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Motivation

• Policy concern 1: Electricity makes up 25% of global CO2 emissions (IPCC, 2014)

• Policy concern 2: When demand for electricity exceeds available capacity ⇒ blackouts

• Renewable energy sources are emissions-free but intermittent

intermittency increases the variability of available capacity

• What policies should we adopt to develop a clean and reliable energy mix in restructured electricity

markets?

Elliott Investment, Emissions, & Reliability in Electricity Markets 1



Motivation

• Policy concern 1: Electricity makes up 25% of global CO2 emissions (IPCC, 2014)

• Policy concern 2: When demand for electricity exceeds available capacity ⇒ blackouts

• Renewable energy sources are emissions-free but intermittent

intermittency increases the variability of available capacity

• What policies should we adopt to develop a clean and reliable energy mix in restructured electricity

markets?

Elliott Investment, Emissions, & Reliability in Electricity Markets 1



Motivation

• Policy concern 1: Electricity makes up 25% of global CO2 emissions (IPCC, 2014)

• Policy concern 2: When demand for electricity exceeds available capacity ⇒ blackouts

• Renewable energy sources are emissions-free but intermittent

intermittency increases the variability of available capacity

• What policies should we adopt to develop a clean and reliable energy mix in restructured electricity

markets?

Source: Financial Times (October 8, 2021)

Elliott Investment, Emissions, & Reliability in Electricity Markets 1



Motivation

• Policy concern 1: Electricity makes up 25% of global CO2 emissions (IPCC, 2014)

• Policy concern 2: When demand for electricity exceeds available capacity ⇒ blackouts

• Renewable energy sources are emissions-free but intermittent

intermittency increases the variability of available capacity

• What policies should we adopt to develop a clean and reliable energy mix in restructured electricity

markets?

Elliott Investment, Emissions, & Reliability in Electricity Markets 1



This Paper

• What policies should we adopt to develop a clean and reliable energy mix in restructured electricity

markets?

• How electricity sector policies affect emissions and blackouts depends on how generator investments

and retirements in all energy sources respond

• Generator portfolios impact equilibrium prices and production decisions

• Develop a structural dynamic oligopoly model that endogenizes:
- investment and production in variety of energy sources

- electricity prices

- blackouts

- emissions

• Estimation using production and investment data from Western Australia

• Quantify effect of policy tools on emissions, blackouts, & product market welfare and determine

optimal regulation

Environmental policies carbon taxes, renewable subsidies

Reliability policies capacity payments
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Industry Background & Data



Western Australian Electricity Market

• 1 million customers, 18 TWh / year

• Restructured from vertically-integrated to

independent generators in 2006

• Three energy sources:

coal (50.2%)

natural gas (42.2%)

wind (7.6%)

• Since restructuring, capacity payment

program with significant variation over

time Graph
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Market Operations

Half-hourly • Demand (virtually) unresponsive to wholesale market price

• Firms submit generator-level step-function bids (AU$ / MWh)

• Grid operator runs day-ahead and real-time auctions to determine price to

equate supply and demand in least cost way

Yearly • Each year, grid operator chooses a “capacity price” (AU$ / MW) for 3 years in future

• Firms choose what fraction of capacity to commit for each of their generators

• 3 years later: firm receives payment

(capacity price × capacity committed − penalties for unavailability)

Long-run • Firms invest in new generators and retire existing ones
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Data

From 2007 – 2020:

• Half-hourly wholesale markets

• prices and generator-level quantities

• generator outages

• Capacity payments

• capacity prices and commitments

• Generator characteristics

• capacities

• energy sources

• entry/exit dates

Summary statistics Market evolution Capacity evolution Wholesale market variables
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Model Overview

• Electricity produced by generators g ∈ G, characterized by

• capacity Kg

• energy source s (g) ∈ S = {coal, gas,wind}
• firm f (g) ∈

{
1, . . . , n, . . . ,N︸ ︷︷ ︸

strategic
firms

, c︸︷︷︸
competitive

fringe

}

Short-run (h)

