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1 Introduction

Over the last 60 years, the economy has experienced a sharp shift towards modular production

(Baldwin and Clark 2000). Nowadays so many products are made by assembling separately pro-

duced modules that the 21st century has been called the Modular Age (Garud, Kumaraswamy, and

Langlois 2009). The rise of modular production has the potential to change the organization of

�rms, the structure of industries, and the location of production. In this paper we take a �rst step

towards exploring the economic implications of modular production by examining its impact on

the internal organization of �rms.

Herbert Simon anticipated the rise of modular production in 1962, when he observed that

complex social, technological, and biological systems� large �rms, mechanical watches, the human

body� tend to be made up of communities or modules, groups of elements with stronger within

than across group interactions (Simon 1962). The advantage of this modular structure, he argued,

is that it allows systems to adapt to changes in the environment by making adjustments in a

limited number of modules while leaving the rest of the system unchanged. The prevalence of

modular structures has since been con�rmed by the literature on community detection, which has

documented them in a wide variety of contexts from the internet to the global air transportation

network and the brain (Guimera et al. 2005, Meunier et al. 2009, and Fortunato 2010).

Two years after Simon published his article, IBM announced the �rst modular computer, the

System/360. Until then computers had been tightly integrated systems of their constituent parts.

A change in the processor or any other critical component required the design of an entirely new

computer. This made it di¢ cult to adopt new technologies and adapt computers to the idiosyncratic

demands of di¤erent customers. The System/360 was designed to change all this. Its modular

structure was a deliberate choice by IBM�s executives who tasked their engineers with developing

a computer that was made up of a small number of easily assemblable and exchangeable modules.

Henceforth, when a supplier developed a better disk drive, or a customer needed more storage, IBM

was able to adapt quickly. Not only did this make the System/360 an enormous �nancial success,

it also changed how computers have been built ever since (Baldwin and Clark 1997 and 2000).

The move towards modular production has not been con�ned to the computer industry. Over

the last few decades, �rms across a wide range of industries followed in IBM�s footsteps and devel-

oped products with modular production functions. Smartphones, airplanes, and electric cars are

all made by assembling a limited number of modules. Even homes are now routinely assembled
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Figure 1: Left panel� The �rm�s production function takes the form of a network with a non-
overlapping community structure. Right panel� Given the production network, the principal de-
signs the optimal communication network by deciding whom each agent should tell his state to,
taking as given that each directed link comes at an exogenous cost.

from pre-made modules rather than built on site from scratch. Nor is this move towards modular

production con�ned to physical products. Modular programming� separating the di¤erent func-

tions of computer programs into independent and interchangeable modules� was developed in the

1960s and is now pervasive. Of course, many products exhibited some degree of modularity even

before the System/360. Builders installed pre-made doors and windows long before the rise of

modular home building. What is di¤erent now, though, is that many products are modular by

design. They are produced entirely by assembling a limited number of modules and, in line with

Simon�s observations, they are now more rule than exception.1

The widespread adoption of modular production has the potential to change the organization

of production and, through this channel, the outcomes of economic activity. In the short run, �rms

adapt their internal organizations to accommodate modular production. Over time, they may also

change their boundaries which, in turn, can alter the structure of their industries and the location

of production. To manage the System/360, for instance, IBM established a centralized o¢ ce, which

ensured that di¤erent modules worked together, but also delegated control over individual modules

to autonomous teams. This process of decentralization continued over many years with IBM and

its competitors eventually outsourcing the development and production of modules to smaller,

independent, and often foreign �rms (Baldwin and Clark 1997 and 2000).

In this paper, we take a �rst step towards exploring the economic implications of modular

production (��rst step�in economics; there is an expansive existing literature in other �elds which

1See Baldwin and Clark (1997, 2000). See also the Wikipedia entries for Modular Design, Modular Programming,
and Modular Building and the references therein.

2



Figure 2: The �Design Structure Matrix� of a laptop computer in which each row and column
corresponds to a task involved in producing the computer and an �x� entry indicates a strong
need for coordination between the corresponding tasks (replication of Figure 2.3 in McCord and
Eppinger (1993)).

we discuss below). We focus on the internal organization of a single �rm with a modular production

function, which we model as a network of decisions with a non-overlapping community structure

as illustrated in Figure 1. Every node represents a decision, an agent who makes the decision,

and a state that captures the local conditions. The size of a node represents the importance of

adapting the decision to its local conditions, and the width of an edge represents the importance

of coordinating the two decisions it connects. Decisions are partitioned into modules, groups of

decisions that require more coordination with each other than with decisions in other modules.

They are indicated by the shaded areas in the �gure. The adjacency matrix of the production

network, thus, takes the form of a block matrix. This structure approximates the interactions

between decisions involved in making modular products, such as those for the laptop computer

illustrated in Figure 2.

The only impediment to e¢ cient production is that agents do not observe each other�s local

conditions. To improve e¢ ciency, the principal can establish communication channels between

agents. An IBM engineer who works on the disk drive does not directly observe the factors relevant

to someone who works on the processor. But IBM can require the former to meet with the latter

and learn about those factors. The problem is that such communication does not come for free.

Even in the age of ever-evolving communication technologies, explaining the issues one faces to

others takes time and energy, especially when they do not share the same expertise and experience.

Given this trade-o¤ between the e¢ ciency of decision-making and the cost of communication, the

principal decides whom each agent should tell his state to. In terms of Figure 1, the principal takes
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as given the production network in the left panel and designs the optimal communication network

on the right by placing directed links between agents, taking into account that each link comes at

an exogenous cost.2

The challenge in designing an optimal communication network is the abundance of possibilities

and absence of any apparent way to order them. To see how the principal can overcome this

challenge, it is useful to start by asking when she should add a single, directed link to an existing

communication network. The cost of establishing such a link is the time and energy it takes the

sender to explain his local conditions to the receiver, which we take to be exogenous. The bene�t is

that learning the sender�s state allows the receiver to coordinate his decision more closely with the

sender�s, which, in turn, allows the sender to adapt his decision more closely to his state. Crucially,

we �nd this bene�t is independent of what the receiver, or any other agent, knows about any other

state. Because of this independence, the problem of designing an optimal communication network

can be separated into independent subproblems. It is su¢ cient for the principal to consider each

agent in turn and ask whom this agent should tell about his state.

This separability result allows us to fully characterize optimal communication networks, which

is our central result. Optimal communication takes the form of two hierarchies, one that determines

whom each agent tells his state to and another that determines whose states he is told about. An

agent with a higher sender rank tells his state to all the agents in other modules that a lower-ranked

agent does, and possibly others. And an agent with a higher receiver rank is told about all the

states in other modules that a lower-ranked agent is told about, and possibly more.

An agent�s rank in either hierarchy depends critically on the cohesion of his module, which

captures how distinct his module is from the rest of the production network. As such, it is increasing

in the number of decisions that are in the module and the need for coordination between them, and

decreasing in the degree of coupling, the need for coordination across modules. The more cohesive

an agent�s module is, the more important it is that the agent learns about the local conditions in

other modules and that agents working on other modules learn about his.

Receiver rank is fully determined by module cohesion. Agents working on the same module

have the same receiver rank; they either all learn a state or none of them do. The same is not true

for sender rank, which can vary across agents working on the same module. The reason is that the

bene�t of sending information depends, not just on module cohesion, but also on the variability of

2Our focus on the trade-o¤ between the e¢ ciency of decision-making and the cost of communication is in line
with the discussion of the design of optimal communication within �rms in Arrow (1974, p.177): �Since information
is costly, it is clearly optimal, in general, to reduce the internal transmission...That is, it pays to have some loss in
value for the choice of terminal act in order to economize on internal communication channels. The optimal choice
of internal communication structures is a vastly di¢ cult question.�
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the sender�s local conditions and the need to adapt to them. If an agent�s module is very cohesive,

it is important he learns about other modules to enable them to adapt their decisions to their local

conditions. But if his own local conditions are predictable, or the need to adapt to them is low,

it may not be important for those working on other modules to learn about them. Sender and

receiver ranks need not be perfectly correlated. Agents who hear a lot may speak little.

Di¤erent correlations between the optimal sender and the receiver hierarchies correspond to

communication networks with di¤erent properties. If the optimal sender and receiver hierarchies are

the reverse of each other, communication is bottom up in aggregate, involving more communication

from agents in less cohesive modules to those in more cohesive ones than the reverse. If, instead,

the optimal sender and receiver hierarchies are identical, the communication network has a core-

periphery structure, in which agents in the most cohesive modules form the core and engage in

intense communication with each other, while those in less cohesive modules make up the periphery

and communicate only with the core and not with others in the periphery. Such core-periphery

structures are pervasive among social and communication networks (see, for instance, Borgatti and

Everett (2000) and Rombach et al. (2017) and the references therein).

After deriving the characterization result, we apply it to the notion that communication links

should simply mirror technological interdependency, that �we should expect to see a very close rela-

tionship...between a network graph of technical dependencies within a complex system and network

graphs of organizational ties showing communication channels�(Colfer and Baldwin 2016, p.713).

This notion has a long history in management and related �elds, where it is known as the Mirror-

ing Hypothesis (see Thompson (1967) and, for a discussion of the literature, Colfer and Baldwin

(2016)). In our setting, mirroring corresponds to a corner solution of the principal�s problem that

is only optimal if there are not too many modules and there is no single module that involves too

many decisions or requires too much coordination.

At last, we return to Herbert Simon, who did not stop at observing that complex systems

tend to be made up of modules. Rather, he noted that they often have, what he called, a nearly

decomposable structure, in which the modules themselves are made up of sub-modules, sub-modules

are made up of sub-sub-modules, and so on. In our extension, we allow for a symmetric version of a

production function with such a nested, modular structure and show that optimal communication

again follows a simple threshold rule.
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2 Related Literature

To the best of our knowledge, there is no literature in economics on modular production. From a

technical perspective, our paper belongs to the small but growing literature on centralized network

design. In an early paper in this literature, Baccara and Bar-Isaac (2008) explore the optimal design

of a network among members of a criminal organization in which more links facilitate cooperation

but also leave the organization more vulnerable to attack by law enforcement. The trade-o¤between

the e¢ ciency of interactions among members of a network and its increased vulnerability to attacks

by outsiders is also at the center of Goyal and Vigier (2014), who are motivated by the optimal

design and defense of computer networks. Both papers di¤er from ours not only in terms of

motivation but also modeling.

Closer to us is Calvó-Armengol and de Martí Beltran (2009). They consider an organization in

which each agent�s payo¤ depends on how well his decision is adapted to a common state, about

which he is imperfectly informed, and coordinated with the other agents�decisions. A key feature of

their model is that the production network is complete, with the need for coordination between any

two decisions being the same, which precludes production from being modular. In this setting, they

allow the principal to design the communication network, assuming she can add communication

links at no cost up to an exogenously given cap. They show that, if the need for coordination is

su¢ ciently small, and the degree of uncertainty su¢ ciently high, an optimal network maximizes a

span index that they de�ne.

Herskovic and Ramos (2020) also consider a setting in which each agent�s payo¤ depends on

how well his decision is adapted to a common state and coordinated with the other decisions.

The production network is again complete, and thus production not modular. The key di¤erence

between their model and both Calvó-Armengol and de Martí Beltran (2009) and ours is that the

communication network is not designed by a principal but formed by the agents� decentralized

decisions of whom to communicate with. Their paper, therefore, belongs to the large literature on

endogenous network formation that started with Jackson and Wolinsky (1996) and Bala and Goyal

(2000), rather than the literature on centralized network design that ours belongs to. They show

that even though agents�decisions are identical ex ante, the network they form is hierarchical, with

agents in a given tier having their signals observed by those in the lower tiers.

In the endogenous network formation literature, the paper whose setting is closest to ours is

Calvó-Armengol, de Martí, and Prat (2015). They, too, consider an organization whose agents face

a trade-o¤ between adaptation and coordination. Like us, though, they assume that each agent is

adapting his decision to an independent state and, crucially, allow for decisions to di¤er in their
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needs for coordination. Even though they allow for di¤ering coordination needs, however, they do

not assume that production has a non-overlapping community structure, and thus do not explore

modular production. Their main result characterizes how much e¤ort each agent puts into both

explaining his state to others and understanding theirs.

A feature shared by all the above papers on adaptation and coordination, and ours, is that

the agents�payo¤ functions are quadratic, and their actions are continuous and exhibit strategic

complementarities. As such, they all build on the literature on quadratic games on networks that

started with Ballester, Calvó-Armengol, and Zenou (2006). In recent contributions to this litera-

ture, Bergemann, Heumann, and Morris (2017) and Golub and Morris (2017) characterize optimal

decision-making for general information and network structures. We draw on their results to de-

termine the agents�decision-making for given communication networks. A property of equilibrium

decision-making in our setting is that it depends on the value of cyclical walks on the production

network, which relates to the notion of cyclical centrality in Talamàs and Tamuz (2017). Our

focus, though, is not on decision-making but on the prior stage in which the principal designs the

communication network, taking as given that agents will make their decisions optimally.

Even though our modeling approach places us in the network literature, the primary literature

our paper belongs to is the literature on organizational economics and, in particular, team theory.

Starting in the 1950s, team theory explores the optimal design of organizations when agents share

the same goal, but cognitive constraints make communication costly (for an early treatment see

Marschak and Radner (1972) and for recent surveys see Garicano and Prat (2013) and Garicano and

Van Zandt (2013)). A related paper in this literature is Dessein and Santos (2006), who were the �rst

to explore how the trade-o¤ between adaptation and coordination shapes the internal organization

of �rms. In their setting, the production network is complete, with the need for coordination

between any two decisions being the same, and the principal does not design a communication

network. Instead, they allow for each agent to make multiple decisions and assume the same

quality of communication between any pair of agents. They show that more uncertainty about the

environment increases the optimal number of decisions per agent, while the e¤ect of an improvement

in the quality of communication on specialization is non-monotonic.

We also relate to Dessein, Galeotti, and Santos (2016), who build on Dessein and Santos (2006)

by endogenizing communication while taking the allocation of decisions as given. In their setting,

the production network is once again complete, which precludes production from being modular.

They show that if the total amount of time that agents have to learn about others is limited, the

principal �nds it optimal to have them spend all their time learning about a small number of core
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agents, while staying largely ignorant about the others.

Even though, to our knowledge, there is no literature on modularity in economics, there is a

large literature on this topic in management and related �elds, as well as in computer science.

As noted earlier, Simon (1962) observed that complex systems are often made up of modules and

argued that this modular design facilitates adaptation. A similar point was made by Alexander

(1964), who argued that a modular system design accelerates adaptation by allowing the system

to adapt module by module. In computer science, Parnas (1972) argued that a modular software

design allows for faster programming by enabling di¤erent teams to work on di¤erent program

modules in parallel and explored criteria to best decompose a program into modules.

Our paper connects to a related literature that takes the modular design of products as given

and explores its implications for the organization of production. A common argument in this

literature is the Mirroring Hypothesis we mentioned in the introduction, which posits that the

organization of a �rm, and speci�cally its internal communication structure, ought to mirror the

modular nature of its production function. A �rm that makes a modular product, in other words,

should see intense communication within modules but not across (see, in particular, Thompson

(1967), Henderson and Clark (1990), Sanchez and Mahoney (1996) and, for a survey, see Baldwin

and Colfer (2016)). Langlois and Robertson (1992) observed that modular production might not

only a¤ect the internal organization of �rms but also their boundaries and, through this channel,

the structure of industries. Baldwin and Clark (2000) document these dynamics in the context of

IBM and the computer industry, and provide an exhaustive discussion of modular production and

its organization.

