates are derived from the Poisson pseudo-maximum likelihood estimation. Standard
errors are denoted in parentheses and are clustered at the firm level. Here, N represents the total number of firm-year observations. Product
patents are defined as those having at least 50% of their claims categorized as product claims according to Ganglmair et al. (2022). The term
’Share’ represents the proportion of product patents in the total patent count, which includes both product and process patents. The terms
Cit-wtd CS patent and Val-wtd CS patent refer to one-year lagged counts of cybersecurity patents. Both the cyber risk score and control
variables are lagged by one year. The measure for the cyberrisk score is derived from Florackis et al. (2023) and is extended up to 2022.
Firms characterized as in-house cybersecurity firms are those that foster cybersecurity innovation internally. They are identified based on the
citation of their own cybersecurity patents in their other patents. Data-intensive firms are identified as those actively engaged in AI innovation
or those mirroring AI innovating firms in terms of their business description. Value-weighted patent count encapsulates the aggregate stock
market value generated by all the patents a firm files within a year, adjusted by total assets. For a detailed description of control variables,
refer to the notes accompanying Table 3.

5 Addressing Endogeneity

In the previous section we investigated the direct impact of an increase in cyber

risk on firm innovation activities. However, there exists an endogeneity problem in

assessing the impact of cyber risk on firm innovation due to intertwined relationships

where cyber risk and innovation mutually influence each other, making it challenging

to establish a clear cause-and-effect relationship. For instance, while cyber risks might

hinder innovation by diverting resources toward cybersecurity measures, innovative ac-

tivities within a firm could also lead to increased cyber risks due to new technologies

or processes being introduced. Moreover, firms that are more innovative might invest

more in advanced technologies, making them both more susceptible to cyber risks and

more likely to innovate. This bias can create a spurious relationship between cyber risk

and innovation if not properly addressed. Factors such as reverse causality, omitted

variables, simultaneity, and sample selection bias complicate the distinction between

the effects of cyber risk on innovation and vice versa.

In this section, to address this issue, we employ an instrumental variables approach

to disentangle and understand the true causal impact of cyber risk on firm innovation
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activities. Our instrument is going to be the adoption of Data Breach Notification

Laws in the United States, which have been shown to increase firm risk related to data

breaches (Boasiako and Keefe (2021); Liu and Ni (2023); Huang and Wang (2021)).

Figure 7: State adoption of DBN laws

Legend: This figure reports the first time in each state and district that a data breach notification law
is enacted specifically containing data security breach notification provisions. For example, Nevada
introduced a data breach statute in January 2005, but it only required notification provisions for
general data provisions in January 2006; thus, in our sample, it appears as a 2006 adoption of DBN
law. Only in Nevada also is the ability to launch a private action (2005) different from the date of DBN
law adoption. Other states that allow for a private cause of action are: Alabama, Alaska, California,
Delaware, D.C., Hawaii, Idaho, Illinois, Louisiana, Maryland, Massachusetts, Minnesota, Hampshire,
New Jersey, New Mexico, New York, North Carolina, North Dakota, Oregon, Rhode Island, South
Carolina, Tennessee, Texas, Washington, and Wisconsin. The source of the data is Perkins Coie (see
https://www.perkinscoie.com/en/news-insights/security-breach-notification-chart.html).

Data Breach Notification Laws (DBNL) in the United States mandate firms to

inform individuals affected by a data breach involving their personal information. Typ-

ically, these laws require companies that experience a data breach to notify affected

individuals within a specified time-frame, often ranging from 30 to 90 days after the

breach is discovered. The notification usually includes details about the nature of the

breach, the type of information compromised, and steps individuals can take to protect

themselves. Additionally, some states require organizations to notify state authorities

or consumer reporting agencies depending on the scale and severity of the breach. The

laws also have provisions outlining penalties for non-compliance, aiming to hold orga-

nizations accountable for safeguarding individuals’ personal data. All 50 states have
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enacted their own versions of DBNL starting in 2003 with California and ending in 2018

with Alabama and South Dakota. By 2008, more than half of the states had adopted

a DBN law, as shown in Figure (7).

Our empirical strategy is going to explore the staggered implementation of Data

Breach Notification Laws (DBNL) in the United States, which increased firm risk,

and compare the innovation activities of firms located in early-treated states to those

of firms located in late-treated states. A very recent literature (Baker et al. (2022);

Goodman-Bacon (2021), among others) has uncovered two vital econometric issues in

standard staggered difference-in-difference methods such as linear two-way fixed effects

(henceforth, TWFE): (1) there is a possibility of bias due to ”forbidden comparisons”,

and (2) there is a possibility of bias and/or inefficiency due to misspecification in the

presence of right skewed dependent variables. For example, related to the first issue,

standard dynamic two-way fixed effects methods suffer from a problem that it aggre-

gates treatment effects over some valid comparisons but also over some “forbidden”

comparisons. Specifically, it also compares already treated units (as controls) with the

later treated units (as treated). When the treatment effects are heterogeneous over

time or across treatment units, it may lead to biased average treatment effect in the

treated (ATT) estimates. The second issue of misspecification in the presence of right

skewed dependent variable is also a serious issue. Using a log(1 + y) transformation

of the dependent variable, a log-linear, or an inverse hyperbolic sine (IHS) regression

produces inconsistent and biased estimates. Another method to reduce skewness, the

negative binomial regression, does not work with fixed effects.