• generators fixed Gt(h)

• demand is perfectly inelastic Q̄h ∼ Qt(h)

Long-run (t)

• firms adjust Gt
• pay fixed cost Ms for maintaining generators

• demand responds to wholesale prices P̄G

⇒ πh

(
Gt(h), Q̄h

)
⇒ Πt

(
G,Q

(
P̄G
))
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Short-run: Wholesale Market Overview

• Firms enter h with generators Gt(h) and distribution of demand Qt(h)

• In each interval h, the following are realized (potentially correlated)

• inelastic demand Q̄h ∼ Qt(h)

• production capacity constraints K̄h

K̄g,h = δg,hKg , where δg,h ∈ [0, 1]

• shocks to generators’ costs ch (·)

• Strategic firms play a Cournot game in quantities, constrained by their production capacities in that

interval K̄h
Details

• Competitive fringe then produces difference between strategic firms’ quantity and Q̄h ⇒ Ph

if insufficient capacity (
∑

g K̄g,h < Q̄h) ⇒ blackout

• Over year we get:

Πf ,t (Gf ,t ;G−f ,t) =
∑
h

βh/HE [πf ,h (q∗h (Gt))]

︸ ︷︷ ︸
wholesale

profits

−
∑

g∈Gf ,t

Ms(g)Kg

︸ ︷︷ ︸
maintenance

cost
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Long-run: Modeling Choices

• Over the long-run (yearly), firms invest in and retire generators

generator composition affects production costs, competition, and distribution of demand

• Generators are long-lived + firms strategic ⇒ dynamic game

• Challenges: dynamic games generally have multiple equilibria and are computationally very difficult

⇒ makes full-solution estimation approaches intractable

• Difficult to handle non-stationarity (such as declining wind generator costs) using standard estimation

approaches in dynamic oligopolistic settings

• Solution: finite horizon + sequential moves (Igami and Uetake 2020)

⇒ unique equilibrium, computationally tractable, can handle non-stationarity

Elliott Investment, Emissions, & Reliability in Electricity Markets 8



Long-run: Modeling Choices

• Over the long-run (yearly), firms invest in and retire generators

generator composition affects production costs, competition, and distribution of demand

• Generators are long-lived + firms strategic ⇒ dynamic game

• Challenges: dynamic games generally have multiple equilibria and are computationally very difficult

⇒ makes full-solution estimation approaches intractable

• Difficult to handle non-stationarity (such as declining wind generator costs) using standard estimation

approaches in dynamic oligopolistic settings

• Solution: finite horizon + sequential moves (Igami and Uetake 2020)

⇒ unique equilibrium, computationally tractable, can handle non-stationarity

Elliott Investment, Emissions, & Reliability in Electricity Markets 8



Long-run: Modeling Choices

• Over the long-run (yearly), firms invest in and retire generators

generator composition affects production costs, competition, and distribution of demand

• Generators are long-lived + firms strategic ⇒ dynamic game

• Challenges: dynamic games generally have multiple equilibria and are computationally very difficult

⇒ makes full-solution estimation approaches intractable

• Difficult to handle non-stationarity (such as declining wind generator costs) using standard estimation

approaches in dynamic oligopolistic settings

• Solution: finite horizon + sequential moves (Igami and Uetake 2020)

⇒ unique equilibrium, computationally tractable, can handle non-stationarity

Elliott Investment, Emissions, & Reliability in Electricity Markets 8



Long-run: Generator Investment Overview

• Firms enter t with set of generators Gt−1, costs of new generators Ct , and capacity price κt

• Firms play dynamic game in which in each period t

1. Nature chooses strategic firm m ∈ {1, . . . ,N} to adjust
2. firm m makes costly adjustment to set of generators Gm,t

(other strategic firms keep current sets of generators)

3. competitive fringe adjusts its set of generators Gc,t , observing firm m’s choice