A related literature reverses the causality of the Mirroring Hypothesis and argues that the

design of products re�ects the organization of the �rms that developed them. In this view, a

modular organization has a tendency to develop modular products. In computer science, this view

is known as Conway�s Law, named after Melvin Conway who observed that �To the extent that an

organization is not completely �exible in its communication structure, that organization will stamp

out an image of itself in every design it produces�Conway (1968, p.30).

3 Model

A �rm consists of one principal and N agents. All parties are risk neutral and care only about the

�rm�s pro�ts. There are no incentive con�icts.

Production. Each agent i 2 N makes a decision di 2 [�D;D] that is associated with a state
�i 2 [�D;D], where N = f1; :::; Ng is the set of agents, and D is a large but �nite scalar. Output
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depends on how well each decision is adapted to its associated state and coordinated with the other

decisions. Speci�cally, we follow Ballester, Calvó-Armengol, and Zenou (2006) and assume that

output is given by

r (d1; :::; dn) =
NX
i=1

24�d2i + 2aidi�i + NX
j=1

pijdidj

35 ; (1)

where ai > 0 captures the importance of adapting decision di to its state �i, and the degree of

strategic complementarity pij � 0 captures the need for coordination between decisions di and dj .3

The need for coordination is symmetric, that is, pij = pji, and pii is equal to zero. The interactions

between decisions can, therefore, be represented by an undirected network, which we summarize in

an N�N matrix P with entries pij . We assume that
PN
j=1 pij < 1 for all i 2 N , which ensures that

equilibrium decisions exist. Finally, we normalize the price of the product to one so that output

(1) also represents revenue.

Modules. Each decision, and its associated state and agent, belongs to a �module�Mm for

m 2 f1; :::;Mg, which is a set of nm � 1 such decisions. The function m (i) gives the module

Mm(i) that decision di belongs to. For expositional convenience we adopt the convention that the

�rst decision d1, and its associated state and agent, belong to moduleM1, and assume that there

are at least three modules, that is, M � 3.
The need for coordination is stronger between two decisions within the same module than

between two decisions in di¤erent modules. Speci�cally, the need for coordination between any two

decisions di and dj 6= di is given by pij = t � 0 if they belong to di¤erent modules and, abusing

notation slightly, it is given by pij = pm � t if they belong to the same moduleMm. The parameter

t, therefore, captures the �degree of coupling�between modules, while the parameter pm captures

the need for coordination within moduleMm.

Information. Each agent i 2 N privately observes the realization of his state �i, which is in-

dependently drawn from a distribution with zero mean and variance �2i . All other information is

public.

Before the states are drawn, the principal can place directed communication links between any

3This formulation permits as a special case the widely-used payo¤ function in which payo¤s are the weighted
average of the quadratic di¤erence between each decision and its state and between each pair of decisions (see, for
instance, Alonso, Dessein, and Matouschek (2008) and Calvó-Armengol and de Martí Beltran (2009)). Speci�cally,
if ai = 1�

PN
j=1 pij for all i 2 N , we can re-write output (1) as

NX
i=1

"
�
 
1�

NX
j=1

pij

!
(di � �i)2 �

1

2

NX
j=1

pi;j (di � dj)2
#
+

NX
i=1

 
1�

NX
j=1

pij

!
�2i ,

where the last term is a constant.
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two agents. Each such link comes at a cost, which captures the resources involved in communication.

We assume that this cost is 
 > 0 if the two agents belong to di¤erent modules, and it is zero if

they belong to the same one. This assumption streamlines the exposition and is consistent with the

notion that communication is less costly between agents who share similar expertise and experiences.

If the principal places a communication link from agent i to agent j, agent i tells j the realization

of his state �i. Communication, therefore, takes the form of a directed network, which we summarize

in an N �N matrix C. Entry cij is equal to one if agent i tells agent j 6= i his state and it is zero
if he does not. Moreover, since each agent i observes his own state, cii is always equal to one. Row

Ci then summarizes the agents who learn �i and column C(j) summarizes the states agent j learns

about.

Organization. The principal�s problem is to design the optimal communication network that

maximizes expected revenue net of communication costs, that is, to solve

max
C
E[r (d1; :::; dN ) jC ]� 


NX
i=1

NX
j=1

mijcij subject to cii = 1 for all i 2 N ; (2)

where mij is a dummy variable that is equal to one if and only if agents i and j 6= i belong to

di¤erent modules.

Timing. After the principal designs the communication network, agents learn their states and

tell them to other agents as speci�ed by the network. Next, the agents simultaneously make their

decisions, payo¤s are realized, and the game ends. The solution concept we use is Perfect Bayesian

Equilibrium.

We discuss the key assumptions, such as the assumption that agents do not re-transmit infor-

mation they receive and that their decisions are not distorted by incentive con�icts, in Section 6,

after we solve the model in the next section and apply it to the Mirroring Hypothesis in Section 5.

4 Solving the Model

To solve the model, we start by determining equilibrium decisions for any given communication

network. We then show that given these equilibrium decision rules, we can simplify the princi-

pal�s problem of designing an optimal communication network by separating it into independent

subproblems. Finally, we characterize the solution to the principal�s problem by solving these

subproblems.
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4.1 Decision-Making

After agents have observed their states and communicated with each other, they make the decisions

that solve

max
di
E
�
r (d1; :::; dN )

��C(i)

�
for all i 2 N ,

where r (d1; :::; dN ) is revenue (1) and where C(i) is the ith column of the communication matrix

C that summarizes the states agent i is informed about. The best-response functions that follow

from these optimization problems are given by

di = ai�i +
NX
j=1

pijE
�
dj
��C(i)

�
. (3)

Each agent�s best response is the weighted sum of his state and the decisions he expects the other

agents to make, where the weight on his own state is ai and the weight on the decision he expects

agent j to make is pij . To solve the system of best responses, note that (diagCj)P (diagCj) is the

subgraph of the production network that consists of the nodes whose agents know state �j , as well

as all the links between them. We can then state the following lemma.

LEMMA 1. Equilibrium decisions are unique and given by

d�i =
NX
j=1

aj!ij (Cj) �j for all i 2 N , (4)

where !ij (Cj) denotes the ijth entry of (I � (diagCj)P (diagCj))
�1.

The lemma shows that agent i�s equilibrium decision d�i is the weighted sum of all states, where

the weight on state �j is given by aj , the importance of adapting decision dj to �j , times !ij (Cj),

the ijth entry of (I � (diagCj)P (diagCj))
�1. This latter object has a natural interpretation in

terms of walks on the production network. Before providing it, though, we pause brie�y to review

the notion of walks and their values.

A �walk�between di and dj on the production network is a sequence of links that lead from

di to dj . Each link between two decisions in this sequence is associated with a discount factor,

which is given by the need for coordination between them. The �value of a walk�is the product

of these discount factors. As an example, consider the production network P e in Figure 3, where

the superscript stands for �example.�In this case, d1 to d2 to d3 constitutes a walk from d1 to d3

whose value is given by t2. Standard arguments imply that the ijth entry of (I � P e)�1 is the sum

of the values of all walks from di to dj on the production network P e.
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Figure 3: Production network P e, which consists of three modules that contain one decision each.
The parameter t is the degree of coupling, the need for coordination across modules.

In light of this discussion, the ijth entry of (I � (diagCj)P (diagCj))
�1 in agent i�s equilibrium

decision rule (4) represents the value of all walks from di to dj on the subgraph of the production

network that consists only of decisions made by agents who know state �j . If agent i does not know

�s, for instance, di is not part of this subgraph, and so !is (Cs) = 0. Agent i puts no weight on

�s, as one would expect. If, instead, �s is public, the subgraph encompasses the entire production

network, and the weight agent i puts on �s is the value of all walks from di to ds on the production

network P . Note that this is the case no matter what the agents know about the other states.

This result re�ects a general implication of the lemma that will be important for what follows: for

a given production network, the weight agent i puts on state �s depends only on who knows �s and

not on what agent i, or any other agent, knows about any other state.

The part of the equilibrium decision rules that will turn out to be key for the optimal design

of communication networks is the weight each decision puts on its own state. To get an intuition

for this weight, recall the production network P e in Figure 3, and suppose agent 1 does not tell his

state to the other two agents. Agent 1 is then forced to adapt to his state autonomously, without

the bene�t of having the others coordinate their decisions with his. This limits the weight he puts

on his own state to

a1!
e
11 ((1; 0; 0)) = a1,

where the superscript again stands for �example.� The parameter a1, therefore, captures the

�degree of autonomous adaptation.�

Suppose now that agent 1 tells his state to agent 2 but still not to agent 3. Since agent 2 cares

about coordinating his decision with agent 1�s, he will put some weight on �1. And since agent

1 also cares about coordinating his decision with agent 2�s, this induces him to put more weight

on his own state. Speci�cally, if agent 1 tells his state to agent 2, the weight agent 1 puts on �1
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increases to

a1!
e
11 ((1; 1; 0)) = a1

�
1 +

t2

1� t2

�
> a1.

Communication, in other words, enables coordination, which, in turn, facilitates adaptation. The

extent to which it does so is captured by �coordination multiplier�!11 (C1).

A key property of the coordination multiplier is that it is supermodular. Suppose agent 1 tells

his state to agents 2 and 3. Since agents 2 and 3 care about coordinating with each other, and not

just with agent 1, they will put more weight on �1 than they would if agent 1 told his state to only

one of them. This increase in the weights agents 2 and 3 put on �1, in turn, induces agent 1 to

increase the weight he puts on his own state to

a1!
e
11 ((1; 1; 1)) = a1

�
1 +

t2

1� t2 +
t2

1� t2 +
2t3

(1� t2) (1� 2t)

�
;

where the last term in brackets captures the supermodularity.

These properties of the equilibrium decision rule hold in general, and we summarize them in

the following corollary.

COROLLARY 1. The weight ai!ii (Ci) that agent i�s decision d�i puts on his state �i satis�es

!ii (Ii) ai = ai, where Ii is ith row of an N�N identity matrix, and is increasing and supermodular

in Ci.

Having characterized equilibrium decision-making by the agents, we next turn to the principal�s

problem.

4.2 Simplifying the Principal�s Problem

The principal�s problem is to design the communication network that maximizes expected pro�ts,

taking into account that agents make decisions according to (4). It is useful to start by rewriting

revenue (1) as

r (d1; :::; dN ) =
NX
i=1

aidi�i �
NX
i=1

di

0@di � ai�i � NX
j=1

pijdj

1A .
Substituting in the equilibrium decision rules (4), this simpli�es to

r (d�1; :::; d
�
N ) =

NX
i=1

aid
�
i �i +

NX
i=1

NX
j=1

pijd
�
i

�
d�j � E

�
d�j
��C(i)

��
. (5)

In the proof of the next lemma we show that the second term on the right-hand side is zero in

expectation, which implies the following result.
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LEMMA 2. Under equilibrium decision-making, expected revenue is given by

R (C) � E [r (d�1; :::; d�N )] =
NX
i=1

aiCov (d
�
i ; �i) ; (6)

where Cov (d�i ; �i) = ai�
2
i!ii (Ci).

The lemma shows that expected revenue boils down to how well each decision is adapted to its

associated state. For expositional convenience, we interpret aiCov (d�i ; �i) as the expected revenue

generated by agent i 2 N and denote it by

Ri (Ci) � aiCov (d�i ; �i) = a2i�2i!ii (Ci) :

The key property of agent i�s expected revenue is that it depends on Ci but not on the rest

of communication network C. An additional agent learning �i increases agent i�s coordination

multiplier !ii (Ci), and thus the weight ai!ii (Ci) he puts on his state, as well as the expected

revenue a2i�
2
i!ii (Ci) he generates. In contrast, agent i, or any other agent, learning any other state

does not a¤ect !ii (Ci), and thus leaves the weight agent i puts on his state, and the revenue he is

expected to generate, unchanged.

This property of expected revenue is key because it implies that the principal�s problem is

separable. Instead of solving the overall problem (2) head on, the principal can consider each agent

in isolation and ask whom this agent should tell about his state. The answer to whom agent i 2 N
should tell about �i is independent of whom any other agent should tell about his own state. We,

therefore, have our �rst main result.

PROPOSITION 1. An optimal communication network solves the principal�s problem (2) if and

only if it solves the N independent subproblems

max
Ci

Ri (Ci)� 

NX
j=1

mijcij subject to cii = 1 for all i 2 N ; (7)

where mij is a dummy variable that is equal to one if and only if agents i and j 6= i belong to

di¤erent modules.

This separability result greatly facilitates the principal�s quest for optimal communication net-

works. We can further simplify the problem by recalling that agent i�s coordination multiplier

!ii (Ci) is supermodular. This property implies that, whenever it is optimal for agent i to tell

agent j about his state, it must also be optimal for him to tell the other agents in agent j�s module

Mm(j). The principal�s problem, therefore, reduces to which modules each agent should tell about

his state.
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Finally, supermodularity of !ii (�), together with the linearity of the communication costs, imply
that these subproblems are also supermodular. For any given parameter values, the principal�s

problem can, therefore, be solved using standard algorithms that maximize supermodular functions

in polynomial time (see, for instance, chapter 10.2 in Murota (2003)). Our goal, though, is to solve

the problem analytically, and we do so in the next section.

4.3 Optimal Communication Networks

The separability result in Proposition 1 allows us to solve the principal�s problem by considering

each agent in isolation and asking whom he should tell about his state. The �rst step in answering

this question is to express the agent�s expected revenue in terms of the model�s primitives. To

economize on notation, and without loss, we focus on agent 1.

Suppose agent 1 tells his state to all agents in an arbitrary set of modules that includes his

own module M1. Since the naming of modules is immaterial, there is no loss in denoting the

modules in this set by M1, ..., M` for ` 2 f1; :::;Mg. We can then de�ne C1 (`) as the row of

the communication matrix that speci�es the agents who belong to these modules and, thus, know

�1. The next lemma uses this notation to express agent 1�s expected revenue in terms of model

primitives.

LEMMA 3. Suppose agent 1 tells his state to all agents in modules M1, ...,M`, for ` 2 f1; :::;Mg
and to none of the agents in other modules. Agent 1�s expected revenue is then given by

R1 (C1 (`)) = a
2
1�
2
1

0@ 1� (n1 � 2) p1
(1 + p1) (1� (n1 � 1) p1)

+
t2x21

�P`
m=1 nmxm � n1x1

�
(1� tn1x1)

�
1� t

P`
m=1 nmxm

�
1A ; (8)

where

xm �
1

1� (nm � 1) pm + nmt
for m = 1; :::;M:

The object xm in the lemma is the �cohesion�of moduleMm, which captures how distinct the

module is from the rest of the production network.4 As such, it is increasing in its size and the

need for coordination among its members and decreasing in the degree of coupling t.

