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Motivation

• Simon (1962, 1995): 

➢ Complex social, technological, and biological systems are made up of  communities or “modules.”

➢ Communities are subsets of  nodes that are densely connected within but sparsely connected across.

➢ Community structures allow faster adaptation to changing environment.

➢ Community detection literature has since documented this structure in many settings (Fortunato 2009).

• Baldwin and Clark (2000):

➢ In 1964 IBM introduced the first modular computer, the System/360. 

➢ Modular products are now pervasive (phones, planes, cars, homes, software, etc.).

➢ The change in how products are made has the potential to affect economic organization & outcomes. 

• This paper:

➢ The impact of  modular production on the internal organization of  firms. 
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Production 

• Each agent 𝑖 ∈ 𝒩 = 1,… , 𝑁 makes a decision 𝑑𝑖 ∈ −𝐷, 𝐷 , where 𝐷 is a large scalar.  

• Each decision 𝑑𝑖 is associated with a state 𝜃𝑖 ∈ −𝐷,𝐷 .

• Output is given by

𝑟 𝑑1, … , 𝑑𝑁 = σ𝑖=1
𝑁 1 − σ𝑗=1

𝑁 𝑝𝑖𝑗 𝑑𝑖 − 𝜃𝑖
2 −

1

2
σ𝑗=1
𝑁 𝑝𝑖𝑗 𝑑𝑖 − 𝑑𝑗

2
+ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,

where 𝑎𝑖 > 0, 𝑝𝑖𝑗 = 𝑝𝑗𝑖 > 0, and 𝑝𝑖𝑖 = 0.

• Assume σ𝑗=1
𝑁 𝑝𝑖𝑗 < 1 for all 𝑖 = 1,… ,𝑁.

• 𝑷 denotes the 𝑁 ×𝑁 matrix with entries 𝑝𝑖𝑗.

• Normalize the price of  output to one.

σ𝑖=1
𝑁 −𝑑𝑖

2 + 2𝑎𝑖𝑑𝑖𝜃𝑖 + σ𝑗=1
𝑁 𝑝𝑖𝑗𝑑𝑖𝑑𝑗 ,
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Modules

• Each triplet 𝑑𝑖 , 𝜃𝑖 , 𝑖 belongs to a module ℳ𝑚 for 𝑚 ∈ 1,… ,𝑀 with 𝑛𝑚 ≥ 1 members.

• Function 𝑚 𝑖 gives the module ℳ𝑚 𝑖 that 𝑑𝑖 , 𝜃𝑖 , 𝑖 belongs to.

• Assume 𝑚 1 = 1.

• Need for coordination 𝑝𝑖𝑗 between decisions 𝑑𝑖 and 𝑑𝑗:

➢ 𝑝𝑖𝑗 = 𝑡 ≥ 0 if 𝑚 𝑖 ≠ 𝑚 𝑗 . 

➢ 𝑝𝑖𝑗 ≡ 𝑝𝑚 ≥ 𝑡 if 𝑚 𝑖 = 𝑚 𝑗 = 𝑚.



Information

• Each state 𝜃𝑖 is drawn independently from a distribution with E 𝜃𝑖 = 0 and Var 𝜃𝑖 =𝜎𝑖
2.

• Realization of 𝜃𝑖 is privately observed by agent 𝑖. 

• Principal can place directed links between any two agents 𝑖 and 𝑗, at cost 𝛾𝑖𝑗 per link.

➢ 𝛾𝑖𝑗 = 0 if  𝑚 𝑖 = 𝑚 𝑗 and 𝛾𝑖𝑗 = 𝛾 > 0 if  𝑚 𝑖 ≠ 𝑚 𝑗 .

• If  the principal places a link from agent 𝑖 to 𝑗, agent 𝑖 tells 𝑗 the realization of  his state. 

• The communication network is described by 𝑁 × 𝑁 matrix 𝑪 with entries 𝑐𝑖𝑗 .

➢ 𝑐𝑖𝑗 = 1 if  agent 𝑖 tells 𝑗 about his state or 𝑖 = 𝑗.