4. all firms receive capacity payments and wholesale profits from Gt

• After “final” period, firms continue to compete in wholesale markets but can no longer make generator

adjustments

Value functions
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Estimation



Model Estimation

Two stages

1. Estimate distribution of wholesale market variables

. production costs, capacity factors, and demand joint distribution

cg,h (qg,h) = ζ1,g,hqg,h + ζ2,s(g)

(
qg,h

Kg

)2

Basic idea: use FOCs to recover distribution of production costs Details Results

2. Estimate dynamic parameters

. sunk costs, maintenance costs, idiosyncratic shock distribution

Basic idea: maximum likelihood Details Results
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Counterfactual Environment

• How should we design electricity markets so that they are clean and reliable?

• Three counterfactuals:

1. environmental and reliability policy: carbon tax & capacity payments

2. alternative environmental policies: renewable subsidies (in paper)

3. policy timing (in paper)

• Begin in 2007 with same state as in data in 2007, simulate market going forward under policy

• Welfare: E
[∑∞

t=0 β
tWt

]
, where

Wt = PSt + CSt + Gt − emissionst × SCC︸ ︷︷ ︸
emissions cost

− blackoutst × VOLL︸ ︷︷ ︸
blackout cost
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Counterfactual #1: Environmental and Reliability Policy

• Carbon tax: tax τ (AU$ / tonne CO2-eq)

• Capacity payment: payment size κ (AU$ / MW)

• How do these policies impact production and investment?

• What is the optimal policy in isolation? Jointly?
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Carbon Tax: Capacity
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Carbon Tax: Production Shares

2007 2011 2015 2019 2023 2027
year

0.0

0.2

0.4

0.6

0.8

1.0
coal

2007 2011 2015 2019 2023 2027
year

0.0

0.2

0.4

0.6

0.8

1.0
gas

2007 2011 2015 2019 2023 2027
year

0.0

0.2

0.4

0.6

0.8

1.0
wind

= AU$0 / tonne = AU$25 / tonne = AU$50 / tonne = AU$75 / tonne

Elliott Investment, Emissions, & Reliability in Electricity Markets 14



Carbon Tax: Welfare
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Carbon Tax: Optimal Policy
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Capacity Payments: Capacity
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Capacity Payments: Welfare
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Capacity Payments: Optimal Policy
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Joint Policies: Capacity and Production

2007 2011 2015 2019 2023 2027
year

0

1000

2000

3000

4000

5000

6000

M
W

coal capacity

2007 2011 2015 2019 2023 2027
year

0

1000

2000

3000

4000

5000

6000

M
W

gas capacity

2007 2011 2015 2019 2023 2027
year

0

1000

2000

3000

4000

5000

6000

M
W

wind capacity

2007 2011 2015 2019 2023 2027
year

0.0

0.2

0.4

0.6

0.8

1.0
fraction produced by coal

2007 2011 2015 2019 2023 2027
year

0.0

0.2

0.4

0.6

0.8

1.0
fraction produced by gas

2007 2011 2015 2019 2023 2027
year

0.0

0.2

0.4

0.6

0.8

1.0
fraction produced by wind

= AU$0, = AU$0 = AU$0, = AU$75 = AU$100 000, = AU$0 = AU$100 000, = AU$75

Elliott Investment, Emissions, & Reliability in Electricity Markets 20



Joint Policies: Optimal Policy
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Conclusion

• Develop and estimate a dynamic model of equilibrium oligopolistic investment in restructured

electricity markets

• Consider trade-off between environmental and reliability policies

• carbon taxes reduce emissions but (for some values) increase blackouts

• capacity payments reduce blackouts but increase emissions

• carbon taxes + capacity payments reduce blackouts and emissions

• characterize optimal policies based on SCC

In paper:

• Renewable subsidies less effective at reducing emissions, especially renewable investment subsidies

• No evidence of it being optimal to wait long time to implement carbon tax after announcement
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Capacity Payments