The lemma shows that agent 1�s expected revenue is the product of a21�
2
1 and the coordination

multiplier !11 (C1 (`)). The term a21�
2
1 is the revenue agent 1 is expected to generate if he does not

tell his state to any other agent and adapts to his state autonomously. As such, we refer to a21�
2
1

as the �value of autonomous adaptation�of decision d1. The coordination multiplier, in turn, is
4There are di¤erent notions and formal de�nitions of cohesion in the sociology and economics literatures. Our

de�nition is close to that in Morris (2000). Applied to our setting, his de�nition of the cohesion of module Mm is
(nm � 1) pm= [(nm � 1) pm + (N � nm) t].
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the sum of two terms. The �rst is the value of all walks from node 1 back to itself that only go

through nodes inM1. Because these walks only go through moduleM1, their value depends only

on its characteristics p1 and n1. The second term, then, is the value of the additional walks that

also go through at least one node in one of the other modulesM2,...,M`. Notice that the value of

these additional walks depends on the characteristics ofM1 only through its cohesion x1 and the

scaled analog of its cohesion n1x1, and that it depends on the characteristics of the other informed

modules only through the sum of their nmxm terms. Agent 1�s expected revenue, for instance, is

the same whether he tells his state to agents in one module with n2x2 = 10 or to agents in ten

modules with n2x2 = ::: = n11x11 = 1. This property facilitates the characterization of optimal

communication networks, to which we turn next.

PROPOSITION 2. Optimal communication is characterized by N thresholds �i � 0, one for each
agent i 2 N . Agent i tells agent j about his state if and only if they belong to the same module
or the cohesion of agent j�s module is above agent i�s threshold, that is, xm(j) � �i. The threshold
�i is increasing in marginal communication costs 
 and decreasing in the value of autonomous

adaptation a2i�
2
i , the need to coordinate the decisions within agent i�s module pm(i), and the size of

his module nm(i).

In an optimal communication network, an agent always tells his state to the other agents in

his own module. This result follows immediately from the assumption that the cost of doing so is

zero and the fact that the bene�t is strictly positive. The key insight in the proposition is that,

apart from the agents in his own module, an agent will tell his state to those in the most cohesive

modules. Doing so increases the covariance between his decision and state by enough to warrant

the additional communication costs. Telling his state to agents in less cohesive modules still allows

him to adapt his decision more aggressively to his state, but not by enough to justify the additional

costs.

The proposition is illustrated in Figure 4, in which we again focus on agent 1. There are

�ve modules, and modules M2; :::;M5 are labeled in decreasing order of their cohesion, so that

x2 � x3 � x4 � x5. The blue curve is the piecewise linear extension of expected revenue R1 (C1 (`)),

which we denote by R1 (C1 (`)), and the red line is a continuous representation of communication

costs
P`
m=2 nm
. The changing curvature of expected revenue R1 (C1 (`)) re�ects the counter-

vailing economic forces at work. The supermodularity at the heart of the model pushes towards

convexity while the modular structure of the production function pushes towards concavity. A

reduction in 
 �attens the cost curve, which favors telling agents in more modules about �1. For

the other comparative statics in the proposition, note that the slope of each line segment in the
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Figure 4: Determining the optimal communication network for agent 1 (drawn for parameter values
t = 0:01; n1 = n2 = n3 = 5; n4 = n5 = 2; p1 = p2 = p3 = 0:2; p4 = p5 = 0:1; a1�1 = 1).

bene�ts curve is the additional expected revenue generated by telling agents in the corresponding

module about �1 divided by the number of agents in the module. From Lemma 3, this per node

marginal bene�t is given by

1

n`+1
(R1 (C1 (`+ 1))�R1 (C1 (`))) = a

2
1�
2
1

t2x21x`+1�
1� t

P`
m=1 nmxm

��
1� t

P`+1
m=1 nmxm

� ,
which is increasing in the value of autonomous adaptation a21�

2
1, the size of agent 1�s module n1,

and the need for coordination among its members p1. An increase in any of these parameters,

therefore, steepens the bene�ts curve, which favors telling agents in more modules about �1.

The proposition implies that optimal communication gives rise to sender and receiver hierar-

chies. To see this implication clearly, focus again on agent 1 and consider the agents in modulesM2

andM3. The proposition shows that ifM2 is more cohesive thanM3, agents in moduleM3 will

only ever be told about �1 if those in moduleM2 also are. Moreover, since x2 and x3 do not depend

on the characteristics of the sender�s moduleM1, agents in moduleM3 will only ever be told about

any state in another module that those in moduleM2 also are. Optimal communication, therefore,

gives rise to a receiver hierarchy, in which a higher-ranked agent is told about all the states in other

modules that a lower-ranked agent is told about, and possibly more. Agent i�s receiver rank is fully

determined by the cohesion xm(i) of the module he belongs to. If xm(i) � xm(j), agent i outranks
agent j.
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COROLLARY 2. Optimal communication gives rise to a receiver hierarchy among agents. For any

agents i; j; k 2 N who belong to di¤erent modules, if xm(i) � xm(j), then agent j is told about agent
k�s state only if agent i also is.

Notice that this result is about communication and not information per se. A higher-ranked

agent is told about all the states in other modules that a lower-ranked agent is told about. But a

lower-ranked agent may still have some information that a higher-ranked agent does not have. In

particular, a lower-ranked agent observes his own state, and is always told about the other states

in his own module, and it may well be optimal for a higher-ranked agent to remain ignorant about

those states.

The fact that cohesion xm depends only on the characteristics of moduleMm, and not on those

of any other modules, also implies a sender hierarchy in which a higher-ranked agent tells his state

to all the agents in other modules that a lower-ranked agent does, and possibly others. Agent i�s

sender rank, though, does not depend on xm(i) but on �i. Agent i outranks agent j in the sender

hierarchy if he has a lower threshold, that is, �i � �j .

COROLLARY 3. Optimal communication gives rise to a sender hierarchy among agents. For any

agents i; j; k 2 N who belong to di¤erent modules, if �i � �j, then agent j tells agent k about his
state only if agent i also does.

Other things equal, an agent�s sender rank is increasing in the cohesion of his module, just as

his receiver rank is. Yet, his sender and receiver ranks need not coincide. Agent i may outrank

agent j in one hierarchy but be outranked by him in the other. The reason is that while agent i�s

rank in the receiver hierarchy depends only on the cohesion of the modules, his rank in the sender

hierarchy also depends on the speci�c characteristics of the decisions, as captured by the values of

autonomous adaptation a2i�
2
i . Suppose agent i�s module is very cohesive, so that xm(i) is larger

than the xm of any other module. Agent i, and the other agents in his module, then reside on top

of the receiver hierarchy, being told the states of any modules that agents in other modules are told

about. They reside on top of the receiver hierarchy because their ignorance about other modules

would hold those modules back from adapting their decisions more than the ignorance of agents

in any other module would. At the same time, if a2i�
2
i is su¢ ciently small, �i is also larger than

the �j of any other agent j 2 Nni, placing agent i at the bottom of the sender hierarchy. Even

though his module is very cohesive, his ability to adapt his decisions to his state is just not very

important. The agents who hear the most, therefore, might also speak the least.

Di¤erent correlations between the optimal sender and the receiver hierarchies give rise to com-

munication networks with di¤erent properties. To build on the illustration in the previous para-
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graph, suppose �rst that the optimal hierarchies are the reverse of each other, that is, for all

i; j 2 N , agent i outranks agent j in the receiver hierarchy if and only if the reverse holds in the
sender hierarchy. Loosely speaking, agents in more cohesive modules then receive more reports

than those in less cohesive ones do but also send fewer. There may still be plenty of top-down

communication, with agents in more cohesive modules reporting to others in less cohesive ones, but

in aggregate communication will be bottom up.

DEFINITION. Suppose there are communication links from agents in module Mm to agents in

module Mm0 but not the reverse. Then communication from module Mm to Mm0 is �top down�

if xm > xm0 and �bottom up� if xm0 > xm. Communication is �bottom up in aggregate� if there

are more pairs of modules that engage in bottom-up than top-down communication.

We can then state the result.

PROPOSITION 3. If the optimal sender and receiver hierarchies are the reverse of each other, and

the receiver ranking is strict, communication is bottom up in aggregate.

In the proof of the proposition we further show that communication is strictly bottom up� that

there are strictly more pairs of modules that engage in bottom-up than top-down communication�

unless communication costs are so low that some agents in each module tell their states to all the

others.

Suppose next that the optimal sender and receiver hierarchies are identical, that is, for all

i; j 2 N , agent i outranks agent j in the receiver hierarchy if and only if he also outranks him in

the sender hierarchy. Once again speaking loosely, agents in more cohesive modules then do not

only receive more reports than those in less cohesive ones do, they also send more. As a result,

communication is no longer necessarily bottom up in aggregate. Instead, the agents in the most

cohesive modules now form a core whose members engage in intense communication with each

other, while agents in the less cohesive modules form a periphery whose members communicate

only sparsely with the core, and even less with each other.

DEFINITION. A communication network has a �core-periphery structure�if the set of modules can

be partitioned into a core and a periphery such that (i.) an agent in the core tells his state to all

the other agents in the core and possibly to agents in the periphery, (ii.) an agent in the periphery

either does not tell his state to all the agents in the core, or is not told all their states, or both, and

(iii.) an agent in the periphery does not tell his state to other agents in the periphery.

We then have the following result.
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PROPOSITION 4. If the optimal sender and receiver hierarchies are identical, the communication

network has a core-periphery structure in which the core consists of the most cohesive modules.

As we noted in the introduction, core-periphery structures are common in social and commu-

nication networks. We defer a real-world illustration to the end of the next section, where we will

return to these sort of structures.

5 Application�Mirroring Hypothesis

The result that the optimal organization of modular production is hierarchical contrasts with the

Mirroring Hypothesis. As we discussed earlier, the Mirroring Hypothesis conjectures that the op-

timal way to organize modular production is to mirror the production function, to enable intense

communication within modules and accept sparse communication across. In our setting, an organi-

zation mirrors its production function if the principal places communication links within modules

but not across.

DEFINITION. An organization �mirrors�the production function if agent i 2 N tells agent j 2 N
about his state if and only if they belong to the same module.

The Boeing Company�s experience with the 787 Dreamliner illustrates the Mirroring Hypothesis

and why it may not always hold.5 The Dreamliner was designed to be modular precisely because

it allowed Boeing to outsource the development and production of most modules to independent

suppliers, many of which were scattered around the globe (see Figure 5). Suppliers delivered the

�nished modules to Boeing�s factory in Everett, where its workers put them together with the

tail �n, the only major module still made by Boeing itself. To the extent that �rm- and country

boundaries hamper communication, this way of organizing the production of the Dreamliner is

broadly in line with the Mirroring Hypothesis.

The intention of Boeing�s organizational strategy was to speed up the development of the Dream-

liner and save production costs. This is not what happened. As an article in Reuters reported at

the time (Peterson 2011): �On a blustery and drizzly December afternoon in the Paci�c Northwest,

about 20 airplanes sat engineless and inert near the runway at a Boeing manufacturing plant...The

program that produced these un�nished 787s is nearly three years behind schedule and, by some esti-

mates, at least several billion dollars over budget.�6 The underlying reason for these delays and cost

5This account is based on Peterson (2011) and Brown and Garthwaite (2016). See also Tadelis and Williamson
(2013).

6 In line with the description above, the article goes on to say: �The 787 is not merely a historic feat of engineering.
The program also marks Boeing�s departure from its own time-honored manufacturing practices. Instead of drawing
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Figure 5: Suppliers of Boeing�s 787 Dreamliner (replication of Figure 1 in Koster et al. (2011)).

overruns were coordination problems among the suppliers and between them and Boeing. These

problems proved so severe that Boeing was eventually forced to abandon its organizational strategy

and bring the production of some modules back in-house: �Some of the parts arriving in Everett

did not �t together, and late deliveries by producers of crucial sections of the plane stopped the

entire assembly process...As a result, Boeing was forced to reverse some of its original outsourcing

decisions; for example, in 2009 it spent $1 billion in cash and credit to acquire its fuselage man-

ufacturing partner Vought Aircraft Industries� (Brown and Garthwaite 2016, p.12). Even when

products are highly modular, therefore, mirroring might fail because the need to coordinate across

modules necessitates intense communication between agents working on di¤erent ones.

In our setting, mirroring is a corner solution of the principal�s problem in which no agent tells

his state to any agent in another module. The force that pushes optimal communication away from

this corner solution is the supermodularity of the coordination multipliers and thus the agents�

expected revenues. Across-module communication always improves decision-making but it does so

especially given the intensity of within-module communication that arises under mirroring. For

across-module communication to be unpro�table nevertheless, the degree of coupling has to be

su¢ ciently low. Just how low it needs to be depends on the characteristics of the production

network, as described in the next proposition.

primarily from its traditional pool of aircraft engineers, mechanics and laborers that runs generations deep in the
Puget Sound region around Seattle, Boeing leads an international team of suppliers and engineers from the United
States, Japan, Italy, Australia, France and elsewhere, who make components that Boeing workers in the United States
put together.�

21



PROPOSITION 5. Mirroring is optimal if and only if t � mini2N ti, where ti > 0 is the threshold
degree of coupling above which it is optimal for agent i to tell his state to agents in modules other

than his own and below which it is not. Adding modules to the production function decreases the

threshold ti, as does increasing the module characteristics nm0 or pm0 for any m0 6= m (i) :

For the Mirroring Hypothesis to hold, then, there cannot be too many modules, and none of

the modules can consist of too many decisions or require too much coordination, or else some

agents should tell their states to agents in other modules. Arguably, this is why mirroring failed

at Boeing. Its production function was modular but still very complex, comprising many modules,

some of which involved many decisions that required a high degree of coordination. Our model

suggests that, in such a �rm, across-module communication can be essential, even when the degree

of coupling is low.

Figure 6: Illustration of an optimal communication network that partially mirrors the production
network. Left panel� A production network consisting of four modules, two with two decisions
and two with only one (where the shaded areas highlight the modules). Right panel� The optimal
communication network. Parameter values: need for coordination within the two-decision modules
is 0.5, degree of coupling is 0.01, and the value of autonomous adaptation is 1 for all nodes;
communication costs can take any value 
 2 (0:000434; 0:000801).

A broader notion of the Mirroring Hypothesis allows for modular-like organizations, ones that

contain clusters of modules whose agents communicate with each other but not with agents outside

of the cluster. The management literature refers to such arrangements as �partial mirroring.�

DEFINITION. An organization �partially mirrors� the production function if the set of modules

can be partitioned into subsets such that (i.) agent i 2 N tells agent j 2 N , who belongs to a
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di¤erent module, about his state if and only if their modules belong to the same subset and (ii.)

there is at least one �cluster,� that is, a subset that contains two or more modules.

Partial mirroring can be optimal in our setting, and Figure 6 provides an example. If it is,

though, it has to take a particular form.

PROPOSITION 6. When partial mirroring is optimal, the organization contains only one cluster

of modules, and the modules that form the cluster are the most cohesive ones.

This result follows from the optimality of hierarchies. If there were multiple clusters, communi-

cation would not be hierarchical, which cannot be optimal. Suppose, for instance, that one cluster

consists of modulesM1 andM2 and another of modulesM3 andM4. If it is optimal for an agent

inM1 to tell his state to agents inM2 but not to those inM3, thenM2 has to be more cohesive

than M3. But if M2 is more cohesive than M3, it cannot be optimal for an agent in M4 to tell

his state to agents in M3 but not to those in M2. In contrast, the existence of a single cluster

is consistent with the optimal design of communication networks, provided it consists of the most

cohesive modules. The optimal communication network then has a core-periphery structure of the

type we discussed at the end of the previous section, albeit one with no communication between

the core and the periphery.

This takes us back to Boeing and its decision to respond to the failure of its initial organizational

strategy by insourcing the production of some modules, such as the fuselage, while continuing to

leave the production of others to its suppliers. Provided, again, that information �ows more freely

within �rms than across, this response created a core-periphery structure in which the in-house

modules formed the core and the outsourced ones the periphery. To the extent that the tail �n and

the fuselage, as well as the other modules Boeing brought in-house, were the most cohesive ones,

this response is consistent with the optimal design of communication networks in our model.

