Efficient Forestation in the Brazilian Amazon: Evidence from a Dynamic Model

June 15th

Rafael Araujo (FGV EPGE & CPI) Francisco Costa (U Delaware) Marcelo Sant'Anna (FGV EPGE) 13th Conference on The Economics of Energy and Climate

Forest conservation is key to tackling global warming

Limit rising global temperature hinges on a drastic reduction of CO_2 emissions over the next decades (IPCC 2018)

Reducing deforestation in tropical ecosystems has huge potential for reducing emissions (Stern, 2007; Bastin et al., 2019)

- Brazilian Amazon in 2000 = 200+ billion tons of CO₂
- Since then, land use changes released 16.7 billion tons of CO₂ in the atmosphere

Social cost vs. private benefit from deforestation



What is the carbon-efficient forestation in the Brazilian Amazon?

Dynamic discrete choice model where farmers choose land use: forest, pasture, crops

- Estimated with granular (30m) level panel for the Brazilian Amazon 2008-2017
- We estimate farmers' perceived value of the carbon stored in the forest
- Efficient forestation: farmers fully internalize the social cost of carbon (computed by the EPA)
- Policy counterfactuals based on the carbon content of the land, and taxes on cattle and crops

Cropland responses to prices and the economic environment

(Chomitz and Gray, 1999; Lubowski et al., 2006; Fezzi and Bateman, 2011; Scott, 2013; Souza-Rodrigues, 2019; Sant'Anna, 2021; Heilmayr et al., 2020; Hsiao, 2020)

Land use decisions using static general equilibrium models (Costinot et al, 2016; Donaldson and Hornbeck, 2016; Pellegrina, 2020; Sotelo, 2020; Domínguez-Iino, 2020)

Large literature studying policies to fight deforestation (treatment effect framework) (Alix-Garcia et al, 2015; Jayachandran et al, 2017; Assunção et. al., 2019; Burgess et. al., 2019; Barbier et al, 2020)

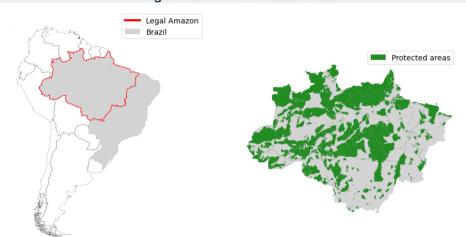
Carbon abatement cost of land use policies (Jack, 2013; Jayachandran et al, 2017; Gillingham and Stock, 2018) 1. Background

2. Model

- 3. Empirical Analogues & Data
- 4. Estimation
- 5. Counterfactuals Efficient Forestation Policy Counterfactuals
- 6. Caveats & Extensions

1/ Background

Background



Legal Amazon and Protected Areas

89% of deforestation happens outside Protected Areas

Background

Legal Amazon - Protected Areas (in green)

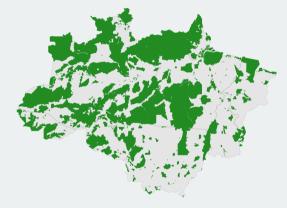
Land use in the Legal Amazon (%)

Share	Transitions from 2008 (row) to 2017 (column)				
in					
2008	Forest	Crop	Pasture		
(1)	(2)	(3)	(4)		
72	92.0	0.8	6.5		
2	3.0	89.0	7.4		
21	13.0	5.4	81.0		
	in 2008 (1) 72 2	in 2008 (ru 2008 Forest (1) (2) 72 92.0 2 3.0	in 2008 (row) to 20 2008 Forest Crop (1) (2) (3) 72 92.0 0.8 2 3.0 89.0		

• The predominant agricultural activity in this region is cattle grazing

Background

Legal Amazon - Protected Areas (in green)



Land use in the Legal Amazon (%)

	Share	Transitions from 2008 (row) to 2017 (column)				
	in					
	2008	Forest	Crop	Pasture		
	(1)	(2)	(3)	(4)		
Forest	72	92.0	0.8	6.5		
Crop	2	3.0	89.0	7.4		
Pasture	21	13.0	5.4	81.0		

• Forest regeneration is relatively common (Gandour, 2019)

Model: Set up

Dynamic model with discrete time t= 1,2,3....