➢ 𝑐𝑖𝑗 = 0 otherwise. 

➢ Row 𝑪𝑖 summarizes who knows state 𝜃𝑖.

➢ Column 𝑪(𝑗) summarizes what states agent 𝑗 knows. 



Organization

• Principal designs the communication network to maximize expected profits:

max
𝑪

E 𝑟 𝑑1, … , 𝑑𝑁 ȁ𝑪 − 𝛾 σ𝑖=1
𝑁 σ𝑖=1

𝑁 𝑚𝑖𝑗𝑐𝑖𝑗

subject to 𝑐𝑖𝑖 = 1 for all 𝑖 ∈ 𝒩 and 𝑚𝑖𝑗 is a dummy variable equal to one if  𝑚 𝑖 ≠ 𝑚(𝑗).

• Timing:

➢ Principal designs the communication network.

➢ Agents learn their states and tell them to other agents as specified in the communication network. 

➢ Agents simultaneously make their decisions.

➢ Payoffs are realized and game ends.

• Solution concept: Perfect Bayesian Equilibrium.



Summary of Key Assumptions 

• No re-transmission of  information.

• Information is independent. 

• Communication is binary. 

• No incentive conflicts.
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Decision-Making

LEMMA 1. Equilibrium decisions are unique and given by 

𝑑𝑖
∗ = σ𝑗=1

𝑁 𝑎𝑗𝜔𝑖𝑗 𝑪𝑗 𝜃𝑗 for all 𝑖 ∈ 𝒩,

where 𝜔𝑖𝑗 𝑪𝑗 is the ijth entry of 𝑰 − diag𝑪𝑗 𝑷 diag𝑪𝑗
−1

.

• 𝜔𝑖𝑗 𝑪𝑗 is the value of all walks from node 𝑖 to 𝑗 on the subgraph diag𝑪𝑗 𝑷 diag𝑪𝑗 .

• diag𝑪𝑗 𝑷 diag𝑪𝑗 is the subgraph of 𝑷 that consists only of nodes whose agents know 𝜃𝑗.



• A key object is the weight 𝑑𝑖
∗ puts on 𝜃𝑖 , which is given by 𝑎𝑖𝜔𝑖𝑖 𝑪𝑖 .

• 𝑎𝑖 captures the degree of  autonomous adaptation.

• 𝜔𝑖𝑖 𝑪𝑖 is the coordination multiplier , which is:

➢ Increasing and supermodular in 𝑪𝑖.

➢ Depends on 𝑪𝑖 but not on 𝑪−𝑖.

The Coordination Multiplier
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Expected Revenue

• Substituting equilibrium decisions into revenue and rearranging, we have

𝑟 𝑑1
∗, … , 𝑑𝑁

∗ = σ𝑖=1
𝑁 𝑎𝑖𝑑𝑖

∗𝜃𝑖 + σ𝑖=1
𝑁 σ𝑗=1

𝑁 𝑝𝑖𝑗𝑑𝑖
∗ 𝑑𝑗

∗ − E 𝑑𝑗
∗ ቚ𝑪(𝒊) .

• The second term is zero in expectation:

E σ𝑖=1
𝑁 σ𝑗=1

𝑁 𝑝𝑖𝑗𝑑𝑖
∗ 𝑑𝑗

∗ − E 𝑑𝑗
∗ ቚ𝑪(𝒊)

