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Abstract

This paper estimates the relationship between investments in five distributed
generation technologies and hourly net withdrawals from over 2,000 electricity
distribution networks in France between 2005 and 2018. We find that invest-
ments in distributed wind and solar generation have little or no impact on
the annual peak of hourly net withdrawals from the distribution grid, while
investments in hydroelectric and thermal distributed generation significantly
reduce it. An optimistic analysis of the impact of investments in battery
storage suggests that high levels are required for distributed wind and solar
to deliver similar reductions in the annual peak of hourly net withdrawals. Our
results imply that public policies favoring distributed wind and solar generation
over utility-scale generation cannot be rationalized by savings in future grid
investments.
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1. Introduction

Increasing the share of electricity from wind and solar resources and electrifying

sectors that traditionally consume fossil fuels such as transportation and

space heating is the current consensus path to reducing global greenhouse gas

emissions. These wind and solar resources may be deployed as large (“utility-

scale”) facilities connecting to the high-voltage transmission network as shown

in the left panel of Figure 1, or as smaller but more numerous “distributed”

units connecting to a distribution network as shown in the right panel of

Figure 1. Because both approaches have different strengths and weaknesses,

the most cost-efficient way to increase renewable electricity generation is highly

debated.

Figure 1. Illustration of the difference between utility-scale and distributed generation
(adapted from U.S. Department of Energy)

Utility-scale wind and solar generation units can benefit from economies

of scale and locating where there are rich wind and solar resources. As a

result, they produce electricity at a significantly lower levelized cost than

distributed units. Figure 2 plots the global annual capacity-weighted-average

of the levelized cost of energy (LCOE) of new utility-scale solar generation

1



units, along with the annual average LCOE of new commercial and residential

distributed solar systems in France from 2010 to 2020.1 This figure shows that

from 2011 onwards the LCOE of distributed solar units is two to three times

the LCOE of utility-scale solar units.

Figure 2. Levelized Cost of Energy (LCOE) for utility-scale units (global capacity-
weighted average) and distributed solar generation units (average for France) from 2010
to 2020 ($/kWh). Adapted from IRENA (2021).

Because distributed generation units are located closer to end-consumers,

as shown in Figure 1, they can reduce electricity transportation costs. These

costs consist of energy losses and grid investments. Annual transmission and

distribution (T&D) power losses represent less than 10% of the electricity

produced in virtually all industrialized countries. Therefore, the potential

savings in energy losses are insufficient to close the gap between the LCOE

of distributed versus utility-scale wind and solar generation. As a result, unless

the savings in future T&D network investments are substantial, utility-scale

solar and wind generation units connected to the transmission network are the

least-cost sources of renewable electricity.

1. Numbers on Figure 2 are extracted from Figure 3.1 and Table 3.3 of IRENA (2021).
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The extent to which investments in distributed generation reduce the

need for future T&D network investments is however very difficult to assess.

Investments in grid upgrades are indeed triggered by increases in peak rather

than average usage. Because wind and solar generation is intermittent, one

needs to estimate whether the output of renewable distributed units will

coincide with local peak consumption. This assessment is in practice performed

by engineering simulations. Such simulations are generally run for a handful

of representative distribution networks, and the conclusion reached can be

very sensitive to the assumptions made.2 In addition, residential consumers

installing a rooftop PV system may subsequently change their electricity

consumption habits as discussed in Qiu et al. (2019).

Many consultant reports claim significant avoided costs associated with

distributed solar photovoltaic (PV) investments.3 Because T&D network costs

typically comprise at least one-third of electricity bills, the claimed savings

could easily add up to billions of dollars annually for a country like the U.S.4

Yet, other engineering studies reach less optimistic conclusions (Cohen and

Callaway, 2016; Cohen et al., 2016).

We contribute to this debate by taking advantage of a unique panel

dataset of distributed generation units and hourly net withdrawals from over

2,000 local distribution networks throughout France for 2005-2018. The hourly

net withdrawal from a local distribution grid is the hourly net flow of energy,

positive or negative, between the high voltage transmission network and the

2. Key assumptions include the installed capacities of distributed generation, hourly gross
consumption patterns, and hourly distributed generation output (possibly accounting for
outages and maintenance).

3. Muro and Saha (2016) survey several such studies.

4. According to the United States Energy Information Administration, total annual
capital investments in distribution networks alone by major U.S. utilities serving
about 70% of national electricity demand were higher than 25 billion dollars in 2017
(www.eia.gov/todayinenergy/detail.php?id=36675). It is often claimed that distributed
generation could avoid a significant fraction of these costs: “on-site production avoids
transmission and distribution costs, which otherwise amount to about 30% of the cost of
delivered electricity” (International Energy Agency, 2002).
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distribution network measured at the transformer facility circled in red in the

right panel of Figure 1.5

During our fourteen year sample, over 25 gigawatts (GW) of distributed

generation investments occurred. The bulk of these investments were in wind

and PV generation capacity, as shown Figure 3. These installations are

estimated to have produced roughly 7% of the total electricity supply in

France in 2018 (RTE, 2019). We use our dataset to estimate the impact of a

marginal increase in the installed capacity of five types of distributed generation

technologies (solar PV, wind, small hydro, dispatchable renewable thermal, and

dispatchable non-renewable thermal) on the different quantiles of the annual

distribution of hourly net withdrawals from distribution networks. Because

future T&D investments are primarily driven by peak usage, we pay particular

attention to the impact of distributed generation on the highest quantiles of

this distribution.

Figure 3. Total installed capacities of distributed generation (in GW) by year and
technology in France, as observed in our final dataset (which includes the vast majority
of distributed generation units in mainland France, see Section 4).

We find that investments in distributed wind and solar generation have little

or no impact on the annual peak of hourly net withdrawals from the distribution

5. Net withdrawals from a distribution grid equal gross consumption plus losses minus
distributed generation.
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grid. More precisely, a marginal 1 MW increase in distributed solar PV capacity

has no statistically discernable impact on the highest percentiles of the annual

distribution of hourly net withdrawals from the distribution grid. In addition, a

marginal 1 MW increase in distributed wind generation capacity is predicted to

reduce the 99th percentile of the annual distribution of hourly net withdrawals

from distribution networks in France by only 0.037 MW. In contrast, a marginal

1 MW investment in distributed hydro, non-renewable thermal, or renewable

thermal generation units predict a reduction in the 99th percentile of the annual

distribution of hourly net withdrawals from the distribution grid by more than

0.1 MW.

We then look at the impact of distributed generation on the variability of net

withdrawals from the distribution grid. Consistently with industry practice, we

assess this variability by looking at hourly ramp rates, defined as differences

between two consecutive hourly net withdrawals from the distribution grid.

High ramp rates (in absolute value) correspond to rapid increases or decreases

in net withdrawals from the distribution grid, which may at some point start

raising operational difficulties. We find that investments in either wind or

PV distributed generation are associated with significant increases in the

magnitude of hourly ramp rates. A 1 MW increase in PV or wind capacity

predicts a 0.15 MW.h−1 decrease (resp. a 0.14 MW.h−1 increase) in the

1st percentile (resp. the 99th percentile) of the annual distribution of the

hourly ramp rates. In other words, investments in distributed wind and solar

generation are found to increase the largest absolute differences in consecutive

hourly net withdrawals from the distribution grid by at least 15% of their

nameplate capacity. Investments in the other three distributed generation

technologies do not predict a non-zero change in any percentile of the annual

distribution of hourly ramp rates.

Finally, we explore two ways in which distributed wind and solar generation

may deliver higher savings in future grid investments. We first test whether the
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marginal benefits from distributed generation investments vary with the level

of existing capacity, which would in turn imply that lower levels of investments

in a specific distributed generation technology and/or a more spatially uniform

distribution of installations could bring higher benefits. We find that the first

MWs of distributed wind capacity connecting to a distribution network are

predicted to reduce the 99th percentile of the annual distribution of hourly net

withdrawals by 7% of their nameplate capacity, almost double the average effect

for all capacity investment levels. The impact of distributed solar investments

on the highest percentiles of the annual distribution of hourly net withdrawals

from the distribution grid is however not statistically different from zero even

at low levels of penetration of distributed PV generation.

We then explore whether installing battery storage along with wind

and solar distributed generation capacity could deliver reductions in annual

peak net withdrawals similar to those obtained for hydroelectric and

thermal distributed generation investments. We show that storage investments

substantially higher than existing levels would have to accompany investments

in distributed solar and wind generation to reach this outcome. Specifically, we

find that roughly one Tesla Powerwall 2 battery would need to be installed for

every 3 kW of distributed wind or solar generation in order to achieve reductions

in the 99th percentile of the annual distribution of hourly net withdrawals

close to 10% of the nameplate capacity of distributed generation units. Because

3 kW is the smallest rooftop solar system typically installed, this means that

virtually every PV installation would have to be accompanied by a battery

storage system.

Taken together, our results suggest that, at least for the case of France,

the benefits from deferring future T&D expansions cannot rationalize policy

support for distributed wind and solar generation over utility-scale installations.

Investments in distributed wind and solar without any storage capacity are

predicted to result in small or zero reductions in the highest percentiles
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of the distribution of hourly net withdrawals from distribution networks,

which ultimately determine how much grid capacity is built. In addition,

we find that investments in distributed wind and solar generation are

associated with a significant increase in the variability of net withdrawals

from the distribution grid, which may require additional distribution network

investments to maintain a reliable supply of energy to customers. Consequently,

until substantial transmission network expansions are necessary to connect

new utility-scale wind and solar generation capacity in France, the most cost-

effective approach to increase renewable electricity production is to rely on

utility-scale installations.

The remainder of the paper is organized as follows. The next section reviews

the literature and discusses the role of distributed generation in the energy

transition. Section 3 explains why investments in distributed generation units

may reduce the need for future investments in T&D network capacity. Section 4

describes the data sources we use. Section 5 details our empirical strategy.

Section 6 presents our main results. Section 7 discusses non-linear marginal

impacts, the potential role for battery storage and the applicability of our

results to other jurisdictions. Section 8 concludes.

2. Distributed Generation and the Energy Transition

In recent years, annual global investments in wind and solar electricity

generation have reached about $300 billion. According the International

Renewable Energy Agency (IRENA, 2021), the magnitude of these annual

investments should increase in the future. Distributed generation units

represent about half of the investments in solar PV,6 which is somewhat

6. Because of their higher investment cost per unit of capacity, distributed generation units
roughly account for half of the investments in PV generation (in $) but only about one-third
of installed capacity (in GW).
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surprising because of their significantly higher LCOE in comparison to utility-

scale installations as shown in Figure 2.

In practice, distributed generation usually benefits from a stronger policy

support, for example through direct (e.g. higher feed-in-tariffs for small

installations) or indirect (e.g. net metering) subsidies (see Section 5.2 for

the case of France). Because both utility-scale and distributed renewable

installations provide zero carbon electricity, distributed generation units must

provide other additional benefits in order to be preferred to utility-scale

facilities.

Besides greater customer control over their electricity supply, the major

additional benefit claimed by distributed generation advocates is the avoided

cost of T&D network investments (General Electric Power, 2018). There is a

large literature in engineering characterizing and quantifying the potential for

distributed generation investments to defer T&D investments. In particular,

a number of papers have proposed methodologies to quantify T&D deferral

benefits (Hoff, 1996; Feinstein et al., 1997; Gil and Joos, 2006; Mendez et al.,

2006). These methodologies typically estimate the extent to which distributed

generation reduces peak net withdrawals from a given distribution network.7

In the early 2000s, distributed generation mostly consisted of dispatchable

thermal units such as back-up diesel generators. Studies assessing the T&D

deferral potential of distributed generation therefore assumed that these units

were available to produce energy whenever needed (Brown et al., 2001; Piccolo

and Siano, 2009; Wang et al., 2009). By contrast, wind and PV output is

intermittent. Researchers and utilities thus have to estimate the extent to

which these technologies produce electricity during hours of peak demand in

the distribution grid. In this context, the external validity of available results is

7. “Utilities generally make investment decisions for generation and T&D capacity based
on peak requirements. Thus, any reduction in peak power requirements provides direct
benefits to the utility in the form of deferred capacity upgrade costs” (U.S. Department
of Energy, 2007).
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particularly difficult to assess. Engineering simulations indeed typically focus

on a single or a handful of distribution networks, and often study an optimized

rather than an observed deployment of distributed generation units. They

may also poorly capture the influence of hard-to-model real-world factors,

such as site-specific irradiation, how quickly equipment failures are detected

and repaired, or behavioral responses from end-consumers when they become

producers of electricity.

Borenstein (2020) argues qualitatively that the T&D benefits from rooftop

PV should be small but notes the lack of academic literature on the topic.8 On

the one hand, studies that have explored the social value of wind and solar PV

have focused on environmental benefits (Cullen, 2013; Novan, 2015; Callaway

et al., 2018; Fell et al., 2021; Sexton et al., 2021), intermittency (Gowrisankaran

et al., 2016), displaced generation costs (Callaway et al., 2018) or transmission

congestion (Fell et al., 2021; Sexton et al., 2021). Even though more than a

third of PV generation capacity in the U.S. is distributed (EIA, 2021), none of

these studies account for the sub-transmission and distribution grids, notably

because of the difficulty in gaining access to relevant data over a large service

territory. On the other hand, studies that do look specifically at distributed

generation, usually in the form of residential PV, have focused on households’

decision to install such systems (De Groote and Verboven, 2019; Gillingham

and Bollinger, 2021). These studies do not discuss the cost-effectiveness of

distributed generation units relative to utility-scale installations in providing

additional renewable energy.

Two studies closely relate to our work. First, Cohen et al. (2016) leverage

high resolution data on actual generation from distributed PV units in

California to study the impact of distributed solar generation on distribution

feeders. They however have to rely on forecasts and simulations for feeder load

8. Similarly, Sexton et al. (2021) acknowledge in their footnote 5: that “evidence on
distribution cost avoidance by distributed solar capacity is scarce”.
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data. Second, the on-going work by Ovaere et al. (2020) uses data from a local

utility in Connecticut to estimate the effect of distributed solar generation

on the distribution network. While both studies provide important findings

that complement our results, our work differs from them in several ways.

First, rather than focusing only on solar PV, we study five distinct generation

technologies. In addition, we rely on a dataset with over 2,000 local distribution

networks for fourteen years. Because distribution systems are typically operated

by local monopolies, the geographical scope of available data tends to be far

more limited in U.S. case studies. In contrast, a single distribution system

operator supplies 95% of end-consumers in France, which allows access to

internally consistent data on the use of distribution networks over almost the

entire country. Finally, observing the hourly net withdrawals from over 2,000

local distribution grids enables us to implement a novel empirical strategy

where we study the annual distribution of hourly net withdrawals, their

variability (as measured by hourly ramp rates), and simulate the impact of

different levels of battery storage investments.

3. Distributed Generation and the Electricity Grid

In virtually all electricity supply industries, the majority of energy is supplied

by utility-scale generation facilities that take advantage of economies of scale

in production, transmitting the energy produced at high voltage to local

distribution grids, where it is transformed to a lower voltage and transferred

to final consumers.

Starting in the early 2000s however, many jurisdictions saw significant

investments in more environmentally-friendly and smaller-scale generation

units, generically referred to as “distributed generation”. Due to their smaller

size, these units tend to be located closer to final consumers and to connect to

distribution grids. Because they inject electricity directly at the distribution

grid level, distributed generation units can reduce the magnitude of net
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withdrawals from distribution networks.9 Distributed generation installations

could thus reduce both the need for transmission capacity to move energy

from large-scale generation units to distribution networks, and the need for

distribution network capacity to move the energy from the transmission grid

to final consumers.

3.1. Distributed Generation and Future Grid Investments

To understand how distributed generation might affect future investments

in network capacity, we build on the power systems literature. The most

direct approach to study this relationship is to look at net withdrawals

from distribution networks. This interface consists of assets called distribution

substations (circled in red in Figure 1).10 In France, these substations

typically host 63/20kV or 90/20kV transformers.11 Substations hosting

these types of transformers would sit at the edge of the sub-transmission

network in the United States (U.S. Department of Energy, 2015). Although

distribution networks have slightly different designs in Europe and the United

States (notably due to differences in typical population density), the main

characteristics that are relevant for our analysis are similar in both places.12

9. With sufficient distributed generation capacity, electricity may however no longer always
flow from large-scale generation units to final consumers during some hours. We show in
Appendix C that the share of distribution networks in France that are experiencing such
situations at least once a year have been steadily increasing over time to reach about 25%
in 2018.

10. By focusing on net withdrawals at the substation level, we neglect constraints that
may occur at a more granular level such as an individual feeder. To the extent that
the substation is operated so as to roughly balance load across the different feeders and
distributed generation units spread sufficiently uniformly across the service territory of the
distribution network, we expect more granular constraints to correlate to some extent with
substation-level constraints.

11. These transformers lower the voltage of electricity that flows in the transmission
network to levels closer to the voltage levels at which the energy is ultimately consumed
(Kirschen and Strbac, 2018).

12. In particular, distribution systems are radial, and their voltages and power carrying
capabilities are comparable.
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We focus our attention on the percentiles of the annual distribution of

hourly net withdrawals from a given distribution network. These percentiles

map to what is known in the electricity industry as the “load duration curve”,

which is just another name for the inverse cumulative distribution function13

of hourly net withdrawals. Because network planning rules typically rely on

a reliability threshold p̂ to decide on the size of a given grid component, the

load duration curve is used in practice to assess the level of net withdrawals

that are expected to be exceeded with a probability lower than 1− p̂. As an

illustration, the computation of distribution network tariffs in France, which

builds upon the planning rules reported by utilities, makes use of the 71th

percentile for medium-voltage grid components, and the 94th percentile for

low-voltage grid components (CRE, 2021). Other countries may use different

thresholds for distribution network planning and tariff setting.14 Some may

even choose to consider only the maximum value of net withdrawals. Either

way, some notion of peak net withdrawals is always a key input to electricity

network planning rules and tariffs.

Whether or not distributed generation decreases the grid capacity needed to

ensure a given level of reliability depends on the extent to which this electricity

is produced during local peak hours. Figure 4 illustrates this intuition. If the

output from distributed generation is not coincident with the highest net

withdrawals from the distribution network, grid expansions are unlikely to

be deferred (left panel). By contrast, less network capacity is needed if this

electricity is produced during peak hours (right panel).

