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Incomplete markets and uncorrected environmental externalities result 

in the under-provision of low-carbon technologies. I examine whether 

the United Kingdom’s renewable energy feed-in-tariff (FiT), which is a 

risk-reduction and price instrument, helped bring utility-scale solar 

energy to market. Exploiting the presence of bunching at the policy’s 

eligibility threshold, I find that the FiT results in at least 2.3 GW of 

additional solar capacity between 2010-2015 (equal to one-fifth of the 

UK’s total solar capacity today). The response is largely driven by new 

entry (94%), rather than inframarginal generators who downsize to 

become eligible. Bunching disappears once certain risk-reduction 

guarantees are removed. A social cost of carbon equal to £100/tCO2 

makes the policy a net benefit. Tradable certificates that provide similar 

subsidies are not able to induce the same degree of market-creation, 

illustrating the value of long-term price hedging for early-stage 

technologies.     
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I. Introduction    

To stabilise global mean temperatures, the world must achieve net zero emissions, 

a target that has now been widely adopted by most major economies (Net Zero 

Tracker 2022). Achieving net zero emissions will require the rapid introduction and 

diffusion of novel clean technologies. However, these technologies remain under-

provided (Stern and Valero 2021), not only because of uncorrected environmental 

externalities but also because of  incomplete information and incomplete markets.  

For early-stage technologies, investors do not know the full range of contingencies 

that need to be insured against which creates incomplete markets for finance and 

insurance and increases the cost of capital. First-mover projects have an important 

“demonstration effect” as they help fill informational gaps about the distribution of 

risk and returns for the new technology, which helps in market creation and 

deepening, and reduces the cost of capital. For example, in 2010 in the United 

Kingdom (UK), there were almost no private risk hedging instruments for utility-

scale solar since agents had never seen such a project operational in the country 

before (Speer, Mendelsohn and Cory 2010). When the government stepped in with a 

publicly provided risk-hedge, via the feed-in-tariff (FiT), the industry was born and 

subsequently, private markets for solar insurance and finance emerged. Nascent 

technologies often face a chicken and egg problem where finance is needed for a 

project, but it also helps to have a few projects running to get finance.     

In this paper, I examine the effects of long-term risk hedges and subsidies on 

investment in low-carbon technologies with a focus on the utility-scale solar market, 

which went from being non-existent on the UK grid to accounting for 4.3% of total 

electricity generation in 2020 (BEIS 2020). Utility-scale solar is typically 3-4 orders 

of magnitude larger than rooftop installations and important for system-level 

decarbonisation (IEA 2021). Incomplete markets for finance and insurance have a 

particularly significant impact on utility-scale solar since projects are highly capital-
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intensive, project timelines are multi-decadal, and there are regulatory, market-based 

and technology risks, which create greater barriers to entry. Although solar is 

considered cheap today, it was commonly viewed as expensive and an unfeasible 

means to reduce power sector emissions less than a decade ago (The Economist 2014).  

My empirical context is the UK’s feed-in-tariff which reduces the risk associated 

with investing in clean energy by giving renewable electricity generators a guaranteed 

price at which their power will be bought over 25 years. To be eligible for the scheme, 

the generator’s installed capacity must be less than or equal to 5 MW. Larger projects 

must contend with volatile wholesale power market prices or those of tradable clean 

energy certificates. Considerations related to risk are particularly important for solar 

generators sine they are price-takers in the energy market and unlike other forms of 

generation, they cannot manipulate when they produce electricity to take advantage 

of anticipated price spikes. They simply produce power when the sun shines. 1 

I develop a model where in each period, a solar firm chooses how much to invest 

and whether to wait or enter today, with or without the FiT. Investments are 

irreversible. The value of entering with a FiT increases in the volatility of electricity 

prices since the fixed tariff shields risk-averse agents from fluctuations (“volatility 

effect”). 2 It also increases in the difference between the fixed tariff and the expected 

market price, which is the “subsidy effect”.3 The model predicts bunching at the FiT 

eligibility threshold. Some generators that would have entered at larger capacities in 

a no-FiT world strategically downsize to take advantage of the FiT. This represents 

lost solar capacity and carbon abatement. It also predicts entry thanks to the policy 

which represents additional solar capacity and carbon abatement.  

 

1 Solar generators with battery storage are able to choose when to dispatch power. However, during my time period of 

analysis, battery storage was not common.  

2 The FiT can also reduce revenue volatility by ensuring that it is easier to sell units of power. For simplicity, I only focus 

on price volatility.  

3 It is possible for the fixed tariff to be below the wholesale electricity price.  
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I use project-level data from 2010-2019 from the UK’s Renewable Energy Planning 

Database. This dataset has a record of all clean energy projects in the country. My 

time period of analysis covers the start of the UK utility-scale solar industry to the 

present day. I conduct a bunching estimation similar to Kleven and Waseem (2013) 

where I define an area around the 5 MW threshold (the “notch”) where there is a 

behavioural response to the FiT. Observations outside of this window are used to 

create a no-FiT counterfactual. The difference between no-FiT counterfactual and 

the with-FiT observed data gives us the “excess mass” due to the policy. Any hole/dip 

immediately towards the right of the notch represents the “missing mass” (generators 

that strategically downsized). The difference between the excess and missing mass 

reflects the amount of new entry/net capacity additions.  

I find that the FiT had a highly significant and large impact on solar deployment. 

Relative to a no-FiT counterfactual, there are at least 43 times more commercial 

utility-scale solar projects thanks to the FiT, resulting in  2.3 GW of additional solar 

capacity over a period of five years (2010-2015), which is equal to one-fifth of all 

solar capacity today.4 Only 6% of projects are inframarginal due to strategic 

downsizing and the remaining 94% are new entrants (i.e., majority of the response is 

on the extensive margin). In terms of absolute numbers, there are at least 490 new 

utility-scale commercial solar projects due to the FiT (for context, the total number 

of commercial solar projects from 2010-2019 is 2,481). Estimates are lower bounds 

due to the local nature of the estimation. Furthermore, when the FiT is heavily 

diluted in 2016, bunching at 5 MW completely disappears, suggesting that the earlier 

bunching is indeed driven by the FiT as opposed to other factors that might differ 

at the 5 MW threshold.  

 

4 Based on solar capacity figures from April 2022.  
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While the extensive margin effect leads to additional solar capacity relative to a 

no-FiT counterfactual, the cut-off in the FiT rate may have introduced inefficiencies 

relative to a FiT with no cut-off. 5 If there are economies of scale to solar development, 

then the accumulation of new projects at 5 MW is inefficient. However, any potential 

inefficiencies are likely to be limited due to evidence that the cost curve for solar is 

U-shaped with diseconomies of scale starting somewhere between 5 – 10 MW. This 

is driven by step-changes in land permitting costs and congestion costs. The latter is 

linked to accommodating ever-larger generators on a transmission and distribution 

network that is fixed in the medium term.6 Furthermore, I do dynamic bunching to 

show that in post policy periods, there is hardly any entry at larger capacities – if 

there were, this would raise larger concerns about efficiency losses from extensive 

margin bunching during FiT years (Figure 9).   

Since the FiT acts as a subsidy in addition to being a risk-hedge, both 

characteristics of the policy could be driving the results. I isolate the value of risk 

reduction by looking at periods when the price offered by tradable certificates is 

similar to that offered by the FiT. This happens roughly between 2012 to 2015. I 

find that, in this period, the vast majority of firms still enter at the FiT cut-off. 