A rational agent in time t decides land use $j \in \{\text{forest, crop, pasture}\}$ in field i

- Fields are grouped in locations *m*
- In our application, a field is a 30m pixel and a location is a 1km grid.

Flow profit of field i put to use j in period t:

$$\pi_j(w_{mt},\varepsilon_{imjt})=r_j(w_{mt};\alpha)+\varepsilon_{imjt}.$$

Assumption 1. Market variables (e.g., prices) follow Markov process $F_{w_{m,t+1}|w_{mt},\varepsilon_{imjt},j} = F_{w_{m,t+1}|w_{mt}}$

Assumption 2. Field level unobservables ε_{imjt} have i.i.d type-I extreme value distribution

Model: Set up

Dynamic model with discrete time t= 1,2,3....

A rational agent in time t decides land use $j \in \{\text{forest, crop, pasture}\}$ in field i

- Fields are grouped in locations *m*
- In our application, a field is a 30m pixel and a location is a 1km grid.

Flow profit of field i put to use j in period t:

$$\pi_j(w_{mt},\varepsilon_{imjt})=r_j(w_{mt};\alpha)+\varepsilon_{imjt}.$$

Assumption 1. Market variables (e.g., prices) follow Markov process $F_{w_{m,t+1}|w_{mt},\varepsilon_{imjt},j} = F_{w_{m,t+1}|w_{mt}}$

Assumption 2. Field level unobservables ε_{imjt} have i.i.d type-I extreme value distribution

Dynamics. Land conversion *sunk* cost $\Phi(j, k)$: e.g., Φ (pasture,forest)

Agent's value function:

$$V(k, w_{mt}, \varepsilon_{imt}) = \max_{j \in J} \{ \underbrace{\Phi(j, k) + r_j(w_{mt}; \alpha) + \rho E\left[E_{\varepsilon}[V(j, w_{mt+1}, \varepsilon_{imjt+1})]|w_{mt}\right]}_{v(j|k, w_{mt})} + \varepsilon_{imjt} \}$$

The type-I extreme value distribution for ε_{imjt} yields the logit Conditional Choice Probability (CCP):

$$p(j|k, w_{mt}) = \frac{\exp(v(j|k, w_{mt}))}{\sum_{j' \in J} \exp(v(j'|k, w_{mt}))}$$

Use finite dependence property to "get rid" of continuation values and write a regression equation (Scott, 2013; Kalouptsidi, Scott and Souza-Rodrigues, 2021):

$$\log\left(\frac{p(j|k, w_{mt})}{p(k|k, w_{mt})}\right) - \rho \log\left(\frac{p(j|k, w_{m,t+1})}{p(j|j, w_{m,t+1})}\right) = (1 - \rho)\Phi(j, k) + r_j(w_{mt}; \alpha) - r_k(w_{mt}; \alpha) + \eta_j^V(w_{mt}) - \eta_k^V(w_{mt})$$

where $\eta_i^V(w_{mt})$ denote an expectation error, i.e.:

$$\eta_i^V(w_{mt}) = \rho(E\left[E_{\varepsilon}[V(j, w_{mt+1}, \varepsilon_{imt+1})]|w_{mt}] - E_{\varepsilon}[V(j, w_{mt+1}, \varepsilon_{imt+1})]\right)$$

Crop:

$$r_{\rm crop}(w_{mt};\alpha) = \bar{\alpha}_{\rm crop} + \alpha_{\rm crop} \left[\sum_{c \in C} s_{cm} \left(p_{ct} - z_{mc} \right) y_{mc} \right] + \xi_{\rm crop,m,t}.$$

- Weighted sum of returns for different crops (corn and soybeans):
 - *s_{cm}* share of crop *c* in location *m*
 - p_{ct} price of crop c in period t
 - z_{cm} transportation cost to get production from location m to the port
 - *y_{cm}* potential yield for crop *c* in location *m*
- $\alpha_{\rm crop}$ allows us to monetize the carbon perceived value
- $\xi_{\operatorname{crop},m,t}$ accommodates a location fixed-effect