This leaves us with three models that admit fixed effects and produce unbiased es-

timates: linear, Poisson, and rate regression. The literature has shown that the Poisson

regression is the best because it is the most efficient, having the lowest variance among

these three unbiased strategies. In the Appendix, we show the results of a Poisson

two-way fixed effects analysis for completeness. Linear regressions can be admitted,

however, in spite of problems of high variance, because there are no issues of bias and

inconsistency (Cohn et al. (2022)). This will make it harder to get significant results,

but at least the estimates will be unbiased and consistent with correct sign. Positive

significant results will suggest that despite the method producing high variance esti-

mates, there is evidence of an effect of data breach notification laws on firm innovation

activities.

In our analysis, we use the Borusyak et al. (2022) linear method (henceforth,

BJS) that addresses the first challenge of ”forbidden comparisons” and is unbiased
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and consistent (Cohn et al. (2022)), despite being inefficient. Other popular methods

that account for ”forbidden comparisons” are Callaway and Sant’Anna (2021), Sun

and Abraham (2021), and de Chaisemartin et al. (2020), among others. The BJS

estimator is the most efficient under the assumption of parallel trends because it uses

all of pre-treatment data in estimation and it is robust to cases when treatment effects

vary arbitrarily. The first estimation that we run is a linear difference-in-differences

regression accounting for ”forbidden comparisons” using the BJS 3-step imputation

representation for the efficient estimator, explained below:

1. Within the untreated observations only, estimate the λi and δt (by λ̂⋆
i , δ̂t

⋆
) by

OLS in

Yit = λi + δt + ϵit, (25)

where λi is unit (i.e. firm) fixed effect, δt is year fixed effect;

2. For each treated observation with wit ̸= 0, set Ŷit = λ̂⋆
i + δ̂t

⋆
and τ̂ ⋆it = Yit − Ŷit(0)

to obtain the estimate of τit;

3. Estimate the target τw by a weighted sum τ̂ ⋆w =
∑

it witτ̂
⋆
it;

The above model allows us to estimate unbiased and consistent dynamic treatment

effects using panel data on firms i over years t, where Yit is the time t firm-level measure

of innovation, Yit(0) is the period-t stochastic potential outcome of unit i if it is never

treated, Ω1 = {it ∈ Ω|treated = 1} is the set of treated observations (i.e., firms are

headquartered in a state that has adopted a DBN law), Ω0 = {it ∈ Ω|treated = 0} is

the set of untreated (i.e., never-treated and not-yet-treated) observations, τit = E[Yit −
Yit(0)] represents the causal effects on the treated observations it ∈ Ω1, wit are BJS-

derived pre-specified non-stochastic weights that depend on treatment assignment and

timing, but not on realized outcomes.

5.1 Data-intensive firms.

Figure (8) presents the BJS-weighted dynamic heterogeneous treatment effects of

citation-weighted patent counts by firm data-intensity (DI). The left-hand panel allows

heterogeneous pre-trends, while the right-hand panel assumes common pre-trends for

both groups, but estimates ATT separately post-treatment.
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As shown in Figure (8), data-intensive firms exhibit higher overall innovation after

the adoption of DBN laws. On the other hand, non-data intensive firms exhibit lower

overall innovation after the adoption of DBN laws, suggesting the adoption of these

laws is a significant negative shock for firms that imposes high costs which overall

discourage innovation. It is to be noted that both panels provide evidence on the

observed counterparts of the parallel trends assumption and show that we do not have

an unnatural experiment.

Figure 8: Citation-weighted patent count by data intensity (DI).

Legend: This figure plots BJS-weighted dynamic heterogeneous treatment effects of citation-weighted
patent counts by firm data-intensity (DI) pre- and post- treatment. The ‘0’ event is the staggered
adoption of DBN laws across the United States. Data intensive firms are identified using a combination
of the USPTO dataset on AI patents (Giczy et al. (2022)) and the KPSS patent dataset linked to firms
(Kogan et al. (2017)). Moreover, firms that are close to AI patenting firms in the sense of Hoberg
and Phillips (2016) and mirror their AI innovations are also considered data-intensive. This measure
has the advantage to be constructed from entirely publicly available data and it is different from IT
expenditures.

