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COMPETITIVE MODEL SELECTION IN ALGORITHMIC TARGETING

ABSTRACT

This paper studies how market competition influences firms’ algorithm design in the
context of targeting. Firms face the general trade-off between bias and variance when
choosing the design of a supervised learning algorithm in terms of model complexity
or the number of predictors to accommodate. Each firm then appoints a data analyst
that uses the chosen algorithm to estimate demand for multiple consumer segments,
based on which, it devises a targeting policy to maximize estimated profit. We show
that competition may induce firms to choose simpler algorithms with more biases. This
implies that more complex/flexible algorithms tend to be more valuable to firms with
greater monopoly power.

Keywords: algorithmic competition, model selection, algorithmic bias, data analytics, target-
ing



1 Introduction

The digital economy has made available unparalleled amounts of consumer data
to firms. Over the past decade firms are increasingly delegating many business de-
cisions, such as pricing, advertising and targeting, to artificial intelligence (AI) algo-
rithms, which utilize large amounts of data on consumer characteristics and behaviors.
One of the defining characteristics of big data environments is the rich and high di-
mensional information on consumer characteristics, attitudes, opinions and behaviors.
Often the number of variables and aspects of consumer behaviors that is present can be
comparable to the size of the dataset. Consequently, the big-data environment might
confront the firms with the classic over-fitting problem in statistical learning: the algo-
rithm may use a large number of available consumer predictors and complex functions
to map the data onto predictions on consumer behaviors, but this increases the vari-
ance of the estimated predictions and thus reduces out-of-sample prediction precision.
Alternatively, the algorithm can be regularized wherein the complex functions can be
penalized leading to the selection of only the most relevant variables. This would re-
duce the variance of the estimated predictions but then may introduce biases in the
estimates and thus compromise prediction accuracy. This is the general bias-variance
tradeoff that underlies the design of any supervised learning algorithm. Our goal in
this paper is to reexamine this tradeoff under a competitive setting.

Particularly, we first recognize that the primary job of an AI algorithm is to make
predictions (Agrawal et al. 2018), and the primary reason for a user of an algorithm to
make predictions is to facilitate decision making. Take self-driving cars as an example.
The pattern recognition algorithms are used to predict whether an object is a pedestrian,
a traffic light or a car, etc., the purpose of which is to help the car decide whether to
proceed or make a stop. While many engineering applications such as the self-driving
cars feature single decision makers’ problems, in most economics and business settings,
the user of an algorithm is rarely the only decision maker in the market. Consequently,
market competition will affect the users’ decision making, which in turn has further
implications for their choice of the algorithm designs, because the decisions are based
on the predictions that are made by the algorithms.

These considerations motivate us to study how market competition influences
firms’ algorithm design which trades off bias and variance in model selection. We
choose the specific context of targeting (or targeted advertising) to study the problem of
“competitive model selection”, because targeting has been one of the most prominent
business applications of AI algorithms that leverage big data on consumers. Consistent
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with common industry practices, we model firms’ algorithmic decision making process
as involving two steps. First, a firm chooses an algorithm design in terms of a statisti-
cal model and fits the model with data. Second, it makes targeting decisions based on
the model estimates under the market competition. This setup ensures that the firms’
choices of algorithm designs will have an active impact on their strategic decisions on
targeting. On the other hand, it also implies that our modelling choice will inevitably
depart from a standard Bayesian approach, because for Bayesian decision makers, data
are informative signals that always update their belief by Bayes’ rule, and consequently,
there is no active role an algorithm design could play. To avoid the inconsistency with
a Bayesian approach, we rationalize our algorithmic decision making process by con-
sidering delegation of a firm’s data analytics process to an analyst under an incomplete
contract. In other words, we view a data analytics algorithm as one way to represent-
ing consumer data for the firms’ decision making so that different algorithm designs
amount to different representations of consumer information, which induces the firms
to make different decisions.

We operationalize the firms’ algorithm design problem of model selection by a
popular supervised learning algorithm—the Lasso regression, which selects variables
via penalization on variable coefficients so as to enhance the prediction accuracy and
model interpretability. The Lasso regression is a natural choice for our purpose be-
cause the bias-variance tradeoff is directly modulated by the degree of penalization, or
the choice of a hyperparameter. Moreover, it is simple enough to allow for analytical
tractability while flexible enough for practical usage.

To be more specific, we consider a duopoly market in which two firms compete by
targeting consumers who are heterogeneous in some characteristic. Targeting is costly
and acts as a form of informative advertising (Butters 1977). Firms observe consumer
characteristics from their data but are uncertain about the profitability of different con-
sumer types, something they are interested to estimate via data analytics. Given the
specialized expertise needed to deploy predictive algorithms, the firms delegate the
task of data analytics to a data analyst, who is equipped with the technology of run-
ning Lasso regressions. Meanwhile, the firms retain the strategic choice of the hyper-
parameters, which determine the complexity of the algorithms. Lastly, based on the
model estimates reported by one’s analyst, each firm chooses the targeting strategy to
maximize estimated profit.

We first analyze the monopoly benchmark and show that it is optimal for the firm
to choose zero penalization. In other words, a monopoly firm prefers a more complex
or flexible algorithm design which admits more variance but has lower bias. This en-
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ables the firm to achieve greater market coverage in the sense that it allows it to target
the more profitable consumer segment with greater likelihood. Then, we proceed to an-
alyze the competitive market and find that in equilibrium, at least one firm will choose
positive penalization which introduces bias while reducing variance by selecting fewer
variables for making predictions. In other words, competition favors simpler models
for targeting in equilibrium. The general intuition is that under competition, the firms
have two incentives: i) to correctly target the more profitable segment, and ii) to avoid
competition and the overlap in targeting. Simpler models lead to more uniform tar-
geting, which helps to reduce overlap and soften competition. Overall, the suggestion
of our analysis is that more flexible and complex algorithms such as deep learning are
likely to be of higher usage value to firms with greater monopoly power for targeting.

2 Related Research

Our paper is broadly related to the emerging research literature which examines
strategic interactions and incentives with algorithms. One strand of research tackles
the problem of algorithm design for a principal when faced with strategic agents who
can manipulate the information that is provided to the algorithm. For example, Eliaz
and Spiegler (2019) examines a statistical algorithm faced with an agent who strategi-
cally self-reports her personal data and highlights the role of model selection and the
incentive-compatibility issues in truthful reporting that it creates for the agent. In a sim-
ilar vein, Björkegren et al. (2020) considers individuals who may observe the rules of the
machine learning algorithms and strategically manipulate their behavior to get desired
outcomes. The paper derives an equilibrium estimator that is robust to manipulation
given the costs of manipulating different behaviors. Our paper examines the model se-
lection problem in a competitive market where firms choose the equilibrium design of
their consumer targeting algorithms. Thus here the extent to which firms choose more
or less flexible algorithms and the associated bias-variance trade-off is governed by the
equilibrium consumer targeting incentives of competing firms.