Crop:

$$r_{\rm crop}(w_{mt};\alpha) = \bar{\alpha}_{\rm crop} + \alpha_{\rm crop} \left[\sum_{c \in C} s_{cm} \left(p_{ct} - z_{mc} \right) y_{mc} \right] + \xi_{{\rm crop},m,t}.$$

Pasture: flexible specification

$$r_{\text{pasture}}(w_{mt}; \alpha) = \bar{\alpha}_j + \alpha_{j,t}^1 y_{m,j} + \alpha_j^2 d_m y_{m,j} + \xi_{j,m,t}, \quad j = \text{pasture}$$

- $\alpha_{i,t}^1$ coefficient of pasture suitability depends on time
- α_i^2 interaction of pasture suitability with road distance to ports

Model: Flow of returns

Crop:

$$r_{\rm crop}(w_{mt};\alpha) = \bar{\alpha}_{\rm crop} + \alpha_{\rm crop} \left[\sum_{c \in C} s_{cm} \left(p_{ct} - z_{mc} \right) y_{mc} \right] + \xi_{{\rm crop},m,t}.$$

Pasture:

$$r_{\text{pasture}}(w_{mt}; \alpha) = \bar{\alpha}_j + \alpha_{j,t}^1 y_{m,j} + \alpha_j^2 d_m y_{m,j} + \xi_{j,m,t}, \quad j = \text{pasture}$$

Forest: depends only on carbon stored in the vegetation

$$r_{\text{forest}}(w_{mt}; \alpha) = 0 + \alpha_{\text{forest}} h_m + \xi_{\text{forest}, m, t},$$

• *h_m* – potential stock of carbon

3/ Empirical Analogues & Data

$$\log\left(\frac{p(j|k, w_{mt})}{p(k|k, w_{mt})}\right) - \rho \log\left(\frac{p(j|k, w_{m,t+1})}{p(j|j, w_{m,t+1})}\right) = (1-\rho)\Phi(j, k) + r_j(w_{mt}; \alpha) - r_k(w_{mt}; \alpha) + \text{error}$$

Land use in the Amazon: Mapbiomas (LANDSAT data)

- Classifies land use at 30-meters pixels: Forest, Pasture, Crop
- 2008-2017, after major policy change (Assunção et al, 2015; Burgess et al, 2019)
- We aggregate 30-m pixels *i* into 1-km locations *m*
- We set $\rho = 0.9$

Share of crop production: IBGE

- Agricultural Census 2006
- crop: $\bar{\alpha}_{crop} + \alpha_{crop} \left| \sum_{z \in C} s_{cm} (p_{ct} z_{mc}) y_{mc} \right|$ · Crops (C): soybeans and corn

Prices across time: ESALO

Prices at major trade hubs in Brazil

Soil suitability: FAO GAEZ

High input, rain fed

pasture:
$$\alpha_{j,t}^1 y_{m,j} + \alpha_j^2 d_m y_{m,j} + \bar{\alpha}_j$$

forest: $\alpha_{\text{forest}} h_m$

13 / 25

Empirical Analogues & Data: Field Characteristics

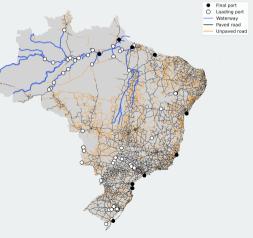
Transportation costs

crop:
$$\bar{\alpha}_{crop} + \alpha_{crop} \left[\sum_{c \in C} s_{cm} \left(p_{ct} - \mathbf{z}_{mc} \right) y_{mc} \right]$$

pasture:
$$\alpha_{j,t}^1 y_{m,j} + \alpha_j^2 d_m y_{m,j} + \bar{\alpha}_j$$

forest: $\alpha_{\text{forest}} h_m$

[trans cost det.]