• Payments to generators in proportion to generators’ capacities

e.g., if “price” of capacity is $100 000 / MW, then 100 MW coal plant receives $10 million for the year in

addition to profits in wholesale electricity markets

• Payments not dependent on amount of electricity produced

• Why use capacity payments? Positive externality associated with capacity

inability to ration based on valuation ⇒ firms don’t receive value to consumers of avoiding blackout

• Goal of payments is to ensure sufficient capacity during peak demand

• Payments are substantial portion of generators’ revenues (∼20%)

• Widely used in “restructured” electricity markets throughout the world

Go back
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Capacity Payments in Western Australia
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Summary Statistics

Mean Std. Dev. Min. Max. Num. Obs.

Half-hourly data

Price $48.87 $33.98 -$68.03 $498.0 258 576

Quantity (aggregate) 1 004.72 200.26 476.04 2 002.95 258 576

Fraction capacity produced 0.26 0.29 0.0 1.0 66 195 456

Facility data

Capacity (coal) 161.83 79.17 58.15 341.51 17

Capacity (natural gas) 95.37 85.78 10.8 344.79 20

Capacity (wind) 59.42 75.54 0.95 206.53 16

Capacity price data

Capacity price $130 725.56 $24 025.49 $97 834.89 $186 001.04 14

Capacity commitments 54.57 229.64 0.0 3 350.6 1 274
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Market Evolution

• Decline in coal, rise in wind

Year Coal Natural Gas Wind

2007 54.24% 41.68% 4.08%

2011 51.26% 41.44% 7.29%

2015 50.90% 42.05% 7.05%

2019 44.74% 43.04% 12.21%

• Decline in concentration

• Prices decline

Go back



Market Evolution

• Decline in coal, rise in wind

• Decline in concentration

Year Synergy Alinta Bluewaters Power Others

2007 79.83% 15.06% 0.00% 5.11%

2011 55.29% 12.09% 16.22% 16.40%

2015 50.12% 13.86% 15.61% 20.41%

2019 38.67% 20.90% 18.64% 21.79%
Note: The three listed firms are those with ≥ 10%

market share. All other firms are included in “Others.”

• Prices decline
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Market Evolution

• Decline in coal, rise in wind

• Decline in concentration

• Prices decline

2007 2011 2015 2019

Average Price 53.68 48.33 41.03 39.71
Note: Prices are in 2015 AU$.
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Capacity Evolution
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Wholesale Market Data
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Short-run: Wholesale Market Model

• Firm f makes profits

πf ,h (qf ,h; q−f ,h) = Ph (q)
∑

g∈Gf ,t(h)

qg,h − cf ,h (qf ,h)

• Competitive fringe takes prices as given ⇒ Qc,h (Ph)

• In equilibrium,
∑

g qg,h = Q̄h, so strategic firms face downward-sloping inverse demand Example

Ph (Qs,h) = Q−1
c,h

(
Q̄h − Qs,h

)
• Strategic firms choose quantities to maximize profits

q∗f ,h (q−f ,h) = arg max
0≤qf ,h≤K̄f ,h

{πf ,h (qf ,h, q−f ,h)}

• If
∑

g K̄g,h < Q̄h, a blackout results, and consumers are rationed

Go back
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Long-run: Generator Investment Decision

• Value function prior to Nature’s selection

Wf ,t (Gt−1) =
N∑

m=1

1

N
Vm

f ,t (Gt−1)

where Vm
f ,t (·) is f ’s value function if m is selected to adjust

• If f = m:
V f
f ,t (G) =

maxG′
f

{
E
[
Πf ,t (G′) profits

+ Υf ,t

(
G′f
)

capacity payment Details

−
∑

g′
f
6∈Gf Cs(g′f ),t generator costs

+ ηf ,G′
f
,t idiosyncratic shock

+ βE
[
Wf ,t+1 (G′)