While the tradable certificate provides the same subsidy in that period, it is much 

more risky as the price can change due to fluctuating market conditions. This 

illustrates how there is a tension between market-based schemes that have dynamic 

efficiency but more risk (Ciarreta, Espinosa and Pizzarro-Irizar 2014), and 

interventions that forgo this efficiency like FiTs but provide stable incentives. For 

 

5 Pollinger 2021 considers kinks in the German FiT and how the participation margin (i.e., the extensive margin response) 

affects structural estimates of elasticity. However, in this paper, I will not be estimating the elasticity structurally since at the 

notch, two variables are changing: subsidy level and exposure to risk.  

6 In the UK, congestion on the grid is a major problem with many new projects having to wait for significant periods of 

time to secure a grid connection (Call for Evidence on Onshore Solar, 2022, UK Parliament).  
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early-stage technologies, the results of this paper suggest that the presence of long-

term risk hedges is critical for entry and investment.  

Finally, analysis of relative bunching over different periods shows that bunching 

peaks when expectations take hold that the FiT will be diluted, even though the 

subsidy is sizably lower in this period. I can observe firms’ expectations through 

regular documentation on public consultations between government and the solar 

industry. This suggests that when firms expect the policy would stay, they are 

strategic about whether they enter this period or next. Waiting has value because of 

persistent declines in the cost of solar panels (learning-by-doing externalities). 

However, when faced with the prospect that the FiT will be removed, and there will 

no longer by any type of long-term risk hedge, many generators advance their 

decision to enter the market.  This likely explains why bunching peaks in 2015.   

To develop a sense of whether the benefits of the FiT outweighed the costs, I 

undertake simple value-for-money calculations by comparing the benefit of the FiT 

in terms of displaced carbon dioxide and sulphur dioxide emissions against the cost 

of payments in excess of the market price of electricity (i.e., the subsidy amount). I 

do this only for the years in which I have real data rather than for the entire 25 year 

contract period, which would involve forecasting future power system prices. I find 

that the FiT leads to a net gain for society with a social cost of carbon of £100/tCO2 

and higher.   

In this paper, I focus on the role of risk reduction to incentivise entry and 

investment in nascent, capital-intensive technologies which relates to a rich literature 

on real options (Dixit and Pindyck 1994, Aguerrevere 2003, Boomsma et al. 2012, 

Kellogg 2014). The empirical context is utility scale-solar. The intersection of risk 

and clean technology investments has also been explored empirically by Ryan (2022) 

who shows how counterparty risk has a bearing on renewable investments in India.  
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While this paper conducts an empirical case study on solar energy, the broader 

question on the role of risk reduction in bringing early-stage technologies to market 

is likely to have relevance to other technologies such as second-generation low carbon 

technologies (e.g. green fuels, long duration storage, zero-carbon steel, etc.) and 

healthcare innovation. Technologies in these domains also generate positive 

externalities and, face uncertainty, risks, incomplete information and credit market 

imperfections.  

More broadly, this paper builds upon an emergent literature that seeks to go 

beyond the carbon externality when examining the market failures that affect the 

transition to a low-carbon future (e.g. Jaffe et al. 2005, Van Benthem, Gillingham 

and Sweeney 2008, Acemoglu et al. 2012, Pless and Srivastav 2022, Gerarden 2022). 

So far this literature has primarily focused on how knowledge spillovers affect the 

clean transition. I expand this by considering the issue of incomplete markets and 

the role of (temporary) publicly provided risk hedges, such as FiTs, in bringing clean 

technologies to market.  

Specifically, this paper provides novel estimates of the effects of FiTs, and in 

particular price risk reduction, on entry and investment in utility-scale solar. The 

majority of the empirical work on economic incentives for solar focuses on rooftop 

solar (e.g. Cherrington et al. 2013, Grover 2013, Germeshausen 2018, Pollinger 2022), 

where the agents analysed are households rather than firms, and the installation size, 

upfront investment, and project horizon are orders of magnitude smaller. This creates 

a very different economic environment. Rooftop solar studies focus on factors relevant 

for households such as: peer effects (Bollinger and Gillingham 2012 and Graziano and 

Gillingham 2015), private valuations over new technology (Langer and Lemoine 

2022), household discounting (De Groote  and Verboven 2019, Talevi 2022) and self-

consumption (McKenna, Pless and Darby 2018). Other work includes cross-country 

regressions on FiTs and share of renewable capacity which presents its own set of 
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identification challenges (e.g. Jenner et al. 2013, Smith and Urpelainen 2014, 

Dijkgraaf et al. 2018).  

This work, by contrast, focuses on firm behaviour and the themes of 

uncertainty, incomplete information, and higher cost of capital. This paper also 

touches upon (i) the efficiency costs of policy thresholds, (ii) the effect of learning-

by-doing externalities on increasing the value of waiting and how the temporary 

nature of policy support can counteract this waiting dynamic to induce entry, and 

finally, (iii) the effect of solar subsidies. Methodologically it connects to the bunching 

literature that leverages notches (e.g., Kleven and Waseem 2013, Kleven, Landais 

and Søgaard 2016, Best and Kleven 2018), but is different from most studies since 

the observed bunching is driven primarily by new entry rather than strategic 

downsizing.   

The rest of this paper is structured as follows: Section II details the 

institutional context by discussing the design of the FiT, the UK solar industry and 

the general policy environment, Section III presents the theoretical framework to 

motivate why bunching may occur, Section IV overviews the data and presents some 

descriptive statistics, Section V discusses the empirical strategy and results, Section 

VI calculates the FiT’s value for money, and finally Section VII concludes.  

II. Institutional Context    

A. Feed-in-Tariff Design 

The UK has a target to achieve a zero-carbon power grid by 2035. Prior to 2010, 

there was no utility-scale solar in the country. The FiT, introduced in April 2010 

and phased out by April 2019, provides a fixed price for electricity generated and 

sold to the grid by a renewable energy generator which is less than or equal to 5 MW 
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in size. The price is guaranteed over 20-25 years.7 Solar photovoltaics, wind, hydro, 

anaerobic digestion, and micro combined heat & power are all eligible.8 All electricity 

generated receives the “generation tariff” and that which is exported to the grid 

receives an additional “export tariff”. For solar farms that export 100% of their 

electricity, which is vast majority of utility-scale farms, the effective fixed tariff is 

the sum of the generation and export tariffs which is adjusted for inflation each year.  

In early years, the tariff is 8 times higher than the market price of power while 

towards the end of the sample, it is roughly equal to it. Solar panel costs also decline 

over this period (see Figure 1).  

 

 

FIGURE 1. FIXED TARIFF VERSUS THE MARKET RATE OVER TIME 

 

During the first half of the FiT’s implementation period, it was the one of the main 

risk hedging instruments on the market. Corporate power purchase agreements 

(PPAs) for solar energy were extremely scarce, as were insurance products (see 

Figure 2; Speer, Mendelsohn and Cory 2010). FiTs provided off-the-shelf guarantees 

 

7 The contract duration for all technologies except for solar is 20 years. Solar benefits from 25 year contracts. Presumably 

this was to encourage diversification.  

8 Micro combined heat & power had a different eligibility threshold due to its smaller size.  
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that a new renewable energy generator’s power would be purchased. In the absence 

of the FiT, these generators would have had to negotiate power purchase agreements 

with utilities and incur the transaction costs as well as the risks linked with brokering 

such a deal (if it was ever reached).9  

 

FIGURE 2. POWER PURCHASE AGREEMENTS IN THE UK 

Notes: RESource 2022 

In terms of how the scheme was financed, electricity retailers made payments to 

accredited FiT generators at the specified tariff. The extent to which the tariff 

exceeded the wholesale electricity price reflected the cost, which was passed onto to 

consumers through bills. The government set a cap on annual FiT-related payments. 

