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Abstract

In a linear instrumental variables (IV) setting for estimating the causal effects of

multiple confounded exposure/treatment variables on an outcome, we investigate

the adaptive Lasso method for selecting valid instrumental variables from a set of

available instruments that may contain invalid ones. An instrument is invalid if it

fails the exclusion conditions and enters the model as an explanatory variable. We

extend the results as developed in Windmeijer et al. (2019) for the single exposure

model to the multiple exposures case. In particular we propose a median-of-medians

estimator and show that the conditions on the minimum number of valid instruments

under which this estimator is consistent for the causal effects are only moderately

stronger than the simple majority rule that applies to the median estimator for the

single exposure case. The adaptive Lasso method which uses the initial median-of-

medians estimator for the penalty weights achieves consistent selection with oracle

properties of the resulting IV estimator. This is confirmed by some Monte Carlo

simulation results. We apply the method to estimate the causal effects of educa-

tional attainment and cognitive ability on body mass index (BMI) in a Mendelian

Randomization setting.

Keywords: Causal inference; Adaptive Lasso; Instrumental variables; Invalid instruments;

Mendelian randomization; Median-of medians estimator



1 Introduction

Instrumental variable (IV) methods are widely used to determine the causal effect of a

treatment/exposure on an outcome when their relationship is potentially confounded by

unobserved factors. In IV estimation, it is crucial that instruments are valid. This requires

that (a) the instruments must be associated with the exposure variable (the relevance

condition), and (b) the only pathway from the instruments to the outcome is through the

exposure; the instruments do not have direct effects on the outcome nor affect the outcome

through unobservables (the exclusion conditions). In our setting, we are concerned with

the situation where we have a fixed, but large number of available instruments that satisfy

the relevance condition. However, some of the instruments may violate the exclusion

conditions and hence are invalid. If we include these invalid instruments in IV estimation,

the resulting estimator will be inconsistent. It is therefore important to have selection

methods that consistently selects the valid instruments.

Previous work has addressed the IV selection problem in the case of a single exposure

variable. Kang et al. (2016) establish the model setup for this IV selection. They develop

the identification conditions and propose a selection method based on the Lasso (Tib-

shirani, 1996). Windmeijer et al. (2019) propose a method based on the adaptive Lasso

(Zou, 2006) under the assumption that more than half of the candidate instruments are

valid; the so-called majority rule. The median of the instrument-specific estimates is

then a consistent estimator of the causal effect and can be used for the penalisation of

the adaptive Lasso, resulting in consistent selection of the valid instruments and oracle

properties of the post-selection IV estimator, meaning that the IV estimator behaves in

large samples as if the set of valid instruments were known (Fan and Li, 2001). Guo et al.

(2018) refine the identification condition proposed by Kang et al. (2016) and establish

the sufficient and necessary identification condition which is the plurality rule. It states

that the valid instruments form the largest group, where instruments form a group if

the instrument-specific estimators for the causal effect converge to the same value, and

is hence a relaxation of the majority rule. The Hard Thresholding with Voting method

proposed by Guo et al. (2018) can achieve consistent selection under the plurality rule.

Also assuming the plurality rule, Windmeijer et al. (2021) propose the Confidence In-

terval method which result in consistent selection, and has as an advantage over the

Hard Thresholding with Voting method that the number of instruments selected as valid

in the Confidence Interval method decreases monotonically when decreasing the tuning
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parameter.

Unlike the existing literature above, we consider here the case of multiple, potentially

confounded exposure variables. This setting can be motivated by recent Mendelian Ran-

domization (MR) studies in epidemiology. In MR studies, genetic variants are used as

instruments for estimating the causal effect of an modifiable exposure on a health-related

outcome. In many cases, there are additional exposure variables that need to be con-

sidered apart from the primary exposure. For example, Sanderson et al. (2019) estimate

the effect of educational attainment on body mass index (BMI) conditional on cognitive

ability. Both educational attainment and cognitive ability are confounded by unobserved

factors that affect both the outcome and the exposure variables. Therefore, a method

to select the valid instruments needs to take account of the multiple exposure variables

problem.

We contribute to the literature by extending the adaptive Lasso method in Windmeijer

et al. (2019) to allow for multiple exposure variables. The main issue for the adaptive

Lasso is to have an initial consistent estimator of the causal effects that can be used for the

penalisation. For the single exposure case, the median of the instrument-specific estimates

of the causal effect is a consistent estimator when more than 50% of the instruments are

valid and satisfies the conditions for oracle properties when used in the adaptive Lasso for

instrument selection. This could simply be extended for the multiple exposure case to the

medians of all just-identified estimates of the causal effects. A just-identified estimator is

one where the number of instruments used is equal to the number of exposure variables.

Let kx and kz denote the number of exposure and instrumental variables respectively.

Then there are
(
kz
kx

)
just-identified estimators of the causal effects and if more than 50% of

these are consistent, then the medians of these p estimators are consistent. Let kV denote

the number of valid instruments. Under a strong relevance assumption that each set of

just-identifying instruments are jointly relevant for all exposure variables, this majority

rule then implies that
(
kV
kx

)
>1

2

(
kz
kx

)
. As an example, with kx = 2 and kz = 21, we have

210 just-identifying pairs of instruments, of which more than 105 need to be pairs of valid

instruments. This implies that for this naive median estimator at least 16 instruments

need to be valid.

We propose a novel median-of-medians estimator which we show to be a consistent

estimator of the causal effects and which utilises the available information better, in the

sense that it requires less instruments to be valid for consistency compared to the naive

median estimator. We show in Section 3 that for kx ≥ 2, the median-of-medians estimator
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is consistent if kV >
kz+kx−1

2
. This condition is a (weakly) weaker condition on the number

of valid instruments than for the naive median estimator, with the difference increasing in

kz. For the case of kx = 2 this results in the condition that kV >
kz+1
2

, and so for kz = 21

this implies that at least 12 instruments need to be valid. In other words, whereas the naive

median estimator allows in this case for a maximum of 5 instruments to be invalid, the

median-of-medians estimator is still consistent with 9 invalid instruments. The condition

for the median-of-medians estimator is a natural progression of the condition for the

single-exposure majority rule that kV >
kz
2

, and for kx = 2, it is only stricter when kz

is odd. For kx > 2, the estimator is strictly speaking a median-of-medians-of-medians....

estimator, but for brevity, we will call it the median-of-medians estimator for all kx.

The assumption that all just-identifying sets of instruments are jointly relevant for all

exposure variables may not hold in practice. In our application, genetic variants that are

candidate instruments for educational attainment and cognitive ability are identified in

separate GWAS studies and there is very little overlap of genetic variants between the

two traits. We can adjust the median-of-medians estimator for this block structure of

the instruments by only considering in this case the just-identifying pairs of instruments,

where each pair contains one instrument from each group.

The paper is structured as follows. Section 2 introduces the model, IV estimation and

the adaptive Lasso IV selection method for selecting the valid/invalid instruments. Section

3 introduces the median-of-medians estimator and derives its properties. Section 4.1 we

discuss the median-of-medians estimator based consistent selection and oracle properties

of the adaptive Lasso method, also combining it with the downward testing procedure

for model selection proposed by Andrews (1999). In Section 5, we introduce the block

structure variation of the method that accounts for violation of the full rank assumption.

Section 6 presents some Monte Carlo simulation results. In Section 7, we apply our method

to Mendelian randomisation and estimate the causal effects of educational attainment and

cognitive ability on BMI. Section 8 concludes.