13. Strictly speaking, the “load duration curve” used in the industry corresponds to the
inverse cumulative distribution function for which the direction of the x-axis has been
inverted. In addition, the unit used for the x-axis is “hours per year”, which are just annual
frequencies multiplied by 8760.

14. The chosen thresholds depend on parameters such as the probability of outages, the
value of lost load, and the marginal cost of increasing network capacity.
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Figure 4. Illustration of how distributed generation may shift the load duration curve of
a substation, decreasing significantly or not the network capacity needed to meet a given
reliability threshold.
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Figure 5. Illustration of how distributed generation may shift the ramp duration curve
of a substation, decreasing or increasing the magnitude of hourly ramp rates.

Although somewhat technical, our approach for assessing the relationship

between distributed generation investments and future grid savings is likely

to have a greater level of external validity than alternative methods. In

particular, distribution network costs are typically measured with a coarser

granularity than a single distribution grid. In addition, because electricity

networks are long-lived and lumpy assets, observed accounting costs usually

13



largely depart from actual economic costs. Finally, realized costs will depend on

utility-specific planning rules, which can vary significantly across jurisdictions.

Consequently, using distribution network costs or investment expenditures to

study our research question would leave many reasons besides the need to

manage net demand peaks for year-to-year changes in distribution network

costs or investments.

In recent years, power system engineers have paid increasing attention to

large variations in net electricity consumption levels over short periods of time,

known as “ramps”.15 We thus also look at the impact of distributed generation

on the annual distribution of hourly ramps. For a given substation in a given

year, the hourly ramp in hour h is defined as the difference between the net

withdrawal from the distribution network in hour h+ 1 and the net withdrawal

in hour h. Mirroring our approach for net withdrawals, the collection of hourly

ramps for a given year can then be sorted in increasing order to build a “ramp

duration curve”. One can finally estimate how this curve changes with increased

levels of distributed generation. By construction, the integral of the ramp

duration curve is close to zero.16 As a result, the ramp duration curve starts at

negative values, which correspond to hours during which net withdrawals are

decreasing at the highest rates, and ends at positive values, which correspond

to hours during which net withdrawals are increasing at the highest rates. The

flatter the ramp duration curve, the less severe are the observed ramps.

Figure 5 illustrates two different ways in which distributed generation may

impact the ramp duration curve faced by a given substation. In both panels, the

15. The most well-known example is the so-called “duck curve” in California where
the rapid decrease in PV output in the evening makes it necessary to ramp up
more than 10,000 MW of controllable generation capacity in about three hours
(www.caiso.com/documents/flexibleresourceshelprenewables fastfacts.pdf).

16. If R(h) ≡ L(h + 1) − L(h) is the hourly ramp for hour h (where L(h) is the net
withdrawal in hour h), then

∑8759
h=1 R(h) = L(8760) − L(1). This difference is negligible

relative to the total net load
∑8760

h=1 L(h) supplied by the substation over the course of the
year.
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blue curve represents the pre-existing ramp duration curve and the purple curve

the ramp duration curve after the addition of distributed generation. Broadly

speaking, two situations may be envisioned: distributed generation may either

reduce the severity of ramps, rotating the ramp duration curve clockwise (left

panel) ; or it may exacerbate their magnitude, rotating the ramp duration

curve in the other direction (right panel). Even though the former case seems

unlikely to occur for intermittent generation technologies given the randomness

of their output, it is nonetheless unclear whether they will have a null impact

on the ramp duration curve or exacerbate ramps. In the latter case, operating

the distribution grid is likely to become more complex and thus potentially

more costly, for example due to more frequent tap changes for transformers or

violations of operating constraints (e.g. voltage bounds or phase balancing).17

3.2. Background on the French Power System

Distributed generation installations generally belong to one of the following

categories: wind, solar, small hydro, and thermal units using either renewable

(e.g. wood, waste) or non-renewable (e.g. natural gas, diesel) fuels. Figure 3

shows how installed distributed generation capacities have evolved in France

between 2005 and 2018. Although all technologies exhibit a significant upward

trend, solar and wind have by far experienced the largest growth. As of

2018, there was approximately 28 GW of distributed generation in France.18

Figures F.1 and F.2 in Appendix F show that distributed wind was mostly

developed in the North of the country and distributed PV in the South.

17. For more details on power systems operations, see Kirschen and Strbac (2018).

18. As a comparison, the highest demand for grid-supplied electricity ever recorded
in the country is about 100 GW. Intermittent generation units however do not always
produce at full capacity, so that wind and solar have supplied less than 10% of the annual
electricity consumption in France in 2018. In other words, a future electricity system relying
predominantly on wind and solar would need to increase significantly further the installed
capacities of these technologies relative to gross consumption.

15



Figure 6 illustrates the main features of electricity consumption and wind

and PV generation (both distributed and utility-scale) in France. Maximum

consumption is typically reached during winter evenings due to a high reliance

on electric heating. Solar output is low during such hours, although generation

during daylight hours may still take place during hours with high consumption

levels.19 In contrast, wind output is higher during the winter but output levels

fluctuate significantly across hours and days.20 We discuss in paragraph 7.3 how

our results may extrapolate to power systems with different characteristics.

Figure 6. Average daily electricity consumption, along with wind and PV generation
(GW) in France in 2018 (left panel) ; and half-hourly measurements for two weeks in
January 2018 (right panel). Electricity consumption is an estimate by the Transmission
System Operator of actual gross consumption, i.e. distributed generation output is not
subtracted from it (data source: RTE).

Finally, we observe that the timing of when the maximum hourly net

withdrawal is reached can differ across distribution networks. Figure 7 shows

the histograms of the month of the year, day of the week and hour of the

day when the hourly net withdrawal at a substation reaches its annual peak.

19. For each day in 2018, we can compute the coefficient of correlation (based on publicly
available half-hourly measurements at the national level) between gross consumption and
PV output. The average of intra-day correlation coefficients was 0.54. Note that the TSO
has to perform estimations to compute half-hourly distributed generation output (using a
methodology that is not publicly disclosed to the best of our knowledge) and that actual
generation at the distribution network level is not observed.

20. The average of intra-day correlation coefficients between hourly gross consumption and
wind output (see footnote 19) was -0.11 in 2018.
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We restrict attention to 2005 in order to limit the influence of distributed

generation. Although the overwhelming majority of substations reach their

peak net withdrawal on a working day during winter months (December to

March), this peak may occur either during the day (7am to 2pm) or in the

evening (after 6pm).

Figure 7. Histograms over substations of the month of the year (left), day of the week
(middle) and hour of the day (right) when peak hourly net withdrawal was reached in
2005.

4. Data

We observe hourly net withdrawals for 2,216 substations21 in France (shown

in Figure 8) between 1 January 2005 and 31 December 2018.22 By convention,

positive values of net withdrawals correspond to hours where the sum of local

consumption and power losses exceeds local generation and negative values

of net withdrawals correspond to hours where local generation exceeds the

21. 2,112 substations are observed over the 14-year period. Out of the remaining
114 substations, 90 correspond to substations that were commissioned between 2006 and
2018. We discuss how we account for entry/exit at the end of Appendix A.

22. Figure 8 also depicts in gray in the background all existing or planned substations as
of April 2022 (retrieved from https://www.capareseau.fr/). Leaving aside substations that
were commissioned between 2018 and 2022, the substations absent from our analysis belong
to two main categories. First, the main DSO in France supplies 95% of end-consumers, and
we do not observe net withdrawals at substations supplying smaller DSOs (see for example
the region around Strasbourg in the North-East). Second, some substations do not supply
a distribution network but instead a single end-consumer (e.g. high-speed train railroads).
These substations are excluded from the analysis.
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sum of local consumption and power losses. We complement this dataset with

publicly available information on distributed generation installations compiled

as described below.

Figure 8. Location of the distribution substations for which we observe hourly net
withdrawals (blue). All existing or planned substations as of April 2022 are plotted in
gray in the background.

4.1. Substation Hourly Net Withdrawals

From our raw dataset of hourly net withdrawals for each substation (about

250 million observations), we can compute summary statistics for the

distribution of hourly net withdrawals from a given distribution network in

a given year. Appendix C provides detailed information on a number of these

summary statistics. In particular, we observe that the most prominent changes

that occurred between 2005 and 2018 relate to what is known as “reverse

power flows”, defined as hours during which local generation exceeds local

consumption (i.e. hours with negative net withdrawals). In particular, the

fraction of substations that have experienced at least one hour of reverse power

flows in a given year has increased from about 6% in 2005 to more than 25% in

2018. In other words, over a quarter of substations now experience hours during

which electricity is flowing from the distribution grid to the transmission grid,

that is in the opposite direction from the historical pattern shown in the left
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panel of Figure 1. In addition, the fraction of substations for which peak usage

(in absolute value) was reached during an hour when electricity was flowing

from the distribution grid to the transmission grid has increased from under

1% in 2005 to almost 9% in 2018.

As described in Section 5, our empirical strategy uses a given substation

in a given year as the unit of observation. For each substation in each year,

we observe a time series of hourly net withdrawals. Each time series can be

used to build both a load duration curve and a ramp duration curve. We thus

observe a load/ramp duration curve for each substation in each year. We keep

track of these curves by extracting the 1st, 10th, 25th, 50th, 75th, 90th and

99th percentiles of the annual distribution of hourly net withdrawals (resp.

hourly ramps). Our final dataset on observed net withdrawals from distribution

networks thus consists of 14 panel variables (7 percentiles for both the load and

ramp duration curves) that use substation-year as the unit of observation.

4.2. Distributed Generation Capacity

Information on distributed generation units is extracted from a public inventory

which provides detailed data on the universe of power plants in France.23

As of 31 December 2018, this inventory consisted of 44,000+ observations,

out of which 42,000+ referred to installations located in mainland France

and connected to the distribution grid. These sites range from a few kW to

50 MW. With a negligible number of exceptions,24 distributed generation units

23. www.data.gouv.fr/en/datasets/registre-national-des-installations-de-production-
delectricite-et-de-stockage-au-31-decembre-2018/. The dataset was downloaded on 28
August 2020.

24. These exceptions are (i) 1 geothermal unit located in a county that is unlikely to be
supplied by one of the substations we observe ; (ii) 2 units harnessing ocean energy ; (iii)
3 battery storage units that were commissioned only very recently ; and (iv) 51 units labeled
as “other technology” due to missing information or mistakes. We were able to infer the
technology of 33 out these 51 units based on the fuel used, their name or an internet search
of their characteristics (name, location, etc.).
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belong to one of the five following categories: wind, solar,25 small hydro, and

thermal units burning either renewable (e.g. biomass) or non-renewable (e.g.

gas) fuel. We also observe the installed capacities26 and commissioning dates27

of distributed generation units.

Most observations (28,000+) correspond to distributed generation units

listed individually. For the vast majority of these units (26,000+), we observe

the identifier of the upstream substation to which they connect. We can thus

match accurately these installations to distribution substations. The remaining

14,000+ distributed generation observations listed in the inventory however do

not correspond to individual units. For privacy reasons, smaller units (<36kW)

are aggregated by groups of at least 10 installations (see Appendix A). We

do not directly observe the upstream substation to which such aggregated

observations connect. Although they represent a third of the observations listed

in the inventory, they add up to a much lower share of total capacity given their

small unit-level size (Table 1).

25. Only 6 units out of tens of thousands are labeled as thermodynamic solar, the rest
of units consisting in photovoltaic panels. The paper hence uses interchangeably the terms
“solar” and “PV”.

26. The inventory makes a distinction between the installed capacity of a unit and
its contracted connection capacity with the grid operator. In practice, a single capacity
metric is available for 38,000+ observations, suggesting that these concepts are often used
interchangeably when entering data into the inventory. For observations that provide both
installed and connection capacities, both figures are similar (either equal or with an absolute
difference lower than 10% of installed capacity) for almost 4,000 units, in which case we
use the reported installed capacity. 95 observations have neither installed nor connection
capacity information, but do provide another capacity metric that we use as a proxy. Finally,
141 installations report installed and connection capacities that differ by more than 10%.
For these units, we compute the capacity factor implied by their annual energy production
(when available) and choose the capacity metric that implies the most credible capacity
factor. We extrapolate this choice to similar units when annual energy production is not
available.

27. The inventory makes a distinction between the date at which a unit is commissioned
and the date at which its grid connection is completed. For the vast majority of observations
(39,000+), either both dates are identical or a single date is reported. For the remaining
observations, the later date is taken into account since any discrepancy between the
commissioning date and the connection date is likely to correspond to a ramping up period
during which the unit does not produce at full capacity.
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Table 1. Installed capacities of distributed generation (MW) as of 31 December 2018 in
mainland France by technology and availability of upstream substation information.

Technology
Units with known Units with unknown substation (MW) Fraction
substation (MW) listed individually aggregated known (%)

Wind 13,012 987 14 92.9
PV 5,787 247 1,739 74.5

Small hydro 1,906 83 5 95.6
Renewable thermal 1,158 81 9 92.8

Non renewable thermal 3,328 218 26 93.2
Note: The last column computes, for each technology, the percentage of total installed capacities

for which upstream substation information is directly observed.

For distributed generation installations whose upstream substation is

unknown, we design and implement an assignment procedure to infer the

substation to which they are most likely to connect. This procedure leverages

our knowledge of both the GPS coordinates of the substations and the location

of generation units down to the (sub)county level. Indeed, (sub)counties

represent a sub-division of mainland France into over 45,000 spatial units,

which is an order of magnitude larger than the number of distribution

substations.28 This very fine spatial granularity allows us to form reasonable

guesses about the substation that is most likely to supply electricity to a

given spatial unit. Appendix A provides more details on our assignment

procedure. Appendix B presents sensitivity analyses. We find that our results

are robust to alternative specifications of the assignment procedure, including

ignoring altogether installations whose upstream substation is not directly

observed. In other words, our identifying variation primarily comes from

distributed generation units for which we do observe the upstream substation

(see Appendix B). These installations are usually installed by specialized

project developers. Location choices are thus mainly driven by factors such

as resource availability (which we control for using substation fixed effects) or

policy incentives which are designed at the national level (which we control for

using year fixed effects). Figure 9 shows, for each technology, the histograms of

28. Our assignment procedure relies on a sub-division of mainland France into
45,508 spatial units, with a mean surface area of 11.9 km2 (4.6 miles squared).
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the installed capacity of the corresponding units. For non renewable thermal,

the median installation size is 3.4 MW. Most installations consist in combined

heat and power units. This is also the case for renewable thermal installations,

which however tend to be smaller (median size of 500 kW). For PV, the

median unit has a capacity of 90 kW, that is about 300 solar panels. Small

hydro overwhelmingly refers to run-of-the-river units, with a median size of

400 kW. Most wind units have a size of about 10 MW, corresponding to small

installations consisting in 4 to 6 wind turbines.

Figure 9. Histograms the installed capacities (kW) of distributed generation units (by
technology) for which we directly observe the upstream substation. The x-axis is in log10
scale and the vertical dashed line materializes the median of the distribution.

As of 2018, about 90% of total installed wind and PV capacities in France

were distributed. This share is higher than in many other developed countries.29

Because wind and PV installations were not cost-competitive during most

of our sample period (relative to say gas-fired power plants), investments in

these installations were largely driven by public policies. Support schemes

were defined at the national level30 and have typically consisted of infrequent

auctions with limited volume for large installations, and of feed-in-tariffs

without volume limitations for small installations. Because early subsidies have

29. For example, distributed PV in the U.S. amounts to less than 40% of total PV capacity
(EIA, 2021).

30. See for example www.cre.fr/Transition-energetique-et-innovation-
technologique/soutien-a-la-production/dispositifs-de-soutien-aux-enr.

22



turned out to be fairly generous, this structure has largely favored distributed

installations over their utility-scale counterparts. As an illustration, the atom

at 100 kW for the size of PV installations on Figure 9 materializes the threshold

above which PV installations had to win an auction to benefit from a support

scheme.

Table 2. Installed capacities of distributed generation at the substation-year level.

Statistic
Mean St. Dev. Min Pctl(25) Pctl(75) Max Total 2018
(MW) (MW) (MW) (MW) (MW) (MW) (% inventory)

Wind 3.11 11.50 0 0 0 189 13,567 (96.8%)
PV 1.39 3.83 0 0.01 1.2 101 7,695 (99.0%)
Small hydro 0.64 2.64 0 0 0 63 1,717 (86.1%)
Renewable thermal 0.35 1.71 0 0 0 35 1,198 (96.0%)
Non renewable thermal 0.97 2.74 0 0 0 45 3,334 (93.3%)

First columns: summary statistics of substation level installed capacities by technology. The unit of observation
is a given substation in a given year (N = 30,091). Last column: total capacity by technology as of 2018 in our
final dataset, both in absolute value and as a percentage of the total capacity in France.

Our dataset on distributed generation ultimately keeps track, for every

distribution substation and each year, of the installed capacities connected

to this substation (as of 31 December),31 broken down by technology. Because

the installed capacities of distributed generation were small in 2005 (Figure 3),

many observations are at zero.32 We nonetheless observe significant variation in

the installed capacity of distributed generation at the substation level in each

year, as shown in Table 2. In addition, the substations for which we observe

hourly net withdrawals are hosting the vast majority of distributed generation

installations in mainland France.33 (see Northeastern region on Figure 8).

31. Note that we keep track of installed capacities at the end of each year. This tends
to slightly over-estimate the amount of distributed generation capacity that was installed
on average during the year, and therefore may under-estimate our coefficients of interest.
Keeping instead track of installed capacities at the beginning of each year would by contrast
underestimate installed capacities. This latter approach to measuring installed distributed
generation capacity yields very similar results to the ones we report.

32. Although distributed generation investments may be biased towards substations with
specific unobserved characteristics, such characteristics will be controlled for by substation
fixed effects. Appendix B reports the estimation results for the subset of substations that
ultimately host in 2018 either some wind installations or more than 1 MW of PV. The
estimation results are qualitatively similar, although obviously noisier.