Figure (9) presents the BJS-weighted dynamic heterogeneous treatment effects of

citation-weighted cybersecurity patent counts by firm data-intensity (DI). The left-hand

panel allows heterogeneous pre-trends, while the right-hand panel assumes common pre-

trends for both groups, but estimates ATT separately post-treatment.

As shown in Figure (9), data-intensive firms exhibit a slight increase in cyber-

security patenting, although the results are not significant except for long-term horizons.

The insignificance of results is due to there being very few firms overall that produce

cybersecurity patents.

While data-intensive firms seem to modestly increase their overall issuance of cy-

bersecurity patents, in particular at longer horizons, we also investigate whether their

share of self -cybersecurity patent citations increases after the adoption of DBN laws.

43



Figure 9: Citation-weighted cybersecurity patent count by data intensity (DI).

Legend: This figure plots the effects of citation-weighted cybersecurity patent counts by firm data-
intensity (DI) pre- and post- treatment. The ‘0’ event is the staggered adoption of DBN laws across
the United States. Estimates for data intensive (DI) firms are in blue, while estimates for non-data
intensive (non-DI) firms are in red. Data intensive firms are identified as described previously.

Figure 10: Share of self -cybersecurity patent citations by data intensity (DI).

Legend: This figure plots the effects of the share of self -cybersecurity patent citations by firm data-
intensity (DI) pre- and post- treatment. The ‘0’ event is the staggered adoption of DBN laws across
the United States. Estimates for data intensive (DI) firms are in blue, while estimates for non-data
intensive (non-DI) firms are in red. Data intensive firms are identified as described previously.
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As shown in Figure (10), the share of self -cybersecurity patent citations for data-

intensive firms increases on impact, while the share of self -cybersecurity patent citations

for non-data-intensve firms stays flat. This suggests that data-intensive firms cite their

own cybersecurity patents much more often after the adoption of DBN laws.

Lastly, we also examine differences in patent type (product vs. process patents)

after the adoption of DBN laws. In our model, innovation primarily appears as an

expansion of product varieties or improvements in product quality. Therefore, the

outcomes of innovation that we are investigating should be evident in terms of product

innovation.

To validate this, we refocus on the product patents filed by the companies in our

study. Product patents signify both the introduction of new products and enhancements

in the quality of existing ones (Babina et al. (2023)). To identify these patents, we utilize

the patent claims dataset provided by Ganglmair et al. (2022), which categorizes patent

claims into product and process claims. We classify a patent as a product patent if 50

percent or more of its claims are specified as product claims, following the method

described in Babina et al. (2023). Similarly, we establish the definition of process

patents in a similar manner.

Figure (11) presents the BJS-weighted dynamic heterogeneous treatment effects

of citation-weighted patent counts by patent type (i.e., overall, product, and process)

for data-intensive firms. The left-hand panel allows heterogeneous pre-trends, while

the right-hand panel assumes common pre-trends for both groups, but estimates ATT

separately post-treatment.

As shown in Figure (11), data-intensive firms exhibit a slight increase in cyber-

security patenting, although the results are not significant except for long-term hori-

zons. As mentioned previously, linear staggered diff-in-diff methods that account for

’forbidden comparisons’ produce consistent and unbiased estimates, but they may pro-

duce insignificant estimates due to high variances, when the dependent variable is right

skewed, which is typical of the patent counts.
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Figure 11: Citation-weighted patent count: by patent type, for data-intensive firms

Legend: This figure plots the effects of citation-weighted cybersecurity patent counts by firm data-
intensity (DI) pre- and post- treatment. The ‘0’ event is the staggered adoption of DBN laws across
the United States. Estimates for data intensive (DI) firms are in blue, while estimates for non-data
intensive (non-DI) firms are in red. Data intensive firms are identified as described previously.

5.2 In-house cybersecurity firms.

Figure (12) repeats the exercise of examining firms’ overall patenting behavior

by the firm’s choice of in-house versus external cybersecurity protection. As shown

in Figure (12), in-house cybersecurity firms exhibit a slight increase in cyber-security

patenting, although the results are not significant except for long-term horizons again.

Figure (13) presents the BJS-weighted dynamic heterogeneous treatment effects

of citation-weighted overall patent counts by firm data-intensity (DI) interacted with

in-house cybersecurity (in-house CS) protection choices. The left-hand panel allows

heterogeneous pre-trends, while the right-hand panel assumes common pre-trends for

both groups, but estimates ATT separately post-treatment.

As shown in Figure (13), firms that use both in-house cyberprotection and are

data-intensive exhibit a slight increase in cyber-security patenting, although the results

are not significant.
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Figure 12: Citation-weighted patent count by in-house vs. external cyberprotection.