Once this cap was hit, additional installations entered a queue and could be 

considered when the cap reset. 

B. Background on Solar 

Although solar panels are more commonplace today, they were regarded as 

expensive and risky technologies back in 2010 (Figure A.1 in Appendix). Utility-scale 

solar projects contend with long project horizons (>20 years), volatile wholesale 

 

9
 Based on author’s interview with a private renewable energy developer.   



   

 

11 

 

electricity prices, and uncertainties in the due diligence and permitting processes. 

These factors affect the cost of capital which makes up a significant portion of overall 

project costs (Steffen 2020).   

Investor guidance reveals how in the early-days of solar, an “offtake agreement” 

was a pre-requisite to get any sort of financing (Groobey, Pierce, Faber and Broome 

2010).  Such agreements could take the form long-term power purchase agreements 

with utilities (if available) or feed-in-tariffs. Higher project risk translated into a 

higher cost of capital due to risk aversion by investors (Polzin et al. 2019). Often risk 

could not be fully diversified away due to unknown elements of the early-stage 

technology. Solar projects typically had no recourse to the parent corporation’s 

balance sheet or credit worthiness, and the only collateral available to financiers was 

the renewable energy asset and its expected future cash flows (Steffen 2018). I 

hypothesize that the FiT helped induce investment because it demonstrated a stream 

of guaranteed future returns by offering a fixed price at which power would be sold, 

which in turn reduced the cost of capital and helped more firms enter the market. 

This is tested empirically in Section V.  

   

C. Policy Environment around the Cut-Off 

The UK introduced its Renewables Obligation (RO) scheme in 2002 which required 

electricity retailers to source a certain amount of their power from renewable energy 

generators. The sourcing could be done through the purchase of tradable renewable 

obligation certificates (ROCs). The RO formally closed to all new generating 

capacity in March 2017. Unlike the FiT, the RO did not reduce price risk since ROC 

prices could fluctuate according to demand and supply conditions. However, like the 

FiT, the RO did offer a subsidy, which at certain points in time, was similar in value 

to the FiT (see Figure 3, 2012-2015). At or below the 5 MW threshold, generators 
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could qualify for the FiT but if they opted for it, they would need to relinquish the 

ability to claim ROCs.  

 

 

FIGURE 3. WHOLESALE POWER PRICE, FEED-IN-TARIFFS AND PRICE OF ROCS 

III. Theoretical Framework  

A.  The Model  

The Environment — Solar generators are price-takers,10 have zero marginal cost,11 

and decide on installed capacity (qi) which determines their variable output (ηqi) 

where η represents the capacity factor and i, the generator.12 Generators cannot 

manipulate the quantity of electricity they produce as this depends on exogenous 

weather conditions. They can, however, select their installed capacity, which 

 

10 Renewable energy generators’ electricity production is driven by exogenous weather conditions and cannot be strategically 

manipulated.  

11 Marginal costs are close to zero for renewable energy generators because their “fuel input” e.g. sunshine and wind is freely 

available. There are some very minimal variable costs linked to grid fees and maintenance but these can be ignored for modelling 

purposes.  

12 The capacity factor is the ratio of actual electricity output over the theoretical maximum. For solar energy, this captures 

the impact of weather variability on realised generation.  
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determines their maximum output. I assume generators know their own capacity 

factor (Kellogg 2014), meaning that the havey access to reasonable weather 

predictions that can provide an indication of what the expected monthly capacity 

factor for a given project and location may be. 

The electricity price is volatile, pt ~ F(μp, σp). Each generator is in a unique location 

which is associated with site-specific cost-shocks, χit ~ G(μiχ, σiχ). These costs depend 

on factors such as topography, distance from grid, land licensing costs, etc. Fixed 

costs (𝐼𝑖𝑡) are irreversible and financed by borrowing. I assume 𝐼𝑖𝑡 =

(1 + 𝜎𝑝)(1 + 𝜒𝑖𝑡)𝛼𝑡𝑞𝑖  where 𝛼𝑡 represents the cost per unit of installed capacity. This 

captures how price volatility and site-specific cost shocks affect each unit of installed 

capacity. For example, if the terrain is challenging, then mounting each panel will 

become more expensive, or if the project is risky, then each dollar borrowed will be 

at a higher cost of capital. For expositional simplicity and without loss of generality, 

I model 𝐼𝑖𝑡 as a one-off fixed cost, though in practice it will be a flow of payments 

over time. 

The impact of 𝜎𝑝 on investment costs represents how higher compensation is 

required for riskier investments. This is an empirically documented fact for renewable 

energy projects and can be conceptualised in terms of risk aversion by investors 

(Byoun et al. 2013, Steffen 2018, Polzin et al. 2019).13 I assume risk cannot be fully 

diversified because of fundamental uncertainty over the probability distribution of 

risks as is expected for early-stage technologies.  

Firm Choice — In each period, generators decide whether to invest with or without 

the FiT, or wait. This choice is the maximum of the value of waiting (𝑉𝑡
𝑤), the value 

 

13 This is standard CAPM models where the Sharpe ratio describes how much excess return investors need for larger 

standard deviations 
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of investing today with a FiT (𝑉𝑡
𝐹𝑖𝑇) and the value of investing today without any 

risk-hedging (𝑉𝑡
𝐼) (see Equation 1):  

(1) max{𝑉
𝑡
𝑤, 𝑉𝑡

𝐹𝑖𝑇, 𝑉𝑡
𝐼} 

 

The discount rate is β =
1

1+𝑟
 where 𝑟 is the risk-free interest rate and β ∈ (0,1). The 

value of waiting is given by Equation 2, where 𝐸𝑡 is the expectations operator. 𝑉𝑡
𝑤 is 

solved recursively in Appendix A.   

 

(2) max
𝑞

𝑉𝑡
𝑤  = 𝛽{𝐸𝑡𝑉

𝑡+1
𝑤 , 𝐸𝑡𝑉

𝑡+1
𝐹𝑖𝑇 , 𝐸𝑡𝑉

𝑡+1
𝐼 } 

 

Generators observe wholesale prices and period cost shocks, and assess whether 

these values lie above their expected values. If the value of entering today is lower 

than the value of entering in the future, a generator will choose to wait.  

The value of 𝑉𝑡
𝐹𝑖𝑇

 is given by Equation 3, where �̅� represents the tariff guaranteed 

under the FiT, 𝑞𝑓represents the optimal quantity of installed capacity, and �̅� 

represents the FiT eligibility threshold.14 The generator selects its project size subject 

to the FiT constraint.  

(3) max
𝑞

𝑉𝑡
𝐹𝑖𝑇 = �̅�𝜂𝑞𝑖

𝑓
+ ∑ 𝛽𝑠(�̅�𝜂𝑞𝑖

𝑓
)∞

𝑠=1

 
− (1 + 𝜒𝑖𝑡)𝛼𝑡𝑞𝑖

𝑓
   𝑠. 𝑡.   𝑞𝑖

𝑓
≤  �̅�  

 

𝑉𝑡
𝐼
 is given by Equation 4, where 𝑞𝐼 represents the optimal quantity of installed 

capacity. The price at which power is sold, 𝑝𝑡, is variable. Note, a generator can enter 

at 𝑞 ≤  �̅� and choose to not opt for the FiT, therefore there is no constraint.  

