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Forest conservation is key to tackling global warming

Carbon stock
Limit rising global temperature hinges on a drastic reduction
of CO2 emissions over the next decades (IPCC 2018)

Reducing deforestation in tropical ecosystems has huge
potential for reducing emissions (Stern, 2007; Bastin et al., 2019)

• Brazilian Amazon in 2000 = 200+ billion tons of CO2

• Since then, land use changes released 16.7 billion tons of
CO2 in the atmosphere
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Social cost vs. private benefit from deforestation

Carbon stock Pasture suitability
The main driver of deforestation
is extensive cattle ranching

• >80% of deforested area
converted to pasture

• Most of remaining area
converted to crops, e.g. soy
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This paper

What is the carbon-efficient forestation in the Brazilian Amazon?

Dynamic discrete choice model where farmers choose land use: forest, pasture, crops

• Estimated with granular (30m) level panel for the Brazilian Amazon 2008-2017

• We estimate farmers’ perceived value of the carbon stored in the forest

• Efficient forestation: farmers fully internalize the social cost of carbon (computed by the EPA)

• Policy counterfactuals based on the carbon content of the land, and taxes on cattle and crops
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1/ Background



Background
Legal Amazon and Protected Areas

89% of deforestation happens outside Protected Areas
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Background

Legal Amazon – Protected Areas (in green)

Land use in the Legal Amazon (%)

Share Transitions from
in 2008 (row) to 2017 (column)

2008 Forest Crop Pasture
(1) (2) (3) (4)

Forest 72 92.0 0.8 6.5
Crop 2 3.0 89.0 7.4
Pasture 21 13.0 5.4 81.0

• The predominant agricultural activity in this region is cattle grazing
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Background

Legal Amazon – Protected Areas (in green)

Land use in the Legal Amazon (%)

Share Transitions from
in 2008 (row) to 2017 (column)

2008 Forest Crop Pasture
(1) (2) (3) (4)

Forest 72 92.0 0.8 6.5
Crop 2 3.0 89.0 7.4
Pasture 21 13.0 5.4 81.0

• Forest regeneration is relatively common (Gandour, 2019)
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2/ Model



Model: Set up

Dynamic model with discrete time t= 1,2,3. . . .

A rational agent in time t decides land use j ∈ {forest, crop, pasture} in field i

• Fields are grouped in locations m
• In our application, a field is a 30m pixel and a location is a 1km grid.

Flow profit of field i put to use j in period t :

πj (wmt , εimj t ) = rj (wmt ;α) + εimj t .

Assumption 1. Market variables (e.g., prices) follow Markov process Fwm,t+1 |wmt ,εimj t ,j = Fwm,t+1 |wmt

Assumption 2. Field level unobservables εimj t have i.i.d type-I extreme value distribution

Dynamics. Land conversion sunk cost Φ(j , k ): e.g., Φ(pasture,forest)
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Model: Value function and CCPs

Agent’s value function:

V (k ,wmt , εimt ) = max
j ∈J

{Φ(j , k ) + rj (wmt ;α) + ρE
[
Eε [V (j ,wmt+1, εimj t+1)] |wmt

]︸                                                                         ︷︷                                                                         ︸
v (j |k ,wmt )

+εimj t }

The type-I extreme value distribution for εimj t yields the logit Conditional Choice Probability (CCP):

p (j |k ,wmt ) =
exp(v (j |k ,wmt ))∑

j ′∈J exp(v (j ′ |k ,wmt ))
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Model: Regression equation

Use finite dependence property to “get rid” of continuation values and write a regression equation
(Scott, 2013; Kalouptsidi, Scott and Souza-Rodrigues, 2021):

log
(
p (j |k ,wmt )
p (k |k ,wmt )

)
− ρ log

(
p (j |k ,wm,t+1)
p (j |j ,wm,t+1)

)
= (1 − ρ)Φ(j , k ) + rj (wmt ;α) − rk (wmt ;α)

+ ηVj (wmt ) − ηVk (wmt )

where ηV
j
(wmt ) denote an expectation error, i.e.:

ηVj (wmt ) = ρ (E [Eε [V (j ,wmt+1, εimt+1)] |wmt ] − Eε [V (j ,wmt+1, εimt+1)])
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Model: Flow of returns

Crop:

rcrop(wmt ;α) = ᾱcrop + αcrop

[∑
c∈C

scm (pct − zmc) ymc

]
+ ξcrop,m,t .