There is a stream of research on competitive interactions between multiple algo-
rithms. Salant and Cherry (2020) consider statistical inference in games, where each
player obtains a small random sample of other players’ actions, uses statistical inference
to estimate their actions, and chooses an optimal action based on the estimate. Liang
(2020) considers games of incomplete information in which the players have data and
use algorithms to derive their beliefs. Olea et al. (2019) study a game between agents
competing to predict a common variable, and where agents obtain the same data but
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differ in the algorithms they utilize for prediction. In all these papers, the algorithms
under consideration are fixed exogenously. Here, in contrast, we focus on the strategic
choice of algorithms in competitive environments.

There is also recent research on how algorithmic decision making affects market
competition, a question complementary to ours. For example, Miklós-Thal and Tucker
(2019) model the effect of AI algorithms as better demand forecasting and show that
algorithms could impede tacit price collusion. Calvano et al. (2020) examine firms en-
dowed with Q-learning algorithms in repeated interactions to show that they can ro-
bustly learn to cooperate to charge supra-competitive prices without communicating
with each other. Lastly, we contribute to the traditional literature on competitive tar-
geting strategies (e.g., Shaffer and Zhang 1995; Chen et al. 2001; Iyer et al. 2005; Berge-
mann and Bonatti 2011) by introducing the algorithm design and decisions on model
selection to the consumer targeting strategies of firms.1

3 Model Setup

Consider a market consisting of consumers who are heterogeneous in a character-
istic x ∈ {1, 0}. A fraction ϕ of consumers have x = 1 and the remaining 1− ϕ fraction
have x = 0, where ϕ ∈ (0, 1). For example, xi may represent consumer i’s demograph-
ics (1 for men and 0 for women), or past consumer behaviors (1 for those who have
visited some website and 0 otherwise), etc. This case of a single characteristic offers the
simplest setup for the development of the idea.

There are two firms competing for consumers in the market, indexed by j = 1, 2.
Firms can observe each consumer i’s characteristic xi and decide which type(s) of con-
sumers to target. Each firm has the ability to reach and target θ ∈ (0, 1) fraction of the
consumer population in the market. Targeting can therefore be also interpreted as a
form of costly informative advertising that informs consumers of the existence of the
product (Butters 1977). If consumer i is only targeted by firm j, the consumer will only
buy from the firm, and the firm earns a monopolistic profit of πj(xi); on the other hand,
if the consumer is targeted by both firms, she will randomly choose a firm to make a
purchase, and thus firm j’s expected profit is πj(xi)/2. Lastly, if a consumer is not tar-
geted by either of the two firms, she will not make a purchase from the two firms. To
focus the exposition on the effects of algorithmic targeting, we have abstracted away

1Algorithmic targeting has also been the focus of several recent empirical studies (e.g., Hitsch and
Misra 2018; Simester et al. 2020; Rafieian and Yoganarasimhan 2021).
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the firms’ decisions on prices.2

Given that x is binary, it is without loss of generality to write down πj(x) as the
following linear function,

πj(x) = αj + βjx.

Firm j does not know αj , βj a priori. We assume a common prior for αj , βj , which fol-
low differentiable distribution functions A and B respectively. A is supported in [α, α],
and B is a symmetric distribution around zero, supported in [−β, β]. α1, β1, α2 and
β2 are independently distributed. The firm is interested in estimating αj and βj given
the available data. It delegates the task of estimation and prediction to a data analyst
which is equipped with the technology of running prediction and model selection al-
gorithms.3 Specifically, assume that the analyst uses the technology of running Lasso
regressions and that a complete contract between the firm and the data analyst is not
possible. Rather, the firm can only specify the tuning parameter of the Lasso regression.
Given the tuning parameter specified by the firm, the analyst runs the Lasso regression
on the data to generate an estimate of αj and βj .

It is assumed that each firm j and its data analyst have a private access to a data-
set with two observations. The l-th observation contains a pair of (xl, ylj) for l = 0, 1,
where, x0 = 0, x1 = 1 and

ylj = πj(x
l) + εlj = αj + βjx

l + εlj .

The error term, εlj is i.i.d. across j and l and follows a differentiable distribution function
G, which is symmetric around zero and supported in [−ε, ε]. Further define ∆εj ≡
ε1j−ε0j , which follows distribution function G̃, where G̃(e) = Pr(ε1j−ε0j ≤ e) =

∫ ε
−εG(e′+

e)dG(e′). We make the following assumption.

Assumption 1. G̃′ is single-peaked; that is, G̃′(e) weakly decreases (increases) with e for e > 0

(e < 0).

Note that the data-set that each firm uses for targeting is assumed to be exogenous
and independent of the ensuing market competition. One interpretation of this setup is

2If price discrimination based on targeting outcomes is allowed, we may endogenize prices in a triv-
ial way. If a consumer is targeted by only one firm, the firm sets the monopoly price and still earns a
monopoly profit; on the other hand, if a consumer is targeted by two firms, they engage in a Bertrand
competition, which drives the price to be the marginal cost and each firm’s profit to be zero. This setting
will generate qualitatively the same result as in the model without explicit consideration of prices.

3One can imagine the “firm” to be a senior data scientist who decides the architecture design of the al-
gorithms including the choice of the programming language, libraries as well as the modeling approaches,
while the “data analyst”’s main responsibility is to implement the chosen algorithms.
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that either the two firms are new to the market, or that they have recently adopted the
data analytics technology, such that before a full-blown implementation, each of them
has experimented/test-marketed the technology in some sub-markets such as different
geographic regions or sales channels that do not overlap. This would generate a “mo-
nopolistic" private data-set for each firm. In Section 6, we will describe an alternative
setting in which the data-set results from market competition, and argue that it would
nevertheless generate results that are qualitatively similar to that in the main model.

Based on the data, the analyst runs a Lasso regression, which is represented by the
following minimization problem:

(
α̂j(λj), β̂j(λj)

)
= argmin

(aj ,bj)

1∑
l=0

(
ylj − aj − bjx

l
)2

+ λj |bj |, (1)

where λj ≥ 0 is the tuning parameter specified by firm j that measures the degree
of penalization on β̂j(λj). The choice of λj indicates the model selection decision of
the firm: At the one extreme when λj = 0, this corresponds to the case of a standard
ordinary least square (OLS) regression and in this setup this is equivalent to the firm
deciding on the maximum model flexibility and choosing all the available predictor
variables. This will imply estimated parameters which are unbiased but which will
have maximum variance. In contrast, when λj is large and the penalization is large,
then the model would shrink and have lower flexibility with fewer admitted predictors.
In this case the variance of the estimated parameters would be lowered but at the cost
of introducing bias.