] ]}
continuation value

• After “final” period T firms receive profits from wholesale with GT

Wf ,T+1 (G) =
∞∑

t=T+1

βt−T−1
(

Πf ,t (G)︸ ︷︷ ︸
wholesale

profit

+ Υf ,t (Gf )︸ ︷︷ ︸
capacity
payment

)

Non-adjustment value function Competitive fringe adjustment Go back
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Non-adjustment Strategic Value Function

• If f 6= m:
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Non-adjustment Strategic Value Function
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Competitive Fringe Adjustment

• Nature chooses an energy source s to adjust

• First, incumbent competitive generators of source s exit if and only if

E [vg,t (in,G)] < E [vg,t (out,G\ {g})]

• Second, potential entrant competitive generators of source s enter if and only if

vg,t (in,G ∪ {g}) > vg,t (out,G)

• The equilibrium G∗ determined by a free entry condition: competitive generators enter (or exit) up to

the point where it ceases to be profitable

• Competitive generators of source s ′ 6= s cannot adjust in / out status in the current period

Go back



Long-run: Dynamic Game Assumptions

• One strategic firm (randomly chosen) and competitive fringe of one source (randomly chosen) make

sequential investment decisions

• After T periods, firms can no longer adjust generators

• Firms have perfect foresight over the path of generator costs and capacity payments

Go back



Capacity Payments

• The expected net revenue received from capacity payment is

Υf ,t (Gf ) = max
γ∈[0,1]Gf

{ ∑
g∈Gf

γgKgκt︸ ︷︷ ︸
capacity payment

revenue

−E

[∑
h

ψf ,h (γ;Gf )

]
︸ ︷︷ ︸

total expected
penalties

}

where the penalty formula is given by

ψf ,h (γ;Gf ) =
∑
g∈Gf

λs(g)ρ︸ ︷︷ ︸
refund
factor

κt(h)︸︷︷︸
cap. credit

price

γgδg,h︸ ︷︷ ︸
capacity
deficit
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Stage 1: Wholesale Market Estimation

• Cost function

cg,h
(
qg,h

)
= ζ1,g,hqg,h + ζ2,s(g)

(
qg,h

Kg

)2

where

ζ1,g,h = β0,s(g) + εg,h

• Three types of generators in an interval h

1. unconstrained Guh
2. constrained from above G+

h
3. constrained from below G−h

• General idea: Identification

1. use FOCs to back out cost shocks for unconstrained generators

2. use those shocks to bound shocks for constrained generators
3. maximize Tobit likelihood f (ε) = f u (εu)F−u|u (ε−u

∣∣ εu)
assume εh ∼ N (0,Σ)

Other wholesale variables Estimation details Go back
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Stage 1: Results

Capacity utilization costs

ζ̂2,coal 893.452

(73.900)

ζ̂2,gas 206.966

(30.963)

Deterministic components of ζ1
β̂0,coal 21.831

(1.523)

β̂0,gas 32.648

(1.025)

Cost shock components of ζ1
σ̂coal 18.334

(0.460)

σ̂gas 18.652

(0.491)

ρ̂coal,coal 0.764

(0.032)

ρ̂gas,gas 0.806

(0.041)

ρ̂coal,gas 0.774

(0.034)

year 2015

num. obs. 2 500

• per-MWh cost of gas larger than coal (AU$32.65

vs AU$21.83)

• using high fraction of capacity more expensive for

coal than for gas (AU$893 vs AU$206)

• substantial correlation both across and within

sources

Estimates of other variables
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Stage 1: Cost Shock Identification

• Dispersion of prices can come from dispersion in ζ1 or from ζ2

• Separately identifying ζ1 from ζ2 comes from the covariance between prices and capacity utilization

• if P and q/K highly correlated ⇒ low σε, high ζ2

• if P and q/K weakly correlated ⇒ high σε, low ζ2

• levels determined by the range of prices observed in the data

• While identification of cost shocks is nonparametric, helpful to use parametric distribution