6 Robustness

Some of the assumptions in the model are critical for our results, while others are merely convenient.

The assumption that communication costs are lower within modules than across is one of the

convenient ones and allows us to streamline the exposition. Beyond convenience, this assumption

captures the notion that, because of physical proximity and shared expertise, agents working on the

same module may �nd it easier to explain their local conditions to each other than to those working

on other modules. The characterization result extends readily to an alternative speci�cation in

which the costs of a communication link are the same within and across modules. We examine this
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alternative in Appendix B.

Another assumption that is not essential for our results is that communication is perfectly

informative, which is an assumption we share with Calvó-Armengol and de Martí Beltran (2009).

Suppose, instead, that when agent i tells agent j his state, agent j learns �i with probability

q 2 (0; 1] and pure noise otherwise. To keep higher-order beliefs simple, suppose further that

both parties know whether communication was e¤ective. Finally, suppose that if agent i tells his

state to multiple agents, they either all learn his state or none of them do. The e¤ectiveness of

communication, in other words, is speci�c to the sender and does not vary across receivers. In

Appendix C we show that allowing for imperfect communication in this manner boils down to re-

scaling the communication costs: the principal�s problem is still given by (7) with communication

costs 
 replaced by 
=q.

Among the more critical assumptions, it is useful to distinguish between those that matter for

the separability result in Proposition 1 and those that matter for the characterization in Proposition

2. An assumption that is essential for the separability result is that states are independent, as in

Calvó-Armengol, de Martí, and Prat (2015). If states were correlated, an agent who is told about

one state would also learn some information about the other states, reducing the bene�t of telling

him about them. As a result, the problems of who should be told about each state would be

interdependent, breaking the separability result.

Another assumption that is critical for the separability result is that agents do not re-transmit

information, which is an assumption we share with Calvó-Armengol and de Martí Beltran (2009),

Calvó-Armengol, de Martí, and Prat (2015), and Herskovic and Ramos (2020). If agent i talks to

another agent, he tells him about his state �i but not about any other information he may have

been told about. This assumption captures the notion that, even though we model each agent�s

state as simply a number, it refers to a complex set of conditions and circumstances that only the

associated agent can describe appropriately. If agents were able to re-transmit information, the

separability result would fail. Communication links from agent i to other agents would then a¤ect

the overall cost, and thus optimal placement, of communication links from any other agent j.

Finally, the separability result depends on the absence of incentive con�icts. As mentioned

earlier, this is the de�ning assumption of the literature on team theory. To see how incentive

con�icts a¤ect the separability result, suppose that each agent only internalizes a fraction � 2 [0; 1]
of the needs to coordinate and acts as if the production network were given by �P rather than P

(for instance because they put more weight on their own revenue or pro�ts, as in Athey and Roberts

(2001) and Alonso, Dessein, and Matouschek (2008)). The rest of the model is as in Section 3. The
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next proposition shows how such incentive con�icts a¤ect the separability result.

PROPOSITION 7. If agents internalize only a fraction � 2 [0; 1] of the needs to coordinate, an
optimal communication network solves

max
C

NX
i=1

aiCov (d
�
i ; �i) + (1� �)

NX
i=1

NX
j=1

pijCov(d
�
i ; d

�
j )� 


NX
i=1

NX
j=1

mijcij ; (9)

where

Cov (d�i ; �i) = ai�
2
i!ii (Ci; �)

and

Cov(d�i ; d
�
j ) =

NX
s=1

a2s�
2
s!is (Cs; �)!js (Cs; �) ,

and where !ij (Cj ; �) denotes the ijth entry of (I � (diagCj)�P (diagCj))
�1 and mij is a dummy

variable that is equal to one if and only if agents i and j belong to di¤erent modules.

The only new term in the principal�s objective function (9) is the weighted sum of the covariances

between each decision pair. Its presence implies that if agents are biased against coordination, it is

no longer enough for the principal to ensure that each decision is su¢ ciently adapted to its state.

Instead, she also needs to take into account how communication a¤ects coordination and what she

can do to ensure decisions co-vary more strongly with each other. The challenge this property

poses is that the extent to which two decisions co-vary with each other depends which states both

decisions makers are informed about. The principal can, therefore, no longer consider each agent

in isolation and ask whom he should tell about his state. She has to consider all agents at once and

take into account how communication links from one agent a¤ect the optimal location of such links

from the others. Since the objective function continues to be supermodular, the principal can still

use standard algorithms to solve for optimal communication networks in polynomial time. Finding

an analytical solution, however, becomes more challenging.

The key assumption in the entire paper is that the production function has a non-overlapping

community structure. This assumption allows us to capture the notion that products are modular,

which are the type of products we are interested in. To generalize this structure, one could allow

for di¤erent degrees of coupling� di¤erent ts� for decisions in di¤erent pairs of modules. Since a

module may consist of a single decision, though, such a production function would constitute a

general, unweighted network with little structure to base a characterization of optimal communi-

cation on. To see what can still be said in this case, suppose that the production network P can

take any form, provided it still satis�es pii = 0, pij = pji, and
PN
j=1 pij < 1 for all i; j 2 N . The
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separability result in Proposition 1, and the lemmas that precede it, continue to hold for these

more general production functions. As such, the principal can still determine the optimal commu-

nication network by considering each agent in isolation. Moreover, the principal�s objective is still

supermodular and can, therefore, be maximized using standard algorithms.

What can no longer hold is the characterization of optimal communication networks in Proposi-

tion 2, which is speci�c to the non-overlapping community structure. Optimal communication can

now take many forms and need not give rise to hierarchies. The speci�c form it takes depends on

the speci�c structure of the production network. There are, however, some properties of optimal

communication networks that hold across production networks.

PROPOSITION 8. As long as the production network P satis�es pii = 0, pij = pji, and
PN
j=1 pij <

1, optimal communication networks C� are increasing in the value of autonomous adaptation a2i�
2
i

and the needs for coordination pij for all i; j 2 N , and decreasing in communication costs 
.

The proposition shows that, in general, the principal will only ever respond to an increase in

the value of adaptation or the need for coordination, or a decrease in the cost of communication, by

adding communication links. These comparative statics hold because the principal�s objective func-

tion is supermodular and has either increasing or decreasing di¤erences in the various parameters

(Topkis 1978, Milgrom and Shannon 1994).

7 Extension�Nested Modules

We started this paper with Herbert Simon�s observation that complex systems tend to be made

up of modules. As we noted in the introduction, Simon did not stop there and, instead, went on

to argue that such systems often have a nearly decomposable structure, in which each module is

itself made up of sub-modules, each sub-module is made up of sub-sub-modules, and so on, with

interactions being stronger within any type of module than across. To conclude the formal analysis,

we adapt our model to take a �rst step towards exploring optimal communication when production

networks have such a nested, modular structure. Our goal is to demonstrate that our model can be

adapted to explore related issues without providing a comprehensive exploration of nested, modular

networks. As such, we focus on a symmetric version of the type of system Simon described.

Speci�cally, suppose the total number of decisions, and associated states and agents, is given

by N = nk, where n and k are positive integers. Each decision belongs to one level-1 module,

which consists of n decisions, each level-1 module belongs to one level-2 module, which consists of

n level-1 modules, and so on. The highest level module is the level-k module, which consists of n
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Figure 7: A production network with a nested, modular structure.

level-k�1 modules. The need for coordination pij > 0 between any decisions di and dj 6= di is given
by t1 if they belong to the same level-1 module, by t2 < t1 if they belong to the same level-2 module

but not the same level-1 module, and so on. As in the main model, we set pii equal to zero for all

i 2 N and require
PN
j=1 pij < 1. For simplicity, suppose that the value of autonomous adaptation

a2i�
2
i is the same for all i 2 N and that the cost of any agent telling his state to another is the

same 
 > 0, irrespective of the modules they belong to. The rest of the model is the same as the

main model.

We illustrate the production network of this extension in Figure 7, where each node represents

a decision, and associated state and agent, and circles indicate the di¤erent types of modules.

Nodes belonging to the same, thickest circle form a level-1 module, those belonging to the same,

second-thickest circle form a level-2 module, and so on.

The separability result continues to hold in this setting, allowing us to again solve the principal�s

problem by determining whom each agent should tell about his state. Moreover, since all agents

now enter the production network in the same way, it su¢ ces to ask whom any one agent should

tell about his state. The next proposition gives the answer.

PROPOSITION 9. If the production network is symmetric and has a nested, modular structure,

optimal communication networks are characterized by a threshold � 2 f1; 2; :::; kg. Agent i 2 N
tells his state to agent j 2 N if and only if they belong to the same level -� module.

The proposition shows that optimal communication again has a threshold structure. Agents

tell their states only to their closest neighbors, those with whom they have the highest needs for
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coordination. Such communication is reminiscent of the type of partial mirroring we discussed

above, with intense communication taking place within each level-� module but not across. We

leave an exploration of the extent to which optimal communication deviates from this simple form

once one allows for asymmetries for future research.

8 Conclusions

The rise of modular production over the last 60 years has been widely observed and documented

and has been explored extensively in management and computer science. The goal of this paper

was to take a �rst step towards understanding the economic implications of the rise of modular

production.

As a �rst step, we focused on the immediate implications of modular production for the inter-

nal organization of �rms and abstracted from broader implications for their boundaries and the

structure of industries. Even in this narrow context, many open questions remain. An important

practical issue we put aside is the role of interfaces which ensure that di¤erent modules �t with

each other. One way to think about such interfaces in our model is as a limited set of decisions

that are made and announced before agents make the remaining ones.

Another widely-discussed issue we did not address is parallel processing, the notion that mod-

ular production allows �rms to accelerate production by having di¤erent agents work on di¤erent

modules simultaneously (Parnas 1972). One way to get at this issue in our model is to suppose

that the principal can hire agents and decide which decisions each agent is in charge of. Each agent

�rst spends time learning the states associated with his decisions, taking one period per state to

do so. After all the agents have learned their states, they make their decisions simultaneously and

without spending any further time on communication. A patient principal would hire a single agent

and have him make the �rst-best decisions after N periods but an impatient principal may prefer

to hire M agents, put each in charge of one module, and have them make worse decisions sooner.

We leave the investigation of both interfaces and parallel processing, as well as other issues related

to internal organization, for future research.

The impact of modular production on the economy is unlikely to be con�ned to changes in

the internal organization of �rms. Baldwin and Clark (1997), for instance, observe that, while the

introduction of the System/360 did lead to immediate changes in IBM�s internal organization, its

more enduring impact was to cause entry into the computer industry in the following decades. The

entrants were often small, entrepreneurial �rms that focused on the development and production

of individual modules and whose innovative products allowed them to compete successfully with
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IBM�s own, in-house module makers. In this telling, the introduction of the System/360 in the

1960s sowed the seeds for the subsequent disintegration of IBM and the other large mainframe

manufacturers and gave rise to the competitive and innovative computer industry of today.7 There

are many reasons why modular production may a¤ect the boundaries of �rms and the structure

and inventiveness of industries and we leave their exploration for future research.

A question that goes beyond the impact of modular production on economic activity is what

explains its rise in the �rst place. Simon argued that modularity facilitates adaptation by con�ning

adaptive changes to individual modules within a system. The argument that modularity allows

parallel processing provides another reason why it may have adaptive advantages. In line with

these intuitions, �rms such as IBM explain their development of modular products with the need

to adapt quickly to the changing capabilities of their suppliers and needs of their customers. Yet,

a full explanation for the rise of modular production also needs to account for its costs. It may

be easier to adapt a modular product to its environment but, for a given environment, one would

expect limitations in across-module interactions to a¤ect its performance. After all, products have

not always been modular, and even today many are not, suggesting that such designs also have

signi�cant downsides. Answering the questions of when and why �rms develop modular products,

and what trade-o¤s they face when they are doing so, would require moving beyond one of the

foundational economic modeling assumptions, that production functions are given by nature and

not designed by �rms. As such, it is the most challenging question this paper highlights and, like

the other open questions we sketched above, we leave it for future research.

Finally, this paper also raises empirical issues. Newly available data sets contain detailed infor-

mation about communication between employees within �rms (Impink, Prat, and Sadun (2021) and

Yang et al. (2021)). Our model makes speci�c predictions about the pattern of such communication

in �rms that make modular products. In particular, the prediction that optimal communication has

a hierarchical structure has a number of implications that are, at least in principle, observable, such

as the emergence of core-periphery structures and the absence of multiple cores or clusters. While

testing the model is naturally di¢ cult, we hope that this paper provides additional stimulation and

direction to the emerging empirical literature on within-�rm communication.

7As Baldwin and Clark (1997) observe: �But modularity also undermined IBM�s dominance in the long run, as
new companies produced their own so-called plug-compatible modules� printers, terminals, memory, software, and
eventually even the central processing units themselves� that were compatible with, and could plug right into, the IBM
machines. By following IBM�s design rules but specializing in a particular area, an upstart company could often
produce a module that was better than the ones IBM was making internally. Ultimately, the dynamic, innovative
industry that has grown up around these modules developed entirely new kinds of computer systems that have taken
away most of the mainframe�s market share.�
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Appendix A: Proofs

We �rst introduce some notation. Throughout the appendix, for notational compactness, we will

denote by Ei [�] the expectation over � = (�1; : : : ; �N ) given the information agent i has under

communication network C. That is, for a random variable Z, Ei [Z] � E
�
ZjC(i)

�
. Next, a

strategy for agent i is a mapping ~di : [�D;D]N ! [�D;D], where ~di (�) denotes the decision that
agent i makes in state �. We denote a strategy pro�le by ~d = �Ni=1 ~di.

LEMMA 1. Equilibrium decisions are unique and given by

d�i =
NX
j=1

aj!ij (Cj) �j for all i 2 N ;

where !ij (Cj) denotes the ijth entry of (I � (diagCj)P (diagCj))
�1.

Proof of Lemma 1. This proof parallels the approach of Golub and Morris (2017), Appendix

A1: We take the communication network C as given and show that d� = �Ni=1d�i is the unique
strategy pro�le that survives iterated elimination of strictly dominated strategies and is therefore

the unique Bayesian-Nash equilibrium.

Step 1: Show that there is a unique Bayesian-Nash equilibrium by showing that there is a unique

strategy pro�le that survives iterated elimination of strictly dominated strategies.

Given any C, the game played by the agents is a game of strategic complements: if we denote

d̂i

�
�; ~d�i

�
= ai�i +

NX
j=1

pijEi

h
~dj (�)

i
agent i�s best response to the strategy pro�le ~d�i in state �, then d̂i is increasing in each ~dj under

the partial order given by ~dj � ~d0j if and only if ~dj (�) � ~d0j (�) for all �.

De�ne the set Si (k) to be the set of i�s pure strategies surviving k rounds of iterated elimination

of strictly dominated strategies. By assumption, di (�) 2 [�D;D], so the �rst set in the sequence is

Si (0) =
n
~di

����D � ~di (�) � D for all �
o
.