From the corresponding first- and second-order optimality conditions, we can
solve the data analyst’s estimation problem in equation (1):

α̂j(λj) =
1

2

(
y1j + y0j − β̂j(λj)

)
, (2)

β̂j(λj) =

{
max{y1j − y0j − λj , 0}, if y1j − y0j ≥ 0,

min{y1j − y0j + λj , 0}, otherwise.
. (3)

The expression of α̂j(λj) in equation (2) is the same as the standard OLS estimator,
because there is no penalization on α̂j(λj). It is assumed that α is large enough so that
the realization of α̂j(λj) is always positive for any λj ≥ 0. Formally,

Assumption 2. α > β/2 + ε.

This guarantees that firm j always prefers to target as many consumers as possible
in the market. That is, the constraint of a total number of θ consumers to target will
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always be binding so that the firm’s targeting decision boils down to which type(s) of
consumers to target. To understand the expression of β̂j(λj) intuitively, notice that if
λj = 0, we have β̂j(λ) = y1j − y0j , which is the OLS estimator. When 0 < λj < |y1j − y0j |,
then β̂j(λj) will have the same sign with y1j − y0j but is penalized toward zero. Finally,
if λj ≥ |y1j − y0j |, the penalization is so severe that β̂j(λj) = 0.

We consider a simultaneous-move game between the two firms in two periods.
First, each firm j chooses the tuning parameter λj , which remains private for the entire
game. Second, each firm j is endowed with a private data-set (xl, ylj) for l = 0, 1, based
on which, firm j’s analyst generates the estimates α̂j(λj) and β̂j(λj) by running a Lasso
regression. Lastly, each firm devises the targeting strategy to maximize the estimated
profit. Figure 1 summarizes the timeline of the game. Before we proceed to analyze the
game, we elaborate on the rationale and interpretation of our modeling choices.

Each firm chooses the
tuning parameter.

Each firm is endowed with a private
dataset with two observations.

Each firm delegates an analyst to estimate profit
function by running a Lasso regression.

Each firm devises the targeting strategy
to maximize estimated profit.

𝑡𝑖𝑚𝑒

Figure 1: Timeline of the competitive algorithmic targeting game.

First, the reader may wonder that the simple setup above with a data set of just
two observations and a binary characteristic (x ∈ (1, 0)) is a far cry from the big data
situations confronting firms. Machine learning models are typically high dimensional
and complex involving numerous dimensions available in big data. Nevertheless, as
also previously argued by Eliaz and Spiegler (2019) the setup is designed to handle
the crucial aspects of the “over-fitting” problem encountered in algorithmic decision
making by firms, namely, that the potential number of explanatory variables may be
large and comparable to the sample size. So unless there is a method for model selection
and shrinkage of the number of explanatory variables there is a risk of over-fitting.
For example, an unpenalized regression estimator may perfectly fit the data-set but
would have high variance and poor predictive performance compared to an estimator
with shrinkage. However, a model with shrinkage may be subject to the introduction
of bias in the estimated coefficients. The model with the Lasso regression with the
endogenous choice of the tuning parameter λj helps to capture the essence of the trade-
offs underlying the over-fitting problem, and in doing so, it endogenizes the model
selection to the equilibrium incentives of the firms.

Second, the firms choose the tuning parameters before getting the data. This may
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also be seen as consistent with the statistical learning literature which prescribes that
the tuning parameter should not be determined based on the training data per se in
order to avoid over-fitting.

Third, while we use the Lasso regression as a specific estimation procedure, our
results are more general in the sense that λj determines the general trade-off between
bias and variance in any supervised learning method, where higher values of λj is
associated with lower the variance but higher bias. Therefore, firm j’s choice of λj can
be interpreted as choosing between different statistical learning models that differ in
bias-variance trade-off. Thus the problem can be viewed as the strategic choice of the
bias-variance trade-off in algorithm design of the firm’s targeted advertising strategy.

 
 

Variance 

Bi
as

 

Figure 2: Tradeoff between flexibility and interpretability and tradeoff between bias
and variance across different statistical learning methods (excerpted from James et al.
(2013) page 25 and adapted).

Furthermore, different statistical models differ in their flexibility and their degree
of interpretability, as shown by Figure 2. Typically, those with higher flexibility (and
lower interpretability) have lower bias but higher variance. Here we will focus on the
comparison between Lasso and OLS, where OLS has higher flexibility and lower bias,
while Lasso with some level of regularization has lower flexibility and higher bias and
may be more easily interpretable when compared to OLS. Therefore, the choice of λj

may also represent the relative complexity versus interpretability of the algorithm. Also
by this understanding, the Lasso regression does not necessarily need to represent a
“machine-learning” algorithm while OLS a traditional algorithm. In fact, in practice,
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a firm may decide whether to adopt a very flexible machine-learning algorithm like
neural networks compared with a less flexible benchmark algorithm, in which case, the
neural networks will correspond to OLS in our framework.

Finally, it has been assumed that the firms do not have the analytical capability
themselves and rely on data analysts for the estimation procedure; moreover complete
contracts are not available between a firm and its analyst. This assumption maps onto
common practices in companies where managers rely on analysis by data analytics
groups to make strategic decisions. This has two important implications:

1. In the last stage of the game, instead of performing a Bayesian update based on
the data to calculate the posterior belief of αj and βj , each firm relies on the data
analyst to run the Lasso regression on the data to get point estimates of α̂j(λj)

and β̂j(λj); correspondingly, instead of maximizing the expected profit based on
the posterior belief, each firm makes the targeting decision by maximizing the
“estimated profit” based on the estimate, α̂j(λj) and β̂j(λj). The standard ra-
tional economic model for this problem would involve fully Bayesian decision
making with common priors for all agents. However, as argued below the reality
of data based algorithmic decision making in firms does not reconcile with the
standard approach as machine learning algorithms like Lasso which are based
on the minimization as in (1) are non-bayesian procedures. By separating the es-
timation problems from the decision-maker (firms), and delegating it to agents
(analysts), we are able to rationalize the reality of data-driven decision making
in firms. Methodologically this feature of our framework is a representation of
algorithmic decision making in firms.4

2. Because it is the data analyst instead of the firm that performs the estimation
procedure, this implies the minimization of mean squared error instead of profit
maximization as the objective in estimating the parameters in the second stage.
This makes our results directly comparable with the standard statistical learning
literature. This is also consistent with the industry practice due to several consid-

4In an alternative setting in absence of the data analysts, we can assign a Laplace prior distribution to
each firm j’s prior belief of βj , with the probability density function f(βj) = λj/2 · exp(−λj |βj |). Then,
based on the data (xl, yl

j) for l = 0, 1 and assuming εlj follows a standard normal distribution, firm j forms
a posterior belief of αj and βj by Bayes’ rule, which can be shown to be equivalent to running the Lasso
regression in equation (1) (Tibshirani 1996). However, there are two caveats to this Bayesian approach.
First, the tuning parameter λj is not firm j’s choice but rather, a model primitive that is exogenously given.
To endogenize the firm’s choice of λj would be equivalent to let the firm choose its prior distribution.
Second, the point estimates generated by the Lasso regression, α̂(λj) and β̂(λj) in equations (2) and (3)
are mode instead of mean of the posterior belief of αj and βj (Hastie et al. 2009). However, to calculate
expected profit, we will be mostly concerned with the posterior mean instead of the mode.
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erations. First, minimization of mean squared error is available and used by com-
panies in standard ready-to-use statistical packages while profit maximization re-
quires customization, which could be costly for the firms. Second, information
pertaining to the profit function may be scattered in silos within the organization
so that even if the data analyst in charge of the estimation task wants to use profit
maximization as the objective, she may fail to gather all relevant information.

