Should There Be a Green Supporting Factor? Carbon Policies and Climate Financial Regulation

Frédéric Cherbonnier TSE Ulrich Hege TSE

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Toulouse, 15th June, 2022

13th Conference on the Economics of Energy and Climate

Motivation

- "Green Supporting Factor" = differentiation of (Basel Accord) capital requirements in favor of energy transition
 - recent policy proposals as part of the EU Green Deal
 - similar to SME Supporting Factor of EU Capital Requirements Regulation (Art. 501 CRR)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Can be complemented by a "brown-penalizing factor"
- Central banks show interest (NGFS), but unsure about role
- Many sound arguments against climate finance regulation
 - limited prudential mandate (financial stability)
 - lack of political legitimacy due to CB independence
 - green investments may not carry lower stability risk
 - discrepancy of horizons ("tragedy of horizons")
- Should financial regulators adjust regulation to energy transition:
 - are they within their (traditional) mandate?
 - when and how should they get involved?

Motivation (2)

- Debate on climate financial regulation mostly avoids core regulatory instruments (e.g., Basel framework)
 - regulators avoid to touch Basel, and prefer looking at other venues of action, for example:
 - climate stress tests (ECB, 2021)
 - requirements for carbon transparency, reporting, impact on investor portfolios
- We look for theoretical foundations, and hence intentionally consider core regulatory instrument
 - pragmatic adjustments do not require tedious multilateral negotiations (see EU SME Supporting Factor)

- We specifically address interaction of carbon policies & financial regulation
 - Consider separately optimal climate regulation when carbon price is efficient or inefficient
- We consider only regulation within financial stability mandate
 - regulator is not substituting for (democratic) policy process, only reacting to it
- Differentiate between mitigation and adaptation (resilience) since rationale for financial regulation might be different
 - whereas mitigation addresses global externality, adaptation investments are *heterogeneous* and *local*
- We focus on physical risks and abstract from transition risks
 - natural conflict between regulating physical and transition risks
 - high-powered brown penalizing-factor exacerbates the latter
 - central banks like to focus on transition risks (Disorderly scenarios of NGFS)

Literature

- Carbon policies and uncertainty about climate risks
 - Nordhaus (1994), Gillingham et al. (2015), Gollier and Kessler (2018), Gollier (2022), IPCC (2021)
- Financial stability risks and climate change
 - Bolton et al. (2020), Battiston et al. (2017), Battiston et al. (2019); Monasterolo and Raberto (2018); NGFS (2021)
- Optimal financial regulation
 - Duffie (2016), Adrian and Brunnermeier (2016), Dewatripont and Tirole (2019), Farhi and Tirole (2021)

- Interaction of carbon policies and financial regulation
 - Hagen et al. (2022), Kalkuk et al. (2020), focusing on transition risks

- Model
- Financial regulation and policy puts
- Theoretical insights
- Calibration and Policy Implications

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Conclusion

Model Overview

- Dynamic model to represent uncertainty about optimal carbon policy path and climate risk
- We focus on uncertainty about climate risk: most relevant for physical financial stability risks
 - we abstract from macro & technology risks affecting carbon trajectory
 - climate risk uncertainty implies readjustment of optimal carbon trajectory (carbon prices)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Optimal path of energy transition investments depends on discount rate and "climate beta"

Model

- CCAPM model with representative agent, utility $U(C_t) = \frac{1}{\gamma}C_t^{\gamma}$
- Output \tilde{Y}_t , exogenous
- Emissions $Q_t Y_t I_t$, where abatement I_t determined by abatement spending: $A_t (I_t) = a_1 I_t + \frac{a_2}{2} (I_t)^2$
- Cumulative emissions $E_t = E_{t-1}(1-\delta) + (Q_t Y_t I_t)$, leading to climate-related damage $D(E_t)$
- Damage function D(E_t) = Y_td(E_t), depending on climate sensitivity ω₁
- Besides abatement A_t, decision on adaption expenditure R_t that reduces damages

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Consumption: $C_t = Y_t - D_t - A_t - R_t$

Adaptation Investment

- R_t = expense for climate adaptation, annualized social cost
- *R_t* is often local and heterogeneous. Examples:
 - new climate infrastructure (dams, shelter)
 - climate-proving of existing infrastructure and real estate
 - changes in land use, crops, and vegetation
- R_t reduces $D(E_t)$ by $fR_t^{\frac{1}{2}}$, where f = efficiency parameter
- rep. agent solves "static" optimization problem for:

$$\max_{R_{t}}\left\{Y_{t}\left(1-d\left(E_{t}\right)\left(1-fR_{t}^{\frac{1}{2}}\right)-R_{t}\right)\right\}$$

- Optimization leads to gross damage reduction of $Y_t \frac{(df)^2}{2}$, and net damage reduction (minus R_t) of $Y_t \frac{(df)^2}{4}$
- Often, only fraction α < 1 of benefits of R_t is internalized, incl. failure of local coordination ← underinvestment