Legend: This figure plots BJS-weighted dynamic heterogeneous treatment effects of citation-weighted
cybersecurity patent counts by firm’s choice of in-house vs. external cybersecurity protection pre-
and post- treatment. The ‘0’ event is the staggered adoption of DBN laws across the United States.
Estimates for in-house cybersecurity (in-house CS) firms are in blue, while estimates for non-in-house
cybersecurity (non-in-house CS) firms are in red. In-house cybersecurity firms are identified if they
cite at least one of their own cybersecurity patents in their general patents.

Figure 13: Citation-weighted patent count, data intensity interacted with in-house
protection

Legend: This figure plots BJS-weighted dynamic heterogeneous treatment effects of citation-weighted
cybersecurity patent counts by firm’s choice of in-house vs. external cybersecurity protection interacted
with data-intensity pre- and post- treatment. The ‘0’ event is the staggered adoption of DBN laws
across the United States. Estimates for in-house cybersecurity (in-house CS) firms are in blue, while
estimates for non-in-house cybersecurity (non-in-house CS) firms are in red. In-house cybersecurity
firms are identified if they cite at least one of their own cybersecurity patents in their general patents.
Data intensity firms are identified as mentioned previously.
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5.3 Cohort effects

We also examine whether firms’ innovation changes after the adoption of DBN

laws depending on the cohort. This could happen if later treated cohorts anticipate

DBN law adoption in their state. In that case, the estimates will be smaller for later

treated cohorts. It could also happen if the nature of cyberrisk has changed over time

in such a way that first movers had an advantage. Moreover, if cyberrisk has changed in

nature and severity over the last twenty years, it could be that it became too costly for

later treated cohorts to invest resources into growth and innovation because too many

resources had to go directly in managing cyberrisk and actual cyberattacks. While we

cannot distinguish between these mechanisms empirically, all could be at play at the

same time.

Figure 14: Treatment effects by cohort (= year of DBN Implementation)

Legend: This figure plots treatment effects by cohort for data-intensive and non-data intensive firms.
Estimates for data intensive firms (DI) are in blue, while estimates for non-data intensive (non-DI)
firms are in red. Data intensity firms are identified as mentioned previously.

Figure (14) shows that, indeed, the very earliest treated data-intensive cohorts

responded the most. These effects are averaged all the post-treatment years.

In Figure (15) we explore the DBN law effects in a particular year. The period 2004

to 2008 is the most intense period in terms of increase in firms’ innovation activities in

response to the increase in cyberrisk, as measured by DBN laws.
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Figure 15: Treatment effects by calendar year

Legend: This figure plots treatment effects by calendar year for data-intensive and non-data intensive
firms. Each estimate is the sum of effects of all treated cohorts up to and including that year in that
particular year. So for instance 2008 will contain the effect for 3rd year since the firms treated in 2005,
2nd year effects for firms treated in 2006 and so on. Estimates for data intensive firms (DI) are in blue,
while estimates for non-data intensive (non-DI) firms are in red. Data intensity firms are identified as
mentioned previously.
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6 Conclusion

In this paper, we construct a growth model of the data economy where data, crucial

for business optimization, is at risk of being damaged and destroyed by cyber criminals.

We allow firms to protect themselves against cybercrime and even trade cybersecurity

protection. Our simple model features heterogeneity in the type of cybersecurity a firm

invests in. Digitally savvy firms invest in in-house cybersecurity, which can be used

to improve the quality of other products. Non-digitally-savvy firms invest in external

cybersecurity they source from the digitally savvy firms. This external cyberprotection

they buy is assumed to be not tailored enough for them to be used for the development

of other products within those firms.

We show that cybercrime risk causes lower growth and innovation for all firms. The

increased threat of cybercrime, however, also drives innovation in security measures and

systems, leading to advancements in technology and potential long-term growth when

security measures are developed in-house, in digitally-savvy firms. Essentially, the risk

of cybercrime motivates data-intensive companies to actively pursue digital innovation,

subsequently enhancing productivity in various aspects of their operations.

In other words, digitally-savvy firms which develop products and services to pro-

tect themselves against cyber-risk benefit from these products and services to improve

the quality of their other digital products. In the context of this, it’s noteworthy to

consider how Amazon’s innovation with the 1-click purchase system relies on a patented

innovation that ensures secure data transmission over the internet. This innovation and

its associated patent not only revolutionized the online shopping experience but also

highlight the critical role of secure data transmission in the digital realm. Amazon’s

use of their own, internally-developed cyber-security innovation, into their other digital

product offerings aligns with our empirical analysis, confirming that digitally-intensive

firms respond to cyber risk by boosting their innovation activities with positive spillover

effects across multiple product domains.