1. need to calculate conditional probabilities (i.e., F−u|u (ε−u
∣∣ εu))

2. reduces dimension of correlation among shocks in an interval

• Assume

εh ∼ N (0,Σε)

where correlation varies at the energy-source level

Go back
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εuh Inversion Details

• Show in the paper that unconstrained prices and quantities are locally linear in cost shocks[
qu
h

Ph

]
= Mh (β, ζ2) εuh + nh (β, ζ2)

therefore

εuh (β, ζ2) = Mh (β, ζ2)−1

([
qu
h

Ph

]
− nh (β, ζ2)

)

• This controls for the fact that qu
h is a function of εuh

Go back



Stage 1: Backing out / Bounding Cost Shocks

• Invert prices and unconstrained quantities to get εuh (β, ζ2) Details

• Use εuh (β, ζ2) to construct strategic firms’ (local) residual demand curve

Strategic: MRg,h (β, ζ2) β′
s(g)

xg,h + 2ζ2,s(g) K2
g

+ εg,h if g ∈ Gh

Competitive: Ph β′
s(g)

xg,h + 2ζ2,s(g) K2
g

+ εg,h if g ∈ Gh

• Likelihood

Lh (β, ζ2,Σε) = φ (εuh) · Pr
(
ε+
h ≤ ν

+
h and ε−h ≥ ν

−
h

∣∣∣ εuh)
where νh is the inversion from above
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Competitive: Ph ≤ β′
s(g)

xg,h + 2ζ2,s(g) ¯
Kg,h

K2
g

+ εg,h if g ∈ G−h

• Likelihood

Lh (β, ζ2,Σε) = φ (εuh) · Pr
(
ε+
h ≤ ν

+
h and ε−h ≥ ν

−
h

∣∣∣ εuh)
where νh is the inversion from above
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Stage 1: Backing out / Bounding Cost Shocks

• Invert prices and unconstrained quantities to get εuh (β, ζ2) Details

• Use εuh (β, ζ2) to construct strategic firms’ (local) residual demand curve
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Stage 1: Other Wholesale Market Variables

• In addition to cost shocks, we have

• demand shocks Q̄

• capacity factor shocks δ

• Allow for (unobserved) correlation between demand shocks and capacity factor shocks Details

Go back



Stage 1: Other Variables Details

• Demand and wind capacity factors are allowed to be correlated[
log
(
Q̄h

)
log
(
δwind,h

1−δwind,h

)]
︸ ︷︷ ︸

=:ω

∼ N (Xβω,Σω)

• Thermal generator capacity factors are binary and distributed

δg,h =

{
1 with probability ps(g)

0 with probability 1− ps(g)

Go back



Stage 1: Results (Other Variables)

Demand distribution
ˆconst

log
(
Q̄
) 6.941

(0.003)

σ̂
log

(
Q̄
) 0.172

(0.002)

Wind outage distribution
ˆconst

f−1
(
δwind

) −1.274

(0.021)

σ̂
f−1

(
δwind

) 1.779

(0.013)

ρ̂
f−1

(
δwind

)
,f−1

(
δwind

) 0.528

(0.008)

ρ̂
f−1

(
δwind

)
,log

(
Q̄
) −0.038

(0.022)

Thermal outage probabilities

p̂δcoal
0.987

(0.001)

p̂δgas
0.987

(0.001)

year 2015

num. obs. 2 500

Go back



Stage 2: Dynamic Parameter Estimation

• Dynamic parameters: {Ct}t︸ ︷︷ ︸
generator

costs

, M︸︷︷︸
maintenance

costs

, and Var (η)︸ ︷︷ ︸
η shock

distribution

=: θ

• Construct Π̂ (G) from first stage estimates Details

• Assume η
i.i.d.∼ Type I Extreme Value

• Generator costs {Ct}t taken from engineering estimates

• Estimate using maximum likelihood: Identification

Lt (θ) =
∑

f Pr (f selected to adjust in t;Gt)