= E σ𝑖=1
𝑁 σ𝑗=1

𝑁 𝑝𝑖𝑗 σ𝑠=1
𝑁 σ𝑡=1

𝑁 𝜔𝑖𝑠 𝑪𝑠 𝜔𝑗𝑡 𝑪𝑡 𝑎𝑠𝑎𝑡 𝜃𝑠E 𝜃𝑡 ∣ 𝑪(𝑖) − 𝜃𝑠𝜃𝑡

= E σ𝑖=1
𝑁 σ𝑗=1

𝑁 𝑝𝑖𝑗 σ𝑠=1
𝑁 𝜔𝑖𝑠 𝑪𝑠 𝜔𝑗𝑠 𝑪𝑠 𝑎𝑠

2 𝜃𝑠E 𝜃𝑠 ∣ 𝑪(𝑖) − 𝜃𝑠
2

independence
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= 0

independence

binary communication



Expected Revenue

LEMMA 2. Under equilibrium decision-making, expected revenue is given by

𝑅 𝑪 ≡ E 𝑟 𝑑1
∗, … , 𝑑𝑁

∗ = σ𝑖=1
𝑁 𝑎𝑖 Cov 𝑑𝑖

∗, 𝜃𝑖 ,

where Cov 𝑑𝑖
∗, 𝜃𝑖 = 𝑎𝑖𝜎𝑖

2𝜔𝑖𝑖 𝑪𝑖 .

• Define 𝑅𝑖 𝑪𝑖 ≡ 𝑎𝑖 Cov 𝑑𝑖
∗, 𝜃𝑖 as the expected revenue generated by agent 𝑖 ∈ 𝒩.

• 𝑎𝑖
2𝜎𝑖

2 is the value of  autonomous adaptation of  decision 𝑑𝑖.

• Key property of  𝑅𝑖 𝑪𝑖 : it depends on 𝑪𝑖 but not on 𝑪−𝑖.  



Separability Result

PROPOSITION 1. An optimal communication network solves the principal’s problem if  and only if  it 

solves the 𝑁 independent subproblems 

max
𝑪𝑖

𝑅𝑖 𝑪𝑖 − 𝛾σ𝑗=1
𝑁 𝑚𝑖𝑗𝑐𝑖𝑗 for all 𝑖 ∈ 𝒩.

• Supermodularity of  𝜔𝑖𝑖 𝑪𝑖 implies that:

➢ If  it is optimal to tell agent 𝑖 about 𝜃𝑗, it’s optimal to also tell the other agents in his module ℳ𝑚 𝑖 .

➢ The principal’s problem can be solved in polynomial time using standard algorithms. 
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Expressing Revenue in Terms of Primitives

LEMMA 3. Suppose agent 1’s state 𝜃1 is known to all agents in modules ℳ1, … ,ℳℓ for ℓ ∈ 1, … ,𝑀 , and 

to no agents in other modules.  Agent 1’s expected revenue is then given by 

𝑅1 𝑪1 ℓ = 𝑎1
2𝜎1

2 1− 𝑛1−2 𝑝1

1+𝑝1 1− 𝑛1−1 𝑝1
+

𝑡2𝑥1
2 σ𝑚=2

ℓ 𝑛𝑚𝑥𝑚

1−𝑡𝑛1𝑥1 1−𝑡 σ𝑚=1
ℓ 𝑛𝑚𝑥𝑚

, 

where

𝑥𝑚 ≡
1

1 − 𝑛𝑚 − 1 𝑝𝑚 + 𝑛𝑚𝑡
.

• The object 𝑥𝑚 is a measure of  cohesion of  module ℳ𝑚 (Morris 2002).
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Characterization Result

PROPOSITION 2. Optimal communication is characterized by 𝑁 thresholds 𝜆𝑖 ≥ 0, one for each agent 

𝑖 ∈ 𝒩. Agent i tells his state to agent j if  and only if  they belong to the same module or 𝑥𝑚 𝑗 ≥ 𝜆𝑖. The 

threshold 𝜆𝑖 is increasing in 𝛾 and decreasing in 𝑎𝑖
2𝜎𝑖

2, 𝑝𝑚 𝑖 , and 𝑛𝑚 𝑖 .