 

14 For analytical ease I assume an infinite lifetime for each project. Adding a fixed time horizon T would merely scale the 

entry decisions for generators. Given my primary interest is the conditions under which a firm finds it optimal to bunch, this 

would not introduce a meaningful effect. 
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(4) max
𝑞

𝑉𝑡
𝐼  = 𝑝𝑡𝜂𝑞𝑖

𝐼 + 𝜂𝑞𝑖
𝐼( ∑ 𝛽𝑠𝐸𝑡𝑝𝑡+𝑠

∞
𝑠=1 ) – (1 + 𝜒𝑖𝑡)(1 + 𝜎𝑝)𝛼𝑡𝑞𝑖

𝐼 

    Assuming a firm decides to invest in period t, its choice to enter with a FiT 

depends on whether 𝑅𝑡 ≡  𝑉𝑡
𝐹𝑖𝑇 −  𝑉𝑡

𝐼
  > 0.  

(5)     𝑅𝑡  ≡    (�̅�𝑞𝑖
𝑓

− 𝑝𝑡𝑞𝑖
𝐼) +  (

�̅�𝑞𝑖
𝑓

− 𝜇𝑝𝑞𝑖
𝐼

1−𝛽
) −  

𝛼(1+𝜒𝑖𝑡)

𝜂
 (𝑞𝑖

𝑓
− (1 + 𝜎𝑝)𝑞𝑖

𝐼) 

 

Higher price volatility and tariff favour entry with the FiT (
𝜕𝑅

𝜕𝜎𝑝
> 0 ,

𝜕𝑅

𝜕�̅�
> 0), while 

a higher expected wholesale electricity price/ROC price favours entry without a FiT 

(
𝜕𝑅

𝜕𝜇𝑝 
< 0).   

B.  Model Predictions 

Proposition 1: Timely Entry — Assuming there is volatility in the market price of 

electricity, if the tariff is at least equal to the average electricity/ROC price (�̅� ≥ 𝜇𝑝), 

then there more timely entry with a FiT relative to a world with no FiT.  

Proof of 1 — To see how, consider the following: as 𝜎𝑝 increases, holding all else 

constant, the value of entering with a FiT today will increase relative to the value of 

entering without it or waiting. This is because:  

• 
𝜕𝑉𝑡

𝐼

𝜕𝜎𝑝 
< 0 as implied by Equation 4 and, 

•  
𝜕𝑉𝑡

𝑊

𝜕𝜎𝑝 
< 0 as shown in Appendix B.  

Without a FiT, as 𝜎𝑝 increases, both 𝑉𝑡
𝐼 and 𝑉𝑡

𝑊 fall. But with a FiT, as 𝜎𝑝 increases, 

𝑉𝑡
𝑊 falls while 𝑉𝑡

𝐹𝑖𝑇 remains the same. A more formal exposition is presented in 

Appendix B.  

Proposition 2: Strategic Downsizing — Some generators who initially planned to 

install �̅� + Δ  worth of capacity will revise their plans and re-locate to the FiT 
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threshold, �̅�.  These are inframarginal generators as they would have entered even 

without the FiT but decide to strategically downsize thanks to it (also known as the 

“intensive margin” response in the bunching literature).  

Proof of 2 — The bunching upper bound, Δ, for which the generator is indifferent 

between downsizing and being at a higher capacity is obtained by setting 𝑉𝑡
𝐹𝑖𝑇 equal 

to 𝑉𝑡
𝐼 and solving for Δ: 

 (6) Δ =  �̅� (
𝑝𝐹− 𝑝�̂�

𝑝�̂�
) −   

𝛼(1+𝜒𝑖𝑡)

𝜂
 (𝑞𝑖

𝑓
− (1 + 𝜎𝑝)𝑞𝑖

𝐼) 

 

where 𝑝𝐹 ≡
�̅�

1−𝛽
 and 𝑝�̂� ≡ 𝑝𝑡 + 𝛽

𝜇𝑝

1−𝛽
. The value of Δ at which generators are indifferent 

increases with the monetary benefits of the FiT and decreases with its costs 

(Equation 6). Since 
𝜕Δ

𝜕𝜎𝑝
> 0, as volatility increases, generators will make bigger 

reductions in size to strategically benefit from the FiT. Δ is empirically important as 

it will define the area over which we will observe strategic downsizing.  

 

Proposition 3: New entry due to the FiT — There is also an extensive margin 

response to the FiT, where the policy will induce new entry.  

Proof of 3 — For certain generators 𝑉𝑡
𝑊 > 𝑉𝑡

𝐼 in a world with no FiT15 but after 

the introduction of the FiT, 𝑉𝑡
𝐹𝑖𝑇 > 𝑉𝑡

𝑊 > 𝑉𝑡
𝐼. Empirically, by using a bunching 

estimator, I will determine the extent to which the FiT resulted in strategic 

downsizing versus new entry for different assumed values of Δ.  

 

Proposition 4: Extensive Margin Bunching — A proportion of new generators will 

be constrained to enter at the FiT cut-off when they may have entered at larger 

capacities in a world where the FiT had no size-based threshold.  

 

15 where, as shown in the appendix, in the absence of a FiT, 𝑉𝑡
𝑤  = 𝛽�̂�𝐼 
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Proof of 4 — If the FiT were smooth, generators could enter at any capacity �̅� + Δ 

,but since the FiT has a cut-off, some generators who would have found it optimal 

to select a larger size will be constrained to entering at �̅� (details in Appendix).   

 

Proposition 5: Entry induced through temporary support — If the FiT will be 

removed next period, some generators will advance their decision to enter the market.   

Proof of 5 — If there are learning-by-doing externalities, a generator may find it 

preferable to enter with a FiT in a future time period, when the cost of solar panels 

is lower than the current period (𝑉𝑡+1
𝐹𝑖𝑇 > 𝑉𝑡

𝐹𝑖𝑇).  However, if in the subsequent time 

period, there will be no FiT, then the generator may advance their decision and enter 

today if 𝑉𝑡
𝐹𝑖𝑇 >  𝑉𝑡

𝐼
.  

C.  Model Boundaries 

This partial equilibrium model does not consider the distortionary effects of 

volatility reduction/price shielding on overall market outcomes. If FiT projects 

comprised a large share of the market, such distortions would be important to study 

(for example, generators could produce too much or too little power inhibiting market 

clearing). However, in the UK power market, solar is less than 2% of installed 

capacity, and FiT-accredited solar is less than half of all solar. Moreover, a single 5 

MW project is far too small to influence prices in any way (the total power system 

size is 4 to 5 orders of magnitude larger). Therefore, these general equilibrium effects 

are assumed away. This paper is concerned with the role of FiTs for early-stage 

technologies that, by definition, have very low market shares.  
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IV. Data & Descriptive Statistics 

A. Data  

The Renewable Energy Planning Database managed by the UK Department for 

Business, Energy & Industrial Strategy keeps a record of all commercial renewable 

energy projects as they move through the planning and development process. It has 

detailed information on the project name, size, geo-location, status, types of policy 

support, among other variables. There are 2,481 unique commercial solar projects 

from 2010 to 2019. The total number of clean energy projects across all technologies 

is 6,624. 

The median and the mode for commercial solar project size is 5 MW, while the 

mean is 9.3 MW. Out of all solar project proposals, the status of 1,900 is known.16 

Out of these 84% have successfully entered the market while the rest have had their 

planning permit rejected or have chosen to exit before construction. For the analysis, 

I assume a project “enters” when it applies for planning permission – this is the 

earliest date in the dataset. To ensure my results and analysis reflect actual added 

capacity, I filter out projects that subsequently backed out or were denied permission, 

leading to a sample size of 1,596 commercial solar projects.  

Data on electricity prices at 30-minute frequencies is collected from Aurora Energy. 