33. The remaining capacities most likely connect to substations for which we do not observe
hourly net withdrawals. For example, a number of small hydro units are located on the
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5. Empirical Strategy

We characterize the impact of distributed generation on the net load duration

curve (resp. ramp duration curve) through a quantile impact function

(Figure 10). This function captures the predicted impact that adding 1 MW

of a given type of distributed generation capacity has on individual quantiles

of the annual distribution of hourly net withdrawals (resp. hourly ramp rates).

For a given technology, the quantile impact function maps each quantile index

(from 0 to 1) to the predicted impact (in MW or MW.h−1) of adding 1 MW

of this technology on the corresponding quantile of the annual distribution of

hourly net withdrawals (resp. hourly ramp rates). For the load duration curve,

this effect may be interpreted as the predicted amount of electricity produced

by a distributed unit of a given technology during the hours corresponding to

a given quantile index, expressed as a percentage of nameplate capacity.

Importantly, the estimated impacts on duration curves reflect the combina-

tion of two effects. First, distributed generation will have differentiated impacts

across hours where exogenous factors (e.g. hour of day, temperature, etc.)

induce different levels of gross electricity consumption. Second, because this

first effect is heterogeneous across hours, the ranking of hourly net withdrawals

will differ from the ranking of hourly gross consumption levels. In other words,

the 99th quantile of the distribution of hourly net withdrawals will correspond

to an hour with high gross consumption in the absence of distributed generation

but, after the addition of distributed generation, the 99th quantile may shift

to an hour with a slightly lower gross consumption and a very low distributed

generation output. Our empirical strategy thus underestimates the first “direct”

effect of distributed generation on reducing peak hourly net withdrawals.

However, as discussed in Section 3, system operators ultimately care about

Northern part of the Rhine river, which is one of the few areas where we lack information
on substation hourly net withdrawals from distribution networks
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Figure 10. Illustration of the intuition behind quantile impact functions for the load
duration curve (top) and the ramp duration curve (bottom). Adding 1 MW of a given
distributed generation technology changes the duration curve of interest. The quantile
impact function captures the difference between the duration curve after vs before a
marginal 1 MW increase in distributed generation capacity.

supplying the new net load duration curve after the addition of distributed

generation, which results from the combination of both a “direct” effect and an

additional “peak shifting” effect. Because we want to assess the potential for

distributed generation to defer future grid investments, our empirical strategy

estimates the sum of these two effects.

From a forward-looking perspective, estimating the “direct” effect of

distributed generation in isolation would be helpful to better understand how

changes in the annual distribution of hourly gross consumption may affect
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our conclusions. Indeed, if the extreme weather events brought by climate

change predominantly occur during hours where gross consumption is currently

highest, then the ability of renewables to defer future grid investments would

significantly depend on whether they generate electricity during such hours.

Unfortunately, this information cannot be inferred from historical patterns

of hourly gross demand and renewables production. In addition, we do not

observe gross consumption and distributed generation output separately. As

a result, disentangling the relative importance of the “direct” effect and the

“peak shifting” effect would require further assumptions and is beyond the

scope of this paper. We however provide in Appendix F.2 evidence suggesting

that the “peak shifting” effect is an important driver of our results.

5.1. Model Specification

We use a seemingly unrelated regressions framework with a two-way fixed

effect model to estimate quantile impact functions.34, justifying our use of

a more parsimonious model. Non-constant marginal impacts are discussed

in Section 7. Finally, we estimate in Appendix B spatial regression models.

In other words, we run the following regression for the main percentiles

q ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 0.99} of the annual distribution of hourly

net withdrawals from distribution networks on the one hand, and the annual

distribution of hourly ramp rates on the other hand:

Yq,s,y =
∑
t

βq,tKt,s,y + δq,s + δq,y + εq,s,y (1)

where Yq,s,y denotes the q-th quantile of either the annual distribution of

hourly net withdrawals (in MW) or the annual distribution of hourly ramp

rates (in MW.h−1) for substation s in year y, Kt,s,y the installed capacity

34. We discuss in Appendix B the results from estimating alternative specifications.
In particular, neither adding covariates interacting the installed capacities of different
distributed technologies nor including region-by-year fixed effects were not found to change
our results
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of distributed generation technology t connected to substation s as of year y

(in MW), and δq,s and δq,y are respectively substation and year fixed effects

of the regression for quantile q. We thus estimate fourteen linear regressions

(7 percentiles for the load duration curve and 7 percentiles for the ramp

duration curve) using ordinary least squares. For a given technology t, the 7-

tuple (β̂0.01,t, β̂0.1,t, β̂0.25,t, β̂0,5,t, β̂0.75,t, β̂0.9,t, β̂0.99,t) then corresponds to the

estimated quantile impact function for that technology and duration curve.

Indeed, the coefficient β̂q,t captures the average impact (in MW or MW.h−1)

that adding 1 MW of technology t has on the q-th quantile of the distribution

of interest. For example, for the load duration curve, β̂0.5,PV = −0.2 means

that adding 1 MW of distributed PV generation decreases on average the

median (q = 0.5) hourly net withdrawals at distribution substations by 0.2 MW.

Although our discussion of results will mostly focus on wind and PV, which

have the broadest policy implications, including distributed thermal and hydro

capacities in our model enhances the credibility of these results. In particular,

we expect investments in thermal technologies, which can generate electricity

on demand, to reduce peak net withdrawals from the distribution grid.

5.2. Determinants of Distributed Generation Investments

Over our period of interest, support mechanisms for distributed generation

in France were defined nationally and did not provide incentives to develop

projects in specific locations. In addition, grid connection charges in France

are only mildly differentiated at the level of administrative regions, and

these regions aggregate on average about two hundred distribution systems

(de Lagarde, 2018). This means that grid connection charges do not

provide significant locational incentives at the substation level for distributed

generation investments. Project developers can face additional delays or costs if

the distribution system operator deems that grid hosting capacity is scarce, but

this information is not known ex ante by project developers and not publicly
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available.35 If anything, any unobserved locational incentive of this sort would

induce our analysis to conclude that distributed generation is more grid-friendly

than it would be in the absence of any intervention by the system operator.

Finally, the electricity tariffs faced by small consumer are not linked in any way

to local distributed generation output.36

Land and resource availability considerations do create incentives to

locate distributed generation units non-uniformly across space. We control for

this factor and any other unobserved factor that varies across distribution

substations but not across years with substation fixed effects.37 Our model

specification also controls for national trends such as load growth and

differences over time in distributed generation support mechanisms with year-

of-sample fixed effects.

Although distributed PV is arguably the most challenging technology for

a causal interpretation of our results, we however believe that our approach

provides credible estimates even for this technology. Indeed, our identifying

variation primarily comes from units for which we directly observe the upstream

substation, which means that our identification does not primarily rely on

residential PV capacities.38 These PV installations tend to be relatively large

and, although the vast majority of them connect to the low voltage network,

installations connected to the medium voltage network represent 63% of their

total capacity. In the absence of spatially differentiated investment incentives,

35. From 2015 onward, the website https://www.capareseau.fr/ made this information
publicly available. However, it takes a few years to develop a distributed generation project
so that this change is very unlikely to affect our results given our sample period.

36. The largest industrial consumers, some of which face dynamic prices that may correlate
with renewable output through the wholesale market, usually connect to the grid at higher
voltage levels.

37. We also show in Appendix B that our results are robust when we restrict attention
to substations where investments in wind or PV projects actually occurred. In addition, we
find that our results are robust to estimating a richer spatial regression model.

38. Our estimates however speak to the deployment of residential PV systems since, from
the point of view of a substation, and in the absence of a strong rebound effect, a thousand
3 kW PV systems are observationally equivalent to a single 3 MW system.
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the development of ground-level installations seems in turn unlikely to depend

on local trends such as population or economic growth.

As robustness checks, we show in Appendix B that we obtain similar results

when we replace year-of-sample fixed effects with a larger set of fixed effects

that interact the year of sample with a spatial unit coarser than substations

(regions or departments). We also run a placebo test applying our model to

night-time hours (11pm-5am) where PV output is known to be zero. We find

no evidence of a bias for our analysis of hourly ramps, and a small bias for our

analysis of hourly net withdrawals, whose magnitude would not affect our main

conclusions. In addition, this bias is consistent with the behavioral response or

“solar rebound” from the installation of rooftop PV units identified in Qiu et

al. (2019) for residential PV. The combined effect of distributed PV generation

and of the solar rebound would then be the most relevant metric to inform

future grid planning.

Finally, our specification assumes linear and constant “treatment effects”.

We discuss in Section 7 possible non-linearities in the impact of installed

capacities on the load and ramp duration curves.39

6. Main Results

We first estimate the impact of the different distributed generation technologies

on the quantiles of the annual distribution of net withdrawals from distribution

networks. Table 3 shows our estimation results, which are also represented

graphically on Figure 11. We find substantially different quantile impact

functions for the five distributed generation technologies. Two characteristics of

these functions are of particular interest: their value for the extreme quantiles

and their slope.

39. Appendix B also reports the results from splitting the sample into an “early”
period (2005-2011) and a “late period” (2012-2018). Our results for wind and PV remain
qualitatively unchanged.
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Table 3. Estimated coefficients when regressing the main quantiles of the distribution of
hourly net withdrawals (for a given substation in a given year) on the installed capacities
of the different technologies. Robust standard errors clustered at the substation level are
reported.

Dependent variable:

Q1 Q10 Q25 Q50 Q75 Q90 Q99

Wind −0.667 −0.429 −0.251 −0.130 −0.087 −0.064 −0.037
(0.025) (0.018) (0.010) (0.005) (0.005) (0.006) (0.006)

PV −0.510 −0.351 −0.157 −0.046 −0.016 0.003 0.008
(0.040) (0.036) (0.019) (0.009) (0.010) (0.012) (0.014)

Small hydro −0.373 −0.346 −0.243 −0.139 −0.128 −0.131 −0.128
(0.068) (0.060) (0.032) (0.024) (0.031) (0.033) (0.038)

Renewable thermal −0.341 −0.339 −0.334 −0.324 −0.277 −0.235 −0.187
(0.067) (0.058) (0.051) (0.050) (0.052) (0.055) (0.061)

Non renewable −0.085 −0.069 −0.058 −0.063 −0.103 −0.126 −0.123
thermal (0.033) (0.025) (0.021) (0.023) (0.029) (0.032) (0.040)

Observations 30,091 30,091 30,091 30,091 30,091 30,091 30,091

R2 0.953 0.958 0.975 0.983 0.983 0.985 0.984

Adjusted R2 0.949 0.955 0.973 0.981 0.982 0.983 0.983

Figure 11. Graphical representation of the quantile impact functions for the distribution
of hourly net withdrawals. Thick lines correspond to the point estimates. Sleeves
delimit (two-sided) 95% confidence intervals from robust standard errors clustered at
the substation level.

First, the higher (in absolute value) the coefficients for the highest quantiles,

the more a given technology is associated with a decrease in the peak net
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withdrawals from distribution networks, and thus the more likely it is to

defer or avoid grid expansions. In France, the national annual peak electricity

consumption is reached during cold winter evenings. Consistently, PV is found

to have no significant impact on the highest quantiles of the annual distribution

of hourly net withdrawals. The impact of wind on the top quantiles is also very

small even though, as reported in RTE (2019), average wind generation is higher

during the winter. The other technologies are found to have a sizable impact

on peak hourly net withdrawals, with an average impact on the 99th quantile

of at least 0.12 MW per MW of distributed generation.40 Conversely, large

negative impacts on the bottom quantiles are likely to result in reverse power

flows as distributed generation capacities increase. The largest reverse power

flows may ultimately reach levels comparable (in absolute value) to local peak

consumption, potentially compromising any network capacity savings enabled

by a decrease in the top quantiles of the distribution of hourly net withdrawals.

Second, whether the quantile impact function is upward or downward

sloping is also of particular interest. Indeed, a monotone decreasing

quantile impact function means that the corresponding distributed generation

technology tends to narrow the range of hourly net withdrawals from

distribution networks, increasing the utilization rates of future grid assets.

In contrast, a monotone increasing quantile impact function means that

the corresponding distributed generation technology tends to “stretch” the

distribution of hourly net withdrawals, that is to expand the range of net

withdrawals supplied by substations. The subsequent decrease in the utilization

rates of grid assets seems in turn likely to be associated with higher long-term

costs on a per-MWh basis. Figure 11 suggests that quantile impact functions

are monotone increasing for all technologies but non-renewable thermal. We

40. For non-renewable thermal units, this finding appears consistent with the fact that
public subsidies provide incentives for small natural gas combined heat and power units to
produce during the winter (www.legifrance.gouv.fr/jorf/id/JORFTEXT000033385467/).
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test this observation statistically in Appendix D using the testing framework

developed by Wolak (1987, 1989) for seemingly unrelated regressions. For all

technologies but non-renewable thermal, we cannot reject (even at the 10%

level) that the quantile impact function is increasing. By contrast, this null

hypothesis is rejected at the 1% level for nonrenewable thermal, and the null

hypothesis of a decreasing quantile impact function cannot be rejected at the

same level of statistical significance.

Table 4. Estimated coefficients when regressing the main quantiles of the distributions
of hourly ramps (for a given substation in a given year) on the installed capacities of
the different technologies. Robust standard errors clustered at the substation level are
reported.

Dependent variable:

Q1 Q10 Q25 Q50 Q75 Q90 Q99

Wind −0.147 −0.047 −0.017 0.0001 0.018 0.047 0.144
(0.006) (0.002) (0.001) (0.0001) (0.001) (0.002) (0.006)

PV −0.155 −0.062 −0.016 −0.003 0.019 0.066 0.141
(0.012) (0.006) (0.001) (0.0004) (0.001) (0.005) (0.013)

Small hydro −0.017 −0.004 0.001 0.001 0.001 −0.002 0.025
(0.013) (0.003) (0.002) (0.001) (0.001) (0.004) (0.018)

Renewable thermal −0.006 0.003 −0.0005 0.001 0.001 −0.005 −0.0005
(0.016) (0.007) (0.003) (0.002) (0.003) (0.008) (0.021)

Non renewable thermal −0.003 0.001 −0.001 −0.001 −0.001 0.001 0.003
(0.008) (0.003) (0.002) (0.001) (0.002) (0.004) (0.008)

Observations 30,091 30,091 30,091 30,091 30,091 30,091 30,091

R2 0.951 0.963 0.966 0.836 0.966 0.960 0.950

Adjusted R2 0.947 0.961 0.963 0.823 0.963 0.956 0.947

Next, we estimate the impact of the different distributed generation

technologies on the ramp duration curve faced by substations. Table 4 shows

our results, which are represented graphically in Figure 12. Two distinct groups

of distributed generation technologies emerge. On the one hand, thermal and

small hydro units are found to have a negligible impact on any quantile of

the annual distribution of hourly ramps. On the other hand, wind and PV

units tend to significantly stretch this distribution. In other words, increased

installed capacities of distributed wind and PV are associated with a significant

increase in the absolute value of the most extreme hourly ramps, both positive

and negative. More precisely, we find that a 1 MW increase in the installed
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Figure 12. Graphical representation of the quantile impact functions for the distribution
of hourly ramps. Thick lines correspond to the point estimates. Sleeves delimit (two-sided)
95% confidence intervals from robust standard errors clustered at the substation level.

capacity of either wind or PV is associated with an average increase of 0.14-

0.15 MW.h−1 in the absolute value of both the 1st and 99th percentiles of the

distribution of hourly ramps. Large installed capacities of distributed wind and

PV are thus associated with very substantial and rapid variations in hourly net

withdrawals from distribution networks. Such increases in the magnitude of

extreme hourly ramps may put more stress on network components (e.g. more

frequent tap changes for transformers) and make it harder for system operators

to meet operational constraints (e.g. voltage regulation or phase balancing). If

anything, network costs are more likely to increase rather than decrease as a

result of these larger ramps.

7. Discussion

This section explores various reasons why distributed wind and PV may bring

higher T&D savings under circumstances that would depart significantly from
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the ones underlying our main estimates. We first investigate whether our

marginal effects for investments in distributed generation depend on the pre-

existing level of these investments.41 Next we study how the installation of

battery storage along with investments in distributed solar and wind could

change our estimated marginal effects. Finally, we consider the applicability of

our empirical results to other electricity supply industries.

7.1. Non-Linear Quantile Impacts

Although we estimate a distinct regression for each quantile, our specification

is linear in installed capacities of distributed generation (cf. Equation (1)). In

this section we explore whether the marginal impacts of distributed generation

on the duration curves change with the level of installed generation capacities.

More specifically, we estimate the following quadratic specification:

Yq,s,y =
∑
t

αq,tKt,s,y +
∑
t

βq,tK
2
t,s,y + δq,s + δq,y + εq,s,y (2)

where notations are the same as in Equation (1). Tables E.1 and E.2 in

Appendix E report the our results. For the load duration curve, we can reject

the null hypothesis that the marginal effect of distributed solar and wind

capacities on hourly net withdrawals is constant (βq,t = 0) for some but not

all quantiles. This null hypothesis is rejected at different quantiles for the two

technologies. PV is found to have a negligible impact on the top quantiles

even at low levels of installed capacities, and to have an increasingly negative

impact on the bottom quantiles as more capacity gets installed. The former

observation is consistent with the fact that demand usually peaks during winter

evenings, when PV output is negligible. The latter observation suggests that

41. We also explore the potential interaction effects of investments in the different
distributed generation technologies in Appendix B (e.g. complementarity between wind and
PV investments). We found that a 0.1 size test of the null hypothesis that the coefficients
on the ten interaction terms in each of the seven quantile impact functions are zero could
not be rejected.
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distributed solar generation is increasingly responsible for the lowest hourly net

withdrawals as installed capacities grow.

By contrast, the marginal effect of distributed wind capacities on the bottom

quantiles is found to be fairly constant. However, the magnitude of the negative

impact of distributed wind capacities on the top quantiles decreases with

installed capacities. In particular, we find that the first distributed wind units

connecting to a distribution network are predicted to reduce the 99th percentile

of the annual distribution of hourly net withdrawals by 7% of their nameplate

capacity, almost double the average effect for all capacity investment levels. In

other words, the marginal benefit of distributed wind in terms of potential grid

deferrals is decreasing in the installed capacity of distributed wind generation.

For the ramp duration curve, we do not find evidence of a non-linear impact of

distributed wind on the quantiles of the annual distribution of hourly ramps.