• Proof:
1

𝑛ℓ+1
𝑅1 𝑪1 ℓ + 1 − 𝑅1 𝑪1 ℓ

𝑡2𝑥1
2𝑥ℓ+1

1 − 𝑡 σ𝑚=1
ℓ 𝑛𝑚𝑥𝑚 1 − 𝑡 σ𝑚=1

ℓ+1 𝑛𝑚𝑥𝑚
= 𝑎1

2𝜎1
2

= 𝑎1
2𝜎1

2
1

𝑛ℓ+1 + 𝑛ℓ+2

𝑡2𝑥1
2 𝑛ℓ+1𝑥ℓ+1 + 𝑛ℓ+2𝑥ℓ+2

1 − 𝑡 σ𝑚=1
ℓ 𝑛𝑚𝑥𝑚 1 − 𝑡 σ𝑚=1

ℓ+2 𝑛𝑚𝑥𝑚

1

𝑛ℓ+1 + 𝑛ℓ+2
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Characterization Result

PROPOSITION 2. Optimal communication is characterized by 𝑁 thresholds 𝜆𝑖 ≥ 0, one for each agent 

𝑖 ∈ 𝒩. Agent i tells his state to agent j if  and only if  they belong to the same module or 𝑥𝑚 𝑗 ≥ 𝜆𝑖. The 
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Illustration

Drawn for 𝑡 = 0.01, 𝑛1 = 𝑛2 = 𝑛3 = 5, 𝑛4 = 𝑛5 = 5, 𝑝1 = 𝑝2 = 𝑝3 = 0.2, 𝑝4 = 𝑝5 = 0.1, and 𝑎1
2𝜎1

2 = 1.
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Hierarchies

COROLLARY 1. Optimal communication gives rise to a receiver hierarchy among agents. For any agents 

𝑖, 𝑗, 𝑘 ∈ 𝒩 who belong to different modules, if  agent 𝑖’s module is more cohesive than agent 𝑗’s, then agent 

𝑗is told about agent 𝑘’s state only if  agent 𝑖 also is. 

COROLLARY 2. Optimal communication gives rise to a sender hierarchy among agents. For any agents 

𝑖, 𝑗, 𝑘 ∈ 𝒩 who belong to different modules, if  agent 𝑖’s threshold 𝜆𝑖 is smaller than agent 𝑗’s threshold 𝜆𝑗 , 

then agent 𝑗 tells agent 𝑘 about his state only if  agent 𝑖 also does.

• Agent 𝑖’s rank in the receiver hierarchy depends only on module cohesion.

• But his rank in the sender hierarchy also depends on the autonomous value of  adaptation 𝑎𝑖
2𝜎𝑖

2.

• Agents who hear the most may not be the ones who speak the most.  



Bottom-Up Communication

• Suppose there are communication links from module ℳ𝑚 to ℳ𝑚′ but not the reverse.

• Then communication is top down if  𝑥𝑚 > 𝑥𝑚′ and bottom up if  𝑥𝑚 < 𝑥𝑚′ . 

• Communication is bottom up in aggregate if  there are more pairs of  modules that engage in 

bottom-up than top-down communication. 

1 2 3

1 ℳ1

2 ℳ2

3 ℳ3

sender rank

re
ce

iv
er

ra
n

k

PROPOSITION 3. If  the optimal sender and 

receiver hierarchies are the reverse of  each other, and 

the receiver ranking is strict, communication is 

bottom up in aggregate.



Core-Periphery Structures

• A communication network has a core-periphery structure if  the set of  modules can be 

partitioned into a core and periphery such that:

➢ An agent in the core tells his state to all other agents in the core & maybe to agents in the periphery.

➢ An agent in the periphery does not tell his state to all agents in the core a/o is not told all their states.

➢ An agent in the periphery does not tell his state to other agents in the periphery.
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PROPOSITION 4. If  the optimal sender and 

receiver hierarchies are identical, the communication 

network has a core-periphery structure in which the 

core consists of  the most cohesive modules.
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Conclusions

• Over the last half  century, the economy has shifted towards modular production.

• This paper is a first step towards understanding the economic implications of  this shift.

• Open questions about impact of  modular production:

➢ Interfaces.

➢ Parallel processing.

➢ Firm boundaries, industry structure, location of  production.

• Broader question about the reason for the rise of  modular production.

• Testable predictions for emerging empirical literature on within-firm communications. 