We also find that early treated firms, in the sense of firms being in states that

adopted data breach notification laws early, display the strongest response. This sug-

gests that the nature of cybercrime may have changed over time, becoming more severe

and debilitating, increasing firms’ costs beyond their ability to invest in innovation to

begin with. The exact mechanism for this effect is interesting in itself and the subject

of future investigation.
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Appendix A Theoretical derivations

A.1 Model Solution Details

There are two sources of uncertainty in firm i’s problem at date t: the (random)

optimal technique θi,t, and the aggregate price Pt. Let (µ̂i,t,Ωi,t) denote the conditional

mean and precision of firm i belief about θi,t given its information set at date t, Ii,t.

In this section, we will first describe the firm belief updating process about its

optimal technique. Next, we argue that in this environment, the firm’s optimal pro-

duction choice is deterministic, and thus the price is deterministic as well. Finally, we

lay out the full set of equations that characterize the equilibrium of this economy with

two groups of firms.

Belief updating The information problem of firm i about its optimal technique θi,t

can be expressed as a Kalman filtering system, with a 2-by-1 observation equation,

(µ̂i,t,Ωi,t).

We start by describing the Kalman system, and show that the sequence of condi-

tional variances is deterministic. Note that all the variables are firm specific, but since

the information problem is solved firm-by-firm, for brevity we suppress the dependence

on firm index i.

At time t, each firm observes two types of signals. First, date t−1 output provides

a noisy signal about θt−1:

yt−1 = θt−1 + ϵa,t−1, (26)

where ϵa,t ∼ N (0, σ2
a). We provide model detail on this step below. Second, the firm

observes nt = zt data points as a bi-product of its economic activity. The set of signals
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{st,m}m∈[1:ni,t] are equivalent to an aggregate (average) signal s̄t such that:

s̄t = θt + ϵs,t, (27)

where ϵs,t ∼ N (0, σ2
ϵ/nt). The state equation is

θt − θ̄ = ρ(θt−1 − θ̄) + ηt,

where ηt ∼ N (0, σ2
θ).

At time, t, the firm takes as given:

µ̂t−1 = E
[
θt | st−1, yt−2

]
Ω−1

t−1 = V ar
[
θt | st−1, yt−2

]
where st−1 = {st−1, st−2, . . . } and yt−2 = {yt−2, yit−3, . . . } denote the histories of the

observed variables, and st = {st,m}m∈[1:ni,t].

We update the state variable sequentially, using the two signals. First, combine

the priors with yt−1:

E
[
θt−1 | It−1, yt−1

]
=

Ωt−1µ̂t−1 + σ−2
a yt−1

Ωt−1 + σ−2
a

V
[
θt−1 | It−1, yt−1

]
=

[
Ωt−1 + σ−2

a

]−1

E
[
θt | It−1, yt−1

]
= θ̄ + ρ ·

(
E
[
θt−1 | It−1, yt−1

]
− θ̄

)
V
[
θt | It−1, yt−1

]
= ρ2

[
Ωt−1 + σ−2

a

]−1
+ σ2

θ

Then, use these as priors and update them with s̄t:

µ̂t = E
[
θt | It

]
=

[
ρ2
[
Ωt−1 + σ−2

a

]−1
+ σ2

θ

]−1

· E
[
θt | It−1, yt−1

]
+ ntσ

−2
ϵ s̄t[

ρ2
[
Ωt−1 + σ−2

a

]−1
+ σ2

θ

]−1

+ ntσ−2
ϵ

(28)

Ω−1
t = V ar

[
θ | It

]
=

{[
ρ2
[
Ωt−1 + σ−2

a

]−1
+ σ2

θ

]−1

+ ntσ
−2
ϵ

}−1

(29)

Multiply and divide equation (28) by Ω−1
t as defined in equation (29) to get

µ̂t = (1− ntσ
−2
ϵ Ω−1

t )
[
θ̄(1− ρ) + ρ ((1−Mt)µt−1 +Mtỹt−1)

]
+ ntσ

−2
ϵ Ω−1

t s̄t, (30)
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where Mt = σ−2
a (Σt−1 + σ−2

a )−1.

Equations (29) and (30) constitute the Kalman filter describing the firm dynamic

information problem. Importantly, note that Ω−1
t is deterministic.

Appendix B Modeling quadratic-normal signals from

output

When yt−1 is observed, agents can back out At−1 exactly. To keep the model

simple, we assumed that when agents see At−1, they also learn whether the quadratic

term (at−1 − θt−1 − ϵa,t−1)
2 had a positive or negative root. An interpretation is that

they can figure out if their action at was too high or too low.

Relaxing this assumption complicates the model because, when agents do not know

which root of the square was realized, the signal is no longer normal. One might

solve a model with binomial distribution over two normal variables, perhaps with other

simplifying assumptions. For numerical work, a good approximate solution would be to

simulate the binomial-normal and then allows firms to observe a normal signal with the

same mean and same variance as the true binomial-normal signal. This would capture

the right amount of information flow, and keep the tractability of updating with normal

variables.