By contrast, distributed PV is found to have a marginal impact on the extreme

ramp rates that increases (in absolute value) with installed capacities. In other

words, distributed PV capacities are found to amplify the magnitude of extreme

hourly ramps at an increasing rate.

7.2. Battery Storage

This section explores the extent to which battery storage may enhance the grid

deferral benefits from distributed wind and solar generation. More precisely,

we assume that for each kW of distributed wind or solar generation connected

to a substation in a given year, a proportional amount of storage is also

installed. We then simulate the operation of the batteries and re-estimate the

marginal impact of distributed generation investments on the resulting load

duration curve.42 In other words, battery charging and discharging alter the

42. In other contexts, such as wildfire events in California, battery storage is often argued
to provide “reliability benefits” to consumers. These consideration are not as relevant in our
context. First, most distributed generation capacity come from installations connected to
the medium voltage grid rather than installed at residential consumers’ premises. Second,
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left hand-side variable in our regressions by subtracting, prior to computing

duration curves, the hourly operations of batteries from actually observed net

withdrawals during each hour of the year. We assume the batteries can charge

both from the grid and local distributed generation. Conceptually, this stylized

exercise is consistent with a mandate requiring the installation of storage

capacity along with intermittent renewables so that the installed capacity

of storage grows in proportion to investments in intermittent renewable

generation.

We assume that batteries are operated in a weekly peak-shaving mode. In

other words, the storage operator aims at minimizing either weekly peak net

withdrawal or peak net injection, depending on which metric is initially the

highest in absolute value over the course of the week. We use the peak-shaving

algorithm described in Pimm et al. (2018) with two modifications. First, in

order to ensure energy conservation, we add the constraint that storage is half-

full at the beginning of the week and must finish the week at the same state-of-

charge. Because substation peak net demand is rarely reached at midnight on

a Sunday evening (see Figure 7), this constraint is unlikely to bias significantly

battery operations. Second, when the battery has enough idle time to fully

charge, we assume that charging is spread uniformly across available hours

rather than occurring at its maximum rate until full charge. Figure 13 illustrates

how battery operations change the time series of net hourly loads over four

consecutive weeks at a given substation.

Assuming that storage is operated in peak-shaving mode is arguably an

optimistic approach because storage owners may choose different and less grid-

friendly operating rules, as for example in Green and Staffell (2017). We make

consumers connected to the low-voltage grid are disconnected about 1 hour/year on average,
so that potential reliability benefits seem likely to be smaller than in California. Third, a
residential PV + battery system will provide sizable reliability benefits only if PV generates
significant amounts of electricity during the most severe outages. Such outages tend to occur
in France during cold winter spells, that is when PV output is at its lowest.
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Figure 13. Hourly net withdrawals from a given substation over four weeks before and
after the addition of 8 MWh of storage capacity with a maximum discharge rate of 4 MW
(top panel). The amount of energy available in the battery, known as state of charge
(SOC), is also displayed (bottom panel).

three additional assumptions in favor of the effectiveness of batteries at reducing

the highest quantiles of the annual distribution of net demands. First, we

assume that the storage operator has a perfect foresight of substation hourly

net withdrawals for the upcoming week. Second, we neglect for simplicity power

losses when charging/discharging electricity. Third, we do not model battery

degradation or the opportunity cost of having a limited number of available

refresh cycles. Overall, our aim is to get a sense of the upper bound of the

potential grid deferral benefits from combining distributed wind and solar with

battery storage. Operating batteries in a peak-shaving mode seems likely to

be the most critical assumption.43 The perfect forecast assumption is also

quite optimistic. Building a credible hourly net load forecast model is however

beyond the scope of this paper. Relaxing the other assumptions seems unlikely

to drastically change our results: charge/discharge efficiencies are in the 80-90%

43. For example, running a similar analysis with storage responding to a time-of-use tariff,
we ended up in situations where distributed generation bundled with storage significantly
increased the top quantiles of the distribution of hourly net withdrawals.
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range, and peak-shaving would in practice be needed during a limited number

of hours to shave only the annual peak of hourly net withdrawals.

Battery storage “capacity” is generally understood as the maximum energy

E (in kWh) that can be stored,44 rather than the maximum (dis)charge rate

P (in kW).45 The charge rate or “C-rate” (in h−1) is the ratio of P and E. It

captures how fast a battery can be (dis)charged. For example, it takes 2 hours

to fully charge an initially empty battery whose C-rate is 0.5. To fix ideas, the

Tesla Powerwall 2 can store up to 13.5 kWh with a maximum (dis)charge rate

of 7 kW, corresponding to a C-rate of 0.52.

We define “storage penetration” as the ratio of installed storage capacity

(in kWh) and installed distributed generation (in kW). For example, a

storage penetration of 50% means that for each kW of distributed wind/solar

generation connected to a given substation in a given year, we assume that

0.5 kWh of storage is also installed. We explore storage penetration levels

ranging from 50% to 500%. Using figures from Tesla products to fix ideas, a

single solar panel has a capacity of about 340 W. As a result, a 500% penetration

would correspond to a situation where a Tesla Powerwall 2 is installed for every

8 solar panels connected to the grid.46 Battery storage sales in California in

2020 were expected to be 50,000 systems47 along with expected investments in

about 1.1 GW of residential rooftop PV for that year.48 This suggests that the

44. Note that for other storage technologies, and notably reservoir or pumped hydro,
“capacity” is defined as the maximum (dis)charge rate rather than as the maximum energy
that can be stored.

45. We assume for simplicity that the maximum charge and discharge rates are equal
although this need not be the case in practice.

46. Note that 8 solar panels amount to about 3 kW, which is in the lower end of residential
rooftop PV systems in terms of installed capacity.

47. https://about.bnef.com/blog/california-household-battery-sales-to-quadruple-in-
2020/

48. www.seia.org/sites/default/files/2021-03/California.pdf
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current battery storage penetration for new residential PV installations is 60%

assuming each new battery storage system is a Tesla Powerwall 2.49

Figure 14. Quantile impact functions for the distribution of hourly net withdrawals
under the different storage scenarios.

Table 5. Estimated coefficients for the 90th and 99th percentiles for wind and PV
(bundled with storage investments) under the different storage scenarios. Robust standard
errors clustered at the substation level are reported.

0.5C - 50% 0.5C - 100% 0.5C - 500% 0.2C-50% 0.2C-100% 0.2C-500%
Dependent variable: Q90

PV
-0.004 -0.012 -0.049 0.000 -0.007 -0.049
(0.011) (0.011) (0.012) (0.011) (0.011) (0.012)

Wind
-0.068 -0.072 -0.099 -0.067 -0.072 -0.099
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

Dependent variable: Q99

PV
-0.014 -0.029 -0.079 -0.004 -0.020 -0.082
(0.014) (0.014) (0.015) (0.014) (0.014) (0.015)

Wind
-0.046 -0.051 -0.074 -0.045 -0.052 -0.076
(0.006) (0.006) (0.007) (0.006) (0.006) (0.007)

Figure 14 shows the quantile impact functions for the distribution of

hourly net withdrawals under different storage investment scenarios. The

corresponding estimates for the highest quantiles are reported in Table 5. We

find that very substantial levels of storage penetration would be needed to

decrease significantly the highest percentiles of the load duration curve. At 50%

penetration, adding storage to distributed wind and solar investments barely

49. Note that 60% ≈ (50,000 batteries x 13.5 kWh/battery)/(1,100,000 kW of new solar
PV).
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increases the magnitude of their cumulative impact on the highest quantiles,

and mildly attenuates their impact on the lowest quantiles. By contrast, at

500% penetration of battery storage, distributed wind and PV with storage

are able to decrease significantly substation peak hourly net withdrawals, and

would thus prove helpful to defer future grid expansions.

To understand the intuition behind our results, one should note that battery

storage systems can operate at full (dis)charge rate only for a limited amount

of time. For example, a fully charged 0.5C battery can only discharge at full

power during two consecutive hours before ending up empty. As a result, if

net withdrawals remain high for a significant number of consecutive hours,

battery storage has a limited ability to reduce the magnitude of the highest

net withdrawals. For example, imagine that net withdrawals are flat during

ten consecutive hours. Then, under the 100% storage penetration, the best

the batteries can do is to reduce net withdrawals by 5% of the nameplate

capacity of distributed generation. Indeed, 1 kWh of battery storage gets by

assumption installed for each kW of distributed wind/PV which, for a C-rate

of 0.5C, correspond to a maximum discharge power of 0.5 kW. Because this

capacity has to be spread over ten hours, battery storage can only decrease net

withdrawal by 0.05 kW per kW of distributed generation.

The left panel on Figure 15 shows the histogram of the maximum number of

consecutive hours during which hourly net withdrawals at a given substation in

a given year are higher than the 99th percentile of the distribution. The median

value is 10 hours, which is consistent with the results presented in Table 5. This

median value decreases to 3 hours when looking at the 999th quantile. In other

words, battery storage is more effective at shaving net peak demand when

focusing on a more limited number of hours than the 99th quantile.
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Figure 15. Histograms of the maximum number of consecutive hours during which net
load is higher than the 99th quantile (left panel) and the 999th quantile (right panel). The
unit of observation is the distribution of hourly net withdrawals (before storage operation)
at a given substation in a given year (for more clarity, the right tail is censored on the
graph).

7.3. External Validity

Because our data covers the vast majority of both distribution substations

and distributed generation installations in France, our results provide

a comprehensive assessment of the impact that investments in different

distributed generation technologies have had on average on hourly net

withdrawals and ramp rates throughout mainland France. Appendix F takes

advantage of the sample size of our cross-section to explore the extent to which

the impact of distributed generation on the grid is heterogeneous across space.

More precisely, we divide France into four “macro regions” (North-West, North-

East, South-West and South-East) and run our main model separately for each

region. We find qualitatively similar results with two caveats. First, estimates

are noisier or imprecise in regions where a given technology is not sufficiently

deployed (e.g. PV in the North-East). Second, consistently with the results

of paragraph 7.1, wind has a larger impact on the highest quantiles of the

distribution of hourly net withdrawals in the South, where its installed capacity

is lower than in the North.

Whether our results carry over to other countries is an open question. One

potential issue is that France has its annual peak electricity consumption in the

winter due to its high reliance on electric space heating. By contrast, a number
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of countries and U.S. regions experience their peak electricity consumption

in the summer, due to a large demand for cooling. There are a number of

reasons to believe that our results would carry over to a significant extent

to these electricity systems. Although distributed solar will of course have a

non-zero impact on the highest quantiles of the annual distribution of hourly

net withdrawals in summer-peak systems, the magnitude of this impact may

prove smaller than one might expect, especially once significant amounts of

distribution generation capacity are installed. In the case of France, we indeed

find that distributed wind has a small impact on the highest quantiles of the

distribution of hourly net withdrawals even though wind output is highest

during the winter. In addition, the impact of distributed wind investments on

peak hourly net withdrawals is found to decrease in installed capacity. This

suggests that our results largely stem from the intermittent nature and the

high level of contemporaneous correlation between the output of distributed

generation units, which imply that, in the absence of storage, some hours with

high demand and low distributed generation output persist even with high levels

of distributed generation investments. Peak net load then mechanically shifts

to hours when distributed generation output is small. Appendix F discusses

this point in more detail. Finally, it is worth noting that increasing the role of

electricity for space heating is one of the key policies to reduce greenhouse gases

emissions. As a result, a growing number of electricity systems may experience

peak-consumption events during the winter, as illustrated by the electricity

crisis of February 2021 in Texas.

8. Conclusion

Public policies supporting renewable electricity generation typically favor

distributed units over utility-scale installations despite their significantly higher

levelized cost of generating electricity. As a result of these policies, among other

incentives, about half of the annual $100+billion global investments in PV
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electricity generation over the past decade were directed towards distributed

solar units rather than utility-scale installations. This paper presents empirical

evidence suggesting that, at least for the case of France, potential savings in

future T&D network investments cannot rationalize favoring distributed wind

and solar generation units over their utility-scale counterparts.

We estimate the relationship between investments in five distributed

generation technologies (wind, PV, small hydro, renewable thermal and non-

renewable thermal) and the hourly net withdrawals of electricity by distribution

networks. We study the case of France, where distributed generation capacity

has grown significantly over the past two decades. Our analysis combines two

very comprehensive datasets. First, we observe the hourly net withdrawals at

over 2,000 distribution substations between 2005 and 2018. Second, we use

detailed information on the universe of electricity generation units to determine

how much capacity of each distributed generation technology was connected to

each substation in each year. We then use a seemingly unrelated regressions

framework with a two-way fixed effect specification to estimate the impact

of a marginal increase in the installed capacity of the different distributed

generation technologies on both the hourly net withdrawals from distribution

networks, and the hourly ramp rates these networks experience.

Distributed wind and PV investments are found (i) to have little to no

impact on the highest quantiles of the distribution of hourly net withdrawals,

(ii) to induce large downward shifts in the lowest quantiles of the distribution

of hourly net withdrawals, and (iii) to exacerbate the magnitude of the most

extreme ramps. However, we show that bundling investments in distributed

wind and PV with investments in battery storage has the potential to increase

significantly their grid deferral benefits, although storage investment rates much

larger than current rates are required.

The main policy implication that emerges from our results is that support

mechanisms that provide unconditionally higher subsidies to distributed wind
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and solar installations over their utility-scale counterparts are very unlikely to

represent the least-cost path towards a low-carbon electricity supply. Relying

instead on installation-size-neutral subsidies would represent a more cost-

effective approach. Such leveled policy incentives would not necessarily prevent

the development of distributed generation in the long run. Indeed, utility-scale

installations require large areas of land, whose opportunity cost and/or distance

to the existing transmission grid will increase as more installations develop.

Ultimately, such an increase in costs will lower the LCOE gap between utility-

scale and distributed generation installations. In addition, battery storage could

improve the business case for distributed generation installations. However,

very significant investments and a high level of coordination with distribution

system operators would be needed for battery storage to unlock substantial

benefits from deferring T&D investments.
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For Online Publication - Appendices

Appendix A: Assignment Procedure for Distributed Generation
Units whose Upstream Substation is Unknown

This Appendix provides further information on the assignment procedure

we implement in order to infer to which substation distributed generation

units whose upstream substation is unknown are most likely to connect. This

procedure largely relies on very detailed spatial information. Mainland France

is divided into over 30,000 administrative counties.50 In addition, counties

with a high population (all counties with more than 10,000 inhabitants and

most counties with more than 5,000 inhabitants) are further broken down into

sub-counties (called the “IRIS mesh”) for census purposes. As of 2019, 1,840

counties in mainland France were further divided into sub-counties. Because

the location of distributed generation units is observed down to the county or

sub-county level, we divide France into spatial units that correspond to either

counties or sub-counties.51 More precisely, we divide a given county into its

sub-counties whenever (i) this decomposition is available; and (ii) the location

of at least one distributed generation unit sitting in this county is known down

to the sub-county level. We end up using a sub-division of mainland France into

45,508 spatial units, with a mean surface area of 11.9 km2 (4.6 miles squared).

The flow chart of Figure A.1 summarizes the different steps of our

assignment procedure. Because we observe the capacity, commissioning date,

and (sub)county of the distributed generation units that are listed individually,

we can directly compute the time series of installed capacities at the

50. The exact number of counties changes over time due to mergers and boundary updates.
We use the definition of administrative boundaries as of 1 January 2019.

51. The corresponding spatial boundaries were downloaded from:
https://geoservices.ign.fr/documentation/diffusion/telechargement-donnees-
libres.html#contoursiris
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Figure A.1. Flow chart of the assignment procedure we implement for distributed
generation units for which upstream substation information is missing.

(sub)county level for these units.52 By contrast, observations consisting in

aggregated PV units raise two challenges,53 one on the spatial dimension

and the other on the temporal dimension. First, the location of a quarter

of aggregated PV capacities is only known with a coarser spatial granularity

than (sub)counties. This difficulty is dealt with in Step A. Second, we observe

capacities as of 31 December 2018. However, in contrast to individually-

listed units for which installed capacity usually remains constant from their

commissioning date onward, the composition of aggregated units – and thus

their installed capacity – has evolved over time. We address this issue in Step B.

Step A: completing the assignment of aggregated PV units to

(sub)counties

52. For 71 individually-listed installations with unknown upstream substation, we observe
the county but not the sub-county where they are located. These installations are assumed
to be equally likely to be located in the different sub-counties of the county.

53. Due to their very small installed capacities, we neglect aggregated observations for
technologies other than PV.
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In order to respect the privacy of individual owners, most small (<36 kW)

PV units are aggregated at the finest level of spatial aggregation that makes

it possible to group at least 10 installations together. From coarsest to finest,

these levels of spatial aggregation are: department, county and sub-county.54

Aggregated PV observations are built as follows. First, any sub-county that

hosts more than 10 installations is listed as an observation, whose capacity

is the sum of the capacities of these units (as of 31 December 2018). Second,

any county than has more than 10 installations not included in one of the

sub-county aggregates is then listed as an observation, whose capacity is the

sum of the capacity of these units. Finally, remaining PV units that must be

aggregated are aggregated at the department level. Mainland France has 94

such departments.

Despite this aggregation procedure, the location of the majority (74%)

of aggregated PV capacities is observed down to the county or sub-county

level. Most of these observations thus map directly to our spatial division

of mainland France. A minority of observations are county-level aggregates

located in a county that we further divided into sub-counties. The installed

capacities of these observations are deemed equally likely to be installed in

the pool of sub-counties where they may be located (i.e. the sub-counties

within that county with no aggregated PV observation listed in the inventory

of power plants). For the remaining 26% of aggregated PV capacities, we only

know the department in which these units are located. Given the aggregation

procedure used to build the inventory of power plants, we further know that

these units can only be located in (sub)counties where none of the other 74%

capacities are located. We thus split the capacity aggregated at the department

level uniformly across the pool of candidate counties where the corresponding

54. Because of idiosyncrasies such as mistakes when entering the fuel type of an installation,
a handful of observations are aggregated at the regional level, which is a coarser spatial unit
than departments. These observations however add up to less than 1 MW and are thus
neglected.
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units may be located.55 When a county is itself divided into sub-counties, we

subsequently split the capacity that got allocated to it uniformly across its

sub-counties with no aggregated observation. Other approaches to allocate the

observations aggregated at the department level to (sub)counties would require

additional modeling and/or information sources. These alternative approaches

are unlikely to affect significantly our empirical results. For example, allocating

capacities aggregated at the department level to the remaining (sub)counties

using log-population instead of a uniform weight yields very similar results. The

correlation between the (sub)county-level capacities using uniform versus log-

population weights is 0.999 (0.97 when focusing on the subset of (sub)counties

where no aggregated observation is directly observed in the inventory of power

plants). As a result, we use a uniform allocation for the sake of simplicity.