Revisiting Key Assumptions

• Agents observe all states in their modules.

➢ Convenient & captures notion that agents working on the same module co-locate and share expertise. 

➢ Results extend readily if  each agent only observes his own state.

• No re-transmission of  information.

➢ Share this assumption with other papers (e.g. Calvó-Armengol & de Martí (2008), Calvó-Armengol, 

de Martí, & Prat (2015), Herskovic & Ramos (2020)). 

➢ Captures notion that the states are “rich” and can only be described effectively by the associated agent.

➢ Essential for the separability result (Proposition 1). 

• Independence of  information and binary communication.

➢ Share these assumptions with other papers (e.g. independence with Calvó-Armengol, de Martí, & Prat 

(2015) and binary communication with Calvó-Armengol & de Martí (2008)).

➢ Essential for the separability result. 



Revisiting Key Assumptions

• Absence of  incentive conflicts. 

➢ Share this assumption with the literature on team theory. 

➢ It, too, is essential for the separability result. 

➢ PROPOSITION 6. If  agents internalize only a fraction 𝜇 ∈ 0,1 of  the needs to coordinate, an optimal 

communication network solves 

max
𝑪


𝑖=1

𝑁

𝑎𝑖 Cov 𝑑𝑖
∗, 𝜃𝑖 + 1 − 𝜇 

𝑖=1

𝑁


𝑗=1

𝑁

𝑝𝑖𝑗 Cov 𝑑𝑖
∗, 𝑑𝑗

∗ − 𝛾
𝑖=1

𝑁

𝑪𝑖𝟏 − 𝑛𝑚 𝑖 ,

where
Cov 𝑑𝑖

∗, 𝜃𝑖 = 𝑎𝑖𝜎𝑖
2𝜔𝑖𝑖 𝑪𝑖 , 𝜇

and

Cov 𝑑𝑖
∗, 𝑑𝑗

∗ =
𝑠=1

𝑁

𝑎𝑠
2𝜎𝑠

2𝜔𝑖𝑠 𝑪𝑠, 𝜇 𝜔𝑗𝑠 𝑪𝑠, 𝜇 ,

and where 𝜔𝑖𝑗 𝑪𝑗, 𝜇 denotes the 𝑖𝑗th entry of  𝐼 − diag 𝑪𝑗 𝜇𝑷 diag 𝑪𝑗
−1

.



Revisiting Key Assumptions

• Production has a non-overlapping community structure.

➢ Captures the notion of  modular products. 

➢ Suppose 𝑷 takes any form, provided it still satisfies 𝑝𝑖𝑖 = 0, 𝑝𝑖𝑗 = 𝑝𝑗𝑖 , and σ𝑗=1
𝑁 𝑝𝑖𝑗 < 1 for all 𝑖, 𝑗 ∈ 𝒩. 

➢ Separability result still holds, and principal’s problem can still be solved using standard algorithms.  

➢ But the characterization result (Proposition 2) does not.

➢ Except for the comparative statics:

➢ PROPOSITION 6. As long as the production network 𝑃 satisfies 𝑝𝑖𝑖 = 0, 𝑝𝑖𝑗 = 𝑝𝑗𝑖, and σ𝑗=1
𝑁 𝑝𝑖𝑗 < 1 for all 

𝑖, 𝑗 ∈ 𝒩, optimal communication networks 𝑪𝑖
∗ are increasing in 𝑎𝑖

2𝜎𝑖
2 and 𝑝𝑖𝑗 , and decreasing 𝛾.
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Bottom-Up Communication

• Suppose there are communication links from module ℳm to ℳm′ but not the reverse.

• Then communication is top down if  𝑥m > 𝑥m′ and bottom up if  𝑥m < 𝑥m′. 

• Communication is bottom up in aggregate if  there are more pairs of  modules that engage in 

bottom-up than top-down communication. 
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PROPOSITION 3. If  the optimal sender and receiver hierarchies are the reverse of  each other, and 

the receiver ranking is strict, communication is bottom up in aggregate.