We begin with the analysis of the monopoly setting with only one firm in the mar-
ket as the benchmark, and then proceed to study the main model with competition.

4 Monopoly Benchmark

Given only one firm, we will drop the subscript j. We solve the game by backward
induction. Suppose the firm decides to target k ∈ [0, ϕ] consumers with x = 1 and
θ − k ∈ [0, 1− ϕ] consumers with x = 0, which imply that

max{0, θ + ϕ− 1} ≤ k ≤ min{θ, ϕ}.

Given α̂(λ) and β̂(λ), we have the estimated profit from a targeted consumer to be
π̂(x) = α̂(λ) + β̂(λ)x. The firm chooses k to maximize the estimated profit. If β̂(λ) > 0,
it is optimal for the firm to target as many consumers with x = 1 as possible, so we have
the firm’s optimal choice of k as k∗ = min{θ, ϕ}. Similarly, if β̂(λ) < 0, it is optimal for
to target as many consumers with x = 0 as possible, and thus, k∗ = max{0, θ + ϕ− 1}.
Lastly, if β̂(λ) = 0, the firm is indifferent between the two types of consumers, and it is
assumed that it will target k ∈ [0, θ] consumers with x = 1.

A priori, before obtaining the dataset, the firm chooses λ to maximize the expected
profit from all consumers:

Π(λ) =E[θα+ k∗β]

=θE[α] + min{θ, ϕ}Pr(β̂(λ) > 0)E[β|β̂(λ) > 0]

+ max{θ − (1− ϕ), 0}Pr(β̂(λ) < 0)E[β|β̂(λ) < 0]

+ kPr(β̂(λ) = 0)E[β|β̂(λ) = 0]

=θE[α] + min{θ, ϕ}Pr(β +∆ε > λ)E[β|β +∆ε > λ]

+ max{θ − (1− ϕ), 0}Pr(β +∆ε < −λ)E[β|β +∆ε < −λ]

=θE[α] + min{θ, ϕ}
∫ 2ε

−2ε
dG̃(e)

∫ β

λ−e
bdB(b)

10



+max{θ − (1− ϕ), 0}
∫ 2ε

−2ε
dG̃(e)

∫ −λ−e

−β
bdB(b)

=θE[α] + min{θ, 1− θ, ϕ, 1− ϕ}
∫ 2ε

−2ε
dG̃(e)

∫ β

λ−e
bdB(b).

To get the third equation above, notice that β̂(λ) > 0 ⇔ β + ∆ε > λ, β̂(λ) < 0 ⇔
β + ∆ε < −λ, and β̂(λ) = 0 ⇔ |β + ∆ε| ≤ λ, which, combining with the fact that B
and G̃ are symmetric distributions around zero, further implies that E[β|β̂(λ) = 0] =

E[β||β +∆ε| ≤ λ] = 0. Therefore, the choice of k has no impact on firm profit and thus
the tie-breaking rule has no bite on the result. To get the last equation, we have again
utilized the symmetry of G̃ and B.

Given G̃′ is single-peaked, one can show that Π(λ) decreases with λ, so we have
the following proposition.

Proposition 1. Under monopoly, the firm chooses the tuning parameter λM = 0.

Proof.

Π′(λ) = −min{θ, 1− θ, ϕ, 1− ϕ}
∫ 2ε

−2ε
(λ− e)B′(λ− e)G̃′(e)de.

If λ ≥ 2ε, obviously, Π′(λ) ≤ 0. Otherwise, if λ < 2ε, we have

Π′(λ) ∝ −
(∫ 2λ−2ε

−2ε
+

∫ λ

2λ−2ε
+

∫ 2ε

λ

)
(λ− e)B′(λ− e)G̃′(e)de

= −
∫ 2λ−2ε

−2ε
(λ− e)B′(λ− e)G̃′(e)de− θ

∫ 2ε−λ

0
zB′(z)

(
G̃′(λ− z)− G̃′(λ+ z)

)
dz

≤ 0,

where, to get the second equality above, we have changed the variable e = λ − z for
the second integral from 2λ− 2ε to λ, and e = λ+ z for the third integral from λ to 2ε;
moreover, we have utilized B′(z) = B′(−z). To get the last inequality, notice that given
G̃′ being single-peaked and symmetric around zero, we have G̃′(λ− z) ≥ G̃′(λ+ z) for
any z ≥ 0 and λ ≥ 0. To summarize, we have shown that Π′(λ) ≤ 0, so the optimal λ
should be λM = 0.

Proposition 1 implies that a monopoly firm in this setup prefers the OLS regression
to a Lasso. The intuition is that the OLS estimator is unbiased and thus enables the
firm to target the more profitable segment correctly in expectation. The qualitative
implication is that a monopolist optimally prefers a more flexible or complex algorithm
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design which accommodates all the variables (in our case one) and which may risk
over-fitting the data. In other words, the monopoly prefers low algorithmic bias but this
would come at the expense of increased variance. This result serves as benchmark and
motivates our analysis below of the competitive incentives for algorithmic targeting.

5 Competitive Targeting

Now we analyze the main model with competition between two firms and solve
for the equilibrium by backward induction.

5.1 Targeting Decision

Given firm j’s choice of the tuning parameter as λj and its private data-set, the
firm’s analyst’s estimates, α̂(λj) and β̂(λj) are given by equation (3). Suppose firm j

decides to target kj consumers with x = 1 and θ− kj consumers with x = 0 for j = 1, 2.
Similarly, we have max{0, θ + ϕ− 1} ≤ kj ≤ min{θ, ϕ}.