Step B: building (sub)county-level time series of aggregated PV

installed capacities

The output of Step A is a cross-section of installed capacities Kc,d,2018 from

aggregated PV units in (sub)county c of department d as of 31 December 2018.

However, because aggregated observations are not individual installations, their

composition–and thus their installed capacity–has changed over time. In order

to infer how (sub)county-level installed capacities are likely to have evolved

between 2005 and 2018, we proceed in two steps.

First, we use a third dataset from the French Department of Energy (DOE)

that provides panel data at the department level of total installed PV capacities

between 2006 and 2018 (installed capacities being virtually zero in 2005).56

55. For the 5% of counties that are further divided in sub-counties, two situations may
arise. First, all sub-counties may each have more than 10 installations, or a total of more
than 10 installations may exist in sub-counties that have less than 10 installations each.
Second, less than 10 installations in total may exist in sub-counties that have less than
10 installations each. Some installations aggregated at the department level may then be
located in the latter counties, but not in the former counties.

56. This information is published quarterly by the Service des données et études
statistiques (e.g. www.statistiques.developpement-durable.gouv.fr/tableau-de-bord-solaire-
photovoltaique-quatrieme-trimestre-2018 for the fourth quarter of 2018). We are grateful
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These capacities include all PV installations, from small residential units to

large-scale farms connected to the transmission grid. As shown in Figure A.2,

this third dataset appears to be consistent with the information available in the

public inventories of power plants. Because we observe the location, installed

capacity and commissioning date of installations that are listed individually in

the public inventory of power plants, we can compute department-level time

series of PV capacity from individually-listed units. Subtracting these time

series from the time series of department-level total PV capacity from the DOE

dataset yields a department-level time series for PV capacity from aggregated

units. Figures A.3 and A.4 show the results for each department, and compare

them to the capacities observed in the public inventories of power plants of

2017 and 2018. Overall, both sources of information agree very well. In the

very few cases where some discrepancies are observed, we use the maximum of

both metrics, since it generally appears to be more consistent with the rest of

the time series. We further impose monotonicity which is (mildly) violated on

only three occasions.

Second, for each year and each department, we need to dispatch the

total (department-level) capacity Kd,y of aggregated units to the different

(sub)counties. In other words, we want to define capacities Kc,d,y for each

year y and (sub)county c (located in department d) such that:

∀y,∀d,
∑
c∈d

Kc,d,y = Kd,y (A.1)

To do so, we use of the cross-section {Wc,d}c computed in Step A, where

Wc,d is the capacity from aggregated units in (sub)county c of department d.

We implement four different methodologies to build Kc,d,y:

1. Homothetic static approach: this method assumes that the probability

of observing a given amount of installed capacity in a given county is

to the Department of Energy for having shared with us the corresponding historical data
(updated of as of July 2020).
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Figure A.2. department-level installed PV capacities (in MW) as of 31 December 2017
and 2018 (i) in the DOE dataset (x-axis) and (ii) in the public inventories of power plants
2017 and 2018 (y-axis).

proportional to the installed capacity Wc,d in this county as of 2018. In

other words, we postulate that the installed capacity in (sub)county c of

department d as of year y was:

KHS
c,d,y ≡

Wc,d∑
c′∈dWc′,d

Kd,y (A.2)

2. Sequential static approach: this method assumes that new PV units

get installed first in the counties with the highest remaining capacity to be

installed. In other words, knowing that Wc,d must be installed by 2018,57

we compute K∗d,y such that:∑
c∈d

max(Wc,d −K∗d,y, 0) ≡ Kd,y (A.3)

We then postulate that the installed capacity in county c of department d

as of year y was:

KSS
c,d,y ≡ max(Wc,d −K∗d,y, 0) (A.4)

57. More precisely, Wc,d is normalized within each department in order to sum to Kd,2018

and thus be more consistent with the rest of the time series. As shown on Figures A.3 and
A.4, Kd,2018 and

∑
c∈d Wc,d are virtually identical for almost every department.
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Figure A.3. Inferred department-level time series of PV capacity from aggregated units
(first 48 departments). Green dots represent actual capacities as reported in the public
inventories of power plants of 2017 and 2018.

3. Homothetic dynamic approach: although their exact meaning is

somewhat ambiguous, the public inventory of power plants does provide
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Figure A.4. Inferred department-level time series of PV capacity from aggregated units
(remaining 46 departments). Green dots represent actual capacities as reported in the
public inventories of power plants 2017 and 2018.

“commissioning dates” for aggregated PV observations. We interpret

these dates as the date at which the 10th unit got installed in the
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corresponding spatial unit, and further assume that the 1st unit was

installed shortly before that. As a result, these commissioning dates put

additional restrictions on the set of (sub)counties that may host aggregated

PV units as of a given year. We denote Cd,y the set of (sub)counties in

department d whose “commissioning date” is anterior to 31 December of

year y.58 We then define the installed capacity in county c of department

d as of year y using an iterative approach:

KHD
c,d,y ≡ 1c∈Cd,y

(
KHD
c,d,y−1 +

Wc,d −KHD
c,d,y−1∑

c′∈Cd,yWc′,d −KHD
c′,d,y−1

(Kd,y −Kd,y−1)

)
(A.5)

where KHD
c,d,2005 = 0 for all c, d and 1c∈Cd,y is a dummy variable that takes

the value 1 if county c belongs to Cd,y (and 0 otherwise).

4. Sequential dynamic approach: as we did for the homothetic approach,

we also define a dynamic version of the sequential approach. Formally, we

first compute K∗d,y such that:

∑
c∈Cd,y

max(Wc,d −KSD
c,d,y−1 −K∗d,y, 0) ≡ Kd,y −Kd,y−1 (A.6)

with KSD
c,d,2005 = 0 for all c, d. We then postulate that the installed capacity

in county c of department d as of year y was:

KSD
c,d,y ≡ 1c∈Cd,y

(
KSD
c,d,y−1 + max(Wc,d −KSD

c,d,y−1 −K∗d,y, 0)
)

(A.7)

The outcome of steps A and B is four alternative (sub)county-level time

series of installed capacities from aggregated PV units that are consistent with

their observed evolution at the department level. The results reported in the

main text use the time series derived from the homothetic static approach.

The last step of the assignment procedure consists in mapping (sub)counties

to upstream distribution substations. This step also applies to distributed

58. (Sub)counties for which no aggregated observation exist in the inventory are assumed
to belong to Cd,y for all y.
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generation units that are listed as individual observations in the inventory of

power plants but for which the upstream substation information is missing.

Step C: matching (sub)counties to substations and deriving

substation level time series of installed capacities

In order to match (sub)counties to substations, we rely on two sources of

information. First, we know the GPS coordinates of the substations.59 Second,

we observe both the upstream substation and the (sub)county of a large number

of individually-listed distributed generation units. We use the public inventory

as of 31 December 2019 (restricting attention to the substations that are known

to exist as of 31 December 2018) in order to maximize the number of observed

(sub)county-substation pairs. We observe 14,000+ such pairs, as well as the

location of 2,000+ substations.

For each substation, we first compute the convex hull of both its location and

the centroids of the (sub)counties where one or several distributed generation

units that are known to connect to this substation are located. When building

the convex hulls, we exclude (sub)counties whose centroid is located more than

40 km away from the substation in order to filter potential mistakes in the

public inventory (this procedure screens out 138 (sub)county-substation pairs).

Panel (a) on Figure A.5 shows the outcome of this procedure for one of the

94 departments. Panel (b) further zooms in a densely populated area where

we further divided counties into sub-counties. Even in urban areas, the spatial

units we use appears to be granular enough relative to the spatial density of

distribution substations.

We then use the computed convex hulls and the knowledge of the

spatial boundaries of (sub)counties to build a mapping from (sub)counties

to substations. First, a (sub)county c that intersects with the convex hull of

substation s is assumed to connect to this substation. If a given (sub)county

59. This information is for example available from: www.data.gouv.fr/en/datasets/postes-
electriques-rte-au-6-juin-2020-1/ (last accessed on 31 August 2020).
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Figure A.5. Panel (a): convex hulls for the Haute-Garonne department. Panel (b): zoom
on the urban area of the city of Toulouse.

intersects with several convex hulls, a distributed generation unit located in

this (sub)county is deemed equally likely to connect to the corresponding

substations. This first step maps almost two thirds of our spatial units (29,330

out of 45,508). In addition, over half of our spatial units (24,585 out of

45,508) intersect with a single convex hull. Figure A.6 illustrate this first

step by showing, for one of the 94 departments, the counties that intersect

with a single substation convex hull. In a second step, we isolate remaining

(sub)counties that are adjacent to one or several (sub)counties that were all

matched in step 1 to the same substation. These (sub)counties are assumed to

also connect to the corresponding substation. This second step, which maps

6,523 additional spatial units to substations, aims at expanding in a sensible

way the service territory of substations in areas where we initially observe

a relatively small number of distributed generation units. Third, we focus

on remaining (sub)counties that are adjacent to one or several (sub)counties

matched in either step 1 or 2. A unit located in these (sub)counties is assumed

to be equally likely to connect to either of the substations that were matched

to the neighbor (sub)counties. This third step further maps 8,569 (sub)counties

to substations.
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Figure A.6. Panel (a): convex hulls for the Aveyron department. Panel (b): (sub)counties
that intersect with a single convex hull, and corresponding service territory of the
substations (outcome of step 1).

In the end, our spatial matching procedure allows us to map over 97%

of our spatial units (44,422 out of 45,508) to substations. Reassuringly, the

vast majority of unmatched spatial units are located outside of the service

territory DSO in France. They are thus very likely to be supplied by distribution

substations that we do not observe.

Finally, we use our mapping from (sub)counties to substations to build

time series of installed capacities by technology at the substation level. When

doing so, we account for the entry/exit of the 114 substations (5% of total)

that are not observed for the full 14-year period. Indeed, the spatial matching

of Step C is done in a static fashion, meaning it takes into account all

known substations irrespective of their (de)commissioning date. However, when

computing installed capacities at the substation-level in a given year, we restrict

attention to the substations that are known to exist in that year. In particular,

although we may observe the upstream substation of a distributed generation

unit as of 2018, this substation may not be commissioned yet in the early years

of the period of our study. In such (rare) cases, the distributed generation

unit is treated as an observation with unknown upstream substation for that

year, and we use our mapping from (sub)counties to substations to assign the

corresponding capacities to substations that existed in that year.
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Appendix B: Robustness checks

This Appendix discusses a number of robustness checks and sensitivity analyses.

B.1. Sensitivity to our assignment procedure for units with unknown
substations

As discussed in Appendix A, we implement an assignment procedure to make

informed guesses about the substation(s) to which distributed generation

units whose upstream substation is unknown are most likely to connect.

This paragraph shows that our results hold irrespective of the details of the

assignment procedure.

Sensitivity to how we match aggregated PV units (Steps A and

B of the assignment procedure described in Appendix A)

About a quarter of installed PV capacities (as of 2018) consist of small (<36kW)

units, for the most part aggregated at the (sub)county level. As discussed

in Appendix A, the aggregation procedure prevents us from observing the

evolution of aggregated capacities over time at a finer spatial granularity than

departments. We thus implement four contrasted methodologies to infer how

(sub)county-level installed capacities may have evolved over time. All four

approaches are consistent with the known trajectories of department-level

capacities.

The time series of (sub)county-level PV capacities from small aggregated

units are then aggregated at the substation level using our spatial matching

methodology (Step C of the assignment procedure described in Appendix A),

where they are added to capacities from individually-listed units. In the end,

we obtain four different measures of total installed PV capacity connected to a

given substation in a given year, depending on the methodology used in Step B

of our assignment procedure. These measures include both individually-listed

and aggregated PV units.
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Figure B.1. Top-right corner: scatter plots of pair-wise relationship between the different
installed PV capacity metrics (unit of observation: substation by year). Darker colors
correspond the later years. Bottom-left corner: corresponding coefficients of correlation.

Figure B.1 shows that the four PV metrics we obtain are virtually identical.

This result has several explanations. First, 74% of installed PV capacities

correspond to individually-listed units. Second, we observe precisely where

small aggregated units are as of 2018, which by construction is the year with the

highest amount of total installed PV capacity. Third, even if we use contrasted

approaches to assign installations to (sub)counties, these spatial units are then

aggregated spatially when we infer the territories supplied by the different

substations. This aggregation step tends to smooth any difference between the

different allocation methods.

In the absence of any significant difference between our four metrics for

installed PV capacities, the main text and the rest of the sensitivity analyses

use the homothetic static approach in Step B of the assignment procedure.
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Sensitivity to including units whose upstream substation is

inferred and not directly observed (Step C of our assignment

procedure)

In Equation (1), the installed capacity Kt,s,y of distributed generation

technology t connected to substation s in year y is the sum of two terms:

Kt,s,y ≡ K0
t,s,y + K̂t,s,y (B.1)

where:

• K0
t,s,y is the capacity from distributed generation units which are known

to connect to this substation, as directly observed in the public inventory

of power plants;

• K̂t,s,y is the capacity from distributed generation units which are assumed

to connect to this substation, as inferred from our assignment procedure.

Table B.1. Decomposition of the variance (in MW2) of the installed capacities of each
technology between known and inferred capacities.

Technology Var(K0
t,s,y) Var(K̂t,s,y) Var(Kt,s,y)

Wind 117.2 6.0 132.2
PV 12.8 0.5 14.7

Small hydro 6.7 0.2 7.0
Renewable thermal 2.8 0.1 2.9

Non renewable thermal 7.2 0.3 7.5

Table B.1 reports the variances of K0
t,s,y, K̂t,s,y and Kt,s,y for all five

technologies, across all years and substations. We observe that our identifying

variation almost exclusively comes from installed capacities for which we

directly observe the upstream substation in the public inventory of power

plants. Consistently, our results are robust to ignoring altogether capacities

for which we had to infer the upstream substation. Tables B.2 and B.3 report

the results of our quantile regressions when using K0
t,s,y instead of Kt,s,y as

independent variables. These results are almost identical to the results reported

in the main text.
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Table B.2. Estimated coefficients when regressing the main quantiles of the annual
distribution of hourly net withdrawals on the installed capacities K0

t,s,y from units whose
upstream substation is known. Robust standard errors clustered at the substation level
are reported.

Dependent variable:

Q1 Q10 Q25 Q50 Q75 Q90 Q99

Wind −0.723 −0.463 −0.271 −0.139 −0.091 −0.066 −0.035
(0.018) (0.014) (0.008) (0.004) (0.005) (0.005) (0.006)

PV −0.557 −0.384 −0.173 −0.052 −0.020 −0.0004 0.004
(0.035) (0.034) (0.017) (0.010) (0.010) (0.012) (0.014)

Small hydro −0.394 −0.359 −0.249 −0.139 −0.126 −0.127 −0.127
(0.066) (0.061) (0.033) (0.024) (0.031) (0.034) (0.037)

Renewable thermal −0.390 −0.373 −0.352 −0.332 −0.279 −0.234 −0.182
(0.065) (0.057) (0.051) (0.051) (0.052) (0.056) (0.062)

Non renewable −0.083 −0.069 −0.060 −0.065 −0.107 −0.130 −0.127
thermal (0.034) (0.024) (0.021) (0.024) (0.029) (0.032) (0.040)

Observations 30,091 30,091 30,091 30,091 30,091 30,091 30,091

R2 0.958 0.960 0.976 0.983 0.983 0.985 0.984

Adjusted R2 0.955 0.957 0.974 0.981 0.982 0.983 0.983

Table B.3. Estimated coefficients when regressing the main quantiles of the annual
distribution of hourly ramps on the installed capacities K0

t,s,y from units whose upstream
substation is known. Robust standard errors clustered at the substation level are reported.

Dependent variable:

Q1 Q10 Q25 Q50 Q75 Q90 Q99

Wind −0.160 −0.051 −0.019 0.0001 0.020 0.051 0.156
(0.004) (0.002) (0.001) (0.0001) (0.001) (0.002) (0.004)

PV −0.168 −0.067 −0.016 −0.003 0.020 0.071 0.153
(0.011) (0.006) (0.001) (0.0004) (0.001) (0.005) (0.012)

Small hydro −0.025 −0.006 0.001 0.001 0.002 0.001 0.035
(0.012) (0.003) (0.001) (0.001) (0.001) (0.004) (0.017)

Renewable thermal −0.017 −0.001 −0.002 0.001 0.002 −0.002 0.010
(0.016) (0.007) (0.003) (0.002) (0.003) (0.007) (0.021)

Non renewable −0.002 0.002 −0.0002 −0.001 −0.001 0.001 0.002
thermal (0.008) (0.003) (0.002) (0.001) (0.002) (0.004) (0.008)

Observations 30,091 30,091 30,091 30,091 30,091 30,091 30,091

R2 0.957 0.966 0.968 0.836 0.968 0.963 0.955

Adjusted R2 0.954 0.964 0.965 0.823 0.965 0.960 0.952

B.2. Potential endogeneity of installed capacities

Substation selection when investing in distributed generation

As shown in Table 2, investments in distributed generation are skewed towards

a subset of substations. Substation fixed effects are included to control for

any unobserved characteristic of substations that is constant over time and

explains net withdrawals to the distribution grid. To check the robustness

of this approach, we ran our regressions on two subsets. First, in Table B.4,
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we restrict attention to the sample of substations where some investments in

wind distributed generation have occurred. The estimated coefficients for wind

remains unchanged and the coefficients for other technologies are less precisely

estimated but not inconsistent with our main estimates. Second, in Table B.5,

we focus on the subset of substations with at least 1 MW of distributed PV

generation as of 2018. The coefficient estimates for PV are again consistent

with our main results.