Notation. In the remainder of the paper, let ‖{.}‖q denote the lq-norm of a vector.

For a matrix Xn×p with full column rank, let PX = X(XTX)−1XT and MX = In −PX ,

where In is the n-dimensional identity matrix. For a general matrix A, r (A) denotes its

rank. Convergence in probability and distribution are indicated by
p→ and

d→ respectively.

3



2 Model, IV Estimation and Adaptive Lasso

We have an i.i.d. sample {Yi,XT
i ,Z

T
i }ni=1, where Yi is the outcome of interest for observa-

tion i, Xi is a kx-vector of exposure variables, Zi is a kz-vector of putative instrumental

variables and n is the sample size. As in Guo et al. (2018), Windmeijer et al. (2019) and

Windmeijer et al. (2021), we follow Kang et al. (2016) who, starting from the additive

linear constant effects model of Holland (1988), arrived at the observed data model for

the random sample given by

Yi = XT
i β + ZT

i α+ Ui, (1)

where β is the causal parameter vector of interest, and with E[Ui|Zi] = 0, but Xi may

be confounded by Ui. The parameter vector α captures the violations of the exclusion

restriction. Formally, following the definition of invalid instruments as in Guo et al. (2018,

p797), for j ∈ 1, ..., kz, an instrument Zj is invalid if αj 6= 0 and valid if αj = 0. Let V and

A be the sets of indices of the valid and invalid instruments respectively: V = {j : αj = 0},
A = {j : αj 6= 0}, with dimensions kV and kA respectively, then kz = kV + kA.

Let y be the n-vector of n observations on {Yi}, and let X and Z be the n×kx and n×kz
matrices of the exposure variables and candidate instrumental variables, respectively. Let

ZV and ZA denote the n× kV and n× kA matrices of valid and invalid instruments. The

oracle model is the model where the set of invalid instruments is known, and is hence

given by

y = Xβ + ZAαA + u,

where u is the n-vector with elements {Ui}. The so-called first-stage regression model of

X on Z is given by

X = ZΠ + E

= ZVΠV + ZAΠA + E,

where Π = [ΠV ΠA] =
(
E
[
ZiZ

T
i

])−1 E [ZiX
T
i

]
and E [Ei|Zi] = 0.

We assume the instrument relevance condition for the oracle model holds:

Assumption 1. Relevance: r(ΠV) = kx.

We further make the standard assumptions as in Windmeijer et al. (2019):
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Assumption 2. E
[
ZiZ

T
i

]
= Qzz, with Qzz a finite and full rank matrix; E

[
Zi.X

T
i.

]
=

Qzx, with Qzx a finite matrix.

Assumption 3. 1√
n
ZTu

d→ N (0,Σzu) as n→∞ , with Σzu a finite and full rank matrix.

We further make a conditional homoskedasticity assumption,

Assumption 4. Homoskedasticity: E [U2
i |Zi] = σ2

u.

It follows that under under the homoskedasticity assumption, Σzu = σ2
uQzz.

2.1 IV Estimation

Let θor =
(
βT αTA

)T
and R = [X ZA]. A standard two-stage least squares (2sls) IV

estimator of θor is defined as

θ̂
or

2sls = arg min
θ

(y −Rθ)T Z
(
ZTZ

)−1
ZT (y −Rθ) ,

resulting in

θ̂
or

2sls =
(
RTPZR

)−1
RTPZy

=
(
R̂T R̂

)−1
R̂Ty,

where R̂ =
[
X̂ ZA

]
, with X̂ = ZΠ̂, and Π̂ =

(
ZTZ

)−1
ZTX. Under Assumptions 1-4 the

2sls estimator is asymptotically efficient, and its limiting distribution is given by

√
n
(
θ̂
or

2sls − θ
)

d→ N
(

0, σ2
u

(
QT
zxQ

−1
zzQzx

)−1)
. (2)

From standard partitioned regression results, we can express the 2sls estimators for β

and αA as

β̂
or

2sls =
(
X̂TMZAX̂

)−1
X̂TMZAy, (3)

α̂orA =
(
ZT
AMX̂ZA

)−1
ZT
AMX̂y. (4)

When kV > kx, the test for overidentifying restrictions is a test for H0 : E [ZiUi] = 0.

The Sargan (1958) test statistic is given by

S
(
θ̂
or

2sls

)
=

(
y −Rθ̂

or

2sls

)T
Z
(
ZTZ

)−1
ZT
(
y −Rθ̂

or

2sls

)
(
y −Rθ̂

or

2sls

)T (
y −Rθ̂

or

2sls

)
/n

, (5)
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which, under the null, converges to a χ2
kV−kx distributed random variable under Assump-

tions 1-4.

Let a selection of kA∗ instruments classified as invalid be denoted ZA∗ , with kz−kA∗ ≥
kx. The corresponding model is given by

y = Xβ + ZA∗αA∗ + u∗

= R∗θ∗ + u∗.

Then, if the set contains all invalid instruments, such that ZA⊆ ZA∗ , it follows that the IV

estimator for β is consistent and normal and, for kz − kA∗ > kx, S
(
θ̂
∗
2sls

)
d→ χ2

kz−kx−kA∗ .

Alternatively, under the plurality rule that the valid instruments form the largest group,

it follows that for all sets with kA∗ = kA, if ZA∗ 6= ZA, then the IV estimator for β is

inconsistent and S
(
θ̂
∗
2sls

)
= Op (n).

2.2 Adaptive Lasso

Based on the definition of a valid instrument, selection of the valid instruments is equiv-

alent to identifying which entries in α are zero. For this purpose, we consider using the

adaptive Lasso to estimate α, as the Lasso will shrink some entries in α to exactly zero.

Hence, we can obtain estimators for V and A from the adaptive Lasso estimator for α,

which we denote by α̂ad. The estimators for V and A are then V̂ = {j : α̂ad,j = 0} and

Â = {j : α̂ad,j 6= 0}.
Kang et al. (2016) introduced the Lasso method for IV selection for the single exposure

case. Windmeijer et al. (2019) showed that the Lasso irrepresentable condition (see Zhao

and Yu, 2006, and Zou, 2006) could be violated, depending on the relative strengths of

the invalid and valid instruments, leading to inconsistent selection of the valid/invalid

instruments. They adopted the adaptive Lasso estimator of Zou (2006). Let now θ =(
βT αT

)T
, then the penalised objective function is based on the 2sls criterion and the

adaptive Lasso estimator is given by

θ̂ad = arg min
β,α

1

2
‖{PZ(y −Xβ − Zα)}‖22 + λn

kz∑
j=1

|αj|
|α̂j|ν

, (6)

6



where α̂, with j-th element equal to α̂j, is an initial estimator of α, and ν > 0. As β is

not penalized, the adaptive Lasso estimator for α can be obtained as

α̂ad = arg min
α

1

2

∥∥∥y − Z̃α
∥∥∥2
2

+ λn

kz∑
j=1

|αj|
|α̂j|ν

, (7)

where Z̃ = MX̂Z, see Kang et al. (2016) and Windmeijer et al. (2019).

λn is the tuning parameter controlling the strength of the penalization. A larger λn

leads to more entries in α being shrunk to zero, which implies that the adaptive Lasso

selects more instruments as valid. From Theorem 2 and Remark 1 in Zou (2006) the

adaptive Lasso estimator for α, as defined in (7) has oracle properties and hence selects

the valid instruments consistently under the following assumptions:

Assumption 5. α̂
p→ α and

√
n (α̂−α) = Op (1).

Assumption 6. λn = o(
√
n), n

ν−1
2 λn →∞.