×
∏
G′
f ,t

Pr
(
Gf ,t = G′f ,t

∣∣∣Gt−1;θ
)1{Gf ,t=G′f ,t}

• Pr
(
Gf ,t = G′f ,t

∣∣∣Gt−1;θ
)

comes from the model

Go back



Constructing Π̂ (G)

• Π (·) is

an expectation over the random variables in the wholesale market

under simultaneously determined demand distribution

• To solve, consider candidate P̄ and associated Q
(
P̄
)

• sample many draws of shocks
• solve for equilibrium

tricky because 3G combinations, but in paper provide algorithm that reduces the problem to checking at most 2G

combinations (reduces number of equilibrium computations by factor of ∼ 1030!)

• average over draws of the shocks

• Use new implied P̄ and iterate until convergence ⇒ Π̂ (·)

Go back



Stage 2: Dynamic Parameter Identification

• Maintenance costs: identification comes from level of capacity for a source conditional on profits and
investment costs

• if profitability of source is high but low level of capacity ⇒ high maintenance costs

• if profitability of source is low but high level of capacity ⇒ low maintenance costs

• Cost shock variance: identification comes from covariance between investment and profitability
(stream of profits − investment cost)

• if profitability and investment highly correlated ⇒ low variance

• if profitability and investment weakly correlated ⇒ high variance

Go back



Stage 2: Results

(1) (2) (3)

T = 2025 T = 2030 T = 2035

Maintenance costs

M̂coal (AU$ / MW) 0.055 0.057 0.058

(0.008) (0.007) (0.007)

M̂gas (AU$ / MW) 0.021 0.017 0.016

(0.029) (0.030) (0.030)

M̂wind (AU$ / MW) 0.071 0.081 0.086

(0.025) (0.048) (0.055)

Idiosyncratic costs

σ̂ (variance in AU$) 185.700 184.085 183.181

(54.845) (44.229) (41.091)
Estimates are in AU$1 000 000. β set to 0.95.

(1): no adjustment after 5 years past 2020

(2): no adjustment after 10 years past 2020

(3): no adjustment after 15 years past 2020

• Results stable across T

• M̂ close to engineering O&M costs

estimate engineering

coal AU$57 000 AU$55 000

gas AU$17 000 AU$10 000

wind AU$81 000 AU$40 000

• Variance in idiosyncratic shocks pretty high (≈ 1

year of profits)

Model fit

Go back
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Model Fit
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Note: The model path in each plot is the expectation over realizations of the idiosyncratic shocks given the initial state. The

shaded region corresponds to the area in between the 10th and 90th percentiles. Go back



Demand

• Measure 1 of consumers with utility in interval h

uh (q,P) =
ξh

1− 1/ε
q1−1/ε − Pq

where P is the price consumer faces

• Q̄h (P) =
∫ 1

0
q∗ (P, ξh) di

log (ξh) ∼ N
(
µ, σ2

)
(possibly correlated with wholesale market variables)

• Constant elasticity of demand:
d log E[Q̄h(P)]

d log P
= −ε

• Price elasticity of demand: -0.09 (Deryugina, MacKay, and Reif (2020))

• Average quantity-weighted wholesale prices P̄t (price consumers pay)

• In equilibrium, P̄t (G) is implicitly defined by

P̄ = E

[
Ph

(
q∗h
(
G, Q̄h

(
P̄
))) Q̄h

(
P̄
)

E
[
Q̄h

(
P̄
)]]
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Carbon Tax: Welfare
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Capacity Payments: Production Shares
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Capacity Payments: Welfare
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Optimal Policy
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Optimal Policy
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Optimal Policy
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Changes in Welfare from Optimal Policy
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Welfare Impact of Different Policies

∆CS ∆PS ∆G ∆ emissions ∆ blackouts

τ κ (billions AUD) (billions AUD) (billons AUD) (billions kg CO2-eq) (thousands MWh)