Firm j does not observe the rival’s choice of the tuning parameter nor its dataset.
Denote firm j’s expectation of the other firm’s choice of the tuning parameter as λ∗

−j .
Furthermore, from firm j’s perspective, the other firm’s equilibrium choice of k∗−j de-
pends on the realization of its private dataset and thus is a random variable, which is
denoted as k̃∗−j . Let’s calculate firm j’s estimated profit:

Πj(kj , k̃
∗
−j) =kj

(
k̃∗−j

ϕ
· 1
2
+ 1−

k̃∗−j

ϕ

)(
α̂j(λj) + β̂j(λj)

)
+ (θ − kj)

(
θ − k̃∗−j

1− ϕ
· 1
2
+ 1−

θ − k̃∗−j

1− ϕ

)
α̂j(λj)

=θ

(
1−

θ − k̃∗−j

2(1− ϕ)

)
α̂j(λj)

+ kj

(
ϕθ − k̃∗−j

2ϕ(1− ϕ)
α̂j(λj) +

(
1−

k̃∗−j

2ϕ

)
β̂j(λj)

)
. (4)

To understand the first equation above, notice that firm j targets kj consumers with
x = 1, each of whom is also targeted by the other firm −j with probability k̃∗−j/ϕ. If

this happens, firm j gets an estimated profit of
(
α̂j(λj) + β̂j(λj)

)
/2; otherwise, with

probability 1− k̃∗−j/ϕ, this consumer is not targeted by firm −j, and firm j’s estimated
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profit is
(
α̂j(λj) + β̂j(λj)

)
. Similarly, we can perform the same calculation to get firm

j’s estimated profit from θ − kj consumers with x = 0.
Firm j chooses kj ∈ [max{0, θ + ϕ− 1},min{θ, ϕ}] to maximize the expected esti-

mated profit, E
[
Πj(kj , k̃

∗
−j)
]
= Πj(kj ,E[k̃

∗
−j ]), where we have utilized the observation

that Πj(kj , k̃
∗
−j) is linear in k̃∗−j .

5 Furthermore, notice that Πj(kj ,E[k̃
∗
−j ]) is linear in kj

with

∂Πj(kj ,E[k̃
∗
−j ])

∂kj
=

ϕθ − E[k̃∗−j ]

2ϕ(1− ϕ)
α̂j(λj)︸ ︷︷ ︸

to avoid competition

+

(
1−

E[k̃∗−j ]

2ϕ

)
β̂j(λj)︸ ︷︷ ︸

to target the more
profitable segment

≡ ηj(λj). (5)

Consider the expression for ∂kjΠj(kj ,E[k̃
∗
−j ]) in equation (5): The second term plays

a similar role as the counterpart under the monopoly benchmark – the firm wants to
target consumers with x = 1 when β̂j(λj) > 0, and x = 0 when β̂j(λj) < 0. The first
term introduces incentives for the two firms to coordinate so as to avoid competition.
Particularly, firm j wants to target consumers with x = 1 when E[k̃∗−j ]/θ < ϕ, that is,
when the other firm would target proportionally more consumers with x = 0; similarly,
firm j wants to target consumers with x = 0 when E[k̃∗−j ]/θ > ϕ, that is, when the other
firm would target proportionally more consumers with x = 1.

Πj(kj ,E[k̃
∗
−j ]) being linear in kj immediately implies that the firm’s optimal tar-

geting decision takes corner solutions. Specifically, if ηj(λj) > 0, firm j should set
k∗j = min{θ, ϕ} to target as many consumers with x = 1 as possible; if ηj(λj) < 0,
the firm should set k∗j = max{0, θ + ϕ − 1} to target as many consumers with x = 0

as possible. Lastly, from an ex-ante perspective before the realization of firm j’s pri-
vate data-set, α̂j(λj) follows a continuous distribution and thus as long as E[k̃∗−j ] ̸= ϕθ,
ηj(λj) = 0 is a knife-edge case that happens with zero probability; consequently, the
tie-breaking rule for which consumer to target at ηj(λj) = 0 has no consequence. On
the other hand, if E[k̃∗−j ] = ϕθ, we have ηj(λj) = 0 ⇔ β̂j(λj) = 0, at which, we have
shown for the monopoly case above, the tie-breaking rule has no consequence either.

5Notice that as α1, β1, α2 and β2 are independently distributed, firm j’s private dataset provides no
information on α−j and β−j . Therefore, E[k̃∗

−j |firm j’s dataset] = E[k̃∗
−j ].
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5.2 Model Selection

Let’s first introduce the following notation. From firm, j’s perspective, the proba-
bility that the other firm −j will set k̃∗−j = min{θ, ϕ} is:

p−j ≡Pr
(
k̃∗−j = min{θ, ϕ}

)
=Pr

(
ϕθ − E[k̃∗j ]

2ϕ(1− ϕ)
α̂−j(λ

∗
−j) +

(
1−

E[k̃∗j ]

2ϕ

)
β̂−j(λ

∗
−j) > 0

)

=Pr

(
ϕθ − (max{0, θ + ϕ− 1}+ pj min{θ, 1− θ, ϕ, 1− ϕ})

2ϕ(1− ϕ)
α̂−j(λ

∗
−j)

+

(
1− max{0, θ + ϕ− 1}+ pj min{θ, 1− θ, ϕ, 1− ϕ}

2ϕ

)
β̂−j(λ

∗
−j) > 0

)
, (6)

where, to get the last equality in (6), we have utilized that

E[k̃∗j ] = pj min{θ, ϕ}+ (1− pj)max{0, θ + ϕ− 1}

= max{0, θ + ϕ− 1}+ pj min{θ, 1− θ, ϕ, 1− ϕ},

which is firm j’s expectation of firm −j’s expectation of firm j’s equilibrium choice of
k∗j , and thus E[k̃∗j ] depends on λ∗

j (via pj) instead of λj . By combining equation (6) for
j = 1, 2, we should be able to solve p1 and p2, which depend on λ∗

1 and λ∗
2 (but not on

λ1 or λ2).
Next, we determine λ∗

j by calculating firm j’s expected profit before obtaining the
private data-set, which takes the same form as the firm’s estimated profit Πj(k

∗
j , k̃

∗
−j) in

equation (4) except that we need to replace α̂j(λj) and β̂j(λj) by αj and βj respectively
and then take expectation.

Πj(λj) ≡ E

[
θ

(
1−

θ − k̃∗−j

2(1− ϕ)

)
αj + k∗j

(
ϕθ − k̃∗−j

2ϕ(1− ϕ)
αj +

(
1−

k̃∗−j

2ϕ

)
βj

)]

= θ

(
1−

θ − E[k̃∗−j ]

2(1− ϕ)

)
E[αj ]

+ min{θ, ϕ}Pr (ηj(λj) > 0)E

[
ϕθ − E[k̃∗−j ]

2ϕ(1− ϕ)
αj +

(
1−

E[k̃∗−j ]

2ϕ

)
βj

∣∣∣∣ηj(λj) > 0

]
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+max{0, θ + ϕ− 1}Pr (ηj(λj) < 0)E

[
ϕθ − E[k̃∗−j ]

2ϕ(1− ϕ)
αj +

(
1−

E[k̃∗−j ]

2ϕ

)
βj

∣∣∣∣ηj(λj) < 0

]
.

(7)

In the calculation, we have utilized the independence between αj , βj and k̃∗−j . Πj(λj)

depends on λj via ηj(λj) and depends on λ∗
−j via k̃∗−j . That is, at the model selection

stage, firm j has an expectation of firm −j’s choice of the tuning parameter, λ∗
−j , which

will influence firm −j’s targeting decision and thus in turn influences firm j’s expected
profit. In expectation, each firm’s choice should be consistent with the other firm’s
expectation:

λ∗
j = argmax

λj

Πj(λj), for j = 1, 2. (8)

To summarize, the equilibrium will be pinned down by the two sets of equations (6)
and (8), where we have four equations to determine four variables: p1, p2, λ∗

1 and λ∗
2.