Next, as this is a game of strategic complements, an upper bound on Si (1) is i�s best response to

the maximal strategy pro�le ~d�i 2 S�i (0), where ~d�i = �j 6=i ~dj and S�i (k) =
Q
j 6=i Sj (k), and a

lower bound on Si (1) is i�s best response to the minimal strategy pro�le ~d�i 2 S�i (0). That is,

Si (1) =

8<: ~di

��� ai�i � NX
j=1

pijD � ~di (�) � ai�i +
NX
j=1

pijD

9=; .
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Next, suppose that for k > 1, the set Si (k) takes the form

Si (k) =
n
~di

��� dki (�) � ~di (�) � d
k
i (�) for all �

o
,

where

d
k
i (�) = ai�i +

k�1X
m=1

�im +
NX
j1=1

NX
j2=1

� � �
NX
jk=1

pij1pj1j2 � � � pjk�1jkD

dki (�) = ai�i +
k�1X
m=1

�im �
NX
j1=1

NX
j2=1

� � �
NX
jk=1

pij1pj1j2 � � � pjk�1jkD,

and

�im =

NX
j1=1

� � �
NX

jm=1

pij1pj1j2 � � � pjm�1jmajmEiEj1 � � �Ejm�1 [�jm ] .

Then an upper bound on Si (k + 1) is agent i�s best response to the maximal strategy pro�le
~d�i 2 S�i (k), and a lower bound on Si (k + 1) is agent i�s best response to the minimal strategy
pro�le ~d�i 2 S�i (k). That is,

Si (k + 1) =
n
~di

��� dk+1i (�) � ~di (�) � d
k+1
i (�) for all �

o
.

To show that the upper and lower bounds of Si (k) converge to the same value, we show that

lim
k!1

NX
j1=1

NX
j2=1

� � �
NX
jk=1

pij1pj1j2 � � � pjk�1jkD = 0.

This term converges to zero as long as the row sum of the production matrix to the kth power,

P k, converges to zero as k !1. This result follows since
PN
j=1 pij < 1 for all i, and therefore the

spectral radius of P is strictly less than one. By the sandwich theorem, we therefore have

lim
k!1

dki (�) = lim
k!1

d
k
i (�) = ai�i +

1X
m=1

�im.

This result implies that limk!1 Si (k) is a singleton for all i. As this is a supermodular game, the

resulting strategy pro�le is the unique Bayesian-Nash equilibrium of the game.

Step 2: Show that the unique Bayesian-Nash equilibrium strategy pro�le is a linear combination

of �1; : : : ; �N , that is, d�i (�) =
PN
j=1 �ij�j for some scalars f�ijg

N
j=1.

First, observe that EiEj1 � � �Ejm�1 [�jm ] is zero if some j 2 fi; j1; : : : ; jm�1g does not know �jm
under C, and EiEj1 � � �Ejm�1 [�jm ] = �jm if all j 2 fi; j1; : : : ; jm�1g know �jm under C. This

result follows by an induction argument and the law of iterated expectations. For the m = 1
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case, Ei [�j1 ] = 0 if i does not know �j1 , and Ei [�j1 ] = �j1 if i does know �j1 . Next, suppose all

j 2 fi; j1; : : : ; jm�1g know �jm+1 . Then EjmEiEj1 � � �Ejm�1
�
�jm+1

�
= Ejm

�
�jm+1

�
, which is 0 if jm

does not know �jm+1 and is �jm+1 if all fi; j1; : : : ; jmg know �jm+1 . Finally, suppose there is some
j 2 fi; j1; : : : ; jm�1g who does not know �jm+1 . Then EjmEiEj1 � � �Ejm�1

�
�jm+1

�
= Ejm [0] = 0.

The result in the previous paragraph ensures that each �im from Step 1 is a linear combination

of �1; : : : ; �N , and therefore d�i (�) = ai�i +
P1
m=1 �im =

PN
j=1 �ij�j for some scalars f�ijg

N
j=1.

Step 3: Show that �ij = aj!ij (Cj) �j , where !ij (Cj) denotes the ijth entry of the matrix

(I � (diagCj)P (diagCj))
�1.

The network associated with (diagCj)P (diagCj) is the subgraph of the production network

induced by nodes that know �j , and therefore !ij (Cj) is the sum of the values of all walks from

node i to node j on the production network that pass only through nodes that know �j .

Note that pij1pj1j2 � � � pjm�1jm describes the value of a walk of length m from node i to node

jm on the production network. If any node in a walk ij1; j1j2; � � � ; jm�1jm does not know �jm ,

then from the argument in step 2, EiEj1 � � �Ejm�1 [�jm ] = 0. Otherwise, EiEj1 � � �Ejm�1 [�jm ] = �jm .
Thus, �im is the sum of the values of all walks of lengthm from node i to node jm on the production

network that pass only through nodes that know �jm . The result then follows. �

COROLLARY 1. The weight ai!ii (Ci) that agent i�s decision d�i puts on his state �i satis�es

!ii (Ii) ai = ai, where Ii is the ith row of an N � N identity matrix, and is increasing and

supermodular in Ci.

Proof of Corollary 1. This result follows from the proofs of Lemma 1 and Proposition 8. �

LEMMA 2. Under equilibrium decision-making, expected revenue is given by

R (C) � E [r (d�1; : : : ; d�N )] =
NX
i=1

aiCov (d
�
i ; �i) ,

where Cov (d�i ; �i) = ai�
2
i!ii (Ci).

Proof of Lemma 2. Given optimal decision making, revenue in state � can be written as

NX
i=1

aid
�
i �i �

NX
i=1

d�i

24d�i � ai�i � NX
j=1

pijd
�
j

35 .
Next, substitute in the best responses d�i = ai�i +

PN
j=1 pijEi

h
d�j

i
. The term in square brackets is

therefore equal to
PN
j=1 pij

h
Ei

h
d�j

i
� d�j

i
, and revenue can be written as

NX
i=1

aid
�
i �i �

NX
i=1

NX
j=1

pijd
�
i

�
Ei
�
d�j
�
� d�j

�
.
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We will now show that agent i�s optimal decision d�i is orthogonal to the error with which he

predicts agent j�s optimal decision, Ei
h
d�j

i
� d�j , and therefore the second set of terms is zero in

expectation. To see why this result is true, take expectations of the second term, and plug in

d�i =
PN
s=1 as!is (Cs) �s and E

h
d�j

i
=
PN
t=1 at!jt (Ct) Ei [�t]. We therefore have

E

24 NX
i=1

NX
j=1

pij

NX
s=1

as!is (Cs) �s

"
NX
t=1

at!jt (Ct) Ei [�t]�
NX
t=1

at!jt (Ct) �t

#35
=

NX
i=1

NX
j=1

pij

NX
s=1

!is (Cs) as

NX
t=1

!jt (Ct) atE [�sEi [�t]� �s�t]

=
NX
i=1

NX
j=1

pij

NX
s=1

!is (Cs)!js (Cs) a
2
sE [�sEi [�s]� �s�t] .

In the last equality, the cross terms cancel by independence. The binary information structure

ensures that each term in the �nal line is zero, since either agent i knows �s, in which case the �nal

term in square brackets is zero, or agent i does not know �s, in which case !is (Cs) = 0.

Expected revenue is therefore

E

"
NX
i=1

aid
�
i �i

#
=

NX
i=1

aiCov (d
�
i ; �i) =

NX
i=1

a2i�
2
i!ii (Ci) ,

since

Cov (d�i ; �i) = E [d
�
i �i]� E [d�i ] E [�i] = E [d�i �i] = E

24 NX
j=1

aj!ij (Cj) �j�i

35 = ai!ii (Ci) E
�
�2i
�
,

where the �nal equality follows by independence of the states. �

PROPOSITION 1. An optimal communication network solves the principal�s problem (2) if and

only if it solves the N independent subproblems

max
Ci

Ri (Ci)� 

NX
j=1

mijcij subject to cii = 1 for all i 2 N ,

where mij is a dummy variable equal to one if and only if agents i and j 6= i belong to di¤erent

modules.

Proof of Proposition 1. Optimal communication networks maximize expected revenues mi-

nus communication costs. Using the expected revenue expression derived in Lemma 2, optimal

communication networks solve

max
C

24 NX
i=1

a2i�
2
i!ii (Ci)� 


NX
i=1

NX
j=1

mijcij

35 .
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Since !ii (Ci) depends only on Ci and not the rest of the communication network C, and the

objective is additively separable in i, a communication network C� solves this problem if and only

if C�
i solves

max
Ci

a2i�
2
i!ii (Ci)� 


NX
j=1

mijcij

for all i 2 N . �

LEMMA 3. Suppose agent 1 tells his state to all agents in modulesM1; : : : ;M`, for ` 2 f1; : : : ;Mg
and to none of the agents in other modules. Agent 1�s expected revenue is then given by

R1 (C1 (`)) = a
2
1�
2
1

0@ 1� (n1 � 2) p1
(1 + p1) (1� (n1 � 1) p1)

+
t2x21

�P`
m=1 nmxm � n1x1

�
(1� tn1x1)

�
1� t

P`
m=1 nmxm

�
1A ,

where

xm �
1

1� (nm � 1) pm + nmt
for m = 1; : : : ;M .

Proof of Lemma 3. Denote the modules whose agents know state �1 byM1;M2; : : : ;M`, where

M1 is agent 1�s own module. From Lemma 2, the expected revenue generated by agent 1 is

R1 (C1 (`)) = a
2
1�
2
1!11 (C1 (`)). We will derive !11 (C1 (`)) in four steps.

Step 1: Derive a representation of !11 (C1 (`)) as the value of walks on a modi�ed module-level

production network, and show that !11 (C1 (`)) = detV (`) =detQ (`) for some matrices V (`) and

Q (`).

The value !11 (C1 (`)) is the sum of the values of all walks from node 1 back to itself on the

subgraph of the production network consisting of nodes in modules whose agents know state �1.

Denote this value by v. Next, let vk be the sum of the values of all walks from a node in module k

to node 1 on this same subgraph. These values can be written recursively as a system of equations.

v = 1 + p1 (n1 � 1) v1 + tn2v2 + � � �+ tn`v`

v1 = p1v + p1 (n1 � 2) v1 + tn2v2 + � � �+ tn`v`
...

v` = tv + t (n1 � 1) v1 + tn2v2 + � � �+ p` (n` � 1) v`.

The right-hand side of the �rst equation describes the value of all walks from node 1 in the

following way: the �rst term, 1, is the value of walks that pass only through node 1; the second

term, p1 (n1 � 1) v1, is the value of all walks that initially pass to one of the n1 � 1 other nodes in
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module M1; the k + 1th term, tnkvk, is the value of all walks that initially pass to one of the nk

nodes in module Mk. The right-hand side of the second equation captures the value of all walks

from a node j 6= 1 in moduleM1 back to node 1 in the following way: the �rst term is the value

of walks that initially pass back to node 1; the second term is the value of all walks that initially

pass to one of the other n1 � 2 nodes in module M1; the k + 1th term is the value of all walks

that initially pass to one of the nk nodes in moduleMk. The remaining equations are interpreted

analogously.

This system of `+ 1 equations can be written in matrix form:2666666664

1

0

0
...

0

3777777775
=

2666666664

1 �p1 (n1 � 1) �tn2 � � � �tn`
�p1 1� p1 (n1 � 2) �tn2 � � � �tn`
�t �t (n1 � 1) 1� p2 (n2 � 1) � � � �tn`
...

...
...

. . .
...

�t �t (n1 � 1) �tn2 � � � 1� p` (n` � 1)

3777777775

2666666664

v

v1

v2
...

v`

3777777775
.

Denote this (`+ 1) � (`+ 1) matrix by Q (`). Then v is the (1; 1) element of the inverse matrix
Q (`)�1, and by the de�nition of a matrix inverse, v = detV (`) =detQ (`), where V (`) is the

matrix obtained by removing the �rst row and column of Q (`).

Step 2: Show that detQ (`) = detA
x2���x`

�
1� z

P`
j=2 njxj

�
, where detA = (1 + p1) (1� p1 (n1 � 1)),

and z = t
�
1 + t (1+p1)n1detA

�
.

We use the following result for the determinant of a block matrix,

det

"
A B

C D

#
= det (A) det

�
D �CA�1B

�
.

Partition matrix Q (`) so that A is de�ned as

"
1 �p1 (n1 � 1)
�p1 1� p1 (n1 � 2)

#
, and B, C, and D are

de�ned accordingly. Then

CA�1B =

2666664
�t �t (n1 � 1)
�t �t (n1 � 1)
...

...

�t �t (n1 � 1)

3777775
"

1 �p1 (n1 � 1)
�p1 1� p1 (n1 � 2)

#�1 "
�tn2 �tn3 � � � �tn`
�tn2 �tn3 � � � �tn`

#

=
t2 (1 + p1)n1

detA

2666664
n2 n3 � � � n`

n2 n3 � � � n`
...

...
. . .

...

n2 n3 � � � n`

3777775 .
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De�ne z = t
�
1 + t (1+p1)n1detA

�
, and recall from the statement of the lemma that x�1s = 1 �

ps (ns � 1) + tns. Using these expressions, we can write

D �CA�1B =

2666664
x�12 � zn2 �zn3 � � � �zn`
�zn2 x�13 � zn3 � � � �zn`
...

...
. . .

...

�zn2 �zn2 � � � x�1` � zn`

3777775 .

For ` = 2, the determinant of this matrix is x�12 �zn2. For ` � 3, since the determinant is invariant
to subtracting one row from another, we can subtract row 2 from row 1, row 3 from row 2, row 4

from row 3, and so on, to rewrite det
�
D �CA�1B

�
as

det

2666666664

x�12 �x�13 0 � � � 0

0 x�13 �x�14 � � � 0
...

...
...

. . .
...

0 0 0 � � � �x�1`
�zn2 �zn3 �zn4 � � � x` � zn`

3777777775
.

Denote this matrix by Z2!`. Denote by Z3!` the matrix derived by deleting the �rst row and

column from Z2!` and denote Zk+1!` the matrix derived by deleting the �rst row and column

from Zk!`.

Using the cofactor expansion of the determinant along the �rst column, we can rewrite the

expression for detZ2!` as

detZ2!` = x
�1
2 detZ3!` � zn2x�13 x

�1
4 � � �x�1` .

For the second term, we use the result that the determinant of a lower-triangular matrix is the

product of its trace. More generally,

detZk!` = x
�1
k detZk+1!` � znkx�1k+1x

�1
k+2 � � �x

�1
` .

Note that detZ`�1!` = 1
x`�1x`

(1� z (n`�1x`�1 + n`x`)), so iteratively plugging in the expression
for detZ`�k!` into the expression for detZ`�k�1!` gives us

detZ2!` =
1

x2 � � �x`

0@1� zX̀
j=2

njxj

1A ,
and since detQ (`) = (detA) det

�
D �CA�1B

�
= (detA) (detZ2!`), we have

detQ (`) =
detA

x2 � � �x`

0@1� zX̀
j=2

njxj

1A ,
40



which completes this step.

Step 3: Show that detV (`) = det ~A
x2���x`

�
1� ~z

P`
j=2 njxj

�
, where det ~A = 1 � p1 (n1 � 2), and

~z = t
�
1 + tn1�1

det ~A

�
.

This step proceeds similarly to step 2. Recall that V (`) is the matrix derived by eliminating

the �rst row and column from the matrix Q (`). Partition V (`) into the block matrix

"
~A ~B

~C ~D

#
by letting ~A = 1� p1 (n1 � 2) and setting ~B, ~C, and ~D accordingly. Then

~C ~A
�1 ~B=

t2 (n1 � 1)
det ~A

2666664
n2 n3 � � � n`

n2 n3 � � � n`
...

...
. . .

...

n2 n3 � � � n`

3777775 .

De�ne ~z = t
�
1 + tn1�1

det ~A

�
. Then

~D � ~C ~A
�1 ~B=

2666664
x�12 � ~zn2 �~zn3 � � � �~zn`
�~zn2 x�13 � ~zn3 � � � �~zn`
...