Appendix C The cybersecurity planning problems:

optimality conditions and steady state

results

C.1 H-type firm

The current-value Hamiltonian function for the H-type firm:

H(ΩH,t; τt; δt; pH,t) = ΠH,t,sec

+βpH,t+1

{[
ρ2(ΩH,t + σ−2)−1 + σ2

]−1
+
[
1− ϑe−(τt−ι 1−u

u
δt)

]
zσ−2 − Ωi,t

}
(31)

where pH,t is the shadow-price or co-state variable associated with the state vari-
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able. The transversality condition is lim
t→∞

ΩH,tβ
tpH,t = 0.

The first-order optimality conditions:

∂H

∂τt
= 0 ⇒ βpH,t+1 =

1− bAeb(τt−ι 1−u
u

δt)

ϑe−(τt−ι 1−u
u

δt)zσ−2
(32)

∂H

∂δt
= 0 ⇒ βpH,t+1 =

πt − bAιeb(τt−ι 1−u
u

δt)

ϑιe−(τt−ι 1−u
u

δt)zσ−2
(33)

βpH,t+1 − pH,t = − ∂H

∂ΩH,t

⇒
[
ρ+

σ2

ρ
(ΩH,t + σ−2)

]−2

βpH,t+1 = pH,t − Ω−2
H,t (34)

From (32) and (33), it emerges a constant optimal trading price, which is sim-

ply πt = ι. The price of protection is directly associated with the degree of its own

nonrivalry. If protection is completely non-rival (i.e., ι = 0), then its price is zero; if

protection is fully rival, its price is 1.

Replacing (32) into (34), and evaluating in the steady state, one gets:

ΓH =
ϑze−(τ

∗−ι 1−u
u

δ∗)

1− bAeb(τ
∗−ι 1−u

u
δ∗)

, (35)

with ΓH defined as ΓH ≡
{

1
β
−
[
ρ+ σ2

ρ
(Ω∗

H + σ−2)
]−2

}
(Ω∗

H)
2 σ2.

Given constraint (14), it is also true, for the H-firms:

ΞH =
[
1− ϑe−(τ

∗−ι 1−u
u

δ∗)
]
z, (36)

with ΞH ≡
{
Ω∗

H − [ρ2(Ω∗
H + σ−2)−1 + σ2]

−1
}
σ2.

Combining expressions (35) and (36), one obtains a steady state relation that

allows for the derivation of Ω∗
H :

ΓH =
z − ΞH

1− bA
(

ϑz
z−ΞH

)b
(37)

ΓH is such that if Ω∗
H = 0 then ΓH = 0 and if Ω∗

H → +∞ then ΓH → +∞.

ΞH is such that if Ω∗
H = 0 then ΞH = − 1

1+ρ2
and if Ω∗

H → +∞ then ΞH →

+∞. Hence, if Ω∗
H = 0 then z−ΞH

1−bA
(

ϑz
z−ΞH

)b =
z+ 1

1+ρ2

1−bA

(
ϑz

z+ 1
1+ρ2

)b ; this is a positive value for
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bA

(
ϑz

z+ 1
1+ρ2

)b

< 1. If Ω∗
H → +∞ then z−ΞH

1−bA
(

ϑz
z−ΞH

)b → −∞.

By combining the above reasoning, as long as bA

(
ϑz

z+ 1
1+ρ2

)b

< 1, the l.h.s. of

(37) (positively sloped) will intersect the r.h.s. of (37) (negatively sloped) at one single

point, and therefore a unique Ω∗
H is derived.

Thus, condition bA

(
ϑz

z+ 1
1+ρ2

)b

< 1 must hold, which can be rewritten as a con-

straint on ϑ: ϑ <
z+ 1

1+ρ2

z

(
bA

)−1/b
. Because ϑ ≤ 1, this constraint is always satisfied as

long as bA < 1.

From (36) also note that the value of security that firm H holds after trade is also

a unique constant value,

τ ∗ − ι
1− u

u
δ∗ = − ln

(
z − ΞH

ϑz

)
(38)

C.2 L-type firm

Turning to the L-type firm, the current-value Hamiltonian is:

H(ΩL,t; δt; pL,t) = ΠL,t,sec

+βpL,t+1

{[
ρ2(ΩL,t + σ−2)−1 + σ2

]−1
+
(
1− ϑe−δt

)
zσ−2 − Ωi,t

}
(39)

The transversality condition: lim
t→∞

ΩL,tβ
tpL,t = 0.