The UK power market does not have regional variation in electricity prices since it 

operates as one zone. The electricity prices that are relevant to solar energy are those 

that occur during daylight hours. To construct the appropriate wholesale electricity 

price variable, I use daily sunrise and sunset times to filter out night-time prices.17 

 

16 Projects labelled as unknown have applied for a permit but have not yet started construction, therefore it is unclear if 

they will be cancelled or will go ahead.  

17 In my time period, solar plus battery technology is highly limited, therefore it is safe to assume that the vast majority 

of solar generators only sell power during daylight hours. In the future, as battery penetration increases, solar generators may 

be able to sell much more power at night.  
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Using these “sunshine prices”, I construct the average daily electricity price that solar 

generators would be exposed to. This is aggregated up further to construct monthly 

averages. I also use 30-minute daylight prices to calculate monthly volatility.  

Data on solar panel costs is from Bloomberg New Energy Finance and NREL.     

B. Descriptive Evidence  

Between 2010 and 2019, 1,596 commercial solar generators successfully entered the 

power market, adding 12.5 GW of new capacity. The UK solar industry’s beginning 

coincides with the introduction of the FiT in 2010 (Figure 4). Prior to that, there 

were no commercial solar projects.  

The amount of new solar capacity steadily increases from 2010 to the end of 2015. 

The jagged structure of the plot reflects seasonality as each winter, the number of 

new solar projects falls. In 2016, there is a sudden drop in new capacity. This is when 

the pre-accreditation process of the FiT was removed.  

The pre-accreditation process ensured that generators larger than 50 kW received 

a guaranteed tariff level before beginning construction. This guarantee played an 

important role because construction can take time and without pre-accreditation, 

generators could find themselves in a situation where, by the time are ready to 

operate, the tariff has changed and the project’s economics are no longer favourable. 

An event study plot, which is presented in the spirit of descriptive evidence since 

confounding factors are not controlled for, illustrates how prior to the removal of the 

pre-accreditation process, there was an anticipatory increase in entry rates and how 

a month after the policy change, there is huge drop in new projects. Solar project 

proposals start rebounding in 2018 but never returned to previous levels. Sub-section 

C discusses the event study in more detail.  
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FIGURE 4. MONTHLY NEW COMMERCIAL SOLAR CAPACITY IN THE UK 

Notes: The project entry date corresponds to when planning permission was sought. Projects that are denied planning 

permits are not shown to ensure only actual new capacity is reflected. 

C. Event Study Regression  

I consider observations preceding October 2015 as “treated” (i.e., in a world with 

an effective FiT) and those after the date as “untreated” (i.e., in a world where the 

policy was diluted significantly). Using a Poisson specification which is well-suited to 

count data, I examine how the number of new solar project proposals changes after 

pre-accreditation was formally removed. Equation 7 describes the estimation where 

yt is the number of new solar projects, 𝛽𝑗 captures the effect of the change in the FiT 

in the months after the shock, and the third term controls for seasonality.  

(7) yt = 𝛼𝑡 + ∑ 𝛽𝑗 ∙ 𝟙{𝑡 ≥ 𝑡𝑠𝑡𝑎𝑟𝑡}𝑇
𝑗=1 +  ∑ 𝛾𝑖 ∙ mi

11
𝑖=1 +  𝜀𝑡 

 

As the event study plot shows, there is a highly statistically significant and sizable 

decline in entry rates. A month after the policy change, there is a 78% drop in new 

projects, which becomes a 95% drop 7 months after (albeit with higher errors around 

the estimate), after controlling for seasonality.  
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The event study plot also suggests that there were anticipation effects prior to the 

removal of the pre-accreditation scheme, as indicated by the increased entry rates 

from June 2015 onwards.18  

 

FIGURE 5. EVENT STUDY PLOT OF MONTHLY DECLINE IN NEW SOLAR PROJECTS 

 

One cannot control for all changes across time that may have affected entry in 

such an empirical design. Therefore, the results are presented in the spirit of 

descriptive evidence. Section V will present the bunching estimation which is the 

main empirical strategy.  

V. Bunching Estimation 

A. Empirical Strategy 

The FiT creates a sharp discontinuity at 5 MW (notch) where generators below 

the threshold are eligible for the fixed tariff while those above are subject to 

 

18 On 22 July 2015, it was announced that a consultation would be held on whether pre-accreditation should be removed. 

Even though almost all generators opposed the removal of the pre-accreditation process, it was nevertheless announced in 

September 2015, that it would be removed. The policy took effect on October 2015.  
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fluctuating wholesale electricity prices or ROC prices. I exploit this discontinuity to 

estimate the impact of the FiT on entry and investment in commercial solar.     

Recall that firms can either wait, enter without any risk-reduction policy, or enter 

with a FiT. The bunching estimation will disentangle how much of the observed 

effect is driven by those who switch from waiting to entering (new entry/extensive 

margin) versus those who switch from entering at higher capacities to downsizing 

and entering with a FiT (inframarginal/intensive margin). While new entry results 

in solar capacity additions which is helpful for decarbonisation, downsizing reflects 

lost capacity/abatement and support to inframarginal generators, which is inefficient.  

There is a third potential behavioural response which is upsizing by generators who 

would have entered at lower capacities but decide to scale-up to 5 MW thanks to 

enhanced profitability due to the FiT. However, I do not find evidence of this (see 

Section V.E.). Consequently, the main results will only consider bunching that occurs 

due to movement from the right of the notch.  

The bunching estimation is found from the following model:  

(8) 𝑐𝑗 =   ∑ 𝛾𝑖(𝑞𝑗)𝑛
𝑖=0

𝑖
+ ∑ 𝜌𝑟 ∙ 1[𝑞𝑟]𝑟∈𝑁  +  ∑ 𝜓𝑖 ∙  1[𝑞𝑗 = 𝑖] + 

𝑞+
𝑖=𝑞− 𝑣𝑗      

 

where 𝑐𝑗  is the number of generators in bin j (each bin represents 0.1 MW increments 

of capacity), 𝑞𝑗 is the installed capacity, 𝑛 is the order of the polynomial, [q-, q+] is 

the excluded range, and 𝑁 is the set of round numbers (r) excluding the FiT eligibility 

threshold and including 2.5 and 1.5, where there is a tendency to bunch which is not 

driven by discontinuous incentives but rather the salience of certain numbers (natural 

reference points). The counterfactual distribution is defined as the predicted values 

from the regression in Equation 8 omitting the contribution of the dummies around 

the notch (third term) but keeping the contribution of round-number dummies 

(second term) (Kleven and Waseem 2013).  
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The bunching estimation creates a local no-FiT counterfactual and compares to 

the with-FiT observed data to determine how much “excess mass” there is at the 

notch due to the policy (Figure 6). To determine what proportion of this excess mass 

is due to strategic downsizing, the “missing mass” is calculated. This is the difference 

between the no-FiT counterfactual and the with-FiT observed data to the right of 

the notch. The amount of new entry is the difference between the excess mass and 

the missing mass.  

 

FIGURE 6. SCHEMATIC OF BUNCHING ESTIMATION 

 

Deciding appropriate values for [q-, q+] is subjective: q+ reflects our expectation 

of the upper bound from where generators will strategically downsize, while q-  is 5 

MW since generators who downsize have no incentive to go below this value. In 

practice, I find q- is 4.9 since many firms mistakenly think the eligibility criterion is 

a strict inequality. In settings where the response is entirely on the intensive margin, 

the value of q+ is found by equating the missing mass towards the right of the notch 

to the excess mass under the notch. However, in my setting this is not possible since 

there is a large extensive margin response. 
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In the baseline specification, I assume q+ = 6.5 MW. This choice is informed by a 

series of robustness tests that find that there is limited evidence for strategic 

downsizing beyond 6.5 MW. Using values of q+ > 6.5 MW results in a negative 

missing mass, which is not compatible with downsizing (see Section V.E.).  