Empirical Analogues & Data: Field Characteristics

• Carbon Stock: Woods Hole Research Center.

crop:
$$\bar{\alpha}_{crop} + \alpha_{crop} \left[\sum_{c \in C} s_{cm} \left(p_{ct} - z_{mc} \right) y_{mc} \right]$$

pasture: $\alpha_{j,t}^1 y_{m,j} + \alpha_j^2 d_m y_{m,j} + \bar{\alpha}_j$

forest: $\alpha_{\text{forest}} h_m$

4/ Estimation

Λ

Main estimates:	Model Parameter	Estimate
	α_{crop}	0.000386
• Dividing $\hat{\alpha}_{\text{forest}}$ by $\hat{\alpha}_{\text{crop}}$, bring to present value using a 5% interest rate:		(0.00001)
• Perceived CO2 present value of \$7.26/ton	$lpha_{forest}$	0.000580 (0.00002)
• This is the privately perceived carbon value	Standard errors computed with a spatial bootstrap on a 25km by 25km grid	

5/ Counterfactuals

1. Go back to the value function to compute conditional choice probabilities (CCP) for each location

- Assumption: no uncertainty about market state variables, w_{mt}
- This gives a transition matrix for each location
- 2. Compute steady-state distribution of each location m
 - I.e., the invariant distribution of the CCP
- 3. Aggregate to get steady-state land use

How far are we from efficient forestation?

The efficient forest cover is the one in which agents fully internalize the social cost of carbon

- Social cost of carbon in 2030 (EPA): \$50/ton of CO2
- Efficient SS: 90.3% of the forest and 99.5% of carbon are preserved.

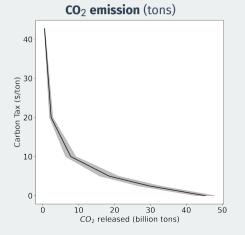
Steady state forest cover: Efficient forest cover Business-as-usual forest cover = 1,075,000 km² (perceived carbon value \$50/ton) (perceived carbon value \$7.26/ton) = 1,075,000 km²

CO2 released from the forest in the steady state:

Efficient CO2 emission (perceived carbon value \$50/ton) Business-as-usual CO2 emission = -44 billion ton (perceived carbon value \$7.26/ton)

Preserving the forest through carbon tax

How could a carbon tax based on the carbon content of the land shape farmers' choices?



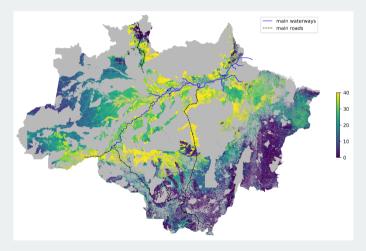
The effect of perceived higher carbon value is convex:

- \$2.5/ton carbon tax would preserve 34% of the efficient carbon stock (-15 GtCO₂)
- \$10/ton carbon tax would preserve 84% of the efficient carbon stock (-37 GtCO₂)

[forest cover]

Where is inefficient deforestation more likely to take place?

Excess emissions per location in business-as-usual relative to efficient scenario (Carbon stock efficient - Carbon stock BAU)



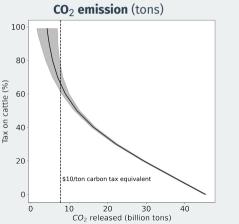
- Large scale policy interventions may involve large sums with little "additionality"
- Can we think of a targeted carbon tax, that is, that would apply only to the inefficient emissions top x% locations?

Carbon tax	Percentile (%)					
(\$/ton)	1	2	5	10	25	100
2.5	-0.5	-1.0	-2.2	-4.2	-8.9	-15
5.0	-0.8	-1.6	-3.7	-7.0	-14.8	-26
10.0	-1.1	-2.1	-4.8	-9.1	-19.7	-37
20.0	-1.1	-2.2	-5.1	-9.7	-21.4	-42

- Targeting only the top 25% of locations with most inefficient emissions at \$10 would already close \sim 45% of the emissions gap

Preserving the forest through taxes on cattle ranching

How could taxes on cattle ranching and crops shape farmers' choices?



Taxing returns of cattle also effective:

- a 20% tax on cattle would preserve 36% of the efficient carbon stock (-16 GtCO₂)
- a 65% tax on cattle would preserve 84% of the efficient carbon stock (-37 GtCO₂)
- Taxing crops produces virtually no changes in emissions

[forest cover]

6/ Caveats & Extensions

We do not consider loss in biodiversity and other externalities

• This makes the optimal forest gap even larger once those are explicitly factored in

We do not consider loss in biodiversity and other externalities

• This makes the optimal forest gap even larger once those are explicitly factored in

We assess the role of forest regeneration [forest regen]

- Robustness assuming regenerated forest stays 30 years without any carbon stock
- Emission gap: -62 GtCO₂