The main result of this paper is presented next.

5.3 Main Result

Proposition 2. If a pure-strategy equilibrium exists, ϕ ̸= 1/2, θ ̸= 1/2, and ε is sufficiently
high, then, we must have λ∗

j > 0 for at least one of j = 1, 2.

Proposition 2 does not provide an explicit condition on when a pure-strategy equi-
librium exists, which would require additional assumptions on distribution functions,
A, B and G to ensure firm j’s profit function, Πj(λj) is quasi-concave for j = 1, 2. Nev-
ertheless, notice that if pure-strategy equilibria do not exist, Nash’s celebrated theorem
immediately implies that there must exist a mixed-strategy equilibrium, where trivially,
we must have Pr(λ∗

j > 0) > 0 for at least one of j = 1, 2 (otherwise, we have λ∗
j = 0 for

j = 1, 2, which is not a mixed-strategy equilibrium). Therefore, even if a pure-strategy
equilibrium does not exist, we will end up with a result that is qualitatively similar in
spirit with Proposition 2. Let’s prove Proposition 2 next. Without loss of generality
it is assumed that ϕ ∈ (0, 1/2). The other case with ϕ ∈ (1/2, 1) can be obtained by
symmetry.

Proof. Let’s first argue that given any λ∗
1 and λ∗

2, there must exist a solution of (p1, p2)
to equation (6) for j = 1, 2. In fact, the right-hand side of equation (6) for j = 1, 2 is
a continuous map on a convex compact set [0, 1]2 to itself, and by Brouwer fixed-point
theorem, a fixed point must exist. Next, we calculate Πj(λj) in equation (7). There are
three cases to consider.
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(i) E[k̃∗−j ] < ϕθ, given which, there are two observations. First, Assumption 2
implies that α̂j(λj) > 0. This further implies that if β̂j(λj) ≥ 0, we must have ηj(λj) > 0

by the definition of ηj(λj) in equation (5). Second, β̂j(λj) < 0 implies that β̂j(λj) =

βj +∆εj +λj and α̂j(λj) = αj + ε0j −λj/2 by equations (2) and (3), based on which, we
have

ηj(λj) < 0 ⇔ αj < −Cλj + F (βj , ε
0
j , ε

1
j ), where

C ≡ 2ϕ(1− ϕ)∣∣∣ϕθ − E[k̃∗−j ]
∣∣∣
(
1−

E[k̃∗−j ]

2ϕ
−

ϕθ − E[k̃∗−j ]

4ϕ(1− ϕ)

)
,

F (βj , ε
0
j , ε

1
j ) ≡ −

(1− ϕ)(2ϕ− E[k̃∗−j ])

ϕθ − E[k̃∗−j ]

(
βj + ε1j − ε0j

)
− ε0j .

C is well defined given E[k̃∗−j ] ̸= ϕθ. It is easy to show that

C > 0 ⇔ 1−
E[k̃∗−j ]

2ϕ
−

ϕθ − E[k̃∗−j ]

4ϕ(1− ϕ)
> 0 ⇔ (1− 2ϕ) + (1− θ) + E[k̃∗−j ] > 0,

which always holds regardless of the comparison between E[k̃∗−j ] and ϕθ.
Putting the two observations above together, we have

Pr (ηj(λj) < 0)E [αj |ηj(λj) < 0]

= Pr
(
ηj(λj) < 0 and β̂j(λj) < 0

)
E
[
αj

∣∣ηj(λj) < 0 and β̂j(λj) < 0
]

+ Pr
(
ηj(λj) < 0 and β̂j(λj) ≥ 0

)
E
[
αj

∣∣ηj(λj) < 0 and β̂j(λj) ≥ 0
]

= Pr
(
αj < −Cλj + F (βj , ε

0
j , ε

1
j )
)
E
[
αj

∣∣αj < −Cλj + F (βj , ε
0
j , ε

1
j )
]

=

∫ ε

−ε

∫ ε

−ε

∫ β

−β

∫ min{max{−Cλj+F (βj ,ε
0
j ,ε

1
j ),α},α}

α
αjdA(αj)dB(βj)dG(ε0j )dG(ε1j ),

where to get the first equality above, we have used the definition of conditional proba-
bilities and the law of total probability. Moreover, we have argued Pr (ηj(λj) = 0) = 0

above, which implies that,

Pr (ηj(λj) > 0)E[αj |ηj(λj) > 0] = E[αj ]− Pr (ηj(λj) < 0)E[αj |ηj(λj) < 0].

Similarly, we can write down the expressions for Pr(ηj(λj) > 0)E[βj |ηj(λj) > 0] and
Pr(ηj(λj) < 0)E[βj |ηj(λj) < 0]. By substituting these back to Πj(λj) in equation (7), we
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find:

Πj(λj) =θ

(
1−

θ − E[k̃∗−j ]

2(1− ϕ)

)
E[αj ]

+min{θ, ϕ}

(
ϕθ − E[k̃∗−j ]

2ϕ(1− ϕ)
E[αj ] +

(
1−

E[k̃∗−j ]

2ϕ

)
E[βj ]

)

−min{θ, 1− θ, ϕ, 1− ϕ}
∫ ε

−ε

∫ ε

−ε

∫ β

−β

∫ min{max{−Cλj+F (βj ,ε
0
j ,ε

1
j ),α},α}

α(
ϕθ − E[k̃∗−j ]

2ϕ(1− ϕ)
αj +

(
1−

E[k̃∗−j ]

2ϕ

)
βj

)
dA(αj)dB(βj)dG(ε0j )dG(ε1j ).

Let’s compute the derivative of Πj(λj) at λj = 0:

Π′
j(0) =min{θ, 1− θ, ϕ, 1− ϕ}C

×
∫∫∫

α≤F (βj ,ε0j ,ε
1
j )≤α

(
ϕθ − E[k̃∗−j ]

2ϕ(1− ϕ)
F (βj , ε

0
j , ε

1
j ) +

(
1−

E[k̃∗−j ]

2ϕ

)
βj

)
×A′(F (βj , ε

0
j , ε

1
j ))dB(βj)dG(ε0j )dG(ε1j )

≥min{θ, 1− θ, ϕ, 1− ϕ}C

(
ϕθ − E[k̃∗−j ]

2ϕ(1− ϕ)
α−

(
1−

E[k̃∗−j ]

2ϕ

)
β

)

×
∫∫∫

α≤F (βj ,ε0j ,ε
1
j )≤α

A′(F (βj , ε
0
j , ε

1
j ))dB(βj)dG(ε0j )dG(ε1j ).