The intuition for α̂j is clear. As a consistent estimator for αj, α̂j will be close to zero

when αj = 0. Since α̂j enters in the denominator in (7), a value close to zero will produce

a large penalty weight, and make it more likely that α̂ad,j is equal to zero. The oracle

properties then apply to θ̂ad and hence the estimator of interest β̂ad.

Clearly, a crucial component for the application of the adaptive Lasso estimator is

the initial consistent estimator of α. We propose an initial consistent estimator of β, the

median-of-medians estimator as described in the next section, from which the required

estimator for α can be derived.

3 The Median-of-Medians Estimator

For the single exposure case, Windmeijer et al. (2019), following Han (2008), showed

that the median of the instrument specific, just-identified estimators for β is a consistent

estimator of β when more than 50% of the instruments are valid, i.e. kV >
kz
2

. These

just-identified estimators are the IV, or 2sls estimators in the model specifications

y = xβj + Z{−j}α{−j} + uj,

for j = 1, . . . , kz, and where Z{−j} = Z \ {Zj} is the full set of instruments with the j-th

instrument omitted, which is used as the excluded instrument for x, and uj = zjαj + u,
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where zj is the j-th instrument vector, see also Windmeijer et al. (2021). Let β̂j denote

IV estimator for β, treating the j-th instrument as the valid instrument and all other

instruments as invalid. Provided all instruments are relevant, πj 6= 0 for j = 1, . . . , kz

in x = Zπ + e, it follows that zjαj =
(
x− Z{−j}π{−j} − e

) αj
πj

. Then for the valid

instruments, j ∈ V , β̂j is a consistent and normal estimator of β, whereas for the invalid

instruments, j ∈ A, β̂j is a consistent and normal estimator of β +
αj
πj

, and hence an

inconsistent estimator of β. It then follows that the median estimator, given by

β̂m =
{
β̂j

}kz
j=1

(8)

is a consistent estimator of β if kV >
kz
2

and Windmeijer et al. (2019) show that then
√
n
(
β̂m − β

)
= Op (1). A consistent estimator for α is then given by

α̂m =
(
ZTZ

)−1
ZT
(
y − xβ̂m

)
,

with also
√
n (α̂m −α) = Op (1), satisfying the conditions for oracle properties of the

adaptive Lasso estimator, leading to consistent selection of the valid and invalid instru-

ments and oracle properties of β̂ad.

We can extend the median estimator to the case where there are multiple exposure

variables, kx ≥ 2. We initially assume that all p =
(
kz
kx

)
just-identifying sets of instru-

ments are jointly relevant for all exposure variables. Denote the just-identifying sets of

instruments by Zs, for s = 1, . . . , p. The just-identified model specifications are then

given by

y = Xβs + Z{−s}α{−s} + us (9)

X = ZsΠs + Z{−s}Π{−s} + E, (10)

where Z{−s} = Z \ {Zs} and us = Zsαs + u. These relevance conditions can then be

stated as follows,

Assumption 7. Relevance of just-identifying sets. Let the p =
(
kz
kx

)
sets of just-identifying

instruments be denoted {Zs}ps=1 and let Πs be defined as in (10). Then all these sets are

jointly relevant for all exposure variables, r (Πs) = kx, for s = 1, . . . , p.

It then follows that Zsαs =
(
X− Z{−s}Π{−s} − E

)
Π−1s αs and so the estimands for

the just-identified IV estimators are given by βs = β + Π−1s αs, resulting in consistent
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and normal IV estimators for the sets that contain valid instruments only, with αs = 0,

and inconsistent estimators of β for all other sets. Let β̂m denote the medians of the p

just-identified estimators, then it follows directly from the results in Windmeijer et al.

(2019) that β̂m is a consistent estimator of β and
√
n
(
β̂m − β

)
= Op (1) if more than

half of all just-identified sets are sets of valid instruments only, or
(
kV
kx

)
> p

2
, see also Apfel

(2019).

3.1 kx = 2

In comparison to this naive median estimator, we can allow for a weaker condition on the

number of valid instruments required to obtain an initial consistent estimator based on

the just-identified estimators. To this end we propose the median-of-medians estimator.

We first consider the kx = 2 case. Consider for each instrument j = 1, . . . , kz, all just-

identifying sets of instruments that contain instrument j. There are kz − 1 such sets

for each j. Denote the just-identified estimators based on the sets that contain j by

β̂
j

`, ` = 1, . . . , kz, ` 6= j. If instrument j is invalid, j ∈ A, then none of the β̂
j

` are

consistent estimators of β. If instrument j is valid, j ∈ V , then the kV − 1 sets of

instruments containing j and another valid instrument result in consistent and normal IV

estimators of β, whereas the remaining kz − kV sets contain invalid instruments resulting

in inconsistent IV estimators. Let

β̂
j

m = median
{
β̂
j

`

}kz
`=1,`6=j

, (11)

where the medians are taking element wise, so β̂jm,q = median
{
β̂j`,q

}kz
`=1,`6=j

for q = 1, 2.

For β̂
j

m to be a consistent estimator of β for a valid instrument j ∈ V , we need the

following further assumption,

Assumption 8. Condition on number of valid instruments. For kx = 2, the number of

valid instruments kV satisfies (kV − 1) > kz−1
2

, or equivalently kV >
kz+1
2

.

Under Assumption 8, it follows that for a valid instrument j ∈ V the majority rule is

satisfied. This implies that more than half of the just-identifying sets of instruments con-

taining j are sets of valid instruments only, and hence the result follows straightforwardly

that β̂
j

m is a consistent estimator of β and
√
n
(
β̂
j

m − β
)

= Op (1), from the results and

proof of Theorem 1 in Windmeijer et al. (2019). The result is stated in the following

proposition, with the proof given in the Appendix.
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Proposition 1. For kx = 2, let for each instrument j = 1, . . . , kz, the median estimator

β̂
j

m be defined as in (11). Then, under Assumptions 2, 3, 7 and 8, for valid instruments

j ∈ V, β̂
j

m is a consistent estimator of β, β̂
j

m

p→ β, and
√
n
(
β̂
j

m − β
)

= Op (1).

Under the conditions of Proposition 1 it follows that kV out of kz estimators
{
β̂
j

m

}kz
j=1

are consistent estimators of β. It then follows that the median-of-medians estimator,

defined as

β̂mm = median
{
β̂
j

m

}kz
j=1

(12)

where the medians are taken element wise, so β̂mm,q = median
{
β̂jm,q

}kz
j=1

for q = 1, 2, is

a consistent estimator of β and
√
n
(
β̂mm − β

)
= Op (1) if kV >

kz
2

, but this condition is

implied by Assumption 8. We formally state this result in the following proposition, with

the proof presented in the Appendix.

Proposition 2. For kx = 2, let the median-of-medians estimator β̂mm be defined as

in (12), then under the conditions of Proposition 1 it follows that β̂mm
p→ β, and

√
n
(
β̂mm − β

)
= Op (1).

As an illustration of the median-of-medians estimator, we consider the case with kx =

2, kz = 7 and kV = 5 > kz+1
2

= 4, and so Assumption 8 is satisfied. Let instruments 1

and 2 be the invalid ones, so A = {1, 2} and V = {3, 4, 5, 6, 7}. Table 1 lists the just-

identified estimators for βq, q = 1, 2, and they are estimated using each IV pair. The valid

instruments and consistent estimators are indicated in boldface.

Table 1: Illustration of the median-of-medians estimator of βq, q = 1, 2.