• Weighted sum of returns for different crops (corn and soybeans):
• scm – share of crop c in location m
• pct – price of crop c in period t
• zcm – transportation cost to get production from location m to the port
• ycm – potential yield for crop c in location m

• αcrop allows us to monetize the carbon perceived value
• ξcrop,m,t accommodates a location fixed-effect
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Model: Flow of returns

Crop:

rcrop(wmt ;α) = ᾱcrop + αcrop

[∑
c∈C

scm (pct − zmc) ymc

]
+ ξcrop,m,t .

Pasture: flexible specification

rpasture(wmt ;α) = ᾱj + α1
j ,t ym,j + α2

j dmym,j + ξj ,m,t , j = pasture

• α1
j ,t – coefficient of pasture suitability depends on time

• α2
j – interaction of pasture suitability with road distance to ports
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Model: Flow of returns

Crop:

rcrop(wmt ;α) = ᾱcrop + αcrop

[∑
c∈C

scm (pct − zmc) ymc

]
+ ξcrop,m,t .

Pasture:
rpasture(wmt ;α) = ᾱj + α1

j ,t ym,j + α2
j dmym,j + ξj ,m,t , j = pasture

Forest: depends only on carbon stored in the vegetation

rforest(wmt ;α) = 0 + αforesthm + ξforest,m,t ,

• hm – potential stock of carbon
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3/ Empirical Analogues & Data



Empirical Analogues & Data: Transition Probabilities

log
(
p (j |k ,wmt )
p (k |k ,wmt )

)
− ρ log

(
p (j |k ,wm,t+1)
p (j |j ,wm,t+1)

)
= (1− ρ)Φ(j , k ) + rj (wmt ;α) − rk (wmt ;α) + error

Land use in the Amazon: Mapbiomas (LANDSAT data)

• Classifies land use at 30-meters pixels: Forest, Pasture, Crop

• 2008-2017, after major policy change (Assunção et al, 2015; Burgess et al, 2019)

• We aggregate 30-m pixels i into 1-km locations m

• We set ρ = 0.9
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Empirical Analogues & Data: Field Characteristics

crop: ᾱcrop+αcrop

[∑
c∈C

scm (pct − zmc) ymc

]

pasture: α1
j ,t ym,j + α2

j dmym,j + ᾱj

forest: αforesthm

Share of crop production: IBGE

• Agricultural Census 2006
• Crops (C): soybeans and corn

Prices across time: ESALQ

• Prices at major trade hubs in Brazil

Soil suitability: FAO GAEZ

• High input, rain fed
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Empirical Analogues & Data: Field Characteristics

crop: ᾱcrop+αcrop

[∑
c∈C

scm (pct − zmc) ymc

]

pasture: α1
j ,t ym,j + α2

j dmym,j + ᾱj

forest: αforesthm

[trans cost det.]

• Transportation costs
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Empirical Analogues & Data: Field Characteristics

crop: ᾱcrop+αcrop

[∑
c∈C

scm (pct − zmc) ymc

]

pasture: α1
j ,t ym,j + α2

j dmym,j + ᾱj

forest: αforesthm

• Carbon Stock: Woods Hole Research Center.
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4/ Estimation



Estimation Results

Main estimates:

• Dividing α̂forest by α̂crop, bring to present value using a
5% interest rate:

• Perceived CO2 present value of $7.26/ton

• This is the privately perceived carbon value

Model Parameter Estimate
αcr op 0.000386

(0.00001)

αf or est 0.000580
(0.00002)

Standard errors computed with a spatial block
bootstrap on a 25km by 25km grid
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5/ Counterfactuals



Counterfactuals: Overview

1. Go back to the value function to compute conditional choice probabilities (CCP) for each
location

• Assumption: no uncertainty about market state variables, wmt

• This gives a transition matrix for each location

2. Compute steady-state distribution of each location m

• I.e., the invariant distribution of the CCP

3. Aggregate to get steady-state land use
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How far are we from efficient forestation?

The efficient forest cover is the one in which agents fully internalize the social cost of carbon

• Social cost of carbon in 2030 (EPA): $50/ton of CO2

• Efficient SS: 90.3% of the forest and 99.5% of carbon are preserved.