The first-order conditions are:

∂H

∂δt
= 0 ⇒ βpL,t+1 =

πt

ϑe−δtzσ−2
(40)

βpL,t+1 − pL,t = − ∂H

∂ΩL,t

⇒
[
ρ+

σ2

ρ
(ΩL,t + σ−2)

]−2

βpL,t+1 = pL,t − Ω−2
L,t (41)

Replace (40) into (41), and recall that we already know that πt = ι. With this

information, the following steady state condition holds:

ΓL = ϑze−δ∗ , (42)

with ΓL ≡
{

1
β
−

[
ρ+ σ2

ρ
(Ω∗

L + σ−2)
]−2

}
(Ω∗

L)
2 σ2.
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Given constraint (16),

ΞL =
(
1− ϑe−δ∗

)
z, (43)

with ΞL ≡
{
Ω∗

L − [ρ2(Ω∗
L + σ−2)−1 + σ2]

−1
}
σ2.

From (42) and (43), a simple expression emerges for the determination of Ω∗
L,

ΓL = z − ΞL (44)

Equation (44) allows for the derivation of a unique Ω∗
L, because the l.h.s. of the

expression is a continuous increasing function starting at zero and diverging to infinity

(as ΩL increases) and the l.h.s. is a continuous decreasing function starting at a positive

value and falling to minus infinity (as ΩL increases).

From (43), one can also compute the steady state value of the amount of security

bought by firm L:

δ∗ = − ln

(
z − ΞL

ϑz

)
(45)

A unique δ∗ exists as well.

By now, we have computed all the relevant steady state values: Ω∗
H and Ω∗

L, and

also δ∗ (determined from the L-firm problem), and τ ∗, determined from (38) after know-

ing δ∗ (the H-type only decides how much to invest in cyberprotection after knowing

how much protection firms in the L sector are willing to buy at price πt = ι).

C.3 Steady-state

Possible steady state scenarios:

• (i) The cybersecurity optimal result is such that τ ∗ ≤ 0: firms H do not invest in

cybersecurity τ ∗ = 0 and firms L have no cyberprotection to buy, δ∗ = 0. Firms

face the problem with no security and their profits are: Π∗
H,cy = Π∗

L,cy.

• (ii) The cybersecurity optimal result is such that τ ∗ > 0, δ∗ ≤ 0: firms L will

not buy any protection and face the no-protection problem, with profits Π∗
L,cy.

Firms of the H type have two possibilities: to invest τ ∗, even though they cannot

optimally exchange protection, or not to invest; they compare profits Π∗
H,sec and

Π∗
H,cy and choose the option that delivers the highest profits.

• (iii) The cybersecurity optimal result is such that τ ∗ > 0 and δ∗ > 0: firms find

it optimal to invest a positive value in cybersecurity (H) and to trade a positive
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amount of cybersecurity. In this case, the best option is the cybesecurity one with

profits Π∗
H,sec and Π∗

L,sec

Note that conditions τ ∗ > 0 and δ∗ > 0 impose relevant constraints on parameter

values, namely, in the first case, z > ΞH and ϑ > z−ΞH

z
and, in the second case, z > ΞL

and ϑ > z−ΞL

z
. These results suggest that investment and trading in cybersecurity

require the cybercrime index ϑ to be above a given threshold.

C.4 Comparative statics

A few intuitive comparative statics outcomes (in the cybersecurity setting, i.e., for

τ ∗ > 0, δ∗ > 0):

• (i) ∆z > 0: l.h.s. of (37) does not shift; r.h.s. of (37) shifts right ⇒ higher Ω∗
H /

l.h.s. of (44) does not move; r.h.s. of (44) shifts right ⇒ higher Ω∗
L / δ∗ and τ ∗

increase / output of both types of firms will increase.

• (ii) ∆u > 0: Ω∗
H , Ω

∗
L, and δ∗ do not change; only τ ∗ decreases - logical result:

relatively more firms investing in cyberprotection implies lower investment by each

of them to attain the optimal result. Output of L firms is maintained; output of

H firms is also maintained (the decrease in τ ∗ is compensated by the increase in

u and, according to (38), there is no change on the available protection and, thus,

on output).

• (iii) ∆ι > 0: Ω∗
H , Ω

∗
L, and δ∗ do not change; only τ ∗ decreases - logical result: a

lower degree of non-rivalry in selling protection implies H firms will invest more

to keep more protection and to profit more from trading. Output does not change

for any of the firms for reasons similar to those of the previous item.

• (iv) ∆ϑ > 0: l.h.s. of (37) does not shift; r.h.s. of (37) shifts right ⇒ higher Ω∗
H

(this is the positive effect that innovation from cybersecurity has over knowledge

when H firms increase cybersecurity in response to cybercrime) / Ω∗
L remains

unchanged / δ∗ increases (L firms demand more security to face higher risks) / τ ∗

increases due to the increase on δ∗ and directly on ϑ. Output levels will increase,

given the corresponding expressions.

• (v) ∆b > 0: l.h.s. of (37) does not shift; r.h.s. of (37) shifts right ⇒ higher Ω∗
H /

Ω∗
L remains unchanged / τ ∗ increases because of the increase in Ω∗

H ; δ
∗ does not

change / the output of L firms does not change / the output of H firms increases.
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Appendix D Simulating the data economy: a nu-

merical example

Take the values in Table 1.