We do not consider loss in biodiversity and other externalities

• This makes the optimal forest gap even larger once those are explicitly factored in

We assess the role of forest regeneration [forest regen]

- Robustness assuming regenerated forest stays 30 years without any carbon stock
- Emission gap: -62 GtCO₂

The Amazon would transition into a savanna ecosystem if deforested area reaches a **tipping point** (\approx 40%) (Oyama and Nobre, 2003; Soares Filho, 2006/2010; Franklin Jr and Pindyck, 2018)

• In the business-as-usual scenario, the Amazon reaches 31% of deforested area

Main analysis ignores possible **equilibrium effects** from the policies considered

- Back-of-the-envelope international beef prices increase 1.9% in the efficient steady state
- Acreage offset would be 2.6% of the pasture area

Main analysis ignores possible **equilibrium effects** from the policies considered

- Back-of-the-envelope international beef prices increase 1.9% in the efficient steady state
- Acreage offset would be 2.6% of the pasture area

We estimate equilibrium choices under current technologies [double crop]

- Extension modeling the return of agriculture using the most productive technology available
- Emission gap: -37 GtCO₂

Main analysis ignores possible **equilibrium effects** from the policies considered

- Back-of-the-envelope international beef prices increase 1.9% in the efficient steady state
- Acreage offset would be 2.6% of the pasture area

We estimate equilibrium choices under current technologies [double crop]

- Extension modeling the return of agriculture using the most productive technology available
- Emission gap: -37 GtCO₂

Private discount rates [discount]

- We estimate the model with smaller private discount rates (ho=0.95)
- Emission gap: -54 GtCO₂

We compute the long-run carbon-efficient forest cover and stock of carbon in the Brazilian Amazon

• Dynamic discrete choice model of land use estimated with rich set of remote sensing data

In the long run, the business-as-usual scenario will generate the **inefficient**

- release of 44 billion tons of CO₂
- loss of over 1 million $\rm km^2$ of forest cover

We show that **policies based on the carbon content of the land** can mitigate a substantial part of inefficient forest loss: land use response to these are very convex!

Taxes on cattle can help to close the gap, but crop taxes seem ineffective

THANK YOU! Marcelo Sant'Anna – marcelo.santanna@fgv.br

Transportation costs by land

Estimation of transportation cost model based on sample of origin-destination freight costs

- 1 Rasterize road network considering different relative pixel-crossing costs (θ)
- 2 For each origin-destination pair ℓ , k, compute road-quality adjusted distance $d_{\ell,k}(\theta)$
- 3 Estimate freight cost model by NLLS:

 $FC_{\ell,k} = \beta_0 + \beta_1 d_{\ell,k}(\theta) + \epsilon_{\ell,k}$

4 Use estimated parameters to compute for each location *m*, transportation costs to ports

Structural regression equation:

$$Y_{j,k,m,t} = (1 - \rho)\Phi(j,k) + r_j(w_{mt};\alpha) - r_k(w_{mt};\alpha) + \eta_j^V(w_{mt}) - \eta_k^V(w_{mt})$$

where $Y_{j,k,m,t}$ is the LHS transition probabilities expression

Want to allow for fixed location effects, that may correlate with time-varying crop returns.

- 1. First, take differences, and estimate the coefficient of crop, α_{crop} , and some parameters of pasture using a first difference regression using Anderson and Hsiao (1981)
- 2. Estimate the coefficient of forest, α_{forest} , and remaining parameters of pasture from the regression in levels.
- 3. Recover land conversion sunk costs.

[back] [ident.] [variation]

Identification: Endogeneity issue

$$\Delta Y_{j,k,m,t} = \alpha_{\text{crop}} X_{j,k,m,t} + (\alpha_{\text{pasture},t}^1 - \alpha_{\text{pasture},t-1}^1) W_{j,k,m,t} + \Delta \zeta_{j,k,m,t},$$

$$X_{j,k,m,t} = \begin{cases} (\tilde{r}_{mt} - \tilde{r}_{m,t-1}) & \text{, if } j = \text{crop and } k \neq \text{crop,} \\ -(\tilde{r}_{mt} - \tilde{r}_{m,t-1}) & \text{, if } k = \text{crop and } j \neq \text{crop,} \\ 0 & \text{, otherwise.} \end{cases}$$

$$\Delta \zeta_{j,k,m,t} = \left[\eta_j^V(w_{mt}) - \eta_k^V(w_{mt}) \right] - \left[\eta_j^V(w_{m,t-1}) - \eta_k^V(w_{m,t-1}) \right] + \left[\xi_{jmt} - \xi_{kmt} \right] - \left[\xi_{jm,t-1} - \xi_{km,t-1} \right]$$