Steady state forest cover:

Efficient forest cover – Business-as-usual forest cover = 1,075,000 km2

(perceived carbon value $50/ton) (perceived carbon value $7.26/ton)

CO2 released from the forest in the steady state:

Efficient CO2 emission – Business-as-usual CO2 emission = -44 billion ton
(perceived carbon value $50/ton) (perceived carbon value $7.26/ton)
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Preserving the forest through carbon tax

How could a carbon tax based on the carbon content of the land shape farmers’ choices?

CO2 emission (tons)

The effect of perceived higher carbon value is convex:

• $2.5/ton carbon tax would preserve 34% of the
efficient carbon stock (-15 GtCO2)

• $10/ton carbon tax would preserve 84% of the
efficient carbon stock (-37 GtCO2)

[forest cover]
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Where is inefficient deforestation more likely to take place?

Excess emissions per location in business-as-usual relative to efficient scenario
(Carbon stock efficient - Carbon stock BAU)
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Targeted carbon tax

• Large scale policy interventions may involve large sums with little “additionality”

• Can we think of a targeted carbon tax, that is, that would apply only to the inefficient
emissions top x% locations?

Carbon tax Percentile (%)
($/ton) 1 2 5 10 25 100

2.5 -0.5 -1.0 -2.2 -4.2 -8.9 -15
5.0 -0.8 -1.6 -3.7 -7.0 -14.8 -26
10.0 -1.1 -2.1 -4.8 -9.1 -19.7 -37
20.0 -1.1 -2.2 -5.1 -9.7 -21.4 -42

• Targeting only the top 25% of locations with most inefficient emissions at $10 would already
close ∼ 45% of the emissions gap
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Preserving the forest through taxes on cattle ranching

How could taxes on cattle ranching and crops shape farmers’ choices?

CO2 emission (tons) Taxing returns of cattle also effective:

• a 20% tax on cattle would preserve 36% of the
efficient carbon stock (-16 GtCO2)

• a 65% tax on cattle would preserve 84% of the
efficient carbon stock (-37 GtCO2)

• Taxing crops produces virtually no changes in
emissions

[forest cover]
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6/ Caveats & Extensions



Caveats & Extensions

We do not consider loss in biodiversity and other externalities
• This makes the optimal forest gap even larger once those are explicitly factored in

We assess the role of forest regeneration [forest regen]

• Robustness assuming regenerated forest stays 30 years without any carbon stock
• Emission gap: -62 GtCO2

The Amazon would transition into a savanna ecosystem if deforested area reaches a tipping point
(≈ 40%) (Oyama and Nobre, 2003; Soares Filho, 2006/2010; Franklin Jr and Pindyck, 2018)

• In the business-as-usual scenario, the Amazon reaches 31% of deforested area
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Caveats & Extensions

Main analysis ignores possible equilibrium effects from the policies considered

• Back-of-the-envelope international beef prices increase 1.9% in the efficient steady state

• Acreage offset would be 2.6% of the pasture area

We estimate equilibrium choices under current technologies [double crop]

• Extension modeling the return of agriculture using the most productive technology available

• Emission gap: -37 GtCO2

Private discount rates [discount]

• We estimate the model with smaller private discount rates (ρ = 0.95)

• Emission gap: -54 GtCO2
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Conclusion

We compute the long-run carbon-efficient forest cover and stock of carbon in the Brazilian Amazon

• Dynamic discrete choice model of land use estimated with rich set of remote sensing data

In the long run, the business-as-usual scenario will generate the inefficient
• release of 44 billion tons of CO2

• loss of over 1 million km2 of forest cover

We show that policies based on the carbon content of the land can mitigate a substantial part of
inefficient forest loss: land use response to these are very convex!

Taxes on cattle can help to close the gap, but crop taxes seem ineffective

THANK YOU! Marcelo Sant’Anna – marcelo.santanna@fgv.br
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Transportation costs by land

Estimation of transportation cost model based on
sample of origin-destination freight costs

1 Rasterize road network considering different
relative pixel-crossing costs (θ)

2 For each origin-destination pair ℓ, k , compute
road-quality adjusted distance dℓ,k (θ)

3 Estimate freight cost model by NLLS:

F Cℓ ,k = β0 + β1dℓ,k (θ) + ϵℓ,k

4 Use estimated parameters to compute for each
location m , transportation costs to ports

[back]
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Estimation: Overview

Structural regression equation:

Yj ,k ,m,t = (1 − ρ)Φ(j , k ) + rj (wmt ;α) − rk (wmt ;α) + ηVj (wmt ) − ηVk (wmt )

whereYj ,k ,m,t is the LHS transition probabilities expression

Want to allow for fixed location effects, that may correlate with time-varying crop returns.