Adjustment costs can attenuate the amount of bunching and create a downward 

bias in the estimate of how much firms respond to discontinuous incentives (Chetty 

et al. 2011). In my setting, this is less of a concern since projects are “paper proposals” 

where adjustment costs related to revising installed capacity plans are relatively low, 

and there is high salience around where discontinuities occur.   

B. Identification Assumptions & Caveats 

  Identification via bunching at a threshold requires that there are no other policies 

or market features that could create incentives to invest in solar at the 5 MW cut-

off apart from those created by the FiT (Kleven 2016). I explore this assumption by 

checking the empirical distribution of solar project size post-2016 when the FiT was 

highly diluted. There is no observable bunching anymore, suggesting that this main 

identification assumption holds (Figure 7).   

 

FIGURE 7. ABSENCE OF BUNCHING POST 2016 

Notes: The small peak at 5 MW is the standard round number clustering. 
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Since observations below the notch still benefit from the FiT but are used to create 

a “no-FiT” counterfactual, the approach likely under-estimates the true effect. An 

alternative is to estimate the counterfactual only using observations to the right of 

the notch outside the excluded zone. However, this brings its own set of challenges 

— these projects may serve as a less valid control group since larger projects may 

have different economic characteristics relative to smaller ones. It also results in the 

loss of statistical power. Therefore, I choose to over-estimate the level of the 

counterfactual distribution and produce a lower-bound estimate of entry and capacity 

additions due to the FiT.  

I also assume the marginal solar project does not influence prices in the power 

market. If the marginal solar project affected prices, firms’ decisions would not only 

consider the change in financial incentives at the 5 MW discontinuity but also 

expectations of how other solar generators would react to it. For example, if one 

project’s entry depressed prices, this would impact the next project’s calculation of 

expected profits. This would contaminate our interpretation of the effect of the 

discontinuity. However, it is reasonable to assume a single 5 MW solar project does 

not affect prices as it is extremely small compared to the total UK power market, 

which is 4-5 orders of magnitude larger. 

C. Main Results 

This section presents the results from estimating Equation 8, where the exclusion 

zone is [q- = 4.9 q+ = 6.5], capacity bins are defined in terms of increments of 0.1 

MW and a 4th-order polynomial is used. Results with lower and higher order 

polynomials are reported in Section V.E. but since the data outside the notch is 

relatively flat, it is unlikely that higher order polynomials are needed. 
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 There is a significant and very large bunching response at the FiT threshold 

(Figure 8). Around 6% of projects strategically downsize. The remaining 94% are 

new entrants. This shows how the FiT’s effect is largely on the extensive margin: 

that is, it “created the market” by incentivising large amounts of entry and new 

capacity in commercial, utility-scale solar energy. Visually, it is intuitive that the 

response is largely on the extensive margin, since if it were driven by strategic 

downsizing, we would expect to see a hole above 5 MW.  

Taking into account the capacity lost from strategic downsizing, I find there are at 

least 43 times more solar projects thanks to the FiT, leading to net capacity additions 

worth 2.3 GW (equal to one-fifth of all installed solar capacity in the UK using 2021 

figures).19 In terms of absolute numbers, there are at least 490 new utility-scale 

commercial solar projects due to the FiT (for context, the total number of solar 

projects from 2010-2019 is 2,481). As noted earlier, these estimates are likely lower 

than the true effect because there could be more entry driven by the FiT below q- 

that the estimator is unable to capture.   

 

FIGURE 8. MAIN BUNCHING ESTIMATION 

 

19 The reason it is ”at least” 43 times is because the excess mass is only calculated around the bunching zone. There could 

be additional solar projects that are attributable to the FiT below the bunching area (i.e., between 0-4.9 MW) but these are 

not captured by the bunching estimation since causal identification requires restricting analysis to a local area.  
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Notes: p represents the polynomial, b is the ratio of excess mass to counterfactual mass, B is the excess mass, M is the 

missing mass.   

D. Differences in Bunching  

Examining how the extent of bunching changes over time can shed light on how 

the changing characteristics of the FiT affect firms’ incentives. Figure 9 plots the 

histogram of project size over the last decade. From this descriptive evidence, one 

can see that bunching peaks in 2015, right before the heavy dilution of the FiT 

scheme. This aligns with the evidence presented in the event study (Section IV.C) 

as well as the theoretical predictions that there will be expedited entry by generators 

if the FiT will be removed, since those who were previously deferring entry to take 

advantage of learning-by-doing externalities, now find it more advantageous to enter 

with a FiT today than to lose the option to have the risk hedge in the future (Section 

III.B).  

Furthermore, concerns related to efficiency losses due to extensive margin bunching 

can be partially allayed, not only by considering the cost curve for solar which is U-

shaped, but also by the fact that post-2016, when there is effectively no FiT, there 

is no significant entry at higher capacities. If after 2016, there were many projects at 

higher capacities, this would raise concerns that during FiT years, entry was 

artificially constrained at 5 MW. Instead, it seems like the FiT played a key role in 

creating that entry and market itself.  
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FIGURE 9. HISTOGRAM OF SOLAR PROJECTS BY YEAR 

 

To more formally check how bunching changes over time, it is necessary to estimate 

the change in relative bunching by creating no-FiT counterfactuals for each period. 

I choose to estimate these in groups of years rather than individual years to avoid 

sample size reductions and loss of statistical power. I therefore, estimate the amount 

of relative bunching over three different time periods: (i) phase 1 - April 2010 to July 

2012, (ii) phase 2 - August 2012 to December 2015, and (iii) phase 3 - January 2016 

to December 2019. In phase 1, generators get 27 p/kWh while in phase 2, they get 9 

p/kWh. Phase 3 is when the pre-accreditation process was removed and the rate fell 

further to 2 p/kWh.   

The bunching estimates presented in Figure 10 show that in phase 2 there are at 

least 41 times more projects relative to a no-FiT counterfactual, while in phase 1, 

there are 27 times more projects. In both cases, new entry is driving the vast majority 

of bunching.20  

 

20  
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FIGURE 10:  BUNCHING OVER TIME 

Notes: Top: Bunching from April 2010- July 2012 , Bottom: Bunching from August 2012 - December 2015 

 

The increase in bunching mass in phase 2 relative to phase 1 is, in the first instance, 

surprising since the subsidy is lower. General solar panel cost declines should not 

explain why the relative difference between the no-FiT counterfactual and with-FiT 

data increases. Only variables that change at the 5 MW threshold should be affecting 

the relative amount of bunching. However, as already discussed, a notable change 

between the phases was that while in phase 1, there was an option to enter with a 
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FiT next period, in phase 2, the imminent removal of the FiT was clear (as evidenced 

by public consultations) thereby increasing the value of taking it up immediately.  

In a with-FiT world, firms may rationally choose to enter with a FiT tomorrow 

instead of today to take advantage of accumulated experience and future cost 

declines. However, when the prospect of FiT removal/dilution is imminent, the choice 

to enter with a FiT today dominates the choice of entering tomorrow without this 

risk hedge.  

Additionally, even though the tradable certificate scheme was offering similar prices 

to the FiT in phase 2 (on the other side of the cut-off), the vast majority of firms 

still bunched at 4.9 and 5 MW, illustrating the value of a long-term risk hedges over 

market-based schemes that are risky due to changing prices.  