...
. . .

...

�~zn2 �~zn2 � � � x�1` � ~zn`

3777775 ,

which is the same expression as for D�CA�1B in step 2, except that we have replaced z with ~z.

Applying the same argument as in step 2, we therefore have

detV (`) = det
�
~A
�
det
�
~D � ~C ~A

�1 ~B
�
=
det
�
~A
�

x2 � � �x`

0@1� ~zX̀
j=2

njxj

1A ,
which completes this step.

Step 4: Show that !11 (C1 (`)) =
1�(n1�2)p1

(1+p1)(1�(n1�1)p1) +
t2x21(

P`
m=1 nmxm�n1x1)

(1�tn1x1)(1�t
P`
m=1 nmxm)

.

We will decompose !11 (C1 (`)) into two terms: (i:) the value of all walks from node 1 back

to node 1 that pass only through nodes in module M1 plus (ii:) the value of all walks from

node 1 back to node 1 that pass through nodes in modules M2; : : : ;M`. If we de�ne Q (1) ="
1 �p1 (n1 � 1)
�p1 1� p1 (n1 � 2)

#
, then the value of (i:) is detV (1)detQ(1) . This decomposition allows us to rewrite

!11 (C1 (`)) as

!11 (C1 (`)) =
detV (`)

detQ (`)
=
detV (1)

detQ (1)
+
detV (`) detQ (1)� detV (1) detQ (`)

detQ (`) detQ (1)
.
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The �rst expression is
1� p1 (n1 � 2)

(1 + p1) (1� p1 (n1 � 1))
,

and the second expression is

t2
P`
j=2 njxj

(1� p1 (n1 � 1)) (1� p1 (n1 � 1))
�
1� t

�
1 + t n1

1�p1(n1�1)

�P`
j=2 njxj

�
=

t2x21
P`
j=2 njxj

(1� tn1x1)
�
1� t

P`
j=1 njxj

� ,
where the �rst term follows from substitution and rearrangement, and the second term uses the the

de�nition of x1 to rewrite 1� p1 (n1 � 1) = 1
x1
(1� tn1x1). These two expressions complete step 4.

The lemma then follows because R1 (C1 (`)) = a
2
1�
2
1!11 (C1 (`)). �

PROPOSITION 2. Optimal communication is characterized by N thresholds �i � 0, one for each
agent i 2 N . Agent i tells agent j about his state if and only if they belong to the same module, or
the cohesion of agent j�s module is above agent i�s threshold, that is, xm(j) � �i. The threshold �i is
increasing in marginal communication costs and decreasing in the value of autonomous adaptation

a2i�
2
i , the need to coordinate the decisions with agent i�s module pm(i), and the size of his module

nm(i).

Proof of Proposition 2. To establish the threshold result, we will argue that if agent i informs

a moduleMj with cohesion xj but not a moduleMj0 with cohesion xj0 , then it must be the case

that xj > xj0 . To do so, we will show that the expected per-node incremental revenue of informing

both modulesMj andMj0 is greater than the expected per-node incremental revenue of informing

only moduleMj0 whenever xj > xj0 . This result will imply that whenever it is optimal to inform

moduleMj0 , it is also optimal to inform moduleMj .

To make this argument, we use the notation from the proof of Lemma 3. The expected per-

node incremental revenue of informing one more module,M`+1, about state �1, given that modules

M1; : : : ;M` are informed, is

1

n`+1
a21�

2
1

�
detV (`+ 1)

detQ (`+ 1)
� detV (`)
detQ (`)

�
=

1

n`+1
a21�

2
1

detV (`+ 1) detQ (`)� detV (`) detQ (`+ 1)
detQ (`+ 1) detQ (`)

.

Using the expressions for detQ (�) and detV (�) derived in Lemma 3, we can rewrite this expression:

a21�
2
1

t2x21x`+1�
1� t

P`
j=1 njxj

��
1� t

P`+1
j=1 njxj

� .
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Analogously, the expected per-node incremental revenue of informing modules M`+1 and M`+2

about state �1, given that modulesM1; : : : ;M` are informed, is

1

n`+1 + n`+2

a21�
2
1t
2x21 (n`+1x`+1 + n`+2x`+2)�

1� t
P`
j=1 njxj

��
1� t

P`+2
j=1 njxj

� .
Then the expected per-node incremental revenue of additionally informing modulesM`+1 and

M`+2 minus the expected per-node incremental revenue of additionally informing only module

M`+1 about �1 can be written as follows.

1

n`+1 + n`+2

a21�
2
1t
2x21 (n`+1x`+1 + n`+2x`+2)�

1� t
P`
j=1 njxj

��
1� t

P`+2
j=1 njxj

� � a21�21 t2x21x`+1�
1� t

P`
j=1 njxj

��
1� t

P`+1
j=1 njxj

�
=

a21�
2
1x
2
1t
2n`+2

h
(x`+2 � x`+1)

�
1� t

P`+1
j=1 njxj

�
+ t (n`+1 + n`+2)x`+1x`+2

i
(n`+1 + n`+2)

�
1� t

P`
j=1 njxj

��
1� t

P`+1
j=1 njxj

��
1� t

P`+2
j=1 njxj

� .

This expression is necessarily positive if x`+2 � x`+1. Notice that this condition is independent of
which modules (besidesM1) already know state �1.

We can rank the modules according to their values of cohesion xs and show, by contradiction,

that if it is optimal to inform any module with cohesion xj , then it is optimal to inform all modules

with xs � xj . Suppose it is optimal to inform some subset of modules,M1;M2; : : : ;M`, but there

is some xK � xi for some K 62 f2; : : : ; `g and some i 2 f2; : : : ; `g. If all modulesM1;M2; : : : ;M`

but notMi know state �1, the above inequality tells us that expected per-node incremental revenue

is higher if both modules Mi and MK also know �1 than if only Mi knows �1. This contradicts

the optimality of informing modulesM1;M2; : : : ;M`.

The threshold �1 is given by the value at which the expected revenue of informing all modules

Ms with xs � �1 minus the cost of informing those modules is highest. If pro�ts are negative from
informing any subset of modules, then �1 > xs for all s 2 f2; : : : ;Mg. Recall that the expected
revenue generated by agent 1 when modulesM1; : : : ;M` know state �1 is

a21�
2
1

0@ 1� p1 (n1 � 2)
(1 + p1) (1� p1 (n1 � 1))

+
t2x21

P`
j=2 njxj

(1� tn1x1)
�
1� t

P`
j=1 njxj

�
1A ,

where xs = 1
1�ps(ns�1)+tns . The �rst term in brackets is increasing in n1 and p1, and the second

term is increasing in x1 and n1, where x1 is increasing in p1 and n1, since ps � t by assumption.
Thus, the expected revenue from informing modules M1;M2; : : : ;M` is increasing in a1; �21; n1,

and p1. Similarly, the expected per-node incremental revenue from additionally informing modules

M`+1; : : : ;M`+k given modules M1;M2; : : : ;M` are already informed is increasing in a1; �21; n1,
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and p1. Following an increase in a1; �21; n1, and p1, since the incremental revenue from additionally

informing modules is increasing in a1; �21; n1; and p1, then the pro�t from informing all modules

with xs � �1 continues to be higher than the pro�t from informing a subset of those modules. �

COROLLARY 2. Optimal communication gives rise to a receiver hierarchy among agents. For

any agents i; j; k 2 N who belong to di¤erent modules, if xm(i) � xm(j), then agent j is told about
agent k�s state only if agent i also is.

Proof of Corollary 2. This result follows directly from Proposition 2. �

COROLLARY 3. Optimal communication gives rise to a sender hierarchy among agents. For any

agents i; j; k 2 N who belong to di¤erent modules, if �i � �j, then agent j tells agent k about his
state only if agent i also does.

Proof of Corollary 3. This result follows directly from Proposition 3. �

PROPOSITION 3. If the optimal sender and receiver hierarchies are the reverse of each other, and

the receiver ranking is strict, communication is bottom up in aggregate.

Proof of Proposition 3. Label the modules by their cohesion, with the most-cohesive module

labeledM1 and the least-cohesive module labeledMM : x1 > x2 > � � � > xM . Let us �rst introduce
some de�nitions. We de�ne the receiver ranking �R by i �R j if and only if xm(i) � xm(j) and

the strict receiver ranking i �R j if and only if xm(i) > xm(j). We say that the sender ranking

�S is the reverse of the receiver ranking if i �R j if and only if j �S i. Because agents within a
module can have di¤erent sender rankings, the property that the sender ranking is the reverse of

the receiver ranking implies that i �R j ) j �S i, but we can have that i �S j and i �R j. Finally,
we say that a communication link from i to j is unilateral top down if xm(i) > xm(j), and there is

no communication link from j to i. We establish the result in three steps. The �rst step establishes

an intermediate result, and the last two steps apply it to two cases, establishing the proposition.

Step 1: Show that communication from i to j can be unilateral top down only if (i:) agents i and

j are in adjacent modules (i.e., m (j) = m (i)+1) and (ii:) no agent in module Mm(i) informs any

agent in any module Mm(i)+s for s � 2.

To establish the �rst part of the claim, let us suppose communication from i to j is unilateral

top down, and m (j) > m (i) + 1. Then because everyone in module j has the same receiver rank,

it must be the case that i informs all the agents in module m (j), and because xm(j) < xm(j)�1, it

must also be the case that i informs all the agents in module m (j) � 1. Since i �R j, it must be
the case that j �S i, so j must inform all agents in module m (j) � 1 as well as any agent k with
xm(k) > xm(j)�1, which includes any agent in module m (i). Agent j must therefore inform agent i,
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which is a contradiction. If communication from i to j is unilateral top down, it must be the case

that m (j) = m (i) + 1.

For the second part of the claim, suppose communication from i to j is unilateral top down

with m (j) = m (i) + 1, and suppose some agent in module Mm(i) informs some agent k with

m (k) > m (j). Then agent j must also inform agent k and any agent in a more cohesive module.

ModuleMm(i) is more cohesive than moduleMm(k). Agent j must therefore inform agent i, which

is a contradiction. If communication from i to j is unilateral top down, it must be the case that no

agent in moduleMm(i) informs any agent in any moduleMm(i)+s for s � 2.

Step 2: Show that if there is top-down communication from module Mm, m � M � 2, to module
Mm+1, there is bottom-up communication from module Mm+2 to module Mm+1 and from module

Mm+2 to module Mm.

Suppose there is top-down communication from some moduleMm to the moduleMm+1. Then

by the second part of Step 1, there is no agent in module Mm who informs any agent in module

Mm+2. Since xm > xm+2, agents in module Mm+2 outrank agents in module Mm in the sender

ranking and therefore must also inform some agents in module Mm+1. Since no agent in module

Mm+1 informs any agent in moduleMm, they must also not inform any agent in moduleMm+2,

so there is bottom-up communication from moduleMm+2 to moduleMm+1.

Moreover, since agents in moduleMm+2 inform agents in moduleMm+1, they must also inform

agents with a higher receiver rank. That is, they must also inform agents in moduleMm, and so

there is also bottom-up communication from moduleMm+2 to moduleMm. Thus, if there is top-

down communication from a module Mm to module Mm+1, there is bottom-up communication

from moduleMm+2 to modulesMm+1 and from moduleMm+2 to moduleMm.

Step 3: Show that if there is top-down communication from module MM�1 to module MM , there

is is bottom-up communication from module MM�1 to module MM�2 and from module MM to

module MM�2.

Suppose there is top-down communication from moduleMM�1 to moduleMM . Given that no

agent in module MM informs any agent in module MM�1, and module MM dominates module

MM�2 in the sender ranking, then no agent in moduleMM�2 informs any agent in moduleMM�1

or MM . By the receiver ranking, since some agent in module MM�1 informs some agent in

module MM , then some agent in module MM�1 must also inform agents in module MM�2, so

there is bottom-up communication from moduleMM�1 to moduleMM�2. Further, moduleMM

dominates moduleMM�1 in the sender ranking and so since some agent in moduleMM�1 informs

some agent in module MM�2, then some agent in module MM must also inform some agent in
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moduleMM�2. So there is also bottom-up communication from moduleMM to moduleMM�2.

Putting the results in steps 2 and 3 together, we have that for every pair of modules for

which there is top-down communication, there are two unique pairs of modules for which there is

bottom-up communication, so communication must be bottom up in aggregate. This proof has

also established that if there exists top-down communication between any pair of modules in the

optimal communication network, then aggregate communication is strictly bottom up (i.e., there are

strictly more pairs of modules that engage in bottom-up communication than engage in top-down

communication). Further, if there is no top-down communication between any pair of modules,

then aggregate communication must also be strictly bottom-up, except for the case where there is

some communication from an agent in each module to an agent in all other modules. �

PROPOSITION 4. If the optimal sender and receiver hierarchies are identical, the communication

network has a core-periphery structure in which the core consists of the most cohesive modules.

Proof of Proposition 4. Label the modules by their cohesion, with the most cohesive labeledM1

and the least cohesive labeledMM , that is x1 � x2 � � � � � xM . Find the highest k 2 f2; : : : ;Mg
such that some agent in module k informs some agent in module Mk�1. We deal with the case

where no such k exists below.

An agent either informs everyone in a module or no one in that module, and thus there exists

some agent in moduleMk who informs all agents in moduleMk�1 and, by the receiver ranking, all

agents in modulesM1; : : : ;Mk�1. Since the sender ranking is the same as the receiver ranking, if

an agent in moduleMk informs all agents in modulesM1; : : : ;Mk�1, then all agents in any module

Mm 2 fM1; : : : ;Mk�1g must inform all other agents in modulesM1; : : : ;Mk�1. Therefore there

is full communication among agents in modulesM1; : : : ;Mk�1.

We next consider modulesMk+1; : : : ;MM . By the above de�nition, there is no agent in mod-

ule Mk+1 who informs an agent in module Mk. By the receiver ranking, there is no agent in

module Mk+1 who informs any agent in modules Mk;Mk+1; : : : ;MM (aside from agents in his

own module). Since the sender ranking is the same as the receiver ranking, if an agent in module

Mk+1 does not tell his state to agents in modulesMk;Mk+1; : : : ;MM , then any agent in module

Mk+2; : : : ;MM does not inform any agents in modulesMk;Mk+1; : : : ;MM (aside from agents in

his own module). Therefore there is no communication across modulesMk+1; : : : ;MM .

It remains to determine whether agents in module Mk are in the core or periphery. Suppose

all agents in module Mk�1 inform all agents in module Mk. From the sender ranking, it then

follows that all agents in modules M1; : : : ;Mk�1 inform all agents in module Mk. In this case,

any agents in module Mk that inform agents in modules M1; : : : ;Mk�1 are in the core. By the
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receiver ranking, agents in module Mk that do not inform agents in module Mk�1 also do not

inform any agents in modulesMk+2; : : : ;MM , and so those agents are in the periphery.

Next, suppose some agents in moduleMk�1 do not inform agents in moduleMk. Then mod-

ule Mk is part of the periphery. By the receiver ranking, since agents in module Mk�1 do not

inform agents in module Mk, they also do not inform agents in modules with lower cohesion,

Mk+1; : : : ;MM . Then, by the sender ranking, agents in module Mk also do not communicate

with agents in modulesMk+1;Mk+2; : : : ;MM and soMk is in the periphery.

If there is no k 2 f2; : : : ;Mg such that some agent in moduleMk informs an agent in module

Mk�1, then no agent in module M2 informs any agent in module M1, and by the sender and

receiver rankings, no agent in modulesM2; : : : ;MM inform any agent outside their own module.

