Stochastic Model

Empirical Analysis

Conclusion

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Why do Firms Hold Oil Stockpiles?

Charles F. Mason

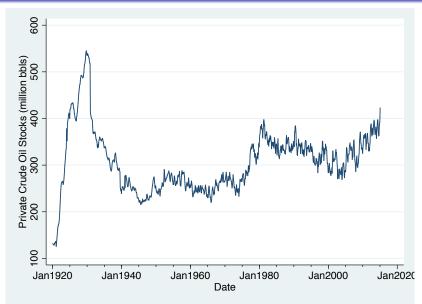
H.A. True Chair in Petroleum and Natural Gas Economics Department of Economics University of Wyoming Laramie, Wyoming

June 13, 2022

Introduction
00000

(日) (日) (日) (日) (日) (日) (日)

Motivation

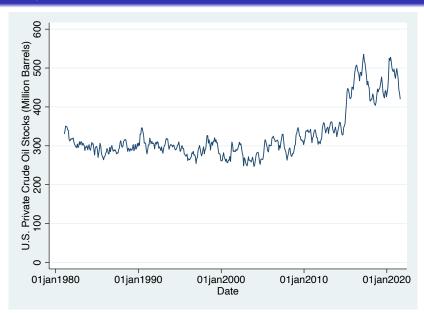

- Since at least the 1920s, private interests in the US have held significant petroleum inventories
 - $\triangleright~$ averaged \approx 325 million barrels
 - Fluctuated from 215 million to roughly 400 million barrels
- inventories only mildly responsive to current, future prices
 - roughly constant for long periods of time
 - though big run-up of reserves from mid-70s into early 80s
 - steady increase over past two decades
 - some inventories liquidated when prices collapsed in 2008
 - similar to experience in mid- to late-80s

Stochastic Model

Empirical Analysis

Conclusion

Monthly U.S. Petroleum Stocks, 1920 - 2015



Stochastic Model

Empirical Analysis

Conclusion

Weekly U.S. Petroleum Stocks, 1980 - 2021

Introduction	Stochastic Model	Empirical Analysis	Conclusion
Vertical inte	egration		

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- petroleum industry has at least 4 channels
 - ▷ extraction, transportation, refining, marketing
- many firms have presence in multiple areas

Introduction	
000000	

Stochastic Model

Empirical Analysis

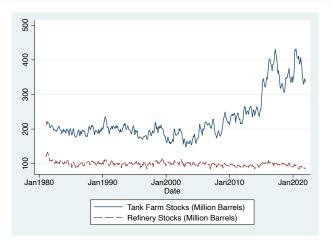
Conclusion

Vertical integration

- petroleum industry has at least 4 channels
 - extraction, transportation, refining, marketing
- many firms have presence in multiple areas

rank	company	assets	Refinery cap
1, 3	ExxonMobil	362.597	1762.8
2, 5	Chevron	237.428	1037.7
3, 1	Marathon	98.556	2870
4, 4	Phillips 66	58.72	1694.3
5	ConocoPhillips*	70.514	
6, 2	Valero ^a	53.864	2181.3
7	Occidental ^b	109.93	
8	EOG ^b	37.125	
9, 12	HollyFrontier ^a	12.165	466.6
10, 6	PBF Energy ^a	9.132	950.2

Notes: rank: # emp, cap; assets: 10⁹ USD; cap: 10³ barrels per day; *: divested Phillips 66 in 2005, a: refining only, b: production only


Stochastic Model

Empirical Analysis

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Decomposing Stocks

- stocks reported for refineries, tank farms
- 'tank farm' stocks are more significant
 - particularly in last few decades

Why hold inventories?