When ε is sufficiently large, Assumption 2 implies that α is sufficiently large so that

ϕθ − E[k̃∗−j ]

2ϕ(1− ϕ)
α−

(
1−

E[k̃∗−j ]

2ϕ

)
β > 0;

moreover, F (βj , ε
0
j , ε

1
j ) by definition is symmetrically distributed around zero and when

ε is sufficiently large, Pr(α ≤ F (βj , ε
0
j , ε

1
j ) ≤ α) > 0. Therefore, we have Π′

j(0) > 0,
which implies that λ∗

j > 0.
(ii) E[k̃∗−j ] > ϕθ, given which, there are similarly two observations. First, β̂j(λj) ≤

0 implies ηj(λj) < 0. Second, β̂j(λj) > 0 implies that β̂j(λj) = βj + ∆εj − λj and
α̂j(λj) = αj + ε0j + λj/2 by equations (2) and (3), based on which, we have

ηj(λj) > 0 ⇔ αj < −Cλj + F (βj , ε
0
j , ε

1
j ),

17



the same as that in case (i). Putting the two observations together, we have that

Pr (ηj(λj) > 0)E [αj |ηj(λj) > 0]

= Pr
(
−Cλj + F (βj , ε

0
j , ε

1
j )
)
E
[
αj

∣∣− Cλj + F (βj , ε
0
j , ε

1
j )
]

=

∫ ε

−ε

∫ ε

−ε

∫ β

−β

∫ min{max{−Cλj+F (βj ,ε
0
j ,ε

1
j ),α},α}

α
αjdA(αj)dB(βj)dG(ε0j )dG(ε1j ),

Pr (ηj(λj) < 0)E[αj |ηj(λj) < 0] = E[αj ]− Pr (ηj(λj) > 0)E[αj |ηj(λj) > 0].

Similarly, we can write down Πj(λj):

Πj(λj) =θ

(
1−

θ − E[k̃∗−j ]

2(1− ϕ)

)
E[αj ]

+max{0, θ + ϕ− 1}

(
ϕθ − E[k̃∗−j ]

2ϕ(1− ϕ)
E[αj ] +

(
1−

E[k̃∗−j ]

2ϕ

)
E[βj ]

)

−min{θ, 1− θ, ϕ, 1− ϕ}
∫ ε

−ε

∫ ε

−ε

∫ β

−β

∫ min{max{−Cλj+F (βj ,ε
0
j ,ε

1
j ),α},α}

α(
E[k̃∗−j ]− ϕθ

2ϕ(1− ϕ)
αj −

(
1−

E[k̃∗−j ]

2ϕ

)
βj

)
dA(αj)dB(βj)dG(ε0j )dG(ε1j ).

Similarly, we can compute:

Π′
j(0) =min{θ, 1− θ, ϕ, 1− ϕ}C

×
∫∫∫

α≤F (βj ,ε0j ,ε
1
j )≤α

(
E[k̃∗−j ]− ϕθ

2ϕ(1− ϕ)
F (βj , ε

0
j , ε

1
j )−

(
1−

E[k̃∗−j ]

2ϕ

)
βj

)
×A′(F (βj , ε

0
j , ε

1
j ))dB(βj)dG(ε0j )dG(ε1j )

≥min{θ, 1− θ, ϕ, 1− ϕ}C

(
E[k̃∗−j ]− ϕθ

2ϕ(1− ϕ)
α−

(
1−

E[k̃∗−j ]

2ϕ

)
β

)

×
∫∫∫

α≤F (βj ,ε0j ,ε
1
j )≤α

A′(F (βj , ε
0
j , ε

1
j ))dB(βj)dG(ε0j )dG(ε1j ).

The same argument as in Case (ii) shows that when ε is sufficiently large, λ∗
j > 0.

(iii) E[k̃∗−j ] = ϕθ. If λ∗
j > 0, we have proved the proposition; otherwise, suppose

λ∗
j = 0. We have pj = Pr(β̂j(λ

∗
j ) > 0) = Pr (βj +∆εj > 0) = 1/2. Correspondingly,

E[k̃∗j ] =
1

2
(min{θ, ϕ}+max{0, θ + ϕ− 1}) ̸= θϕ.
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In fact, for 0 < ϕ < 1/2, E[k̃∗j ] = θϕ if and only if θ = 0, 1/2, 1, which we have excluded
by assumption. Therefore, it must be that E[k̃∗j ] < θϕ or E[k̃∗j ] > θϕ. In either case, we
can repeat the proof above with j and −j switched to conclude that λ∗

−j > 0.

In contrast to Proposition 1, Proposition 2 shows that competition drives at least
one firm to choose positive penalization. In other words, competition favors a simpler
algorithm design that reduces variance but at the cost of introducing bias. We provide
below the economic intuition for this result.

Because the two consumer segments are of different sizes (by the assumption that
ϕ ̸= 1/2), the one which is smaller will be ex-ante more competitive because when
both firms target this segment, there will be higher expected overlap of the targeted
consumers. Compared with the OLS estimator which induces a firm to concentrate
targeting in one consumer segment (the one with higher estimated profitability), the
penalization in the Lasso regression tends to induce the firm to target consumers across
the two segments more evenly. When θ = 1/2, the OLS and the Lasso will generate
the same targeting outcome, because it amounts to the same 50% targeting probability
on every consumer regardless of whether the firm targets the two consumer segments
evenly or targets all the consumers evenly. Therefore, as long as θ ̸= 1/2, the penaliza-
tion in the Lasso regression that induces more uniform targeting across consumers will
reduce a firm’s concentration of targeting on one particular consumer segment, which
in turn reduces the expected overlap between the two firms’ targeted consumers and
thus softens competition. This can also be seen from equation (5), where a higher λj

penalizes β̂j(λj) towards zero and consequently, the competition avoidance incentive
as captured by (ϕθ−E[k̃∗−j ])/(2ϕ(1−ϕ)) has a relatively bigger impact on ηj(λj) which
determines firm j’s targeting decision.

In fact, the competition avoidance incentive for firm j is present whenever E[k̃∗−j ] ̸=
ϕθ—that is, when the competitor does not target all consumers equally. This provides
firm j the strategic incentive to introduce bias to reduce the overlap in the targeting. In
fact, as shown in the proof of Proposition 2 above, as long as E[k̃∗−j ] ̸= ϕθ, firm j will
choose λ∗

j > 0 in equilibrium to lessen competition.
It is worthwhile to reiterate that in our modeling approach, different choices of λj

by firm j determines different algorithm designs, which amounts to different ways to
representing consumer information for decision making on targeting. Proposition 2 im-
plies that competition favors a positive penalization that leads to more precise but less
accurate information about consumer profitability. In fact, β̂j(λj) will be non-zero only
if the profit difference between two segments of consumers is big enough to compen-
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sate the profit loss from more intense competition resulting from more concentrated
targeting. In other words, compared with the OLS estimator, the estimator of β̂j(λj)

will be not very accurate when |βj | is close to zero but more precise.
Lastly, we also require ε to be sufficiently high. With enough noise in the data, the

risk of over-fitting becomes consequential. Moreover, a higher ε also implies a higher
α by Assumption 2, which translates into a higher incentive to avoid competition by
equation (5). Both considerations make a positive penalization in the Lasso regression
and the equilibrium choice of algorithmic bias more desirable.