If some agents in module M1 inform others, those agents in module M1 form the core, and all

other agents inform no one outside their own module and form the periphery. If no agents inform

anyone outside their own module, then all agents are in the periphery. �

PROPOSITION 5. Mirroring is optimal if and only if t � mini2N ti, where ti > 0 is the threshold
degree of coupling above which it is optimal for agent i to tell his state to agents in modules other

than his own and below which it is not. Adding modules to the production function decreases the

threshold ti, as does increasing the module characteristics nm0 or pm0 for any m0 6= m (i) :

Proof of Proposition 5. Without loss of generality, we consider agent 1 and show there exists a

threshold t1 > 0 such that pro�ts are higher if agents in other modules are not informed about �1

if and only if t < t1.

From Lemma 3, the expected revenue generated by agent 1 when some ` modulesM1; : : : ;M`,

know state �1, is

a21�
2
1

0@ 1� p1 (n1 � 2)
(1 + p1) (1� p1 (n1 � 1))

+
t2x21

P`
j=2 njxj

(1� tn1x1)
�
1� t

P`
j=1 njxj

�
1A .

The �rst term, a21�
2
1

1�p1(n1�2)
(1+p1)(1�p1(n1�1)) , is the expected revenue when agent 1 and his own module

M1 are informed about �1. The second term is the expected revenue of additionally informing

modules M2; : : : ;M`. Expected pro�ts from informing modules M2; : : : ;M` are positive only if

the expected per-node incremental revenue from informing those modules exceeds the cost,

a21�
2
1

n2 + � � �+ n`
t2x21

P`
j=1 njxj

(1� tn1x1)
�
1� t

P`
j=1 njxj

� � 
.
The left-hand side of this inequality is zero if t = 0; and pro�t from informing this set of communities

is negative. The terms in the numerator, t2x21njxj , are increasing in t, and the terms in the
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denominator, �tnjxj , are decreasing in t, and so the left-hand side is increasing in t. Thus there
exists some threshold that we denote by t` such that when t � t`, pro�t is less than or equal

to zero from informing this set of modules. Since we assume t � pm for all m 2 f1; : : : ;Mg,
then t` occurs either at the value of t for which the left-hand side of the inequality is equal to


 (and above such a threshold there is positive pro�t from informing that set of modules) or at

min fpm : m 2 f1; : : : ;Mgg, whichever is the smaller of the two.
Let P (M2; : : : ;MM ) denote the power set of the modules fM2; : : : ;MMg. Let e denote an

element of P (M2; : : : ;MM ), where e is a set of modules. Let te denote the threshold such that it

is not pro�table to inform the modules in e about �1 if and only if t � te. Then it is not pro�table
to inform any other modules about �1 if and only if t � min

�
te : e 2 P (M2; : : : ;MM ) n;

	
and

therefore t1 = min
�
te : e 2 P (M2; : : : ;MM ) n;

	
.

We next show that t1 is decreasing in nm and pm. Terms with nm enter the numerator on the

left-hand side of the inequality above via the term nmxm
n2+���+nm+���+n` , which is increasing in nm, and

enter the denominator via the terms �nmxm, which are decreasing in nm (since by assumption,

pm � t). Therefore the left-hand side of the inequality is increasing in nm for all m 6= 1. It

is also increasing in pm. An increase in nm or pm lowers the threshold value of t at which the

left-hand side of the inequality is equal to 
 and therefore weakly lowers the threshold te for any

e 2 P (M2; : : : ;MM ). It follows that t1 = min
�
te : e 2 P (M2; : : : ;MM ) n;

	
cannot increase

following an increase in nm or pm for all m 6= 1.
Next, consider an increase in the number of modules such that we add an additional module

MM+1 without making changes to the existing modules fM2; : : : ;MMg. Then P (M2; : : : ;MM ) �
P (M2; : : : ;MM ;MM+1) and hence

min
�
te : e 2 P (M2; : : : ;MM ) n;

	
� min

�
te : e 2 P (M2; : : : ;MM ;MM+1) n;

	
,

and therefore t1 cannot increase following an increase in the number of modules. �

PROPOSITION 6. When partial mirroring is optimal, the organization contains one cluster of

modules, and the modules that form the cluster are the most cohesive ones.

Proof of Proposition 6. We �rst show that when an organization partially mirrors the production

function, the set of modules are partitioned such that only one subset contains more than one

module. Suppose the set of modules are partitioned such that there are at least two subsets each

containing at least two modules. We show a contradiction. Without loss of generality, we suppose

one subset includes modules denotedM2 andM3 and possibly others, and another subset contains

modulesM4 andM5 and possibly others. By Proposition 2, sinceM2 informsM3 but notM5,
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it must be that x3 > x5, but since M4 informs M5 but not M3, then x5 > x3, which is a

contradiction.

We next consider which modules are part of the subset that contains multiple modules when an

organization partially mirrors the production function. Suppose the module labeledMs is part of

this subset. By Proposition 2, an agent i in module s tells his state to an agent j outside i�s module

if and only if xm(j) � �i. The symmetric argument holds for all individuals within all modules in
this subset. Therefore this subset contains the modulesMs with the highest values of xs. �

PROPOSITION 7. If agents internalize only a fraction � 2 [0; 1] of the needs to coordinate, an
optimal communication network solves

max
C

NX
i=1

aiCov (d
�
i ; �i) + (1� �)

NX
i=1

NX
j=1

pijCov
�
d�i ; d

�
j

�
� 


NX
i=1

NX
j=1

mijcij ,

where

Cov (d�i ; �i) = ai�
2
i!ii (Ci; �)

and

Cov
�
d�i ; d

�
j

�
=

NX
s=1

a2s�
2
s!is (Cs; �)!js (Cs; �) ,

and where !ij (Cj ; �) denotes the ijth entry of (I � (diagCj)�P (diagCj))
�1, and mij is a

dummy variable that is equal to one if and only if agents i and j belong to di¤erent modules.

Proof of Proposition 7. Suppose agents internalize only fraction � 2 [0; 1] of the need to

coordinate. Then they act as if the need for coordination is �pij rather than pij . Their best

response functions are therefore

di = ai�i +

NX
j=1

�pijEi [dj ] ,

and so by Lemma 1, equilibrium decisions are given by

d�i =
NX
j=1

aj!ij (Cj ; �) �j for all i 2 N ,

where !ij (Cj ; �) is the ijth entry of (I � (diagCj)�P (diagCj))
�1.

We know from the argument preceding Lemma 2 that we can write equilibrium revenue as

r (d�1; : : : ; d
�
N ) =

NX
i=1

aid
�
i �i �

NX
i=1

d�i

0@d�i � ai�i � NX
j=1

pijd
�
j

1A
=

NX
i=1

aid
�
i �i �

NX
i=1

NX
j=1

pijd
�
i

�
�Ei

�
d�j
�
� d�j

�
,
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where the second line follows from the �rst by replacing d�i inside the parentheses with its best

response.

Taking expectations, we have

E [r (d�1; : : : ; d
�
N )] =

NX
i=1

aiE [d
�
i �i]�

NX
i=1

NX
j=1

pijE
�
d�i
�
�Ei

�
d�j
�
� d�j

��
.

Substituting equilibrium decisions into the second term, we have

E
�
d�i
�
�Ei

�
d�j
�
� d�j

��
= E

"
NX
s=1

NX
t=1

asat!is (Cs; �)!jt (Ct; �) (�Ei [�t]� �t) �s

#

= E

"
NX
s=1

a2s!is (Cs; �)!js (Cs; �) (�Ei [�s]� �s) �s

#

= E

"
NX
s=1

a2s!is (Cs; �)!js (Cs; �) (Ei [�s]� �s) �s

#

� (1� �) E
"
NX
s=1

a2s!is (Cs; �)!js (Cs; �) Ei [�s] �s

#
,

where the second equality holds by independence of the states. We can rewrite the second term in

this last expression as

(1� �) E
"
NX
s=1

a2s!is (Cs; �)!js (Cs; �) �
2
s

#

+(1� �) E
"
NX
s=1

a2s!is (Cs; �)!js (Cs; �) (Ei [�s]� �s) �s

#
,

which allows us to write

E
�
d�i
�
�Ei

�
d�j
�
� d�j

��
= �E

"
NX
s=1

a2s!is (Cs; �)!js (Cs; �) (Ei [�s]� �s) �s

#

� (1� �) E
"
NX
s=1

a2s!is (Cs; �)!js (Cs; �) �
2
s

#
.

The �rst term on the right-hand side is zero because of the binary communication structure: either

i knows �s, in which case Ei [�s]� �s = 0, or he does not, in which case !is (Cs; �) = 0.

The second term can be stated as

� (1� �) E
"
NX
s=1

a2s!is (Cs; �)!js (Cs; �) �
2
s

#
= � (1� �) Cov

�
d�i ; d

�
j

�
.
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To see why, note that for two equilibrium decisions

d�i =
NX
s=1

as!is (Cs; �) �s and d�j =
NX
t=1

at!jt (Cs; �) �t,

we have E [d�i ] = E[d
�
j ] = 0, and so covariance is given by

Cov
�
d�i ; d

�
j

�
= E

�
d�i d

�
j

�
= E

"
NX
s=1

NX
t=1

asat!is (Cs; �)!jt (Ct; �) �s�t

#

=

NX
s=1

a2s!is (Cs; �)!js (Cs; �)�
2
s.

We therefore have that

E
�
d�i
�
�Ei

�
d�j
�
� d�j

��
= � (1� �) Cov

�
d�i ; d

�
j

�
.

Substituting this expression back, we have

E [r (d�1; : : : ; d
�
N )] =

NX
i=1

aiE [d
�
i �i] + (1� �)

NX
i=1

NX
j=1

pijCov
�
d�i ; d

�
j

�

=

NX
i=1

0@aiCov (d�i ; �i) + (1� �) NX
j=1

pijCov
�
d�i ; d

�
j

�1A ,
which establishes the result. �

PROPOSITION 8. As long as the production network P satis�es pii = 0, pij = pji, and
PN
j=1 pij <

1, optimal communication networks C� are increasing in the value of autonomous adaptation a2i�
2
i

and the needs for coordination pij for all i; j 2 N , and decreasing in communication costs 
.

Proof of Proposition 8. For general production networks P satisfying pii = 0, pij = pji, andPN
j=1 pij < 1, Lemmas 1 and 2 and Proposition 1 continue to hold. As long as !ii (Ci) is supermod-

ular in Ci, then the principal�s objective for the subproblem involving who should agent i inform

about �i is supermodular in Ci and exhibits increasing di¤erences in
�
a2i�

2
i ; fpijgij ; fcijgij ;�


�
,

so the comparative statics results follow from Topkis�s theorem. It remains, therefore, to show that

!ii (Ci) is supermodular in Ci.

To show that !ii (�) is supermodular, let J � N denote a subset of agents, and denote by c (J )
the 1�N vector with jth element equal to one if j 2 J and equal to zero otherwise. We will show

that the incremental value of informing agent 1 about �i is higher when agent 2 knows �i than

when she does not. Take J to be a set of nodes that are informed throughout the exercise.
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Denote by P (J ) = (diag c (J ))P (diag c (J )) the subset of the production network consisting
of the nodes j for which the jth element of c (J ) is equal to one. Then

�k � P (J [ f1; 2g)k � P (J [ f2g)k �
�
P (J [ f1g)k � P (J )k

�
is the matrix whose ijth element is the value of the additional walks of length k from informing

agent 1 when agents J [ f2g are informed relative to when only agents J are informed. Since

informing agent 1 adds more walks of all lengths to P (J [ f2g) than it does to P (J ), it follows
that every element of �k is nonnegative. Since this argument holds for all k, we have that the iith

element of
1X
k=1

�k =
1X
k=1

P (J [ f1; 2g)k �
1X
k=1

P (J [ f2g)k �
 1X
k=1

P (J [ f1g)k �
1X
k=1

P (J )k
!

is nonnegative. Recall that !ii (c (J )) is the iith element of (I � P (J ))�1 = I +
P1
k=1P (J )

k.

We therefore have that

!ii (c (J [ f1; 2g))� !ii (c (J [ f2g)) � !ii (c (J [ f1g))� !ii (c (J )) ,

so !ii (�) has increasing di¤erences in ci1 and ci2. The choice of agents 1 and 2 was immaterial in
this argument, and so !ii (�) has increasing di¤erences in cij and cik for all j; k 6= i and is therefore
supermodular. �

PROPOSITION 9. If the production network is symmetric and has a nested, modular structure,

optimal communication networks are characterized by a threshold � 2 f1; 2; : : : ; kg. Agent i tells
his state to agent j if and only if they belong to the same level-� module.

Proof of Proposition 9. Since all the agents are symmetric, let us consider agent 1 and ask who

agent 1 should inform about �1. By supermodularity and symmetry of the levels, if agent 1 informs

any agent in his level-s module who is not in his level-s� 1 module, for some s � k, then he does
even better by informing all nodes in his level-s module who are not in his level-s � 1 module.
Therefore, it is without loss of optimality to consider communication networks in which agent 1

either informs everyone in his level-s module, or he informs everyone in his level-s module except

those in his level-s� r module for some 1 � r � s� 1. We proceed in two steps.

Step 1: Show that agent 1�s per-node incremental revenues are higher if he informs everyone in

his level-s module than if he informs everyone in his level-s module except those in his level-s � 1
module, for any s � k.

For this step, we will consider two communication networks: (i:) Agent 1 informs everyone in

the other n� 1 level-s� 1 modules but no one in his own level-s� 1 module; (ii:) Agent 1 informs

52



everyone in his own level-s � 1 module and everyone in n � 2 other level-s � 1 modules and one
agent in the remaining level-s � 1 module. We will show that agent 1�s revenue is higher in (ii:).
It follows by supermodularity and symmetry of the levels that his revenues are higher still if he

informs everyone in his level-s module.

To make this argument, we proceed as follows. Suppose agent 1 informs the agents speci�ed in

(ii:): everyone in his own level-s�1 module and everyone in n�2 other level-s�1 modules and one
agent in the remaining level-s � 1 module. Label the other agents in agent 1�s level-s � 1 module
and everyone in the n�2 other level-s�1 modules consecutively by

�
2; 3; : : : ; (n� 1)ns�1

	
. Label

the single agent in the remaining level-s� 1 module as agent z. Notice that the revenue generated
by agent z in communication network (ii:) is the same as the revenue generated by agent 1 in

communication network (i:), so it will su¢ ce to show that the value of all walks from agent 1 back

to agent 1 exceed the value of all walks from agent z back to agent z. We will show this is the case

by matching walks from agent 1 back to agent 1 with walks from agent z back to agent z.