- Potential motives:
 - speculation?
 - hold inventories anticipating price run-ups, then cash in
 - alleged culprit summer of 2008 (Saudis; some in U.S. Congress – Senator Barasso; Rep J.P. Kennedy II)
 - has implications for relation of stockpiles to prices
 - ▷ stock-out?
 - hold inventories to avoid running out
 - daily throughput at U.S. refiners \approx 15 million bpd
 - so typical inventory = roughly 21 days' worth of throughput
 - production smoothing?
 - hold inventories to minimize impact of rapid variation in costs
 - requires upward-sloping MC
 - also requires sufficient volatility in prices
- difficult to rationalize in deterministic world
 - ▷ inter-temporal optimization of production \rightarrow rents rise at r
 - inventory holding requires price rises at rate r
 - incompatible unless costs are stock dependent (still hard)

Assumption	~~		
Introduction	Stochastic Model	Empirical Analysis	Conclusion

A1 costless to hold inventories

A2 $dP_t/P_t = \mu dt + \sigma dz$ (geometric Brownian motion)

- dz increment of standard Wiener process
- ▷ require $\mu < r$ for convergence
- ► Instantaneous profits are $\pi_t = P_t[y_t w_t] c(y_t, R_t)$
- Let $V(t, R_t, S_t, P_t)$ = optimal value function for firm
 - \triangleright depends on *in situ* reserves, R_t , inventories, S_t , price, P_t
- Fundamental equation of optimality is then

$$\max_{y_t, w_t} \left\{ \pi_t e^{-rt} + \frac{\partial V}{\partial t} - y_t \frac{\partial V}{\partial R} + w_t \frac{\partial V}{\partial S} + \frac{\mu P_t \frac{\partial V}{\partial P}}{\frac{\partial P^2}{t}} \right\} = 0$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction 000000	Stochastic Model ○●○○	Empirical Analysis	Conclusion

Stochastic control results

Optimal levels of extraction, inventory additions satisfy:

$$P_t - rac{\partial c}{\partial y}(y_t^*, R_t) - \partial V / \partial R = 0$$
 (y_t^*)

$$-P_t + \partial V / \partial S \ge 0 \quad (w_t^*)$$

- if LHS negative then stockpile is liquidated
 - > withdrawal, delivery constraints would limit this result
- ▶ if LHS positive then all extraction is stockpiled
 - injection constraints would limit this result
- if LHS zero then w_t is indeterminate
 - only outcome that does not violate market clearing?

Introduction	Stochastic Model ○○●○	Empirical Analysis	Conclusion

Stochastic control results, cont.

proceed by 'time-differentiating' FOC (using Ito's operator)

$$\frac{1}{\mathrm{dt}} E[\mathrm{d}(P)] - \frac{1}{\mathrm{dt}} E[\mathrm{d}(\frac{\partial c}{\partial y})] = \frac{1}{\mathrm{dt}} E[\mathrm{d}(\partial V/\partial R)] = r \partial V/\partial R + \partial c(y, R)$$
$$= r(P - \frac{\partial c}{\partial y}) + \partial c(y, R)/\partial R$$

 rents anticipated to rise at rate r (subject to stock effects on extraction costs)

$$\frac{1}{\mathrm{dt}} \boldsymbol{\mathsf{E}}\big[\mathrm{d}(\boldsymbol{\mathsf{P}})\big] = \boldsymbol{\mu} \boldsymbol{\mathsf{P}}$$

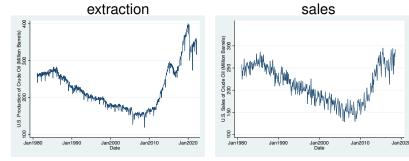
(日) (日) (日) (日) (日) (日) (日)

• combined: $\frac{1}{\mathrm{dt}} E\left[\mathrm{d}\left(\frac{\partial c}{\partial y}\right)\right] = -(r-\mu)P + r\frac{\partial c}{\partial y} - \partial c(y,R)/\partial R$

condition o	n variance		
Introduction	Stochastic Model	Empirical Analysis	Conclusion

Proceed further by assuming $c(y, R) = y^2/R$ $\rightarrow \frac{\partial^3 c}{\partial y^3} = 0; \partial c(y, R)/\partial R = -c/R)$