Instruments 1 2 3 4 5 6 7

1 β̂2
1,q β̂3

1,q β̂4
1,q β̂5

1,q β̂6
1,q β̂7

1,q

2 β̂1
2,q β̂3

2,q β̂4
2,q β̂5

2,q β̂6
2,q β̂7

2,q

3 β̂1
3,q β̂2

3,q β̂4
3,q β̂5

3,q β̂6
3,q β̂7

3,q

4 β̂1
4,q β̂2

4,q β̂3
4,q β̂5

4,q β̂6
4,q β̂7

4,q

5 β̂1
5,q β̂2

5,q β̂3
5,q β̂4

5,q β̂6
5,q β̂7

5,q

6 β̂1
6,q β̂2

6,q β̂3
6,q β̂4

6,q β̂5
6,q β̂7

6,q

7 β̂1
7,q β̂2

7,q β̂3
7,q β̂4

7,q β̂5
7,q β̂6

7,q

median β̂1
m,q β̂2

m,q β̂3
m,q β̂4

m,q β̂5
m,q β̂6

m,q β̂7
m,q β̂mm,q

Notes: kx = 2, kz = 7, V = {3, 4, 5, 6, 7}, A = {1, 2}. Valid instruments and consistent
estimators are displayed in boldface.

10



For the general case, the just-identified estimator β̂
j

` is a consistent estimator of β if

and only if both instruments j and ` are valid. Hence, all the estimators of βq, q = 1, 2,

in the columns for instruments 1 and 2 are inconsistent as at least one of the invalid

instruments is involved in the estimation and the resulting median estimators β̂1
m,q and

β̂2
m,q are inconsistent. For instruments 3-6 more than half of the kz − 1 estimators in each

column are consistent as here we have kV−1 > kz−1
2

. Hence, the median estimators β̂3
m,q to

β̂6
m,q are all consistent. Now, we take the median of all these column median estimators (as

shown in the last row of Table 1), i.e. β̂mm,q = median
(
β̂1
m,q, ..., β̂

6
m,q

)
. The assumption

kV > kz+1
2

implies kV > kz
2

. Thus, more than half of the column median estimators

β̂1
m,q, ..., β̂

6
m,q are consistent and therefore the median of these median estimators β̂mm,q

is also consistent. Therefore, for kx = 2, under the assumption kV >
kz+1
2

the median-

of-medians estimator is consistent even if we have no knowledge about which of the

instruments are valid.

For comparison, for the naive median estimator to be consistent, the condition
(
kV
kx

)
>

1
2

(
kz
kx

)
implies here that kV > 4, so only one instrument is allowed to be invalid. Increasing

kz to kz = 100, the condition for the median-of-medians estimator is that kV > 50.5,

whereas for the naive median estimator this is kV > 70. For kx = 2, Assumption 8

for the median-of-medians estimator is only stronger for the minimum number of valid

instruments required than the simple majority rule for the single exposure model when

kz is odd with the difference then equal to 1.

3.2 kx > 2

We can extend the results for the median-of-median estimator for the kx = 2 case to the

kx > 2 case, where the estimator becomes a median-of-medians-of-medians.... estimator,

but we simply refer to it as the median-of-medians estimator for brevity.

Let the instrument set be denoted S = {1, . . . , kz}. For kx > 2, consider the l =
(

kz
kx−2

)
sets of kx − 2 instruments. For each of these sets L = 1, . . . , l, and for each instrument

j ∈ S \ L, let β̂
L

j,k denote the just-identified IV estimator of β, using the kx instruments

{L, j, k}, k ∈S \ {L, j}. For brevity, denote SL := S \ L and SL,j := S \ {L, j}. Given

L, we have thus for each j, kz − kx + 1 just identified estimators. If the set L is a set of

kx − 2 valid instruments and j is a valid instrument, then the majority of
{
β̂
L

j,k

}
k∈SL,j

are consistent and normal if there are additionally more than kz−kx+1
2

valid instruments.
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Therefore, if kV >
kz+kx−1

2
, L and j are valid instruments, then

β̂
L

j,m = median
{
β̂
L

j,k

}
k∈SL,j

is a consistent estimator of β.

Given L, we have a total of kz − kx + 2 estimators β̂
L

j,m. For kV >
kz+kx−1

2
it follows

that kVSL > kz−kx+3
2

> kz−kx+2
2

for a set L that contains valid instruments only, where

kVSL denote the number of valid instruments in SL. This then implies that more than

half of the
{
β̂
L

j,m

}
j∈SL

are consistent, and hence the median of the medians

β̂
L

mm = median
{
β̂
L

j,m

}
j∈SL

is again consistent for all L with valid instruments only. From the proofs of Propositions

1 and 2 it follows that β̂
L

mm

p→ β and
√
n
(
β̂
L

mm − β
)

= Op (1).

If kx = 3, then |L| = 1 , and we thus have kz estimators
{
β̂
`

mm

}kz
`=1

. For kV >
kz+kx−1

2

it follows that kV >
kz
2

and so more than half of the instruments are valid and so more

than half of the
{
β̂
`

mm

}kz
`=1

are consistent. Hence it follows that the median of the medians

of the medians,

β̂mm = median
{
β̂
`

mm

}kz
`=1

(13)

is a consistent estimator of β, and again, from the proof of Proposition 2 it follows that

β̂mm
p→ β and

√
n
(
β̂mm − β

)
= Op (1).

For kx > 3, consider the l−1 =
(

kz
kx−3

)
sets of kx − 3 instruments, and denote these

sets L−1. For each set L−1 consider the sets L−1,j = {L−1, j} for j ∈ SL−1 , where

SL−1 = S \ L−1. Then, if L−1 is a set containing valid instruments only, it follows that

β̂
L−1,j

mm is consistent iff j is a valid instrument. Given L−1, we have a total of kz − kx + 3

estimators β̂
L−1,j

mm . For kV > kz+kx−1
2

it follows that kVSL−1
> kz−kx+5

2
> kz−kx+3

2
for a

set L−1 that contains valid instruments only, where kVSL−1
denotes the number of valid

instruments in SL−1 . It then follows that

β̂
L−1

mm−1
= median

{
β̂
{L−1,j}
mm

}
j∈SL−1

is consistent for all L−1 that contain valid instruments only. Cascading, repeat this

12



exercise for L−2, . . . , L−(kx−3). As
∣∣L−(kx−3)∣∣ = 1, we get the final result that

β̂mm = median
{
β̂
`

mm−(kx−3)

}kz
`=1

(14)

is a consistent estimator of β. From the proof of Proposition 2 it follows that β̂mm
p→ β

and
√
n
(
β̂mm − β

)
= Op (1).

We can now summarise the results obtained for general kx in the following Proposition.

Proposition 3. Under Assumptions 2, 3, 7 and the generalized majority rule

kV >
kz + kx − 1

2
,

consider the median estimator β̂m as defined in (8) for kx = 1, the median-of-medians

estimator as defined in (12) for kx = 2 and the generalized median-of-medians estimators

for kx = 3 and kx > 3 as defined in (13) and (14). The latter three denoted generically by

β̂mm. Then β̂m
p→ β,

√
n
(
β̂m − β

)
= Op (1), β̂mm

p→ β and
√
n
(
β̂mm − β

)
= Op (1).