0 0 0.0 0.0 0.0 0.0 0.0

25 000 0.22 0.32 -0.63 2.1 -50.44

50 000 0.39 0.61 -1.25 3.75 -64.75

100 000 1.06 1.71 -3.57 10.91 -69.29

50 0 -7.9 2.06 4.63 -58.96 7.23

25 000 -7.61 2.36 4.05 -58.77 -42.66

50 000 -7.4 2.62 3.48 -58.64 -60.11

100 000 -6.94 3.64 1.4 -57.85 -67.61

100 0 -15.12 4.83 7.46 -78.13 -7.64

25 000 -14.77 5.1 6.89 -78.1 -43.15

50 000 -14.49 5.33 6.34 -78.11 -60.03

100 000 -14.05 6.26 4.24 -77.71 -68.01

150 0 -21.33 7.36 10.15 -85.57 -12.53

25 000 -20.92 7.6 9.58 -85.6 -43.59

50 000 -20.61 7.8 9.01 -85.7 -60.35

100 000 -20.13 8.68 6.9 -85.6 -68.32

Go back



Additional Counterfactuals

• Alternative environmental policies Details

• Predict impact of renewable production and investment subsidies
• Compared to carbon tax, less effective at reducing emissions

• investment subsidies fare particularly poorly because they target investment instead of production margin

• production subsidies result in significantly more blackouts for level of reduction in emissions

• Delaying carbon tax implementation Details

• Trade-off: cost-savings vs. delayed emissions reductions

• ↓ production costs ⇒ ↓ wholesale prices

• ↑ emissions

• For most values of SCC , optimal delay is one year

Go back
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Counterfactual #2: Alternative Environmental Policies

In addition to carbon tax, several other tools are commonly used

• renewable production subsidy Capacity Production Welfare

renewable generators receive ς AU$ per MWh produced

• renewable investment subsidy Capacity Production Welfare

firms pay (1− s)Cwind,t for new wind generators

• How does welfare change with these tools?

• Do these tools have different distributional impacts?



Alternative Environmental Policy Comparison
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Counterfactual #3: Policy Timing

• Policies are not typically implemented immediately after announcement

• Policy delay allows firms to adjust generator portfolios, yielding cost savings

• Simulate the market from 2007 in which carbon tax announced at beginning and implemented Tdelay

years into future



Policy Timing: CS over Time
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Policy Timing: Optimal Timing
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Renewable Production Subsidy: Capacity
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Renewable Production Subsidy: Production Shares

2007 2011 2015 2019 2023 2027
year

0.0

0.2

0.4

0.6

0.8

1.0
coal

2007 2011 2015 2019 2023 2027
year

0.0

0.2

0.4

0.6

0.8

1.0
gas

2007 2011 2015 2019 2023 2027
year

0.0

0.2

0.4

0.6

0.8

1.0
wind

= AU$0 / MW = AU$17 / MW = AU$33 / MW = AU$50 / MW

Go back



Renewable Production Subsidy: Welfare
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Renewable Production Subsidy: Welfare
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Renewable Investment Subsidy: Capacity
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Renewable Investment Subsidy: Production Shares
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Renewable Investment Subsidy: Welfare
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Renewable Investment Subsidy: Welfare
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Alternative Environmental Policy Comparison with κ = 50 000

0 10 20 30 40 50
emissions

6

4

2

0

2

AU
D 

(b
illi

on
s)

CS

0 10 20 30 40 50
emissions

1

2

3

4

5

6

AU
D 

(b
illi

on
s)

PS

0 10 20 30 40 50
emissions

8

6

4

2

0

2

AU
D 

(b
illi

on
s)

G

0 10 20 30 40 50
emissions

65

60

55

50

45

M
W

h 
(th

ou
sa

nd
s)

blackouts

carbon tax renew. prod. subs. renew. inv. subs.

Go back



Policy Timing: Capacity
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Policy Timing: Welfare
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