Condition for holding inventories reduces to


$$\frac{\partial c}{\partial y} \left\{ \frac{y}{R} - \frac{\partial y}{\partial R} + \sigma^2 \left(\frac{\sigma^2 P^2}{2y} \right) \frac{\partial^2 y}{\partial P^2} - r \right\} = 0$$
$$\Leftrightarrow \frac{y}{R} - \frac{\partial y}{\partial R} + \sigma^2 \left(\frac{P^2}{2y} \right) \frac{\partial^2 y}{\partial P^2} - r = 0$$

- ► so require sufficient price volatility ($\sigma^2 \ge \underline{\sigma}^2$)
- still true if inventory holding is costly

lower bound on price volatility would be somewhat larger

Introduction	Stochastic Model	Empirical Analysis ●○○○○	Conclusion
extraction vs.	sales		

- model predicts greater variation in sales than extraction
- comparison of monthly values for these variables confirms this prediction

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Stochastic Model	Empirical Analysis o●ooo	Conclusion
Data			

Sources:

U.S Energy Information Administration (EIA) website

- data on spot prices, production, inventories, oil stocks (monthly); reserves (annual)
- Baker-Hughes
 - data on number of rigs actively drilling for oil (weekly)
- changes in reserves related to production, finds

hence drilling

$$R_t = R_{t-1} - y_t + F_t$$

true at both monthly and annual level

- ► $R_t R_{t-1} + y_t$ highly correlated with number of rigs (annual)
- apply at monthly level

▷ pro-rate annual reserve change prop'n'l to monthly drilling

- assume spot prices exogenous w.r.t. firm decisions
- ► aggregate firm decisions to national level

(日) (日) (日) (日) (日) (日) (日)

Production as a function of price, reserves and stocks

- use preceding results to form fitted value of reserves at monthly level, R

 R
- observed production should depend on price, reserves and stocks
- use linear, squared terms and cross-effects
 - non-linear relation
 - important to consider second-order effects
 - think of Taylor's series approximation
- monthly data from January 1986 December 2009 (289 obs.)
- allow for serial correlation
- use results to estimate $\frac{\partial y}{\partial R}$ and $\frac{\partial^2 y}{\partial P^2}$
- can then calculate lower bound on price variance

Stochastic Mode

Empirical Analysis

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Regression results

variable	coefficient	std. err.
Р	-4.456*	2.551
PR	.00035**	.0018
PR^2	-7.01e-09**	3.0e-09
PRS	-2.06e-09*	1.09e-09
PR ² S	3.95e-14**	1.55e-14
$\hat{ ho}$ = .926		
R-squared = .685		
SSE = 4.869		

Stochastic Model

Empirical Analysis

Conclusion

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Implied lower bound on σ^2

statistic	<u>σ</u> ²(.01)	<u></u> <i>σ</i> ² (.02)	<u></u> <i>σ</i> ² (.03)
25%	0.0297	0.0600	0.0918
mean	0.0695	0.1417	0.2141
median	0.0642	0.1295	0.1927
75%	0.0922	0.1874	0.2825
90%	0.1248	0.2577	0.3911
s.d.	0.0525	0.1086	0.1649

note: $\underline{\sigma}^2(r)$ listed for annual discount rates: r = .01, r = .02 and r = .03variance of monthly real spot price during sample period = .2086

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Implications

- variance in spot prices during sample period is .2086
- Iower bound on variance is smaller than sample variance
 - ▷ for over 50% at relatively conventional real interest rate
 - ▷ for over 75% at low real interest rates
- evidence supports production smoothing as motive for inventories

Introduction 000000	Stochastic Model	Empirical Analysis	Conclusion ○●
extensions			

above model employs some simplifying assumptions

- ⊳ GBM
- costless delivery to market
- no constraints on delivery
- costless inventory holding
- central results is robust to these assumptions
 - price movements likely influenced by 'jumps'
 - these would increase value of holding inventories as hedge against cost variations
 - costly delivery to market exerts similar impacts on production and inventory addition paths
 - delivery constraints induces stock-out motive
 - costly inventory holdings raises critical value of price variance