4 Consistent Selection and Oracle Estimator

Given the consistent estimator β̂mm as defined in (12), (13) or (14) we obtain a consistent

estimator for α as

α̂mm =
(
ZTZ

)−1
ZT
(
y −Xβ̂mm

)
. (15)

From the properties of β̂mm as given in Proposition 3, α̂mm satisfies the conditions of

Assumption 5, α̂mm
p→ α and

√
n (α̂mm −α) = Op (1). Therefore, from Theorem 2 and

Remark 1 in Zou (2006), it follows that the adaptive Lasso estimator α̂ad that uses α̂mm

as the initial consistent estimator satisfies consistency of selection and oracle properties

as stated in the following proposition.

Proposition 4. Under the conditions of Proposition 3 and Assumption 6 for λn, let

α̂mm as defined in (15) be the initial consistent estimator in the adaptive Lasso cri-

terion (7). Let Âad = {j : α̂ad,j 6= 0}, then the adaptive Lasso estimator α̂ad satisfies

limn→∞ P
(
Âad = A

)
= 1 and the limiting normal distribution of

√
n (α̂ad,A −αA) is

that of the oracle 2sls estimator α̂or2sls as defined in (4) with the limiting distribution as

given in 2.

Similar to Kang et al. (2016) and Windmeijer et al. (2019), the adaptive Lasso esti-
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mator for β is obtained as

β̂ad =
(
X̂T X̂

)
−1X̂T (y − Zα̂ad) . (16)

From the results of Proposition 4 it follows that the limiting distribution of β̂ad is that of

the oracle 2sls estimator, as stated in the next corollary.

Corollary 1. Let β̂ad as defined in (16). Under the conditions of Proposition 4 the

limiting normal distribution of
√
n
(
β̂ad − β

)
is that of the oracle 2sls estimator β̂or2sls as

defined in (3), with the limiting distribution as given in (2).

As an alternative to obtaining the causal estimator directly from the adaptive Lasso

as in (16), we can also estimate β by post-selection 2sls using the estimated set of invalid

instruments Âad in the following specification:

y = Xβ + ZÂadαÂad + u, (17)

using ZV̂ad as the set of valid instruments, where V̂ad = {j : α̂ad,j = 0} = V \ Âad . The

next proposition states the oracle properties of the post-selection 2sls estimator in model

specification (17). The proof follows directly from Theorem 2 in Guo et al. (2018) as,

under the stated conditions, limn→∞ P (V̂ad = V) = 1.

Proposition 5. Let β̂2sls,p be the post-selection 2sls estimator of β in model (17), which

is given by

β̂2sls,p =
(
X̂′MZÂad

X̂
)−1

X̂′MZÂad
y.

Under the conditions of Corollary 1, it follows that the limiting normal distribution of
√
n
(
β̂2sls,p − β

)
is that of the of the oracle 2sls estimator β̂or2sls as defined in (3), with

the limiting distribution as given in (2).

4.1 Downward Testing Procedure

Consistent IV selection using the adaptive Lasso depends on the choice of the tuning

parameter λn which controls the strength of penalization. While λn needs to satisfy the

theoretical conditions of Assumption 6, n
1−ν
2 λn →∞, λn = o(

√
n), it can be challenging

to pick a specific value of λn for a given sample. A common practice of choosing the tuning

parameter is k-fold cross-validation. However, it is well known that cross-validation works

better for prediction rather than model selection (Bühlmann and Van De Geer, 2011), and
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cross-validation almost always results in inconsistent variable selection, as stated in Chand

(2012).

As an alternative, and similar to Windmeijer et al. (2019) and Windmeijer et al.

(2021), we combine the adaptive Lasso with the downward testing procedure for moment

selection as proposed by Andrews (1999), which uses the Sargan test statistic as the

selection criterion, as defined in (5). A crude downward testing procedure starts with the

model y = Xβ + u, treating all kz instruments as valid. If the Sargan test rejects the

model, then the procedure moves to models with kz − 1 treated as valid instruments and

tests all such models y = Xβ+zjαj+uj, j = 1, . . . , kz. If the Sargan test rejects them all,

then it moves to evaluate all
(
kz
2

)
models with kz−2 instruments treated as valid, and so on,

until it finds a model that is not rejected by the Sargan test. This procedure can become

computationally infeasible since for each number of instruments, kz, kz− 1, ..., we need to

exhaustively test models corresponding to all possible combinations of instruments.

The adaptive Lasso can mitigate the computational challenges in the downward testing

procedure. When the adaptive Lasso is implemented using the Least-Angle Regression

(LARS) algorithm (Efron et al., 2004), it generates a selection path starting with a model

with kz valid instruments, and, for each LARS step, the number of instruments treated as

valid decreases by one. This means that, for each number of instruments treated as valid,

kz, kz− 1, ..., we only need to evaluate a single model, i.e. the one on the LARS selection

path. Given the consistency of selection and oracle results of the adaptive Lasso estimator

as given in Proposition 4, the oracle model lies on this path in large samples. Given the

properties of the Sargan/Hansen test as described in Section 2.1 and the adjusted majority

rule requirement as given in Assumption 8, it follows that selecting the first model on this

LARS path that does not reject the Sargan test is a consistent selection rule, when for

a model with kinv instruments selected as invalid, the critical value ζn,kz−kx−kinv used for

the χ2
kz−kx−kinv distribution satisfies

ζn,kz−kx−kinv →∞ for n→∞, and ζn,kz−kx−kinv = o (n) , (18)

see Andrews (1999). In practice, following Windmeijer et al. (2019) and Windmeijer

et al. (2021), instead of a critical value ζn,kz−kx−kinv for the Sargan test, we use a p-value

pn. If pn satisfies limn→∞ pn = 0 and log (pn) = o (n), then condition (18) is satisfied.

As in Windmeijer et al. (2019) and Windmeijer et al. (2021), for a given sample, we

set pn = 0.1/ log (n), as suggested by Belloni et al. (2012). This procedure leads to
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consistent selection and oracle properties of the post-selection 2sls estimator as detailed

in Proposition 5.

5 Instrument Relevance

In the previous sections, we maintained Assumption 7, requiring that all just identified

models identify all parameters in β. However, in practical applications, it may well be

the case that a given instrument is not relevant for all endogenous exposure variables.

In this case, some just-identifying combination of instruments would violate the full rank

assumption. In practice, one could test for underidentification, as described in e.g. Wind-

meijer (2021), and discard just identified estimates where the test for underidentification

fails to reject, similar to the first-stage hard-thresholding method of Guo et al. (2018).

However, it may be difficult then to establish an adjusted majority rule as in Assumption

8 and is the subject of future research.

Instead, we consider here the case, as in our application, where the the relevance of

the instruments with respect to each endogenous exposure variable is known. In our

application of Mendelian randomisation, the potential instruments are genetic markers,

which are identified from GWAS studies, and hence it is known from these studies which

genetic marker is relevant for which exposure variable. In Mendelian randomisation stud-

ies, the genetic markers are also independently distributed. We show here how to obtain

the consistent median-of-medians estimator that incorporates this information. For ease

of exposition and in line with our application, we focus here on the kx = 2 case.

We first consider the case where each instrument is relevant only for one of the exposure

variables. For the kx = 2 case, the first-stage linear specification can then be written as

X = [x1 x2] = [Z1 Z2]

[
π1 0

0 π2

]
+ E,

where Z1 is the n× k1 matrix of instruments relevant for x1 and Z2 is the n× k2 matrix

of instruments relevant for x2. When instruments are independent, as often the case

in Mendelian randomisation studies, any just-identifying pair of them can identify the

parameter vector β = (β1 β2)
Tonly if it combines one instrument from Z1 with one

instrument from Z2. Hence there are now k1 × k2 sets of just-identifying instruments

that are relevant for both exposure variables. Let kV1 and kV2 denote the number of valid

instruments in Z1 and Z2 respectively. Then there are kV1×kV2 pairs of instruments where
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the instruments are both valid and hence for the naive median estimator to be consistent,

the condition that kV1 × kV2 > k1 × k2/2 needs to hold.