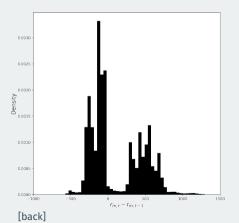
 $\eta_i^V(w_{m,t-1})$ is a difference of expected and realized values, thus correlated with \tilde{r}_{mt}

$$\eta_{j}^{V}(w_{m,t-1}) = \rho(E\left[\bar{V}(j,w_{mt})|w_{m,t-1}\right] - \bar{V}(j,w_{mt}))$$

Results: First stage

Regressor	Estimate (1)	Estimate (2)		
$\tilde{r}_{i,t-2}$	0.04322***	0.04605***		
	(2.19e-5)	(1.78e-5)		
$W_{j,k,i,2011}$	-3.27e-2***	-4.78e-2***		
	(1.60e-5)	(2.64e-5)		
$W_{j,k,i,2012}$	-7.66e-4***	-3.46e-2***		
	(1.59e-5)	(2.63e-5)		
$W_{j,k,i,2013}$	2.90e-2***	5.38e-2***		
	(1.61e-5)	(2.65e-5)		
$W_{j,k,i,2014}$	1.76e-2***	4.02e-2***		
	(1.61e-5)	(2.66e-5)		
$W_{j,k,i,2015}$	1.03e-2***	2.58e-2***		
	(1.60e-5)	(2.65e-5)		
$W_{j,k,i,2016}$	-4.30e-2***	-6.06e-2***		
	(1.60e-5)	(2.64e-5)		
F-Stat	3,107,226	3,796,531		
Number of observations 79,473,168.				

Variation in crop return difference



$$\tilde{r}_{mt} - \tilde{r}_{m,t-1} = \sum_{c \in C} s_{cm} y_{mc} \left(p_{ct} - p_{c,t-1} \right)$$

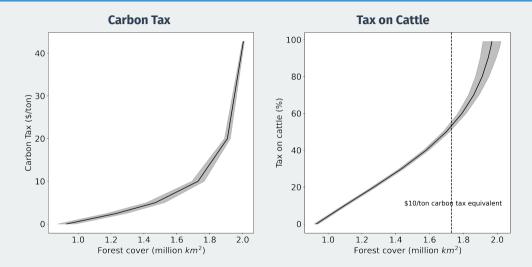
- Prices are the only observed state variables that vary over time
- Thus, since we take differences in \tilde{r}_{mt} , variation in prices over time helps identifying α_{crop} .
- However, this is not the sole variation in \tilde{r}_{mt}
- *y_{mc}* and *s_{cm}* magnifies price variation, generating cross section variation in *X_{j,k,m,t}*

Carbon tax	Δ Forest cover	ΔCO_2 released	
	$(1,000 k m^2)$	(billion tons)	
\$2.5	161	-8	
\$5.O	304	-15	
\$10.0	521	-25	
\$20.0	750	-34	
\$33.7	874	-37	

Carbon tax	Carbon price	Share of	ΔCO_2 released
(US\$/ton)	(US\$/ton)	forest < 30 yrs	(billlion tons)
0	7.26	0.51	
2.50	9.76	0.43	-13.35
5.00	12.26	0.35	-25.85
10.00	17.26	0.24	-42.42
20.00	27.26	O.14	-55.45
42.73	49.99	0.07	-62.41

Carbon tax	Δ Forest cover	ΔCO_2 released
	$(1,000 k m^2)$	(billion tons)
\$2.5	346	-18
\$5.O	638	-32
\$10.0	954	-46
\$20.0	1156	-52
\$44.28	1264	-54

Policy counterfactuals: forest cover (km^2)



[back carbon] [back cattle]