Welfare and Optimal Carbon Path

 With uncertain parameters Y_t, ω_t, a_t, dynamic optimization problem (Bellman equation):

$$V_{t}(Y_{t}, I_{t}, E_{t}, \omega_{t}, a_{t}) = \max_{\{A_{t}, R_{t}\}} (U(C_{t}) + \beta EV_{t+1}(Y_{t+1}, I_{t+1}, ...))$$

subject to:

$$C_{t} = Y_{t} \left(1 - d \left(E_{t} \right) \left(1 - f R_{t}^{\frac{1}{2}} \right) - R_{t} \right) - A_{t} \left(I_{t} \right)$$

$$A_{t} \left(I_{t} \right) = a_{1} I_{t} + \frac{a_{2}}{2} \left(I_{t} \right)^{2}$$

$$E_{t} = E_{t-1} (1 - \delta) + (Q_{t} Y_{t} - I_{t})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Welfare and Optimal Carbon Path (2)

Euler condition of this problem leads to equation:

$$\left(A_{t}^{\prime}-d^{\prime}\left(E_{t}\right)\right)=E\left[\beta(1-\delta)\frac{U^{\prime}\left(C_{t+1}\right)}{U^{\prime}\left(C_{t}\right)}\left(A_{t+1}^{\prime}-d^{\prime}\left(E_{t+1}\right)\right)\right]$$

where:

- $A'_t d'(E_t)$: marginal abatement reduces net income by A'_t and net damages by $-d'(E_t)$
- $\beta(1-\delta)\frac{U'(C_{t+1})}{U'(C_t)}$ = stochastic discount factor (SDF), depends on state of the world and "climate beta"
- $\bullet\,$ in bad scenarios, SDF is high $\,\,\rightarrow\,\,$ climate investment is accelerated
- Solution recursively defines optimal carbon trajectory, incl. carbon price p^{*}_t that follows a stochastic process and increases at rate defined by SDF

Financial Regulation: Capital Requirements

- Green Supporting Factor for climate-related investments
- Regulator makes an adjustment in risk weight RW
 - illustration: bank ROE of 15%, Tier 1 ratio = 8% of equity, debt funding costs of 1%
 - with risk weight RW = 1, bank funding cost $r_B = 0.08 \times 15\% + 0.92 \times 1\% = 2.12\%$
 - when $RW^G = 0.5$ (as for EU SME Supporting Factor): $r_B^G \downarrow$ to $r_B^G = 0.04 \times 15\% + 0.96 \times 1\% = 1.56\%$
 - Say adaptation project has 75% leverage (infrastructure)
 - When RW ↓ from 1 to 0.5, project cost r_{CC} ↓ by about 10% (depends on cost of equity)

• Similar for effect on A_t

Capital Requirements: Effect on Funding Costs

- Socially efficient financing cost determined by climate discount rate, r_{CLIM} (Gollier, 2022: r_{CLIM} = 3.5%)
- Effective cost of capital r_{CC} depends on project WACC: wedge in annual funding cost of c_R · R_t > R_t
 - Elasticity of c_R increases in project lifetime
- Net effect on financing cost now accounts for $c_R \cdot R_t$:

$$Y_t\left(1-d\left(1-fR_t^{\frac{1}{2}}\right)-c_RR_t\right)-Y_t\left(1-d\right)=Y_t\frac{\left(df\right)^2}{4c_R}$$

- Financial frictions magnify effect:, when RW ↓ from 1 to 0.5: financing capacity doubled for equity-constrained banks
 - Important e.g. for public development banks

Climate Emergencies: Public Policy Puts

- Ex-post efficient reaction of authorities in adverse climate scenarios: mitigate climate shock for private agents
 - "Public policy put option" = all public policies, fiscal and monetary, in climate-related emergencies
 - Puts lead to damage reduction for rep. agent, limiting damage to Y_td (E_t) b, where b < 1

- Ex ante, financial regulator optimally attempts to offset such perverse incentives with differentiated capital requirements
- Regulator could fully compensate b < 1 with a proportional decrease in capital cost c_R , so that $\frac{b}{c_R}$ constant
- Regulator only concerned about financial stability: will only partially compensate

Baseline Case: Efficient Carbon Prices and Adaptation

- Assumption 1: carbon price path adjusts efficiently over time
- Assumption 2: full local internalization of benefits of resilience investments (α = 1), no bailout benefits
- Assumption 3: No policy puts, b = 1.
- **Proposition 1:** With Assumptions 1 3, there is no role for climate financial regulation
- Intuition:
 - carbon price path implements optimal abatement A_t
 - absent policy put benefits and when $\alpha = 1$, agent chooses optimal resilience expenditure R_t

Effect of Policy Puts (Optimal Carbon Path)

- Relax Assumption 3: policy put with b < 1 in adverse climate scenarios
- Keep Assumptions 1 and 2: efficient carbon price, $\alpha = 1$
- Proposition 2: role for climate financial regulation
 - Financial regulator introduces differentiated capital requirements for *R_t*, but not for *A_t*
 - R_t lower and carbon price higher than in baseline
- Intuition: policy put weakens incentive to invest in adaptation
- Carbon policies only target emissions, not resilience
- Optimal carbon prices adjust to policy put and financial regulator's ex ante stance: higher than in baseline as regulator's action limited to financial stability concerns