For the median-of medians estimator to be consistent, we now require that kV1 >
k1
2

and kV2 >
k2
2

, or the standard majority rule holds for each set. This can be shown as

follows. Let the indices of the instruments relevant for x1 be S1 = {1, 2, . . . , k1}, and

those for x2 be S2 = {k1 + 1, k1 + 2, . . . , kz}, where kz = k1 + k2. We then have the just

identified IV estimators β̂
j

s, with, when j ∈ S1, s ∈ S2 and vice versa. For each element

βq in β, q = 1, 2, we have for each instrument j a vector of estimators β̂
j

q =
(
β̂js,q

)
.

This is a k2-vector if j ∈ S1 and a k1-vector is j ∈ S2. Let β̂jm,q = median
(
β̂
j

q

)
.

Then β̂jm,q is consistent if j is a valid instrument and if j ∈ S1, kV2 >
k2
2

, or if j ∈ S2,

kV1 >
k1
2

. There are then kV1 + kV2 >
kz
2

consistent estimators in
{
β̂jm,q

}kz
j=1

and hence

β̂mm,q = median
{
β̂jm,q

}kz
j=1

is a consistent estimator of βq, for q = 1, 2.

This result is illustrated in Table 2 with an example where S1 = {1, 2, 3, 4}, and

S2 = {5, 6, 7}. Valid instruments are V1 = {2, 3, 4}, and V2 = {6, 7}, and so A1 = {1}
and A2 = {5}. Therefore the individual majority rule for each set holds, and no more

instruments can be invalid. Although the total number of two instruments allowed to be

invalid is the same here as in the example of Table 1, it is clear that they cannot be both

in the set that is relevant for one of the exposure variables. This conditions can change

if there is some overlap between the two groups, for example if S1 = {1, 2, 3, 4, 5} and

S2 = {5, 6, 7}, both instruments 1 and 2 can be invalid, as illustrated in Table 3, as the

majority in S1 is valid. This is not the case if instead S1 = {1, 2, 3, 4} and S2 = {4, 5, 6, 7}.

Table 2: Illustration of median-of-medians estimator with block structure relevance of
instruments.

Instruments 1 2 3 4 5 6 7

1 β̂5
1,q β̂6

1,q β̂7
1,q

2 β̂5
2,q β̂6

2,q β̂7
2,q

3 β̂5
3,q β̂6

3,q β̂7
3,q

4 β̂5
4,q β̂6

4,q β̂7
4,q

5 β̂1
5,q β̂2

5,q β̂3
5,q β̂2

5,q

6 β̂1
6,q β̂2

6,q β̂3
6,q β̂4

6,q

7 β̂1
7,q β̂2

7,q β̂3
7,q β̂4

7,q

median β̂1
m,q β̂2

m,q β̂3
m,q β̂4

m,q β̂5
m,q β̂6

m,q β̂7
m,q β̂mm,q

Notes: kx = 2, S1 = {1, 2, 3, 4}, S2 = {5, 6, 7},V = {2, 3, 4, 6, 7}, A = {1, 6}. Valid instruments
and consistent estimators are displayed in boldface.
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Table 3: Illustration of median-of-medians estimator with block structure relevance of
instruments with overlap.

Instruments 1 2 3 4 5 6 7

1 β̂5
1,q β̂6

1,q β̂7
1,q

2 β̂5
2,q β̂6

2,q β̂7
2,q

3 β̂5
3,q β̂7

4,q β̂7
3,q

4 β̂5
4,q β̂7

3,q β̂7
4,q

5 β̂1
5,q β̂2

5,q β̂3
5,q β̂4

5,q β̂6
5,q β̂6

5,q

6 β̂1
6,q β̂2

5,q β̂3
4,q β̂4

6,q β̂5
6,q

7 β̂1
7,q β̂2

5,q β̂3
7,q β̂4

7,q β̂5
7,q

median β̂1
m,q β̂2

m,q β̂3
m,q β̂4

m,q β̂5
m,q β̂6

m,q β̂7
m,q β̂mm,q

Notes: kx = 2, S1 = {1, 2, 3, 4, 5}, S2 = {5, 6, 7},V = {3, 4, 5, 6, 7}, A = {1, 2}. Valid
instruments and consistent estimators are displayed in boldface.

6 Monte Carlo Simulations

We conduct Monte Carlo simulations to evaluate the performance of our method in three

settings. In the first setting, all instruments are relevant for both of the endogenous

variables, while in the other two settings, some of the instruments are relevant for only

one of the variables. We run the simulations for 1, 000 replications, and we implement

the adaptive Lasso using the Lars package (Hastie and Efron, 2013) in R. We set kx = 2

and generate the data from

y = Xβ + Zα+ u

x1 = Zπ1 + e1

x2 = Zπ2 + e2

where  Ui

E1i

E2i

 ∼ N


 0

0

0

 ,

 1 ρ1 ρ2

ρ1 1 0

ρ2 0 1


 ;

Zi ∼ N (0,Σz) ;

with β = (0.3, 0.6)T ; kz = 21; ρ1 = 0.25, ρ2 = 0.3; kV = 12, kA = 9, α = 0.4
(
ιT9 ,0

T
12

)T
,

similar to the simulation setup in Windmeijer et al. (2021). We generate the elements of

π1 and π2 from a uniform distribution on the interval [1.5, 2.5], and we set the elements
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of Σz to Σz,jk = 0.5|j−k|, j, k = 1, . . . ., kz. In this setup, all the instruments are relevant

for both endogenous variables, and both the pair-wise full rank assumption 7 and the

majority assumption 8 are satisfied.

Table 4 presents the IV selection and estimation results of the adaptive Lasso method.

with penalty parameters chosen by 10-fold cross-validation. The first two columns of

Table 4 report statistics related to estimation, and in both of these columns, we average

the statistics over the two entries in β. Column 1 presents the averaged median absolute

error (MAE), while Column 2 shows the averaged standard deviation (SD). The remaining

three columns in Table 4 report statistics related to IV selection. Column 3 reports the

number of instruments selected as invalid, Column 4 the frequency with which all invalid

instruments have been selected as invalid, and Column 5 is the frequency with which the

oracle model has been selected. The three panels in Table 4 correspond to the sample

sizes n = 500, 1000, 2000. In each panel, the first row, denoted “Oracle 2SLS”, shows the

results for the oracle 2SLS estimator, which is the 2SLS estimator that uses the true set

of valid instruments, while it controls for the remaining invalid ones. The second row,

denoted “Naive 2SLS”, reports the results for the naive 2SLS estimates, which is the 2SLS

that considers all candidate instruments to be valid. The third row, denoted β̂mm, shows

the results for the median-in-medians estimator, as defined in (12). The fourth and fifth

rows, denoted “Post-ALasso”, report the results for the post-selection 2sls estimators,

which are the 2sls estimators that use the instruments selected as valid, and include the

invalid instruments as control variables. We present results for the adaptive Lasso and

Post-Selection 2SLS estimators using two different types of cross-validation. First, as

denoted with the “cv” subscript, we show cross-validation using the tuning parameter

that gives the minimum cross-validation Sargan statistics. Second, as denoted with the

“cvse” subscript, we show cross-validation using the tuning parameter chosen by the

one-standard-error rule.