Finally, in phase 3, 2016 onwards, there is no bunching, as would be expected since 

the scheme is highly diluted/has no guarantees for generators.   

 

 

FIGURE 11. BUNCHING OVER DIFFERENT PERIODS OF TIME  

Note: Counterfactuals are not shown in this plot.  
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E. Robustness Checks and Falsification Tests  

Upsizing — Upsizing is unlikely to be a concern since there is no visible hole 

towards the left of the notch. However, this is tested more formally via a bunching 

estimator that calculates bunching from the left (see below). The missing mass is 

negative which means that there are fewer projects towards the left of the notch in 

a no-FiT world relative to the with-FiT reality. This highlights that there is no 

upsizing and is, in fact, suggestive that the FiT created new entry at lower capacities. 

This is in line with the idea that the UK FiT’s effect is largely about “creating the 

market” by incentivising large amounts of entry and new capacity. This is also aligned 

with descriptive evidence that finds that there were no commercial solar projects 

prior to the introduction of the FiT in 2010.  

  

 
FIGURE 12  TEST FOR UPSIZING 

Reference Point Effects — One cannot rule out the possibility that the FiT makes 

5 MW a reference point, that is, developers decide to build farms that are 5 MW in 

size because it becomes salient due to the policy threshold. This has been documented 

in the bunching literature where agents cluster around certain values (e.g. marathon 

finish times, statistical results that are just under certain p-values, etc.). If this is the 
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case, then “bunching confounds the incentive effect with a reference point effect” 

(Kleven 2016). I compare bunching across different time periods when the 5 MW 

reference point is the same but other elements of the policy change. This holds 

constant any reference point effects. I find that firms are indeed responding strongly 

to changes to FiT policy characteristics as shown by the change in relative bunching 

mass (Section V.D).  

 

Cheating through co-location — One may also question whether there is “cheating” 

whereby a 10 MW project passes by as two separate 5 MW projects. I can test this 

by using geolocation data and measuring the distance between all 5 MW projects. 

Only 20 of 511 projects (3.9%) have identical locations, raising suspicions that they 

might be cheating. I find that these projects are registered under legally separate 

entities. Since this is such a small share of the overall sample, the main results still 

hold.  

 

FIGURE 13: GEO-LOCATION DATA OF FIT AND NON-FIT SOLAR PROJECTS IN THE UK 
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Sensitivity to Order of Polynomial  — Finally, Kleven (2016) highlights how in the 

case of notches, behavioural responses can be very spread out. Sensitivity analyses 

with respect to the order of the polynomial and the excluded range are recommended. 

Tests show that results are stable across alternative specifications.  

Using a lower bound at 4.9 MW and upper bound between 6-6.5MW, I see that 

strategic downsizing accounts for 1-3% of the response for a third order polynomial 

and 3-6% of the response for a fifth order polynomial. These estimates suggest that 

if anything, my baseline specification is on the conservate side by presenting the 

larger estimate of strategic downsizing/lower estimate of new entry.  

Once the upper bound is assumed to be 7 or 8 MW, for third, fourth and fifth order 

polynomials, the amount of strategic downsizing takes on negative values - this is 

the opposite of what one would expect if we believed 7-8 MW projects were 

downsizing to take advantage of the FiT. In other words, there is no statistically 

significant evidence of a “hole” up to these capacities.  

  

VI. Value for M oney 

To close my analysis, I consider whether the FiT represented value for money. I 

do a very simple back-of-the-envelope style calculation that uses the (lower-bound) 

estimates of net solar capacity additions due to the FiT. I assume that this generation 

crowds out coal-fired generation. During the growth period of solar, all other types 

of generation also increased except for coal, which declined. This produced climate 

and air quality benefits, which are weighed against the cost of subsidizing the FiT-

accredited generation, which is measured in terms of the average weighted difference 

between the wholesale price and the fixed tariff (See Appendix D for full details 

related to the calculation).  
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I find that it takes a social cost of carbon worth £100 per tonne of CO2 to make 

the FiT a net gain for society, after accounting for the health benefits of reducing 

SO2 emissions/particulate matter. For comparison, lower bound estimates of the 

social cost of carbon from the literature are £60 t/CO2 (Pindyck 2018) and 

prevailing carbon market prices in the EU ETS (as of August 2022) are about 

£96.5/tCO2.  

However, the government’s objectives with the commercial FiT were primarily 

around market development rather than CO2 reductions. Government 

consultations reveal how the UK was ahead of Denmark in wind power R&D in 

the 1980s but lost out in terms of commercialising the technology. This past 

experience created strong motivation to bring solar technology to market via some 

sort of support scheme that could eventually be phased out. Other aims included 

improving grid diversity, ensuring local buy-in for the energy transition, fostering 

innovation, and increasing local-level energy independence (DECC 2015a).  

VII. Conclusion      

This paper explores the role of risk reduction, via feed-in-tariffs, in bringing early-

stage technologies to market, focusing on the case of utility-scale solar energy. This 

question is motivated by the hypothesis that due to credit market imperfections, 

incomplete information and positive externalities, investment in clean energy is sub-

optimally low. 

 Using a bunching estimator, I find that the UK’s renewable energy feed-in-tariff, 

a policy intervention that reduced the risk of investing in renewable energy projects, 

was effective in incentivising large amounts of entry and investment by solar 

generators. Since the policy’s design also created incentives for strategic downsizing 

of projects that would have entered anyway, I also quantify the degree of such 

downsizing and find that it is minimal. The net effect is positive and suggests that 
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the policy induced significant low-carbon capacity additions. The very large extensive 

margin response shows how this policy helped bring utility-scale solar energy to 

market, especially since prior to the FiT, such projects did not exist in the UK power 

grid.  

Value for money calculations show it takes a social cost of carbon worth £100/tCO2 

to make the policy a net gain. Bunching by different time periods shows how even 

when the FiT provides a low subsidy, there is still significant bunching because firms 

value price volatility elimination and the prospect of the scheme being removed 

triggers a surge in entry. This also emphasizes the potential importance of phasing 

out support to counter the waiting dynamic that emerges from learning-by-doing 

externalities. 

While this paper conducts an empirical case study on solar energy, the broader 

question on the role of risk reduction in bringing breakthrough technologies to market 

is likely to have relevance to other technologies such as second-generation low carbon 

technologies (e.g. green fuels, long duration storage, zero-carbon steel, etc.) and 

healthcare innovation. Technologies in these domains also generate positive 

externalities and, face risks and credit market imperfections.  

In terms of limitations, this work concerns itself with case of policy for nascent 

technologies, which occupy a small share of the market and can be modelled a price-

takers. To explore broader questions around the optimal deployment of the FiT, 

beyond the case of early-stage technologies, a new model with endogenous prices and 

a market for credit will be needed. This is a promising avenue for future work.  
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IX. Appendix  

A.  Solving for the Wait Value Function   

The value of waiting is given by Equation A.1 

(A.1) max
𝑞

𝑉𝑡
𝑤  = 𝛽{𝐸𝑡V

t+1
w , 𝐸𝑡V

t+1
FiT , 𝐸𝑡V

t+1
I } 

 

The expected value of entering with a FiT next period is:  

  

(A.2) 𝐸𝑡Vt+1
FiT  =  

�̅�𝑞𝑡+1
𝑓∗

1−𝛽
− 𝜇𝜒𝑖

 𝑓(𝑞𝑡+1
𝑓∗

)  

 

Note that in expectation, the choice of optimal installed capacity time across periods 

under a FiT is the same, that is 𝐸𝑡𝑞𝑡+1
𝑓∗

= 𝐸𝑡𝑞𝑡+2
𝑓∗

= ⋯ =  𝐸𝑡𝑞𝑡+𝑇
𝑓∗

. This is because the 

variables that affect optimal choice do not change in expectation: price does not 

change across time (it is always the FiT rate, �̅�) and in expectation, the cost shock 

is 𝜇𝜒𝑖
 is also the same. Therefore, the value of entering with a FiT is the same:  

𝐸𝑡𝑉𝑡+1
𝐹𝑖𝑇 = 𝐸𝑡𝑉𝑡+2

𝐹𝑖𝑇 = ⋯ =  𝐸𝑡𝑉𝑡+𝑇
𝐹𝑖𝑇  ≡ �̂�𝐹𝑖𝑇.  