Table B.4. Estimated coefficients when regressing the main quantiles of the distribution
of hourly net withdrawals (for a given substation in a given year) on the installed capacities
of the different technologies with substation and year-by-region fixed effects, restricting
attention to the subset of substations for which some investment in wind distributed
generation have occurred. Robust standard errors clustered at the substation level are
reported.

Dependent variable:

Q1 Q10 Q25 Q50 Q75 Q90 Q99

Wind −0.677 −0.434 −0.249 −0.122 −0.073 −0.051 −0.024
(0.030) (0.021) (0.013) (0.006) (0.006) (0.006) (0.006)

PV −0.129 −0.101 −0.118 −0.092 −0.065 −0.048 −0.060
(0.081) (0.064) (0.051) (0.033) (0.029) (0.033) (0.039)

Small hydro −0.248 −0.298 −0.306 −0.267 −0.263 −0.271 −0.295
(0.137) (0.108) (0.090) (0.078) (0.068) (0.068) (0.091)

Renewable thermal −0.414 −0.410 −0.388 −0.388 −0.375 −0.325 −0.274
(0.201) (0.143) (0.089) (0.067) (0.065) (0.074) (0.101)

Non renewable thermal −0.172 −0.118 −0.087 −0.040 −0.065 −0.103 −0.135
(0.088) (0.072) (0.052) (0.037) (0.044) (0.048) (0.058)

Observations 6,061 6,061 6,061 6,061 6,061 6,061 6,061

Unobserved characteristics causing differential trends

Our econometric model is a two-way fixed effect specification. This very

parsimonious approach accounts for both substation-specific unobserved

characteristics (as long as they are constant over time) and year-specific

unobserved characteristics (as long as they are uniform across space). While

these controls account for a large number of possible confounders, our estimates

could still be biased if there exist unobserved variables that explain electricity

consumption that are correlated with installed distributed generation capacities

and have experienced both significant and spatially contrasted changes over our

period of interest.
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Table B.5. Estimated coefficients when regressing the main quantiles of the distribution
of hourly net withdrawals (for a given substation in a given year) on the installed capacities
of the different technologies with substation and year-by-region fixed effects, restricting
attention to the subset of substations for which host at least 1 MW of distributed PV at
the end of 2018. Robust standard errors clustered at the substation level are reported.

Dependent variable:

Q1 Q10 Q25 Q50 Q75 Q90 Q99

Wind −0.592 −0.384 −0.229 −0.121 −0.086 −0.065 −0.043
(0.039) (0.025) (0.016) (0.009) (0.008) (0.007) (0.008)

PV −0.580 −0.400 −0.178 −0.052 −0.020 −0.001 0.008
(0.037) (0.036) (0.019) (0.011) (0.011) (0.012) (0.015)

Small hydro −0.207 −0.200 −0.197 −0.174 −0.164 −0.152 −0.130
(0.106) (0.075) (0.069) (0.060) (0.061) (0.065) (0.073)

Renewable thermal −0.402 −0.372 −0.370 −0.382 −0.360 −0.317 −0.271
(0.085) (0.079) (0.071) (0.071) (0.067) (0.068) (0.083)

Non renewable thermal −0.131 −0.109 −0.108 −0.123 −0.180 −0.210 −0.216
(0.060) (0.048) (0.040) (0.042) (0.050) (0.059) (0.077)

Observations 12,113 12,113 12,113 12,113 12,113 12,113 12,113

To further alleviate endogeneity concerns, we run our model with larger

sets of fixed effects. More precisely, instead of using year fixed effects, we

include year-by-region (mainland France has 12 regions, corresponding to

NUTS 1 level) and year-by-department (mainland France has 94 departments,

corresponding to NUTS 3 level) fixed effects. This set of fixed effects will

absorb any unobserved differential trend at a spatial granularity coarser than

substations, such as population migrations. Tables B.6 and B.7 show the results

when using respectively year-by-region and year-by-department fixed effects.

Our results remain qualitatively unchanged.

Finally, potential endogeneity concerns are probably most acute for PV.

On the hand, our identifying variation primarily comes from large installations

of larger sizes, for which considerations independent from electricity demand

(e.g. local acceptability, land availability, the ability to navigate administrative

requirements, etc.) have a large influence on location choices. On the other

hand, although residential PV represents a small fraction of the total PV

capacities in France,60 larger rooftop PV units could be predominantly installed

60. Residential PV installations are included in the small aggregated PV units, and thus
represent at most a quarter of total capacities.
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Table B.6. Estimated coefficients when regressing the main quantiles of the distribution
of hourly net withdrawals (for a given substation in a given year) on the installed capacities
of the different technologies with substation and year-by-region fixed effects. Robust
standard errors clustered at the substation level are reported.

Dependent variable:

Q1 Q10 Q25 Q50 Q75 Q90 Q99

Wind −0.657 −0.421 −0.245 −0.126 −0.083 −0.061 −0.033
(0.026) (0.018) (0.011) (0.005) (0.006) (0.006) (0.006)

PV −0.541 −0.373 −0.167 −0.053 −0.024 −0.0001 0.019
(0.040) (0.037) (0.019) (0.011) (0.011) (0.013) (0.015)

Small hydro −0.391 −0.362 −0.257 −0.154 −0.149 −0.156 −0.140
(0.067) (0.058) (0.031) (0.026) (0.037) (0.042) (0.045)

Renewable thermal −0.328 −0.330 −0.330 −0.322 −0.274 −0.233 −0.187
(0.068) (0.058) (0.052) (0.052) (0.054) (0.057) (0.062)

Non renewable thermal −0.080 −0.069 −0.059 −0.063 −0.102 −0.129 −0.133
(0.034) (0.025) (0.021) (0.024) (0.030) (0.033) (0.040)

Observations 30,091 30,091 30,091 30,091 30,091 30,091 30,091

R2 0.954 0.959 0.976 0.983 0.984 0.986 0.985

Adjusted R2 0.950 0.955 0.974 0.982 0.983 0.984 0.984

Table B.7. Estimated coefficients when regressing the main quantiles of the distribution
of hourly net withdrawals (for a given substation in a given year) on the installed capacities
of the different technologies with substation and year-by-department fixed effects. Robust
standard errors clustered at the substation level are reported.

Dependent variable:

Q1 Q10 Q25 Q50 Q75 Q90 Q99

Wind −0.647 −0.411 −0.239 −0.121 −0.077 −0.054 −0.025
(0.026) (0.018) (0.011) (0.006) (0.006) (0.006) (0.006)

PV −0.545 −0.376 −0.170 −0.055 −0.025 −0.001 0.019
(0.038) (0.036) (0.018) (0.010) (0.011) (0.012) (0.014)

Small hydro −0.368 −0.343 −0.239 −0.143 −0.152 −0.160 −0.130
(0.063) (0.056) (0.032) (0.024) (0.034) (0.037) (0.039)

Renewable thermal −0.335 −0.329 −0.327 −0.319 −0.272 −0.230 −0.185
(0.067) (0.058) (0.052) (0.052) (0.053) (0.057) (0.063)

Non renewable thermal −0.087 −0.074 −0.066 −0.069 −0.109 −0.134 −0.141
(0.034) (0.025) (0.023) (0.026) (0.033) (0.036) (0.043)

Observations 30,091 30,091 30,091 30,091 30,091 30,091 30,091

R2 0.956 0.961 0.977 0.984 0.985 0.987 0.987

Adjusted R2 0.951 0.956 0.974 0.982 0.983 0.985 0.985

on new buildings and thus correlate with local load growth. To assess the

magnitude of this concern, we run a placebo test. More specifically, we restrict

attention to night-time hours (11pm-5am), for which we know PV output to

be equal to zero. We then compute the annual load and ramp duration curves

for this subset of hours and estimate our model on this dataset. Because PV

output is known to be zero, PV capacity should be found to have a statistically

insignificant impact. Tables B.8 and B.9 report the results for hourly net

withdrawals and hourly ramps, respectively. First, we do find evidence of a

small bias for the impact of PV on the load duration curve. This bias is
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however small: net load is on average 0.03 kWh higher per kW of installed

distributed PV. A bias of this magnitude would not be sufficient to change

our main conclusions. In addition, it is consistent with a solar rebound effect

documented in Qiu et al. (2019), in which case the combined effect of distributed

PV generation and a solar rebound would be the most relevant metric to inform

future grid investments. Second, the placebo impact of PV on hourly ramps is

not statistically different from zero.

Table B.8. Estimated coefficients when regressing the main quantiles of the distribution
of hourly net withdrawals during night-time hours 11pm-5am (for a given substation in a
given year) on the installed capacities of the different technologies with substation. Robust
standard errors clustered at the substation level are reported.

Dependent variable:

Q1 Q10 Q25 Q50 Q75 Q90 Q99

Wind −0.672 −0.425 −0.261 −0.150 −0.094 −0.066 −0.038
(0.024) (0.017) (0.010) (0.005) (0.005) (0.005) (0.006)

PV 0.041 0.029 0.027 0.032 0.033 0.031 0.028
(0.010) (0.010) (0.010) (0.010) (0.010) (0.011) (0.014)

Small hydro −0.384 −0.355 −0.244 −0.149 −0.149 −0.161 −0.142
(0.062) (0.060) (0.031) (0.024) (0.036) (0.038) (0.039)

Renewable thermal −0.383 −0.383 −0.364 −0.320 −0.271 −0.233 −0.192
(0.065) (0.058) (0.053) (0.049) (0.050) (0.050) (0.057)

Non renewable thermal −0.112 −0.084 −0.073 −0.072 −0.086 −0.098 −0.103
(0.034) (0.025) (0.021) (0.022) (0.027) (0.031) (0.038)

Observations 30,091 30,091 30,091 30,091 30,091 30,091 30,091

R2 0.953 0.958 0.972 0.980 0.981 0.982 0.981

Adjusted R2 0.950 0.955 0.969 0.978 0.980 0.981 0.979

Table B.9. Estimated coefficients when regressing the main quantiles of the distribution
of hourly ramps during night-time hours 11pm-5am (for a given substation in a given year)
on the installed capacities of the different technologies with substation. Robust standard
errors clustered at the substation level are reported.

Dependent variable:

Q1 Q10 Q25 Q50 Q75 Q90 Q99

Wind −0.141 −0.041 −0.014 0.003 0.020 0.047 0.144
(0.005) (0.002) (0.001) (0.0003) (0.001) (0.002) (0.005)

PV −0.006 −0.006 −0.004 −0.004 −0.001 −0.002 −0.007
(0.003) (0.002) (0.001) (0.001) (0.001) (0.002) (0.004)

Small hydro −0.025 −0.004 −0.002 −0.003 0.002 −0.004 −0.013
(0.011) (0.005) (0.003) (0.003) (0.004) (0.007) (0.014)

Renewable thermal −0.014 −0.003 −0.005 0.0004 0.004 0.001 0.004
(0.014) (0.010) (0.008) (0.004) (0.005) (0.009) (0.012)

Non renewable thermal −0.001 0.001 −0.001 −0.007 −0.007 0.003 0.014
(0.007) (0.005) (0.003) (0.002) (0.002) (0.005) (0.009)

Observations 30,091 30,091 30,091 30,091 30,091 30,091 30,091

R2 0.959 0.973 0.975 0.956 0.881 0.901 0.915

Adjusted R2 0.956 0.971 0.973 0.952 0.872 0.893 0.908
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B.3. Heterogeneous treatment effects

Our main specification assumes uniform treatment effects. This simplifying

assumption may bias estimates, although one can think of competing stories

for the direction of the bias. On the one hand, technological progress seems

likely to increase over time the output per MW of newly installed distributed

generation. On the other hand, the best sites are likely to be equipped first so

that later units will be less productive. As a robustness check, we thus estimate

our main model on the periods 2005-2011 and 2012-2018 separately. Tables B.10

and B.11 report the estimates. Although the results for small hydro and non

renewable thermal appears to be unstable, our results for wind and PV remain

qualitatively similar.

Table B.10. Estimated coefficients when regressing the main quantiles of the distribution
of hourly net withdrawals (for a given substation in a given year) on the installed capacities
of the different technologies, restricting the sample to 2005-2011. Robust standard errors
clustered at the substation level are reported.

Dependent variable:

Q1 Q10 Q25 Q50 Q75 Q90 Q99

Wind −0.596 −0.346 −0.208 −0.119 −0.093 −0.073 −0.051
(0.026) (0.016) (0.010) (0.006) (0.007) (0.006) (0.006)

PV −0.341 −0.208 −0.081 −0.009 0.016 0.029 0.059
(0.094) (0.069) (0.032) (0.014) (0.018) (0.022) (0.037)

Small hydro −0.295 −0.239 −0.194 −0.146 −0.175 −0.203 −0.268
(0.105) (0.076) (0.066) (0.051) (0.047) (0.050) (0.065)

Renewable thermal −0.439 −0.348 −0.303 −0.283 −0.262 −0.226 −0.138
(0.109) (0.079) (0.058) (0.055) (0.060) (0.072) (0.106)

Non renewable thermal 0.062 0.001 0.003 −0.004 −0.022 −0.027 0.037
(0.054) (0.053) (0.052) (0.052) (0.059) (0.062) (0.079)

Observations 14,907 14,907 14,907 14,907 14,907 14,907 14,907

R2 0.956 0.969 0.991 0.991 0.991 0.991 0.991

Adjusted R2 0.948 0.963 0.990 0.990 0.990 0.989 0.990

B.4. Interaction terms

Our main specification does not include interaction terms between the installed

capacities of distinct distributed generation technologies. As shown in Table

B.12, adding interaction terms does not change our results. In particular, using

the statistical test framework described in Appendix D, we cannot reject at the

10% level the null hypothesis that all interaction terms are all equal to zero
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Table B.11. Estimated coefficients when regressing the main quantiles of the distribution
of hourly net withdrawals (for a given substation in a given year) on the installed capacities
of the different technologies, restricting the sample to 2012-2018. Robust standard errors
clustered at the substation level are reported.

Dependent variable:

Q1 Q10 Q25 Q50 Q75 Q90 Q99

Wind −0.607 −0.375 −0.214 −0.107 −0.066 −0.045 −0.019
(0.031) (0.025) (0.015) (0.007) (0.008) (0.008) (0.008)

PV −0.557 −0.369 −0.158 −0.054 −0.027 −0.015 −0.028
(0.031) (0.027) (0.016) (0.011) (0.011) (0.012) (0.017)

Small hydro −0.549 −0.463 −0.294 −0.125 −0.081 −0.099 −0.079
(0.096) (0.059) (0.045) (0.044) (0.055) (0.068) (0.066)

Renewable thermal −0.335 −0.365 −0.340 −0.312 −0.264 −0.241 −0.261
(0.083) (0.076) (0.072) (0.078) (0.072) (0.074) (0.097)

Non renewable thermal −0.167 −0.114 −0.101 −0.104 −0.161 −0.187 −0.179
(0.053) (0.040) (0.035) (0.035) (0.046) (0.054) (0.053)

Observations 15,184 15,184 15,184 15,184 15,184 15,184 15,184

R2 0.972 0.972 0.981 0.988 0.989 0.990 0.989

Adjusted R2 0.967 0.968 0.978 0.986 0.987 0.989 0.987

(a joint test of this hypothesis yields a test-statistic of 1.41). The main text of

the article thus reports a more parsimonious specification without interaction

terms.

B.5. Spatial regression models

Our main specification considers each distribution network as an independent

observation. This approach is motivated by the fact that distribution networks

are relatively passive components of the electricity grid: they have a stable

radial topology and are not monitored in real-time. One may however be

concerned about the potential influence of spatial interactions on our results

(e.g. local shocks in temperatures or wind speed).

To assess whether these spatial interactions may bias our estimates, we need

to formally define a spatial structure. Because we do not observe the precise

topology of the electricity grid, we instead rely on geographical proximity. For

simplicity, we restrict attention to the balanced panel of 2,112 substations that

we observe throughout the 14-year period. We then define a weight matrix W

based on whether two substations are “neighbors”, represented as a graph on

Figure B.2. More precisely, we first define a matrix with coefficients wi,j that

equal to 1 if substations i and j are considered as neighbors, and 0 otherwise.
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Table B.12. Results for the load duration curve when including interactions terms.
Robust standard errors clustered at the substation level are reported.

Dependent variable:

Q1 Q10 Q25 Q50 Q75 Q90 Q99

Non renewable thermal −0.100 −0.087 −0.064 −0.059 −0.104 −0.126 −0.130
(0.041) (0.032) (0.025) (0.028) (0.035) (0.038) (0.046)

PV −0.546 −0.375 −0.160 −0.040 −0.013 0.004 0.011
(0.041) (0.040) (0.021) (0.011) (0.012) (0.013) (0.016)

Renewable thermal −0.389 −0.377 −0.350 −0.296 −0.245 −0.198 −0.176
(0.086) (0.073) (0.065) (0.064) (0.068) (0.078) (0.091)

Small hydro −0.398 −0.360 −0.226 −0.114 −0.113 −0.124 −0.125
(0.070) (0.064) (0.037) (0.023) (0.029) (0.033) (0.037)

Wind −0.695 −0.440 −0.249 −0.126 −0.083 −0.061 −0.032
(0.028) (0.021) (0.012) (0.006) (0.006) (0.006) (0.007)

PV x Wind 0.010 0.005 0.0001 −0.001 −0.001 −0.0004 −0.001
(0.004) (0.003) (0.002) (0.001) (0.001) (0.001) (0.001)

PV x Hydro 0.018 0.014 0.0002 −0.005 −0.0004 0.002 0.001
(0.009) (0.007) (0.004) (0.003) (0.002) (0.003) (0.004)

PV x Ren thermal −0.0005 0.001 0.0004 −0.004 −0.005 −0.005 −0.004
(0.011) (0.009) (0.006) (0.005) (0.004) (0.004) (0.006)

PV x Non Ren thermal 0.006 0.008 0.004 0.002 0.003 0.002 0.002
(0.010) (0.008) (0.004) (0.003) (0.004) (0.004) (0.005)

Wind x Hydro −0.023 −0.021 −0.018 −0.013 −0.009 −0.007 −0.007
(0.017) (0.013) (0.009) (0.006) (0.004) (0.004) (0.006)

Wind x Ren thermal 0.007 0.005 0.004 0.0001 −0.004 −0.004 −0.004
(0.011) (0.008) (0.005) (0.004) (0.004) (0.004) (0.004)

Wind x Non Ren thermal −0.0004 0.0005 0.0004 0.001 0.001 0.001 0.002
(0.004) (0.004) (0.002) (0.001) (0.002) (0.002) (0.002)

Hydro x Ren thermal 0.040 0.049 0.039 0.025 0.030 0.030 0.046
(0.041) (0.037) (0.033) (0.035) (0.041) (0.047) (0.057)

Hydro x Non Ren thermal −0.003 −0.006 −0.010 −0.012 −0.016 −0.013 −0.005
(0.012) (0.012) (0.012) (0.012) (0.013) (0.014) (0.016)

Ren thermal x Non Ren thermal 0.001 −0.001 −0.003 −0.004 −0.002 −0.004 0.0003
(0.008) (0.006) (0.006) (0.005) (0.006) (0.006) (0.007)

Observations 30,091 30,091 30,091 30,091 30,091 30,091 30,091

R2 0.953 0.958 0.975 0.983 0.984 0.985 0.984

Adjusted R2 0.950 0.955 0.973 0.981 0.982 0.983 0.983

We then row-normalize the matrix so that applying W to a cross-sectional

variable yields the vector of the average value of this variable across neighbors.