In terms of IV selection, in all three sample sizes, the cv-procedure dominates the

cvse-procedure, especially for the smallest sample with n = 500. Both methods improve

as the sample size increases. The frequencies of selecting the oracle model are both almost

equal to 1 at n = 2, 000 with 0.992 for CV and 0.956 for CVSE. In line with the selection

performance, the post-selection 2SLS estimates are close to the oracle model at n = 2, 000.

In all three sample sizes, the post-selection 2SLS estimates outperform the adaptive Lasso

estimates.
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Table 4: Simulation Results

MAE SD # invalid p allinv p oracle
(1) (2) (3) (4) (5)

Panel (a), n = 500

Oracle 2SLS 0.0624 0.0912 9 1 1
Naive 2SLS 0.2856 0.2685 0 0 0

β̂mm 0.1263 0.1517
ALassocv 0.3460 0.4212 8.095 0.440 0.440
Post-ALassocv 0.1295 0.3060
ALassocvse 0.4393 0.4542 6.908 0.115 0.115
Post-ALassocvse 0.2912 0.4368
Post-ALassoSar 0.0853 0.1446 9.09 0.987 0.947

Panel (b), n = 1, 000

Oracle 2SLS 0.0439 0.0681 9 1 1
Naive 2SLS 0.2889 0.2037 0 0 0

β̂mm 0.0892 0.1268
ALassocv 0.2047 0.2843 8.857 0.882 0.882
Post-ALassocv 0.0513 0.1627
ALassocvse 0.2895 0.3446 8.509 0.634 0.634
Post-ALassocvse 0.0716 0.2332
Post-ALassoSar 0.0544 0.0690 9.02 1 0.983

Panel (c), n = 2, 000

Oracle 2SLS 0.0305 0.0473 9 1 1
Naive 2SLS 0.2796 0.1448 0 0 0

β̂mm 0.0618 0.0941
ALassocv 0.1341 0.1795 8.991 0.992 0.992
Post-ALassocv 0.0307 0.0574
ALassocvse 0.1753 0.2244 8.949 0.956 0.956
Post-ALassocvse 0.0319 0.0881
Post-ALassoSar 0.0375 0.0478 9.018 1 0.984

Notes: The reported statistics include median absolute error (Column 1), standard deviation (Column
2), number of IVs selected as invalid (Column 3), frequency with which all invalid IVs have been selected
as invalid (Column 4), and frequency with which oracle model has been selected (Column 5). The
simulations are based on 1, 000 repetitions.

Next, we consider the case where the sets of instruments for x1 and x2 are separate,

such that no instrument is relevant for both endogenous variables. We set π1 = (γT1 ,0
T
11)

T

and π2 = (0T10,γ
T
2 )T , where γ1 has length k1 = 10 and γ2 has length k2 = 11. We let

α = (ιT4 ,0
T
6 , ι

T
5 ,0

T
6 )T such that kV1 = 6, kA1 = 4 and kV2 = 6, kA1 = 5. All the

other parameters are identical to the previous simulation design. Again, the necessary

and sufficient majority assumption for consistency of the median-of-medians estimator,
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kV1 >
kz1
2

and kV2 >
kz2
2

, is satisfied.

Table 5: Simulation results, separate sets of instruments for each exposure variable

MAE SD # invalid p allinv p oracle
(1) (2) (3) (4) (5)

Panel (a), n = 500

Oracle 2SLS 0.0109 0.0161 9 1 1
Naive 2SLS 0.3285 0.0209 0 0 0

β̂mm 0.1124 0.1472
Post-ALassoSar 0.0159 0.1779 10.241 0.791 0.515

β̂mm,block 0.0839 0.0394
Post-ALassoblock 0.0111 0.0192 9.044 0.999 0.971

Panel (b), N = 1, 000

Oracle 2SLS 0.0075 0.0111 9 1 1
Naive 2SLS 0.3288 0.0149 0 0 0

β̂mm 0.0892 0.1629
Post-ALassoSar 0.0102 0.2413 10.052 0.786 0.565

β̂mm,block 0.0599 0.0283
Post-ALassoSar,block 0.0076 0.0115 9.019 1.000 0.987

Panel (c), N = 2, 000

Oracle 2SLS 0.0054 0.0080 9 1 1
Naive 2SLS 0.3286 0.0107 0 0 0

β̂mm 0.0703 0.1667
Post-ALassoSar 0.0071 0.1847 10.086 0.803 0.544

β̂mm,block 0.0411 0.0196
Post-ALassoSar,block 0.0054 0.0084 9.020 1.000 0.987

Notes: This table reports IV selection and estimation results of the adaptive Lasso method with the block
structure in simulation design (2) with no overlap. The reported statistics include median absolute error
(column 1), standard deviation (column 2), number of IVs selected as invalid (column 3), frequency with
which all invalid IVs have been selected as invalid (column 4), and frequency with which oracle model
has been selected (column 5). The simulations are based on 1, 000 repetitions.

7 Application: The Effects of Educational Attain-

ment and Cognitive Ability on BMI

We apply our IV selection method to a multivariable Mendelian randomisation (MVMR)

study. We estimate the effects of educational attainment and cognitive ability on Body

Mass Index (BMI), as in Sanderson et al. (2019). Both educational attainment and

cognitive ability have been found to be negatively correlated with BMI (Sanderson et al.,

2019). However, as educational attainment and cognitive ability are highly correlated, it
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is unclear to what extent each of them have a direct effect on BMI. In this application, we

account for both variables in order to disentangle their direct effects. We use 74 SNPs as

instruments for educational attainment and 18 SNPs for cognitive ability, and one SNPs

overlaps between the two sets of candidate instruments. These SNPs have previously

been identified in independent Genome-Wide Association Studies (GWAS), see Okbay

et al. (2016) for educational attainment, and Sniekers et al. (2017) for cognitive ability.

We use data on 107, 371 individuals from the UK Biobank. Educational attainment is

measured in years of completed education, and it is imputed based on the individuals’

qualifications, which is standard in the literature, see, e.g., Okbay et al. (2016). Cognitive

ability is measured as a unitless fluid intelligence score that the UK biobank constructs

from a series of tests completed by the individuals during assessment. We standardise the

cognitive ability to mean zero and variance one. BMI is the ratio of weight to height, both

of which were measured for all individuals during assessment, and we log-transform it due

to skewness. Hence, we interpret our estimates as the percentage change in BMI that is

associated with a one unit increase in the relevant explanatory variable. We also include

additional covariates that control for age at assessment, sex, and the first 10 genetic

principal components, all of which are available from the UK biobank. See Sanderson

et al. (2019) for a detailed definition of the variables and presentation of the data.

Table 6: The impacts of educational attainment and cognitive ability on log(BMI)

Estimate Std. error # Invalid p-value, Sargan
(1) (2) (3) (4)

Panel (a) – 2SLS

Educational attainment -0.035 0.004 0 1.69e-13
Cognitive ability 0.031 0.011

Panel (b) – Post-A LassoSar

Educational attainment -0.029 0.005 10 0.011
Cognitive ability 0.021 0.012

β̂mm,edu -0.031

β̂mm,cog 0.017

Notes: The sample size is n = 107, 371. The number of instruments for educational attainment is
kedu = 74. The number of instruments for cognitive ability is kcog = 18. There is one instrument
identified for both educational attainment and cognitive ability.