(A.3) 𝐸𝑡𝑉𝑡+1
𝐹𝑖𝑇 = 𝐸𝑡𝑉𝑡+2

𝐹𝑖𝑇 = ⋯ =  𝐸𝑡𝑉𝑡+𝑇
𝐹𝑖𝑇  ≡ �̂�𝐹𝑖𝑇  

 

This implies that it is always better to enter with a FiT today rather than tomorrow 

in expectation, since �̂�𝐹𝑖𝑇 > 𝛽�̂�𝐹𝑖𝑇. 

A similar logic applies to the value of investing without any policy support.  

(A.4) 𝐸𝑡𝑉𝑡+1
𝐼 = 𝐸𝑡𝑉𝑡+2

𝐼 = ⋯ =  𝐸𝑡𝑉𝑡+𝑇
𝐼  ≡ �̂�𝐼  
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This is because in expectation, the price equals 𝜇𝑝 in every time period, and the cost 

shock is 𝜇𝜒𝑖
. These variables affect the optimal choice of installed capacity, which in 

expectation is also then equal across time periods. A.4 implies that in expectation, it 

is better to invest today than tomorrow: �̂�𝐼 > 𝛽�̂�𝐼. It is important to note that this 

is in expectation. Once the cost shock of the current time period is realized, it may 

be so unfavourable that waiting till the next period is optimal.  

Substituting A.4. and A.3. into A.1. and recursively solving the value of waiting 

yields:  

(A.5) max
𝑞

𝑉𝑡
𝑤  = 𝛽 max { �̂�

𝐹𝑖𝑇
, �̂�

𝐼
 } 

 

Note as 𝑇 → ∞, βT → 0 and βT𝑉𝑡+𝑇
𝑤 → 0. Without the FiT, the value of waiting will 

be the discounted expected value of investing, as shown in Equation A.6.   

(A.6)  𝑉𝑡
𝑤  = 𝛽�̂�

𝐼
 

 

B.  Earlier Entry with a FiT   

If there is no FiT, the maximisation problem is 𝑚𝑎𝑥{𝑉𝑡
𝑤, 𝑉𝑡

𝐼}. Substituting for the 

value of waiting in A.6, we get, 𝑚𝑎𝑥{𝛽�̂�𝐼 , 𝑉𝑡
𝐼}. As σp increases, investment costs rise, 

and 𝑉𝑡
𝐼 decreases, as does 𝛽�̂�𝐼. A firm invests today if 𝑉𝑡

𝐼 >  𝛽�̂�𝐼, that is, the profit, 

given the realised price and realised cost shock, is greater than the discounted profit 

with the average price and average cost shock. A higher price volatility increases the 

chance of extremes, either a very favourable high price, or a very poor low price 

(note: wholesale electricity prices are allowed to become negative, so there is no 

asymmetric impact of price volatility increases). We are unable to comment on 

whether higher volatility necessarily delays entry – it just creates more 

unpredictability.  
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If there is a FiT, then given a sufficiently attractive tariff rate (which is at least 

equal to the expected average price of electricity), there is likely to be more entry 

today relative to a scenario where there is no FiT. 𝑉𝑡
𝐹𝑖𝑇 does not change in the 

volatility of the market price of electricity. All else equal, if σp increases, the value 

of 𝑉𝑡
𝐹𝑖𝑇rises relative to 𝑉𝑡

𝐼 (which decreases in σp) and possibly also 𝑉𝑡
𝑊 (if the 

maximum is �̂�𝐼 as per A.5). Much still depends on the FiT rate. Entry with a FiT 

happens today if the profit given the FiT rate and the realised cost shock (𝑉𝑡
𝐹𝑖𝑇) is 

greater than the maximum of: (i) the discounted profit given the average electricity 

price and average cost shock (𝛽�̂�𝐼) and (ii) the discounted profit given the FiT rate 

and average cost shock (𝛽�̂�𝐹𝑖𝑇). Assume the FiT rate is equal to the average 

electricity price and the cost shock is equal to the average, then 𝑉𝑡
𝐹𝑖𝑇 >  𝛽�̂�𝐼 and 𝑉𝑡

𝐹𝑖𝑇 >

 𝛽�̂�𝐹𝑖𝑇, and as such, entry today with FiT strictly dominates and gets more attractive 

as σp increases.  

In other words, a firm invests today if 𝑉𝑡
𝐼 >  𝑉𝑡

𝑊 or 𝑉𝑡
𝐹𝑖𝑇 >  𝑉𝑡

𝑊. As σp increases, 𝑉𝑡
𝐹𝑖𝑇 

remains unchanged, while 𝑉𝑡
𝐼 falls. Between the two scenarios (with FiT and no FiT), 

there are more conditions to facilitate entry in the “with FiT” case. The intuition is 

that when price volatility is high, the value of investing today with no support falls, 

while the value of investing with a FiT does not, and this means that there is a 

higher chance of entry in a world with FiTs.  

C.  Value for Money Calculations  

Table 1 
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D.  Figures    

 

FIGURE A.1. SOLAR PANEL COSTS. SOURCE: BNEF AND NREL.  

Variables Values Comments

1                  Net Capacity Additions due to FiT (MW) 2,270                                             Obtained from bunching estimates

2                  Solar Load Factor 0.11                                               Annual average

3                  Days in a Year 365                                                 

4                  Hours in a day 24                                                   

5                  Annual Solar Generation due to FiT  (MWh) 2,187,372                                     Capacity*Days*Hours*Load Factor (lines 1-4)

6                  Emissions intensity of coal displaced by solar (tCO2/MWh) 0.90                                               Using the carbon intensity of coal production in the UK

7                  Emissions displaced by FiT Solar (tCO2/year) 1,968,635                                     Generation*Emissions Intensity (line 5* line 6)

8                  SO2 intensity of coal production  (tSO2/MWh) 0.002                                             Using the SO2 intensity of coal production in the UK

9                  SO2 reduction from coal displaced by solar (tSO2/year) 3,991                                             Generation*SO2 Intensity (line 5* line 8)

10               Price of CO2 (£/tonne) 96.5                                               Carbon Price in EU ETS allowances (August 2022)

11               Social Cost of SO2 (£/tonne) 6,000                                             Social Cost of SO2, EU Commission Calculation for UK

12               Annual benefit of reduced SO2 emissions  (£) 23,946,221                                  Line 11*Line 9

13               Annual benefit of reduced CO2 emissions (£) 189,973,258                                Line 10*Line 7

14               Net subsidy given to FiT accredited solar (£/MWh) 112.0                                              FiT tariff - wholesale electricity price (weighted average value) 

15               Annual cost of FiT solar subsidy (£) 244,985,664                                Generation*Subsidy (line 5*line 10)

16               Annual benefit less cost (£) 31,066,185-                                  Line 13 + Line 12 - Line 15

17               Minimum social cost of carbon to make FiT net gain 112.28                                           Line 15 - Line 12 / Line 7
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