Parameter Symbol Value

Data endowment z 10

Coefficent of the AR(1) process ρ 0.9

Variances σ2 2.5

Share of H-type firms u 1/3

Non-rivalry parameter ι 0.6

Intertemporal discount factor β 0.96

Cyberrisk index ϑ 0.75

Maximum quality A 25

Inonvation externality b 0.035

Capital cost r 1

Table 1 - Values of parameters.

For these values of parameters: Ω∗
H = 3.224 and Ω∗

L = 1.609. These results are

found in the intersection of the l.h.s. and r.h.s. of (37) and (44) [Fig.1]

Applying the corresponding formulas, δ∗ = 0.130 and τ ∗ = 1.296 (these are both

positive values and, therefore, firms engage in cybersecurity investment and cybersecu-

rity trading).

Replacing the equilibrium values in the expressions for output and profits, A∗
H =

23.207 and A∗
L = 21.879 (A∗

H > A∗
L); Π

∗
H,sec = 21.068 and Π∗

L,sec = 20.800 (Π∗
H,sec >

Π∗
L,sec). Also, Y

∗ = uA∗
H + (1− u)A∗

L = 22.321.

D.1 Comparative statics

How do steady state values change with cyberrisk?

Recall that ϑ ∈ [0, 1]. Evaluating the model for different values of ϑ (and letting all

other values be as in Table 1), we find two thresholds: at ϑ = z−ΞL

z
= 0.6583, optimal

security purchasing, δ∗, changes from negative to positive, implying that firms L buy

protection only for ϑ > 0.6583. For ϑ ≤ 0.6583, H firms have to choose whether to

invest in protection or not, knowing that they will sell no protection. They compare
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profits Π∗
H,sec and Π∗

H,cy; these are equal around ϑ = 0.3. For ϑ > 0.3, H-type firms

invest in protection, otherwise they do not.

Fig.2 draws profits without protection for both firms (these are identical), the

profits of the H firms with security investment, and the profits of the L firms under

security trading. The two mentioned thresholds are highlighted.

Hence: for ϑ ≤ 0.3, H-firms do not invest in cyberprotection and L-firms do not

buy protection; for 0.3 < ϑ ≤ 0.6583, H firms invest in protection and L firms buy

no protection; for ϑ > 0.6583, H-type firms invest in protection and L-type firms buy

protection. In this last segment, the higher the value of ϑ, the more the H firms invest

and the more L firms buy.

Fig. 3 presents the investment and trading levels. Again, the two thresholds are

clear (notice the second jump in τ ∗; this occurs because to the right of that point,

H-type firms need to invest in security for their one use but also to sell to firms in the

L group).

Fig. 4: output of each type of firm and aggregate output, for different levels of

cyberrisk. In the first segment, the output is the same (the firms are identical); in the

second segment, L firms face increasing risk but do not protect and, consequently, out-

put falls (because the stock of knowledge falls); H firms start investing in cybersecurity

what has the innovation side effect and, therefore, they are able to increase output.

In the third segment, H firms continue to invest in cyberprotection and innovate; L

firms start purchasing security that they cannot use to innovate but that prevents out-

put from falling (i.e., it allows to maintain the stock of knowledge as the cyberrisk

increases).

The aggregate output is a weighted average of the output of the two types of firms

(recall that, in the example, L firms are two thirds of the total number of firms). Con-

cerning the evolution of Y ∗ as ϑ increases, one notices that an initial fall is counteracted

when H firms start to invest in protection, and this process gains a new impetus when

L firms start protecting as well.

We can recover the representation of profits in Fig.2, to draw the actual profits,

given the choices of firms on whether to get protection or not. Fig. 5 clarifies again the

existence of three stages and the fact that cybercrime is much less harmful for H-type

firms, because these make use of the innovation externality that cybersecurity allows

for.
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D.2 Does data growth cause economic growth?

In the model, there are various parameters whose values can change - ϑ, ι, u, b, ... -

but only one can grow in a sustained way over time, which is the endowment of data,

z. The question is: if one makes z to increase over time at a constant rate, will the

economy’s output also grow over time at a constant rate?

The answer is no: simulations show that although the increase in z leads to in-

creases in Ω∗
H and Ω∗

L, they also lead to falls in δ∗ and τ ∗ (more data and a same

cyberrisk lead to the need of less protection). For large values of z, τ ∗ becomes zero,

and without investment in cybersecurity there is no cyberrisk induced innovation and

the maximum quality of output cannot expand. The increases in Ω∗
H and Ω∗

L are as-

sociated with decreasing marginal returns and, therefore, although z might grow in a

sustained way, this is not accompanied by an increase in the firms’ output.
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