We �rst introduce some notation that will help with this walk-matching exercise. Let W� (i; j)

be the set of walks of length � from i to j, and denote a generic element of this set by i �: : :j. Denote by

ij; j��2: : : `; `m a walk of length � starting with link ij, followed by a walk of length ��2 that starts at
node j and ends at node `, and ending with link `m. LetW (i; j) = [1�=1W� (i; j) be the set of walks

from i to j with generic element i : : : j, and denote the value of i : : : j by v̂ (i : : : j). It will be useful

to keep in mind that the function v̂ (�) has the property that v̂ (i : : : j; j : : : `) = v̂ (i : : : j) v̂ (j : : : `).
The goal is to �nd a bijection H : W (z; z) ! W (1; 1) such that v̂ (H (z : : : z)) � v̂ (z : : : z) for

all z : : : z 2 W (z; z). To this end, let us partition the sets W� (z; z) and W� (1; 1) as follows:

W� (z; z) =
�
zi; i��2: : : j; jz

�� i; j 6= 1	[�zi; i��2: : :1; 1z�� i 6= 1	[�z1; 1��2: : :1; 1z	[�z1; 1��2: : : j; jz�� j 6= 1	 ,
and

W� (1; 1) =
�
1i; i��2: : : j; j1

�� i; j 6= z	[�1z; zi; i��2: : :1�� i 6= 1	[�1z; z1; 1��2: : :1	[�1j; j��2: : : z; z1�� j 6= z	 .
First, let H

�
zi; i��2: : : j; jz

�
= 1i; i��2: : : j; j1 for all i; j 6= 1; z and i��2: : : j 2 W��2 (i; j). That is,

replace the initial link zi with 1i and the terminal link jz with j1, and hold the walk i��2: : : j of

length � � 2 constant. Notice that v̂
�
H
�
zi; i��2: : : j; jz

��
� v̂

�
zi; i��2: : : j; jz

�
since the value of the

links zi and jz are ts, and the value of the links 1i and j1 are greater than ts. Second, let

H
�
zi; i��2: : :1; 1z

�
= 1z; zi; i��2: : :1 for all i 6= 1, and i��2: : :1 2 W��2 (i; 1). That is, for any walk from z

back to z that ends with the link 1z, start that walk instead with the link 1z and continue until it

returns to node 1. Notice that v̂
�
H
�
zi; i��2: : :1; 1z

��
= v̂

�
zi; i��2: : :1; 1z

�
since the walks contain the
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same set of links. Third, let H
�
z1; 1��2: : :1; 1z

�
= 1z; z1; 1��2: : :1 for all 1��2: : :1 2 W��2 (1; 1). Notice

that v̂
�
H
�
z1; 1��2: : :1; 1z

��
= v̂

�
z1; 1��2: : :1; 1z

�
since the walks contain the same links.

It remains to match walks of the form z1; 1��2: : : j; jz, j 6= 1 to walks of the form 1j; j��2: : : z; z1;

j 6= z. Note that z1; 1��2: : : j; jz can be written as z �1: : :`; `i; i �2: : :j; jz, where z �1: : :` is the longest

initial subwalk that alternates only between z and 1 (e.g., for the walk z1; 1z; z1; 1z; z2; 23; 3z,

we would have �1 = 4 and �2 = 1). There are two cases: ` = 1 and ` = z. For ` = z, let

H (z �1: : :z; zi; i �2: : :j; jz) = 1i; i �2: : :j; j1; 1 �1: : :1, where 1 �1: : :1 alternates between 1 and z. In this case,

v̂ (H (z �1: : :z; zi; i �2: : :j; jz))

v̂ (z �1: : :z; zi; i �2: : :j; jz)
=
v̂ (1i) v̂ (i �2: : :j) v̂ (j1) v̂ (1 �1: : :1)

v̂ (z �1: : :z) v̂ (zi) v̂ (i �2: : :j) v̂ (jz)
=
v̂ (1i) v̂ (j1)

v̂ (zi) v̂ (jz)
� 1,

where the �rst equality uses the property that v̂ (i : : : ; j; j : : : ; `) = v̂ (i : : : j) v̂ (j : : : `), and the sec-

ond equality uses the fact that v̂ (1 �1: : :1) = v̂ (z �1: : :z) because both are equal-length walks between z

and 1. The inequality follows because v̂ (1i) � v̂ (zi) for any i. For ` = 1, let H (z �1: : :1; 1i; i �2: : :j; jz) =
1i; i �2: : :j; jz; z �1: : :1. In this case, v̂ (H (z �1: : :1; 1i; i �2: : :j; jz)) = v̂ (z �1: : :1; 1i; i �2: : :j; jz).

The function H is a bijection H :W (z; z)!W (1; 1) such that v̂ (H (z : : : z)) � v̂ (z : : : z), and
we therefore have that agent 1�s revenues are higher if he informs everyone in his level-s module

than if he informs everyone in his level-s module except those in his level-s� 1 module.

Step 2: Show that agent 1�s per-node incremental revenues are higher if he informs everyone in

his level-s + r module than if he informs everyone in his level-s + r module except those in his

level-s� 1 module, for r � 1.
For this step, we will consider two communication networks: (i:) Agent 1 informs everyone in

his level-s + r module, for r � 1, but no one in his own level-s � 1 module; (ii:) Agent 1 informs
everyone in his level-s+ r module, except for one level-s� 1 module, not his own, within his level-s
module in which he informs only one agent, which we will label as agent z. As in step 1, the revenue

generated by agent z in communication network (ii:) is the same as the revenue generated by agent

1 in communication network (i:).

We can again apply the same bijection H constructed in step 1, which establishes that the value

of all walks from agent 1 back to agent 1 exceed the value of all walks from agent z back to agent z.

By supermodularity and level symmetry, agent 1�s per-node incremental revenues are higher still

if he informs all agents in his level-s� 1 module. This implies that agent 1�s per-node incremental
revenues are higher if he informs everyone in his level-s+ r module than if he informs everyone in

his level-s+ r module except those in his level-s� 1 module, for r � 1. Since s and r are arbitrary,
it follows that there is some � such that in any optimal communication network, agent 1 informs

agent j if and only if they belong to the same level-� module. �
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Appendix B: Equal Communication Costs

This appendix examines the case in which each communication link costs 
, whether that commu-

nication link is within or across modules. Proposition B1 shows that if agents do not inform their

own module, optimal communication networks still follow a threshold communication rule analo-

gous to that described in Proposition 2 for the main model. To this end, denote by ~R1 (C1 (`))

agent 1�s expected revenue if he tells his state to agents in modulesM2; : : : ;M` but not to agents

in his own moduleM1. The following lemma derives an expression for ~R1 (C1 (`)) in terms of the

model primitives.

LEMMA B1. Suppose agent 1 tells his state to all agents in modules M2; : : : ;M` for ` 2
f2; : : : ;Mg but not to agents in his own module M1. Agent 1�s expected revenue is then given

by

~R1 (C1 (`)) = a
2
1�
2
1

0@1 + t2
�P`

m=1 nmxm � n1x1
�

1� (t+ t2)
P`
m=2 nmxm

1A ,
where

xm =
1

1� (nm � 1) pm + nmt
for m = 1; : : : ;M .

Proof of Lemma B1. The proof of this lemma parallels the proof of Lemma 3, but for the case

where agents in module M1 do not know �1. The value ~!11 (C1 (`)) is the sum of the values of

all walks from node 1 back to itself on the subgraph of the production network consisting of nodes

in modules whose agents know state �1. We �rst derive a recursive representation of ~!11 (C1 (`)).

Denote this value by ~v. Next, let ~vk be the sum of the values of all walks from a node in module k

to node 1 on this same subgraph. These values can be written as a system of equations

~v = 1 + tn2~v2 + � � �+ tn`~v`

~v2 = t~v + p2 (n2 � 1) ~v2 + tn3~v3 + � � �+ tn`~v`
...

~v` = t~v + tn2~v2 + tn3~v3 + � � �+ p` (n` � 1) ~v`.

Compared to the system of equations derived in the �rst step of Lemma 3, here, the terms with
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v1 are eliminated. We can write this system of ` equations in matrix form2666664
1

0
...

0

3777775 =
2666664
1 �tn2 � � � tn`

�t 1� p2 (n2 � 1) � � � tn`
...

...
. . .

...

�t �tn2 � � � 1� p` (n` � 1)

3777775

2666664
~v

~v2
...

~v`

3777775 .

We denote this `�` matrix by ~Q (`). Then ~v is the (1; 1) element of the inverse matrix ~Q (`)�1 ; and
by the de�nition of a matrix inverse, ~v = det ~V (`) =det ~Q (`), where ~V (`) is the matrix obtained

by removing the �rst row and column of ~Q (`).

Next, we derive det ~Q (`) using the result for the determinant of a block matrix that det

"
A B

C D

#
=

det (A) det
�
D �CA�1B

�
. Partition the matrix ~Q (`) such that A = 1, and B, C, and D are

de�ned accordingly. Then

CA�1B = t2

2664
n2 � � � n`
...

. . .
...

n2 � � � n`

3775 :
De�ne x�1s = 1� ps (ns � 1) + tns and z = t (1 + t). Then

D �CA�1B =

2664
x�12 � zn2 � � � �zn`

...
. . .

...

�zn2 � � � x�1` � zn`

3775 .
We can immediately use our derivation from Lemma 3, step 2 to �nd det

�
D �CA�1B

�
=

1
x2���x`

�
1� z

P`
j=2 njxj

�
for all ` � 2. Since detA = 1, we have

det ~Q (`) =
1

x2 � � �x`

0@1� t (1 + t)X̀
j=2

njxj

1A for all ` � 2.

Similarly, we can use the derivation from Lemma 3, step 3 to show that

det ~V (`) =
1

x2 � � �x`

0@1� tX̀
j=2

njxj

1A for all ` � 2.

The value ~!11 (C1 (`)) is therefore

~!11 (C1 (`)) =
det ~V (`)

det ~Q (`)
= 1 +

t2
P`
j=2 njxj

1� (t+ t2)
P`
j=2 njxj

,

and the expression in the statement of the lemma follows immediately. �
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PROPOSITION B1. When agents do not inform their own module, optimal communication is

characterized by N thresholds �i � 0, one for each agent i 2 N . Agent i tells his state to agent
j, who is not in his module, if and only if xm(j) � �i. The threshold �i is decreasing in a2i�2i and
increasing in communication costs 
. Also, �i � �i, where �i is the threshold for agent i described
in Proposition 2.

Proof of Proposition B1. The proof of this lemma parallels the proof of Proposition 2, but for

the case where agents in moduleM1 do not know �1. Denote n1 = 1 and x1 = 1= (1 + t). Suppose

agents in modulesM2; : : : ;M` are informed of �1, for some ` � 2. Using the result from Lemma

B1, the expected per-node incremental revenue of informing one more module,M`+1, about state

�1, given that modulesM2; : : : ;M` are informed, is

a21�
2
1

t2x21x`+1�
1� t

P`
j=1 njxj

��
1� t

P`+1
j=1 njxj

� .
Analogously, the expected per-node incremental revenue of informing modules M`+1 and M`+2

about state �1, given that modulesM2; : : : ;M` are informed, is

1

n`+1 + n`+2
a21�

2
1

t2x21 (n`+1x`+1 + n`+2x`+2)�
1� t

P`
j=1 njxj

��
1� t

P`+2
j=1 njxj

� .
Note that this is the same expression for the case where moduleM1 is also informed, but in this

case, we are setting n1 = 1 and x1 = 1= (1 + t).

Then the expected per-node incremental revenue of additionally informing modulesM`+1 and

M`+2 minus the expected per-node incremental revenue of additionally informing only module

M`+1 about �1 is also the same as before

a21�
2
1x
2
1t
2n`+2

h
(x`+2 � x`+1)

�
1� t

P`+1
j=1 njxj

�
+ t (n`+1 + n`+2)x`+1x`+2

i
(n`+1 + n`+2)

�
1� t

P`
j=1 njxj

��
1� t

P`+1
j=1 njxj

��
1� t

P`+2
j=1 njxj

� ,

but with n1 = 1 and x1 = 1= (1 + t). Therefore the same argument for a threshold rule applies, and

modules are ranked in the same way using the same statistic xs. An analogous argument shows

the threshold �i is decreasing in a2i�
2
i and increasing in 
. The result that �i � �i follows from the

above result and Proposition 2, which states that �i is decreasing in ni. �
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Appendix C: Imperfect Communication

This appendix derives the principal�s problem when communication is imperfect. Given a commu-

nication network C, suppose that when agent i communicates his state �i to all agents for which

cij = 1, his communication is e¤ective with probability q and ine¤ective with probability 1� q. If
his communication is e¤ective, then all agents j with cij = 1 learn �i, and if his communication

is ine¤ective, then all agents j with cij = 1 receive an uninformative null signal. Suppose the

realization of whether communication from agent i is e¤ective is common knowledge. As in the

main model, communication links to other agents in one�s module are costless.

The timing is: First, the principal designs the communication network C. Then the agents

learn their states and communicate them to the other agents as speci�ed by the network. Next,

agents observe whose communication is e¤ective, and they learn the states that were communicated

successfully to them. Finally, agents simultaneously make their decisions, payo¤s are realized, and

the game ends.

Given a communication network C and the realization of whose communication was e¤ective,

denote by ~C the network that describes who is informed of which state. That is, ~cij = 1 if cij = 1

and agent i�s communication was e¤ective. Then the principal�s problem is to design the optimal

communication network that solves

max
C
E
h
r
�
d�1

�
~C
�
; : : : ; d�N

�
~C
�����Ci� 
 NX

i=1

NX
j=1

mijcij subject to cii = 1 for all i 2 N ,

where d�i
�
~C
�
denotes agent i�s equilibrium decision given the realization of ~C and �1; : : : ; �N , and

the expectation is taken over the realizations of ~C and �1; : : : ; �N . The next proposition shows that

the principal�s problem when communication is imperfect is equivalent to the principal�s problem

in the main model, except that the cost of each communication link is scaled up by a factor of 1=q.

PROPOSITION C1. An optimal communication network solves the principal�s problem if and only

if it solves the N independent subproblems

max
Ci

Ri (Ci)� ~

NX
j=1

mijcij subject to cii = 1 for all i 2 N ,

where mij is a dummy variable that is equal to one if and only if agents i and j 6= i belong to

di¤erent modules, and ~
 = 
=q.

Proof of Proposition C1. To establish this proposition, which parallels Proposition 1, we have

to argue that a version of Lemmas 1 and 2 hold. First, note that the proof of Lemma 1 depended
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only on which agent knew which state. This implies that given a matrix ~C of who is informed of

which state, equilibrium decisions are unique and given by

d�i

�
~C
�
=

NX
j=1

aj!ij

�
~Cj

�
�j for all i 2 N ,

where !ij
�
~Cj

�
denotes the ijth entry of

�
I �

�
diag ~Cj

�
P
�
diag ~Cj

���1
.

To see why a version of Lemma 2 holds, note that

E
~C;�
h
r
�
d�1

�
~C
�
; : : : ; d�N

�
~C
�����Ci = E

~C
h
E�
h
r
�
d�1

�
~C
�
; : : : ; d�N

�
~C
����� ~Ci���Ci

= E
~C

"
NX
i=1

a2i�
2
i!ii

�
~Ci

������C
#

=

NX
i=1

a2i�
2
iE

~C
h
!ii

�
~Ci

����Ci ,
where the superscript of the expectation denotes which variable is being integrated over. The �rst

equality holds by the law of iterated expectations, and the second equality holds by Lemma 2,

which applies realization-by-realization of ~C.

Finally, note that E ~C
h
!ii

�
~Ci

����Ci = (1� q)+ q!ii (Ci). With probability 1� q, no one other

than agent i is informed about �i, so !ii
�
~Ci

�
is equal to one. With probability q, all agents j

with cij = 1 are informed about �i, so !ii
�
~Ci

�
= !ii (Ci). The principal�s objective is therefore

separable across agents i, and her objective for agent i is to

max
Ci

a2i�
2
i (1� q) + a2i�2i q!ii (Ci)� 


NX
j=1

mijcij .

The �rst term is independent of Ci, and the second term is just qRi (Ci), so solving this problem

is equivalent to solving

max
Ci

Ri (Ci)�



q

NX
j=1

mijcij ,

which establishes the result. �
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