1. First, take differences, and estimate the coefficient of crop, αcrop, and some parameters of
pasture using a first difference regression using Anderson and Hsiao (1981)

2. Estimate the coefficient of forest, αforest, and remaining parameters of pasture from the
regression in levels.

3. Recover land conversion sunk costs.

[back] [ident.] [variation]

2 / 9



Identification: Endogeneity issue

∆Yj ,k ,m,t = αcropXj ,k ,m,t + (α1
pasture,t − α1

pasture,t−1)Wj ,k ,m,t + ∆ζj ,k ,m,t ,

Xj ,k ,m,t =


(r̃mt − r̃m,t−1) , if j = crop and k , crop,
−(r̃mt − r̃m,t−1) , if k = crop and j , crop,
0 , otherwise.

∆ζj ,k ,m,t =
[
ηVj (wmt ) − ηVk (wmt )

]
−
[
ηVj (wm,t−1) − ηVk (wm,t−1)

]
+
[
ξj mt − ξkmt

]
−
[
ξj m,t−1 − ξkm,t−1

]
ηV
j
(wm,t−1) is a difference of expected and realized values, thus correlated with r̃mt

ηVj (wm,t−1) = ρ (E
[
V̄ (j ,wmt ) |wm,t−1

]
− V̄ (j ,wmt ))

[back]
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Results: First stage
Regressor Estimate (1) Estimate (2)
r̃i ,t−2 0.04322*** 0.04605***

(2.19e-5) (1.78e-5)

Wj ,k ,i ,2011 -3.27e-2*** -4.78e-2***
(1.60e-5) (2.64e-5)

Wj ,k ,i ,2012 -7.66e-4*** -3.46e-2***
(1.59e-5) (2.63e-5)

Wj ,k ,i ,2013 2.90e-2*** 5.38e-2***
(1.61e-5) (2.65e-5)

Wj ,k ,i ,2014 1.76e-2*** 4.02e-2***
(1.61e-5) (2.66e-5)

Wj ,k ,i ,2015 1.03e-2*** 2.58e-2***
(1.60e-5) (2.65e-5)

Wj ,k ,i ,2016 -4.30e-2*** -6.06e-2***
(1.60e-5) (2.64e-5)

F-Stat 3,107,226 3,796,531
Number of observations 79,473,168.

[back] 4 / 9



Identifying variation

Variation in crop return difference
r̃mt − r̃m,t−1 =

∑
c∈C

scmymc

(
pct − pc,t−1

)
• Prices are the only observed state variables that vary

over time

• Thus, since we take differences in r̃mt , variation in
prices over time helps identifying αcr op .

• However, this is not the sole variation in r̃mt

• ymc and scm magnifies price variation, generating
cross section variation in Xj ,k ,m,t

[back]
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Recent tech: double cropping

Carbon tax ∆ Forest cover ∆ CO2 released
(1, 000km2) (billion tons)

$2.5 161 -8
$5.0 304 -15
$10.0 521 -25
$20.0 750 -34
$33.7 874 -37

[back]
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Forest regeneration

Carbon tax Carbon price Share of ∆ CO2 released
(US$/ton) (US$/ton) forest < 30 yrs (billlion tons)

0 7.26 0.51
2.50 9.76 0.43 -13.35
5.00 12.26 0.35 -25.85
10.00 17.26 0.24 -42.42
20.00 27.26 0.14 -55.45
42.73 49.99 0.07 -62.41

[back]
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Discount rate ρ = 0.95

Carbon tax ∆ Forest cover ∆ CO2 released
(1, 000km2) (billion tons)

$2.5 346 -18
$5.0 638 -32
$10.0 954 -46
$20.0 1156 -52
$44.28 1264 -54

[back]
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Policy counterfactuals: forest cover (km2)

Carbon Tax Tax on Cattle

[back carbon] [back cattle]
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