Optimal Carbon Path, Inefficient Adaptation Investments

- Relax Assumption 2 of full local internalization: $\alpha < 1$
- Maintain Assumptions 1 and 3: efficient carbon price, b = 1
- Proposition 3: role for climate financial regulation
 - Financial regulator introduces differentiated capital requirements for *R_t*, but not for *A_t*
 - R_t lower and carbon price higher than in baseline
- Intuition: α < 1 has similar effect as policy put (Prop. 2), reduces resilience spending: same response of regulator
- Financial regulation is not the only (or optimal) policy instrument. But as long as other corrective tools insufficient, regulator will react and (partially) address climate externality

Inefficient Carbon Path

- Relax Assumption 1: carbon prices do not follow efficient trajectory (conflict scenario)
- (initially maintain Assumptions 2 and 3, then relax together)
 - this is probably the most likely case
- **Proposition 4**: Regulator will differentiate to encourage investments in abatement *A_t* and resilience *R_t*
 - if α = 1 and b = 1: regulator only differentiates capital requirements for abatement investments A_t
 - if also R_t inefficient ($\alpha < 1$ and/or b < 1) : regulator also differentiates rules in favor of resilience investments R_t
- When carbon policies fail, other actors and mechanisms partially assume their role
- Financial regulator stay within financial stability mandate: climate mitigation impact smaller than socially optimal

Calibration: Approach

- Choose parameters where each shock on Y_t , ω_1 , a_t is binomially distributed, for 6 periods (10 years) from 2022 to 2082, following IPCC, Nordhaus, Gollier (2022), and Dietz, Gollier, and Kessler (2018)
- Focus on uncertainty about climate risk, (ω_1)
 - Take mean and uncertainty approx. from IPCC AR6 (for BAU): mean 2.9 deg C, variance 1.3 deg C.
 - Translate into binomial tree of six 10-year periods
 - represent skewness by assuming that bad shock less likely, $p_U = 0.3$.
- Other parameters follow Gollier (2022) and Dietz, Gollier, and Kessler (2018)

- Consider two main scenarios:
 - Efficient carbon policy: "Orderly Transition". Roughly equivalent to Paris Accord objective: limit warming to 1.5 deg C, carbon-neutral after 2052 and global carbon budget of 650 Gt CO2e until then
 - Inefficient carbon policy: "Hothouse World": roughly equivalent to static BAU scenario: continued emission of 40 Gt CO2e per year
- When is climate damage a financial stability risk?
- \bullet Possible threshold: economic loss > 10% of local GDP
- Optimal adjustment of RW depends on
 - financial stability-related portion of climate damage
 - social cost of financial regulation

Calibrating Aggregate Damages (Mitigation): Carbon Policy Scenarios

• Efficient: "Orderly Transition":

- substantial variation in damage function after 2050 (> 15% of GDP in worst case in 2070)
- these events very unlikely as of today (Prob. < 0.3%), so tiny impact on differentiated capital requirements today
- but substantial differentiation will be delayed, occurs in future bad scenarios
- Inefficient: "Hothouse World" (BAU):
 - strong variation of damages, and high damages with substantial probability (20% damage in 2052 with prob. 3%).
 - regulator cannot ignore adverse scenarios, will substantially differentiate capital requirements much sooner

- Assumptions needed for expected value of policy put benefit: b > 20% probably realistic (Covid-19)
- Assumptions needed to model local carbon damages
 - local variation in climate-related shocks and heterogeneity in adaptation efforts
 - example calibrations can use insights from ECB (2021) stress tests, but need additional parameters

Policy Implications

- Policy puts and inefficient resilience investment justify differentiated rules even when carbon path efficient
- Capital rules should be differentiated *unless* carbon policies *and* resilience are efficient
- Argument in favor of dual-track approach: Green Supporting Factors react to efficient or inefficient carbon policies
- Currently, "Hothouse World" the relevant scenario: regulator will start differentiating much sooner

- Overall impact can be neutralized with Brown-Penalizing Factor
- Integrating transition risks might lead to more cautious approach

- Theory favors local variation in differentiation geared towards adaptation
 - Calibrating adjustments will be case-dependent
- But some general insights are possible:
 - depends on effectiveness of local collective action ($\alpha\approx 1)$ and role of private sector financing
 - defining Brown-Penalizing Factors for investments with deficient adaptation will be challenging
 - cannot avoid addressing optimal trade and migration impact (comparative advantage)

- Theory foundations for Green Supporting Factor: central banks and regulators should account for climate risk of assets
- Model with carbon policies, efficient and inefficient, and two types of climate investments: mitigation and adaptation
- Magnitude (and timing) of differentiation depends on carbon policies
- Simple binomial framework that can be completed with parameters, to derive calibrated approximations for risk weight adjustments