In practice, we use the R package “spdep” (Bivand et al., 2013) to explore two

contrasted ways to define neighbors: (i) Delaunay triangulation (removing the

few links that are drawn partially outside the territory of mainland France) ;

and (ii) a relative neighbors approach that considers that two points pi and pj

are neighbours if, and only if:

d(pi, pj) ≤ max [d(pi, pk), d(pj , pk)] ∀k = 1, ...,N, k 6= i, j

Both approaches are found to yield similar results for our coefficients of interest.

We thus report in what follows relative neighbors approach which is more

parsimonious in terms of assumed connections.
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Figure B.2. Spatial structure used to build the weight matrix (relative neighbors
approach) in our spatial regressions.

We consider a spatial regression model with the following structure (to

simplify notations, we express the model in its “instantaneous” form):

 Qy = ρWQy +Xyβ + ν + δyιN + uy

uy = λWuy + εy

where Qy is the cross-sectional vector of our dependent variable (the value of

given percentile for each substation in year y), W the weight matrix (defined

above), Xy the matrix of distributed generation capacities in year y (with

technologies indexing column and substations indexing rows), ν is the vector

of substation fixed effects and δy is the year y fixed effect (ιN is a vector

of as many ones as substations). The components of the error term εy are

assumed i.i.d. normally distributed. The parameters we are interested in are

the 5 coefficients in β, which capture the average impact of each distributed

generation technology on the quantile of interest.

This model allows for two types of spatial interactions: residual (λ) and

endogenous (ρ). First, we expect errors to be spatially correlated because net
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withdrawals from nearby substations are influenced by a number of common

factors (e.g. local wind speed, temperature, etc.). This concern would affect our

inference conclusions. Second, the existence of endogenous spatial interaction

could bias our estimates. In particular, even though the topology of the

distribution grid is passive, it can be altered by opening or closing electrical

switching in outage situations. One may thus wonder whether the distribution

system operator does not use this technical possibility to also alter the prevalent

topology of the distribution grid, for example to account for changes in local

distributed generation capacities.

We estimate the spatial regression model using R package “splm” (Millo

and Piras, 2012). Tables B.13 and B.14 report the results, respectively for the

load duration curve and the ramp duration curve.

Table B.13. Results for the load duration curve when estimating our spatial regression
models.

Dependent variable:

Q01 Q10 Q25 Q50 Q75 Q90 Q99

ρ 0.011 0.024 0.018 0.377 0.524 0.587 0.640
(0.006) (0.008) (0.012) (0.013) (0.010) (0.008) (0.007)

λ 0.058 0.016 -0.006 -0.358 -0.488 -0.525 -0.553
(0.009) (0.011) (0.014) (0.013) (0.010) (0.009) (0.008)

PV -0.512 -0.349 -0.155 -0.036 -0.011 0.001 0.004
(0.006) (0.006) (0.005) (0.004) (0.004) (0.004) (0.005)

Wind -0.661 -0.422 -0.247 -0.102 -0.059 -0.040 -0.022
(0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002)

Small hydro -0.367 -0.345 -0.243 -0.136 -0.112 -0.109 -0.100
(0.026) (0.024) (0.019) (0.017) (0.018) (0.019) (0.022)

Renewable thermal -0.346 -0.344 -0.338 -0.287 -0.220 -0.177 -0.136
(0.025) (0.023) (0.019) (0.017) (0.018) (0.019) (0.022)

Non renewable thermal -0.093 -0.074 -0.064 -0.057 -0.080 -0.089 -0.077
(0.014) (0.013) (0.010) (0.009) (0.009) (0.010) (0.012)

Observations 29,568 29,568 29,568 29,568 29,568 29,568 29,568

R2 0.951 0.957 0.975 0.982 0.982 0.984 0.984

Overall, although the estimates from the spatial regressions do suggest the

existence of spatial interaction, our coefficients of interest (β) are robust to

accounting for them. We however note that the spatial interaction terms (ρ

and λ) take high values of opposite signs for some regressions, notably for the

50th, 75th, 90th and 99th percentiles of the load duration curve (Table B.13).

Because the joint estimation of these parameters is sometimes reported to
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Table B.14. Results for the ramp duration curve when estimating our spatial regression
models.

Dependent variable:

Q01 Q10 Q25 Q50 Q75 Q90 Q99

ρ 0.015 0.014 0.076 0.676 0.058 0.051 0.001
(0.006) (0.007) (0.009) (0.007) (0.009) (0.008) (0.007)

λ 0.121 0.110 0.039 -0.496 0.102 0.063 0.168
(0.009) (0.010) (0.012) (0.009) (0.011) (0.010) (0.009)

PV -0.155 -0.063 -0.015 -0.001 0.018 0.066 0.142
(0.001) (0.001) (0.000) (0.000) (0.000) (0.001) (0.002)

Wind -0.145 -0.046 -0.017 0.000 0.018 0.045 0.142
(0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001)

Small hydro -0.018 -0.004 0.001 0.001 0.001 -0.002 0.025
(0.006) (0.003) (0.001) (0.000) (0.001) (0.003) (0.007)

Renewable thermal -0.006 0.003 -0.001 0.001 0.001 -0.005 -0.001
(0.006) (0.002) (0.001) (0.000) (0.001) (0.003) (0.006)

Non renewable thermal -0.003 0.001 0.000 -0.001 -0.001 0.001 0.001
(0.003) (0.001) (0.001) (0.000) (0.001) (0.001) (0.004)

Observations 29,568 29,568 29,568 29,568 29,568 29,568 29,568

R2 0.951 0.964 0.967 0.850 0.967 0.960 0.950

be unstable, we also estimate simpler spatial models with either only spatial

lags (Table B.15) or only spatial interactions in the error term (Table B.16).

Although the estimates for λ and ρ are indeed found to be take different values,

our main coefficients of interest stay by contrast stable.

Table B.15. Results for the load duration curve when estimating our spatial regression
models with only spatial lags.

Dependent variable:

Q01 Q10 Q25 Q50 Q75 Q90 Q99

ρ 0.039 0.034 0.013 0.042 0.068 0.110 0.157
(0.004) (0.005) (0.006) (0.006) (0.006) (0.006) (0.006)

PV -0.506 -0.348 -0.155 -0.045 -0.015 0.003 0.008
(0.006) (0.006) (0.004) (0.004) (0.005) (0.006) (0.007)

Wind -0.655 -0.420 -0.248 -0.128 -0.085 -0.062 -0.035
(0.003) (0.003) (0.002) (0.002) (0.002) (0.003) (0.003)

Smal hydro -0.376 -0.346 -0.242 -0.138 -0.126 -0.128 -0.118
(0.026) (0.024) (0.019) (0.019) (0.022) (0.024) (0.029)

Renewable thermal -0.347 -0.345 -0.338 -0.328 -0.278 -0.236 -0.187
(0.025) (0.023) (0.019) (0.018) (0.021) (0.023) (0.028)

Non renewable thermal -0.094 -0.074 -0.064 -0.067 -0.109 -0.132 -0.126
(0.014) (0.013) (0.010) (0.010) (0.012) (0.013) (0.016)

Observations 29,568 29,568 29,568 29,568 29,568 29,568 29,568

R2 0.951 0.957 0.975 0.983 0.984 0.985 0.985
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Table B.16. Results for the load duration curve when estimating our spatial regression
models with only spatially correlated errors

Dependent variable:

Q01 Q10 Q25 Q50 Q75 Q90 Q99

λ 0.070 0.040 0.013 0.044 0.069 0.111 0.157
(0.007) (0.007) (0.007) (0.007) (0.007) (0.006) (0.006)

PV -0.513 -0.352 -0.156 -0.045 -0.016 0.002 0.009
(0.006) (0.006) (0.005) (0.004) (0.005) (0.006) (0.007)

Wind -0.663 -0.425 -0.249 -0.129 -0.087 -0.064 -0.036
(0.003) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003)

Small hydro -0.365 -0.342 -0.241 -0.136 -0.125 -0.126 -0.111
(0.026) (0.024) (0.019) (0.019) (0.022) (0.025) (0.030)

Renewable thermal -0.345 -0.344 -0.338 -0.328 -0.279 -0.237 -0.188
(0.025) (0.023) (0.019) (0.018) (0.021) (0.023) (0.028)

Non renewable thermal -0.093 -0.074 -0.064 -0.068 -0.110 -0.134 -0.132
(0.014) (0.013) (0.010) (0.010) (0.012) (0.013) (0.016)

Observations 29,568 29,568 29,568 29,568 29,568 29,568 29,568

R2 0.951 0.957 0.975 0.983 0.984 0.985 0.984
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Appendix C: Impact of Distributed Generation Technologies on
other Summary Statistics

Restricting attention to a given substation s in a given year y defines

a distribution {Ls,y(h)}h, where Ls,y(h) is the hourly net withdrawals or

substation s during hour h of year y. Various summary statistics can then be

derived from these distributions. Figure C.1 shows the evolution, between 2005

and 2018, of the cross-sectional distribution of the following summary statistics:

mean, minimum, maximum, standard deviation, skewness, and percentage of

hours with negative net load, that is hours during which power was flowing

from the distribution to the transmission grid.

Figure C.1. Evolution of a sample of summary statistics for the distribution of hourly
net loads in a given year at a given substation. “Minimum” and “maximum” net load are
actually the 1st and 999th 1000-quantiles to account for the possibility of idiosyncratic
measurement errors. Minimum, maximum, mean and standard deviation statistics are
expressed in MW. Boxes locate the first, second and third quartiles of the distributions.
Top whiskers (resp. bottom whiskers) are drawn at a distance of 1.5 interquartile range
above the third quartile (resp. below the first quartile). When they fall outside of the
interval delimited by whiskers, the 1st, 5th and 10h (resp. the 99th, 95th and 90th)
centiles are respectively depicted as red, blue and green dots. For more clarity, the tails
of the distributions are censored for the skewness metric.
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We observe that the summary statistics that exhibit the most significant

changes relate to reverse power flows, that is to hours during which local

generation exceeds local consumption. For example, the left tail of the

distribution of minimum net load and the right tail of the distribution of the

percentage of hours with negative net load have expanded significantly between

2005 and 2018. Figure C.2 further shows that the fraction of substations that

have experienced at least one hour of reverse power flows has increased from

6% in 2005 to more than 25% in 2018. In other words, over a quarter of

substations now have to deal with hours during which electricity is flowing

from the distribution to the transmission grid. In addition, the fraction of

substations for which peak usage (in absolute value) was reached during an

hour with reverse power flows has increased from under 1% in 2005 to almost

9% in 2018.

Figure C.2. Evolution of the percentage of substations that (i) experienced reverse power
flows in a given year; (ii) reached their peak usage (in absolute value) when net load was
negative, that is during an hour where they were moving electricity from the distribution
to the transmission grid.

We can also estimate the impact that different distributed generation

technologies have had on the summary statistics plotted on Figure C.1. To
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do so, we use the specification of Equation (1) using these summary statistics

as dependent variables. Table C.1 shows our results. First, we note that the

estimated coefficients when the dependent variable is mean hourly net load may

be interpreted as capacity factors, that is as the ratio of average generation over

installed capacity. For example, our results suggest a capacity factor of 11% for

PV and 19% for wind. These estimates are close to but somewhat smaller

than publicly reported capacity factors (respectively 14 and 21% according to

RTE (2019)). Power losses between the generation site and the substation, as

well as the fact that installed capacities are measured as of 31 December, are

possible explanations for why we are getting smaller estimates. In addition,

small-scale PV installations, whose output is typically not observed by the

TSO, seem likely to have lower capacity factors than larger units due to less

efficient technologies and more frequent outages.61 Second, we observe that

different technologies have very different impacts on minimum and maximum

net load. While non-renewable thermal units impact minimum and maximum

net load in a similar way to they impact mean net load, PV and wind have

a much lower impact on peak load. Third, an increase in PV, wind and small

hydro capacities is found to be associated with more negatively skewed and

more volatile distributions of net loads. In contrast, thermal units have much

milder impacts. Finally, we observe that reverse power flows seem to be driven

by wind, PV, and small hydro investments.

Appendix D: Statistical Tests

This Appendix provides details on the statistical tests we performed to assess

the characteristics of the quantile impact functions for the load duration curve.

We follow the approach derived in Wolak (1987, 1989). More specifically, we

61. Consistent with this hypothesis, estimating the same model when replacing total
installed PV capacity by installed PV capacity from units for which we observe the upstream
substation (which tend to be larger installations) yields a capacity factor of 12%.
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Table C.1. Estimated impact of the different distributed generation technologies on a set
of summary statistics for the distribution of substation net hourly loads. When relevant,
variables are expressed in MW. “Minimum” and “maximum” statistics are actually the
1st and 999th 1000-quantiles to account for the possibility of idiosyncratic measurement
errors. Robust standard errors clustered at the substation level are reported.

Dependent variable:

Mean Minimum Maximum
Standard

Skewness
% hours net

Deviation load <0

Wind −0.192 −0.735 −0.030 0.146 −0.019 0.525
(0.006) (0.025) (0.006) (0.008) (0.001) (0.026)

PV −0.109 −0.565 0.020 0.130 −0.028 0.385
(0.012) (0.039) (0.015) (0.014) (0.002) (0.035)

Small hydro −0.192 −0.363 −0.143 0.072 −0.015 0.817
(0.025) (0.058) (0.039) (0.025) (0.005) (0.180)

Renewable thermal −0.302 −0.350 −0.171 0.037 0.001 0.053
(0.050) (0.068) (0.061) (0.017) (0.004) (0.069)

Non renewable −0.081 −0.091 −0.107 −0.019 −0.005 −0.021
thermal (0.024) (0.038) (0.045) (0.009) (0.004) (0.034)

Observations 30,091 30,091 30,091 30,091 30,091 30,091

R2 0.983 0.952 0.983 0.957 0.361 0.885

Adjusted R2 0.982 0.948 0.981 0.953 0.311 0.875

stack the 7 quantiles regressions into a single model. We then compute the

variance Var(β̂) of the ordinary least square estimator. For tractability reasons,

residuals for the stacked model are obtained by estimating each regression

separately. More precisely, we first regress the dependent and independent

variables on our set of fixed effects, and then use the residuals from these

regressions to estimate the regressions for each quantile level. We obtain

35 coefficients β̂t,q where t indexes distributed generation technologies and

q indexes quantiles. We denote β̂ the corresponding vector of estimated

coefficients.

Our test statistic τ is then the optimized value of the following problem:

τ ≡ min
δ

(β̂ − δ)TVar(β̂)−1(β̂ − δ)

s.t.

HC0-h

(D.1)

The constraint HC0-h formalizes the different null hypotheses we test in

terms of linear equality or inequality constraints on δ. More specifically, for a

given technology t, these constraints are:
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• HC0-peak: the coefficient for the impact on the 99th quantile of the

distribution of hourly net load is zero

δt,99 = 0

• HC0-inc: the quantile impact function is increasing

δt,1 ≤ δt,10 ≤ δt,25 ≤ δt,50 ≤ δt,75 ≤ δt,90 ≤ δt,99

• HC0-inc-peak: the quantile impact function is increasing and the

coefficient for the impact on the 99th quantile of the distribution of hourly

net load is zero

δt,1 ≤ δt,10 ≤ δt,25 ≤ δt,50 ≤ δt,75 ≤ δt,90 ≤ δt,99 and δt,99 = 0

• HC0-dec: the quantile impact function is decreasing

δt,1 ≥ δt,10 ≥ δt,25 ≥ δt,50 ≥ δt,75 ≥ δt,90 ≥ δt,99

We run a total of 20 statistical tests (5 technologies times 4 null hypotheses).

Table D.1 reports these test statistics.

Table D.1. Test statistics

Technology HC0-peak HC0-inc HC0-inc-peak HC0-dec
Wind 145.92 0 145.92 46,154.49
PV 1.26 0 1.26 7,388.58

Small hydro 18.36 0.12 18.36 144.89
Renewable thermal 42.67 0 42.67 54.83

Non renewable thermal 59.39 90.32 97.21 6.06

As described in Wolak (1987, 1989), the null distribution of the test statistic

is a weighted sum of chi-square distributions ranging from zero to P degrees of

freedom (where P is the number of constraints). Because the weights sum to

one, bounds for the exact critical values for the test statistic can be obtained

from the critical values of the chi-square distribution with the most unfavorable

number of degrees of freedom. In our application, these bounds appear to

be sufficient to infer the result of the statistical tests. For example, HC0-inc

simultaneously tests for 6 inequalities. Since Pr
[
χ2
1 ≥ 2.706

]
= 0.1, we cannot
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reject the null hypothesis even at the 0.1 level whenever the test statistic is

lower than 2.706. Conversely, since Pr
[
χ2
6 ≥ 16.812

]
= 0.01, a test statistic

higher than 16.812 rejects the null hypothesis at the 0.01 level (the critical

value for the 0.01 level being weakly less stringent). To fix ideas about the

ranges of critical values, the upper-tail critical values of χ2 distribution with 1

(resp. 7) degrees of freedom are 2.706 and 6.635 (resp. 12.017 and 18.475) for

probabilities 0.1 and 0.01.