5.4 Symmetric Equilibrium

Given our symmetric setup, it is natural to consider the symmetric equilibrium
with λ∗

1 = λ∗
2 = λ∗. The corollary below is obvious from Proposition 2.

Corollary 1. If a symmetric pure-strategy equilibrium exists, ϕ ̸= 1/2, θ ̸= 1/2 and ε is
sufficiently high, then, we must have λ∗ > 0.

Figure 3 provides some some numeric examples of the equilibrium under uniform
distributions and also examines the comparative statics. For all the parameter settings
in Figure 3, we find that a pure-strategy symmetric equilibrium exists. There are sev-
eral observations to make. First, notice that when θ < 1/2 (as in the left half of panel
(a) as well as the entire region of panels (b) and (c)), p∗ decreases with λ∗. This is very
intuitive—as the penalization gets higher, firms tend to target more evenly across the
two consumer segments, which means reducing targeting probability in the more com-
petitive segment—segment x = 1 in this case due to θ < 1/2. On the other hand, when
θ > 1/2 (as in the right half of panel (a)), segment x = 0 is more competitive, so as λ∗

increases, the firms allocate more targeting probability to the less competitive segment
of x = 1, which means raising p∗. Second, we find that indeed for the two knife-edge
cases of θ = 1/2 and ϕ = 1/2, λ∗ = 0, as shown by panels (a) and (b); correspondingly,
p∗ = 1/2 in these cases. Thirdly, we find that the firms choose the maximum penaliza-
tion when θ = ϕ or θ = 1−ϕ, as shown by panels (b) and (c). In fact, by calculation, one
can show that these are the cases when the firms achieve the maximum reduction in
consumer overlap by switching from targeting two segments evenly to targeting every
consumer evenly. Therefore, these are the cases when the firms have the highest in-
centive to set a high penalization. Lastly, consistent with the standard statistic learning
theory, as ε increases, the data gets noisier, and consequently, the firms choose a higher
penalization to avoid the over-fitting problem, as shown by panel (c).
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(a) ϕ = 0.25 and ε = 1

0.2 0.4 0.6 0.8 1.0
ϕ0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
λ*

0.2 0.4 0.6 0.8 1.0
ϕ0.30

0.35

0.40

0.45

0.50

p*

(b) θ = 0.25 and ε = 1

0.5 1.0 1.5
ε0.0

0.1

0.2

0.3

0.4

0.5

0.6

λ*

0.5 1.0 1.5
ε0.30

0.31

0.32

0.33

0.34

0.35

0.36

p*

(c) ϕ = θ = 0.25

Figure 3: Equilibrium λ∗ and p∗ given A ∼ Unif[2, 4], B ∼ Unif[−1, 1], G ∼ Unif[−ε, ε].

6 Summary and Discussion

In this paper, we examine how competitive firms employ algorithms to estimate
demand and based on the estimates, make strategic consumer targeting decisions to
maximize expected profit. Algorithm design essentially implies different model selec-
tion strategies, which involve different bias and variance trade-offs under the general
framework of supervised learning. This bias-variance trade-off also implies the extent
of model flexibility that the firm would like to optimally use for targeting. From this
perspective, our paper studies firms’ competitive model selection for algorithmic tar-
geting and explores how competition moderates individual firms’ bias-variance trade-
off choices through the degree of complexity of the algorithm that is adopted. The
central finding is that targeting under competition favors simpler models that reduce
variance but which introduce bias. There is therefore the suggestion that more flexible
algorithms like deep learning are more likely to be valuable for firms with monopoly
power.

We focus on a specific decision of the firms—targeting. Thanks to large advertis-
ing platforms such as Facebook or Google, there is an ongoing trend of advertising tar-
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geting decisions being automated by algorithms for real-time advertising deployment
based on rich customer behavior data on browsing, purchase, sharing, observed social
connections, etc. Targeting is therefore a natural context to study algorithmic competi-
tion and our model and payoff function is designed to represent the classic competitive
targeting problem. Within this context, our result shows that competition favors algo-
rithmic bias holds for quite general distributional assumptions about the prior beliefs.
As next steps it would be interesting to explore a general class of oligopoly games with
strategic firm decisions such as pricing, advertising or product design. The implications
may depend on whether the firms’ decisions are strategic substitutes or complements
(Bulow et al. 1985).

Endogenous Data

We conclude by describing a setup which allows the targeting data-set to be gen-
erated from market competition. In the model of the paper we have assumed that
each firm is endowed with an exogenous data-set. To allow for the data-sets to be en-
dogenously generated from market interaction we will require the firms to compete
in the targeting decisions at least twice, where the first-time competition generates the
data, which is then utilized by the firms to devise their subsequent targeting strategies.
Specifically, suppose that the game analyzed in the paper is modified through the fol-
lowing timeline. At time 0, the two firms simultaneously choose the tuning parameters.
At time 1 where the first period begins, each firm decides on the consumers to target,
who upon being targeted, decide whether to make a purchase. Each firm observes a
noisy signal of the profit from each consumer who made a purchase. That is, we inter-
pret πj(x) in the main model as firm j’s average profit from an x-type consumer, and the
firm’s profit from an individual x-type consumer who made a purchase is πj(x) plus
some idiosyncratic error (analogous to ylj in the main model). Based on the data, as
before each firm delegates an analyst to estimate profit by running a Lasso regression.
Based on the estimates, each firm devises the targeting strategy to maximize estimated
profit in the second period.

In this modified game, each firm makes targeting decisions in the first period based
on its prior belief. Given that βj is distributed symmetrically around zero, it is optimal
for each firm to target randomly. Notice that if a consumer is targeted by both firms,
she makes a random choice between the two. This implies that observation of a tar-
geted consumer’s purchase decision does not give the firm any extra information for
estimating the consumer profitability. Consequently, each firm first period actions re-

22



sult in a data-set of “πj(xi) plus some idiosyncratic errors”, where i is the consumer
index that spans across all consumers who made a purchase from firm j in the first
period. Even though this data-set is generated from the first period market interaction,
it is qualitatively similar to that in the main model and could be equivalently seen as
being generated from a monopoly market. Moreover, the firms’ choice in tuning pa-
rameters at time 0 has no impact on their profits in the first period, so when choosing
λj , each firm j faces the same decision problem as in the main model. To summarize,
this extended two-period model that allows for the data-sets to be endogenous to the
first period interaction is almost identical to our main model with exogenous data-sets,
except that for each data-set, the number and types of consumers observed can be dif-
ferent. But this would not qualitatively alter the main result pertaining to the effect of
competition on model selection.
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