Appendix E: Quadratic Specification Detailed Results

This Appendix reports the results from a quadratic specification in installed

capacities of distributed generation. Figures E.1 and E.2 plot the corresponding

marginal effects for wind and PV, defined as:

α̂q,t + 2β̂q,tKt,s,y

Confidence intervals are built from the variance-covariance matrix with errors

clustered at the substation level.

Table E.1. Estimated coefficients for a quadratic specification of the impact of
distributed generation on the load duration curve. Robust standard errors clustered at
the substation level are reported.

Dependent variable:

Q01 Q10 Q25 Q50 Q75 Q90 Q99

PV −0.227 −0.116 −0.058 −0.051 −0.010 0.011 0.014
(0.050) (0.033) (0.017) (0.015) (0.018) (0.020) (0.024)

PV2 −0.007 −0.006 −0.002 0.0001 −0.0001 −0.0002 −0.0001
(0.002) (0.001) (0.0003) (0.0002) (0.0003) (0.0003) (0.0004)

Wind −0.607 −0.366 −0.235 −0.151 −0.133 −0.105 −0.069
(0.055) (0.040) (0.023) (0.010) (0.007) (0.007) (0.008)

Wind2 −0.001 −0.001 −0.0002 0.0002 0.001 0.001 0.0004
(0.001) (0.001) (0.0004) (0.0001) (0.0001) (0.0001) (0.0001)

Small hydro −0.092 −0.117 −0.147 −0.160 −0.191 −0.182 −0.216
(0.076) (0.066) (0.061) (0.056) (0.060) (0.068) (0.078)

Small hydro2 −0.013 −0.011 −0.004 0.001 0.003 0.002 0.004
(0.004) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002)

Renewable thermal −0.440 −0.438 −0.412 −0.387 −0.344 −0.301 −0.218
(0.085) (0.074) (0.067) (0.068) (0.071) (0.081) (0.087)

Renewable thermal2 0.005 0.005 0.005 0.005 0.005 0.005 0.003
(0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.004)

Non renewable thermal 0.044 0.020 −0.006 −0.044 −0.092 −0.091 −0.053
(0.041) (0.034) (0.033) (0.035) (0.044) (0.051) (0.059)

Non renewable thermal2 −0.007 −0.005 −0.003 −0.001 −0.001 −0.002 −0.004
(0.001) (0.001) (0.001) (0.001) (0.002) (0.002) (0.002)
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Table E.2. Estimated coefficients for a quadratic specification of the impact of
distributed generation on the ramp duration curve. Robust standard errors clustered at
the substation level are reported.

Dependent variable:

Q01 Q10 Q25 Q50 Q75 Q90 Q99

PV −0.071 −0.026 −0.017 −0.003 0.017 0.037 0.054
(0.017) (0.004) (0.001) (0.001) (0.001) (0.005) (0.015)

PV2 −0.002 −0.001 0.00003 0.00001 0.00005 0.001 0.002
(0.001) (0.0001) (0.00002) (0.00001) (0.00002) (0.0002) (0.001)

Wind −0.136 −0.040 −0.016 0.0001 0.017 0.041 0.130
(0.012) (0.004) (0.002) (0.0001) (0.002) (0.004) (0.012)

Wind2 −0.0001 −0.0001 −0.00001 0.00000 0.00001 0.0001 0.0002
(0.0002) (0.0001) (0.00002) (0.00000) (0.00002) (0.0001) (0.0002)

Small hydro 0.004 −0.0004 0.005 0.0004 −0.002 −0.013 0.011
(0.022) (0.006) (0.003) (0.002) (0.003) (0.007) (0.030)

Small hydro2 −0.001 −0.0001 −0.0002 0.00002 0.0001 0.0005 0.001
(0.001) (0.0002) (0.0001) (0.0001) (0.0001) (0.0002) (0.001)

Renewable thermal −0.017 −0.006 −0.001 −0.001 0.002 0.003 0.032
(0.020) (0.009) (0.004) (0.002) (0.005) (0.010) (0.021)

Renewable thermal2 0.00003 0.0003 0.0001 0.0002 −0.0001 −0.0003 −0.002
(0.001) (0.001) (0.0003) (0.0001) (0.0004) (0.001) (0.002)

Non renewable thermal −0.008 0.002 0.002 −0.0004 −0.004 −0.001 0.007
(0.012) (0.005) (0.002) (0.001) (0.002) (0.005) (0.013)

Non renewable thermal2 0.0003 −0.00004 −0.0001 −0.00004 0.0002 0.0001 −0.0003
(0.0004) (0.0002) (0.0001) (0.00004) (0.0001) (0.0002) (0.0004)

Figure E.1. Marginal impact of wind and solar on the load duration curve as a function
of installed capacity (confidence intervals are built from the variance-covariance matrix
with errors clustered at the sub-station level)
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Figure E.2. Marginal impact of wind and solar on the ramp duration curve as a function
of installed capacity (confidence intervals are built from the variance-covariance matrix
with errors clustered at the sub-station level)
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Appendix F: Discussion of External Validity

F.1. Spatial Heterogeneity within France

Figure F.1 shows how the installed capacity of distributed wind and solar at

the department level has evolved over time. We observe very different adoption

patterns. Wind has experienced a large growth in the North but is virtually

absent in the South-East. Conversely, PV has grown significantly in the South

but much less in the North East.

Figure F.1. Evolution of the installed capacities of distributed wind and PV at the
department level.

Because most departments have low installed capacities of at least one

distributed generation technology, we do not study each department in isolation

but rather divide France into four “macro regions”.62 Figure F.2 shows how

the installed capacity of distributed generation by technology has evolved over

time in each of these regions.

Given the observed heterogeneity of adoption patterns across our four macro

regions, we re-ran our main model for each macro region separately. Tables F.1

62. France has actually 12 administrative regions which we use to build year-by-region
dummies in one of the robustness checks of Appendix B. We use larger “macro regions”
here to avoid multiplying the number of different results reported and to benefit from higher
statistical power.
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Figure F.2. Total installed capacities of distributed generation (in GW) by year and
technology (as observed in our final dataset) when dividing France into four macro-region.

to F.4 report the results for the load duration curve. They are qualitatively

similar to our main results with two caveats. First, the parameter estimates are

noisier and cannot be precisely estimated in regions where a given technology is

not sufficiently deployed (e.g. PV in the North). Second, consistently with the

results of our quadratic specification, wind has a larger impact on the highest

quantiles of the distribution of hourly net withdrawals in the South, where its

installed capacity is significantly lower than in the North.
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Table F.1. Estimated coefficients when regressing the main quantiles of the distribution
of hourly net withdrawals (for a given substation in a given year) on the installed capacities
of the different technologies, restricting the sample to the North-West macro region.
Robust standard errors clustered at the substation level are reported

Q01 Q10 Q25 Q50 Q75 Q90 Q99

Wind −0.584 −0.361 −0.216 −0.124 −0.096 −0.077 −0.050
(0.053) (0.033) (0.021) (0.015) (0.014) (0.013) (0.012)

PV −0.044 0.029 0.020 −0.011 0.004 0.030 0.094
(0.104) (0.076) (0.054) (0.052) (0.057) (0.065) (0.076)

Small hydro −0.144 −0.147 −0.142 −0.131 −0.135 −0.136 −0.122
(0.216) (0.143) (0.115) (0.109) (0.134) (0.151) (0.150)

Renewable thermal −0.492 −0.505 −0.475 −0.424 −0.374 −0.329 −0.232
(0.113) (0.095) (0.095) (0.095) (0.098) (0.118) (0.146)

Non renewable thermal −0.210 −0.142 −0.115 −0.104 −0.156 −0.209 −0.255
(0.038) (0.031) (0.028) (0.037) (0.047) (0.045) (0.050)

Observations 7,139 7,139 7,139 7,139 7,139 7,139 7,139

R2 0.953 0.959 0.971 0.977 0.979 0.979 0.978

Adjusted R2 0.949 0.956 0.969 0.975 0.977 0.977 0.976

Table F.2. Estimated coefficients when regressing the main quantiles of the distribution
of hourly net withdrawals (for a given substation in a given year) on the installed capacities
of the different technologies, restricting the sample to the North-East macro region.
Robust standard errors clustered at the substation level are reported

Q01 Q10 Q25 Q50 Q75 Q90 Q99

Wind −0.722 −0.462 −0.259 −0.125 −0.075 −0.052 −0.027
(0.025) (0.019) (0.011) (0.005) (0.006) (0.007) (0.007)

PV −0.177 −0.122 −0.060 −0.033 −0.005 0.013 0.008
(0.094) (0.067) (0.043) (0.039) (0.048) (0.052) (0.051)

Small hydro −0.327 −0.256 −0.275 −0.309 −0.406 −0.484 −0.614
(0.134) (0.128) (0.125) (0.135) (0.142) (0.156) (0.175)

Renewable thermal −0.238 −0.273 −0.254 −0.218 −0.143 −0.107 −0.097
(0.111) (0.089) (0.070) (0.075) (0.085) (0.105) (0.099)

Non renewable thermal 0.065 0.032 0.020 −0.005 −0.031 −0.028 0.024
(0.043) (0.041) (0.039) (0.039) (0.049) (0.054) (0.062)

Observations 9,107 9,107 9,107 9,107 9,107 9,107 9,107

R2 0.961 0.955 0.973 0.983 0.984 0.986 0.988

Adjusted R2 0.957 0.951 0.971 0.981 0.982 0.985 0.987

Table F.3. Estimated coefficients when regressing the main quantiles of the distribution
of hourly net withdrawals (for a given substation in a given year) on the installed capacities
of the different technologies, restricting the sample to the South-West macro region.
Robust standard errors clustered at the substation level are reported

Q01 Q10 Q25 Q50 Q75 Q90 Q99

Wind −0.494 −0.353 −0.258 −0.153 −0.114 −0.094 −0.082
(0.062) (0.047) (0.034) (0.018) (0.012) (0.014) (0.017)

PV −0.569 −0.378 −0.172 −0.069 −0.042 −0.025 −0.010
(0.038) (0.033) (0.018) (0.014) (0.014) (0.015) (0.019)

Small hydro −0.347 −0.339 −0.282 −0.165 −0.146 −0.169 −0.164
(0.084) (0.061) (0.050) (0.037) (0.041) (0.040) (0.052)

Renewable thermal −0.340 −0.344 −0.337 −0.368 −0.333 −0.296 −0.281
(0.133) (0.123) (0.108) (0.106) (0.086) (0.090) (0.112)

Non renewable thermal −0.039 −0.025 −0.033 −0.027 −0.040 −0.041 −0.014
(0.103) (0.078) (0.061) (0.058) (0.070) (0.077) (0.093)

Observations 7,148 7,148 7,148 7,148 7,148 7,148 7,148

R2 0.940 0.958 0.975 0.983 0.984 0.984 0.979

Adjusted R2 0.936 0.954 0.973 0.982 0.983 0.982 0.978
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Table F.4. Estimated coefficients when regressing the main quantiles of the distribution
of hourly net withdrawals (for a given substation in a given year) on the installed capacities
of the different technologies, restricting the sample to the South-East macro region. Robust
standard errors clustered at the substation level are reported

Q01 Q10 Q25 Q50 Q75 Q90 Q99

Wind −0.640 −0.426 −0.262 −0.156 −0.118 −0.092 −0.062
(0.043) (0.040) (0.022) (0.013) (0.015) (0.016) (0.016)

PV −0.586 −0.437 −0.200 −0.045 −0.014 0.013 0.029
(0.065) (0.058) (0.029) (0.014) (0.015) (0.017) (0.019)

Small hydro −0.452 −0.414 −0.258 −0.131 −0.116 −0.102 −0.073
(0.084) (0.079) (0.044) (0.033) (0.043) (0.045) (0.051)

Renewable thermal −0.345 −0.303 −0.323 −0.319 −0.284 −0.229 −0.147
(0.114) (0.110) (0.107) (0.110) (0.115) (0.119) (0.145)

Non renewable thermal 0.128 0.046 0.028 −0.013 −0.062 −0.059 −0.041
(0.072) (0.058) (0.060) (0.072) (0.095) (0.116) (0.129)

Observations 6,697 6,697 6,697 6,697 6,697 6,697 6,697

R2 0.948 0.968 0.979 0.982 0.981 0.980 0.978

Adjusted R2 0.944 0.966 0.977 0.981 0.979 0.978 0.977
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F.2. External Validity to Other Power Systems

A simple observation of renewable generation patterns shows that the high

level of contemporaneous correlation in the output of wind/solar units (e.g.

night time for PV) mechanically creates hours with consistently low wind/solar

generation.63 In the absence of storage, the persistence of such hours with low

generation even at high penetration levels significantly attenuate the ability of

wind and solar to decrease peak net demand beyond a certain point.64 As a

result, it seems likely that many of our results for France would carry over at

least partially to other power systems.

To formalize this intuition, we start by rephrasing it in the most simple

setting. Assume there are only two time periods, with corresponding gross

demand levels 5 and 6 MW. The corresponding load duration curve is depicted

in red on the pictures below. Further assume that an intermittent distributed

generation unit connects to this distribution network, with an output of 0 in

the period where demand is 5, and an output of 3 when demand is 6.

0 0.5 1 q

5

6

3

The “direct” impact of the distributed generation unit is thus 0 on the

lower quantiles, and −3 on the upper quantiles. However, the period where

63. Wolak (2016) documents the significant degree of contemporaneous correlation in the
hourly capacity factors across 40 wind generation units and across the 13 solar generation
units in California.

64. Wolak (2022) demonstrates that the significant increase in solar capacity in California
has shifted the net peak demand period into the late evening.
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gross demand is 6 is no longer the peak period for net withdrawals, that is

gross demand minus distributed generation. The new load duration curve is

obtained by reshuffling periods in increasing order in terms of net withdrawal

(in blue below).

0 0.5 1 q

5

6

3

After accounting for “peak shifting”, the final impact of the distributed

generation unit on the load duration curve is −2 on the lower quantiles, and −1

on the upper quantiles. In other words, the total effect of distributed generation,

as estimated by our empirical strategy, may be decomposed into a “direct

effect” ((0,−3) in our example) and a “peak shifting effect” ((−2,+2) in our

example).

This decomposition can be generalized to a larger number T of time

intervals (e.g. T = 8760 for our data). Indeed, let Li denote gross consumption

during time period i, where periods are sorted by increasing levels of gross

consumption: L1 ≤ L2 ≤ ... ≤ LT . We further denote Gi the output from

distributed generation in period i. The net withdrawal in period i is then

Li − Gi. Because Gi has different determinants than Li, the metric Li − Gi
needs no longer be increasing in i. We can however define a permutation σ(.)

such that j = σ(i) is the ranking of period i when ordered by net withdrawals.

For example, 10 = σ(2) means that the 2nd lowest value of {Li}i is reached

during the same physical time period (e.g. 10 January 3 am) as the 10th lowest

value of {Lj −Gj}j . Assuming a capacity K of distributed generation has been
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installed and a linear effect, our empirical strategy for a given quantile q ∈ {0, 1}

estimates an impact βq defined as:

βq =
(Lσ−1(qT ) −Gσ−1(qT ))− LqT

K

This total impact may be decomposed as:

βq = −GqT
K︸ ︷︷ ︸

Direct effect

+
(Lσ−1(qT ) −Gσ−1(qT ))− (LqT −GqT )

K︸ ︷︷ ︸
Peak-shifting effect

Because we do not observe gross consumption and distributed generation

output separately in our data, performing the decomposition between a “direct”

and a “peak shifting” effect would require to build a counterfactual gross

electricity demand, which is very challenging when the spatial granularity is a

distribution network and the time granularity is hourly observations. However,

we can perform numerical simulations to get a sense of the likely relative

importance of both effects in the case of PV. Indeed, we can (i) retrieve the

hourly production profile from all PV capacities at the national level (publicly

available from 2012 onward) and assume that local PV production follows the

same profile (assuming a capacity factor of 12% below); and (ii) focus attention

to a substation where very little distributed generation is installed so that

the hourly net withdrawals we observe may be considered as gross electricity

demand. Under these strong assumptions, we can disentangle the “direct” and

“peak-shifting” effects under increasing installed capacities of distributed PV.

We ran this exercise in 2013 for a randomly chosen substation with low

installed capacities of distributed generation for that year (results for other

draws of substations were qualitatively similar). This substation is observed to

withdraw on average 21 MW from the transmission grid, which we assume to

be gross electricity demand. We then simulate the addition of 5 and 50 MW

of distributed PV which, given the assumed capacity factor of 12%, generates

respectively (over the course of the year) 3% and 29% of the total annual local

electricity consumption. Figure F.3 shows the quantile impact functions (which
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we can compute exactly given our simplifying assumptions), decomposing

it between the “direct” and “peak shifting” effect. In this Figure, red dots

represent the direct effect (−GqTK for each quantile q), green dots the indirect

effect (
(Lσ−1(qT )−Gσ−1(qT ))−(LqT−GqT )

K for each quantile q), and blue dots the

resulting combined effect of the two, which is the total effect our empirical

strategy seeks to recover.

Figure F.3. Decomposition of the (average) total effect between a “direct” and a “peak
shifting” effect for a randomly chosen substation with little distributed generation in 2013,
assuming local hourly distributed PV generation follows the national production profile.
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Consistently with our main results, the impact of distributed PV on the

highest quantiles is very small when significant levels of installed capacities are

assumed. In addition, the “peak shifting” effect greatly attenuates the “direct”

impact of distributed generation, that is the impact that would be observed

if the ranking of net withdrawals would remain the same as the ranking of

gross electricity consumption. The intuition behind this result goes as follows.

With low levels of distributed generation (G << L), the ranking of hours is

almost identical for gross consumption and net withdrawals, so that the peak-

shifting effect is close to zero and the direct effect −GqTK dominates. In contrast,

with high levels of distributed generation (G >> L), the total effect converge

towards −
Gσ−1(qT )

K . The ranking σ−1 will in turn be significantly influenced by

the hourly capacity factor of distributed generation units.
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