Table 6 reports the results of our analysis. Columns (1) and (2) show, respectively,

the point estimates and their standard errors. Column (3) is the number of instruments

selected as invalid, and column (4) shows the p-value of the Sargan test. Panel (a) presents
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the estimates from a naive 2SLS regression where we treat all the candidate instruments as

valid. Both estimates are statistically significant at the 1% level. However, these results

are from the naive 2SLS regression, and they might be biased due to the presence of

invalid instruments. This is supported by the small p-value of the Sargan test (1.69e-13).

In practice, SNPs can exhibit so-called pleiotropic effects, which would make them invalid

instruments. In our setting, pleiotropy would mean that some of the SNPs, either for

educational attainment or cognitive ability, have direct effects on BMI.

Instead of the naive 2sls, we now conduct IV selection using the adaptive Lasso with the

downward testing procedure, as described in Section 4.1, and we obtain post-selection 2sls

estimates. In Panel (b) of Table 6, we report the results for the direct effects of educational

attainment and cognitive ability using our method, and we show the estimates taking the

block structure into account. We also present the associated median-of-medians estimates,

denoted β̂mm,edu and β̂mm,cog for, respectively, educational attainment and cognitive ability.

The threshold p-value for the Sargan test is 0.1/ log(n) = 0.0086.

For educational attainment we find that β̂mm,edu = −0.0314. For cognitive ability, the

estimate is β̂mm,cog = 0.017. We find that our method selects 10 instruments as invalid.

Six of these are for educational attainment, three are for cognitive ability, and one is for

both variables. As seen in Column (4), the p-value of the Sargan statistic for the selected

model is 0.011. We find that the post-selection 2sls estimates are closer to zero compared

to the estimates for the naive 2sls, especially for cognitive ability. The post-selection

estimate for educational attainment is −0.029, while, for cognitive ability, it is 0.021. The

effect of educational attainment on log(BMI) is still significant at the 1% level, while

the effect of cognitive ability is insignificant at the 5% level. We therefore find limited

evidence of a direct effect of cognitive ability on BMI.

For the results in Table 6, we assume conditional homoskedasticity. However, a robust

version of our method, i.e. using the two-step Hansen J-test and the post-selection

two-step GMM estimator, produces almost identical results. We use the Sanderson-

Windmeijer conditional F-statistic (Sanderson and Windmeijer, 2016) to evaluate the

power of the instruments in predicting educational attainment and cognitive ability jointly.

When we include the instruments in the naive 2SLS, the conditional F statistics are 2.57

for educational attainment and 2.65 for cognitive ability. Both of them are significantly

lower than the rule-of-thumb value of 10, showing that the joint prediction power of the

instruments is relatively weak. One way to deal with this weak IV problem to create a

weighted score of all the instruments, that is, one score for each of educational attainment
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and cognitive ability, and then use these two scores as the instruments in the regression.

In the naive 2SLS, when we use the weighted scores, the conditional F statistics are 67.73

for educational attainment and 68.65 for cognitive ability, which are much larger than the

rule-of-thumb value of 10. For the post-selection 2sls, we create the weighted scores using

only the selected valid instruments. The estimate for educational attainment is -0.042 (se

0.009) and for cognitive ability it is 0.041 (se 0.024). This maintains the conclusion that

educational attainment has a significant negative effect on BMI, while the direct effect of

cognitive ability is insignificant.

8 Conclusion

We investigate the use of the adaptive Lasso method for selecting valid instrumental

variables from a set of candidate instruments when some of the instruments may be invalid.

While existing work has focused on a single endogenous variable, our method contributes

to the literature by allowing for multiple endogenous exposure variables. Under a modified

majority rule, we show that the adaptive Lasso method can achieve consistent selection

and oracle estimation. In this work, we consider the number of candidate instruments

to be fixed, but in some settings it may grow with the sample size (or even at a quicker

rate), and, therefore, future research will focus on extending the method to handle such

cases.
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Appendix, Proofs

Proposition 1

Proof. The proof of Proposition 1, with kx = 2, follows the arguments of the proof of

Theorem 1 in Windmeijer et al. (2019). The estimands for the kz − 1 just-identified IV
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estimators in the model specification (9)

y = Xβs + Z{−s}α{−s} + us,

are given by β + Π−1s αs, with Πs as defined in (10). It then follows, under Assumptions

2, 3 and 7 that β̂
j

` as defined in (11) is a consistent and normal estimator of β for a valid

instrument j ∈ V and when the other instrument ` is also valid. For each element βq in

β, q = 1, 2, we have for instrument j a vector of kz − 1 estimators β̂
j

q. Let δj` be the

kx-vector Π−1{j,`}α{j,`}, with elements δj{j,`},q, for q = 1, . . . , kx. For each element we have

the (kz − 1)-vector δjq. It follows that

β̂
j

q

p→ βqιkz−1 + δjq,

where ιkz−1 is a (kz − 1)-vector of ones. For a valid instrument j ∈ V there are kV − 1

sets with valid instruments only. By Assumption 8 (kV − 1) > kz−1
2

, it follows that the

majority rule is satisfied and more than 50% of the elements of δjq are equal to zero. Using

a continuity theorem, it then follows that, for a valid instrument j ∈ V ,

median
(
β̂
j

q

)
p→ βq + median

(
δjq
)

= βq, (19)

for q = 1, . . . , kx, and hence the first result of Proposition 1 therefore follows, β̂
j

m

p→ β.

Under Assumptions 2, 3 and 7 the limiting distribution of β̂
j

q, for q = 1, . . . , kx, is

given by
√
n
(
β̂
j

q −
(
βqιc + δjq

)) d→ N
(
0,Σβjq

)
.

For β̂jm,q = median
(
β̂
j

q

)
we have that

√
n
(
β̂jm,q − βq

)
=
√
n
(

median
(
β̂
j

q

)
− βq

)
= median

(√
n
(
β̂
j

q − βqιkz−1
))

.

For a valid instrument j ∈ V , let δjA,q denote the kz − kV values of δjq for the sets

that include invalid instruments and δjV,q = 0kV−1 the kV − 1 values of δjq for the sets

that only contain valid instruments. Partition δjq =
((
δjA,q

)T
0TkV−1

)T
and equivalently
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β̂
j

q =

((
β̂
j

A,q

)T (
β̂
j

V,q

)T)T
. Then

√
n
(
β̂
j

q − βqιc
)

=

 √n(β̂jA,q − (βqιkz−kV + δjA,q
))

+
√
nδjA,q

√
n
(
β̂
j

V,q − βqιkV−1
)  ,

and it follows that

√
n
(
β̂jm,q − βq

)
= median

(√
n
(
β̂
j

q − βqιkz−1
))

d→ Hj
[rj ],kz−1,q, (20)

for q = 1, . . . , kx, and where, for kz − 1 odd, Hj
[rj ],kV−1,q is the rjth-order statistic of the

limiting normal distribution of
√
n
(
β̂
j

V,q − βqιkV−1
)

, where rj is determined by kz, kV

and the signs of the elements of δjA,q. For kz−1 even, Hj
[rj ],kV−1,q is defined as the average

of either the [rj] and [rj − 1]-order statistics, or the [rj] and [rj + 1]-order statistics, see

Windmeijer et al. (2019, p 1343). From (20) it follows that β̂jm,q converges at the
√
n rate.

It has an asymptotic bias, but
√
n
(
β̂jm,q − βq

)
= Op (1) for q = 1, 2, and so the second

result of Proposition 1 holds,
√
n
(
β̂
j

m − β
)

= Op (1).

Proposition 2

Proof. For kx = 2, and for q = 1, 2 we have the kz median estimators β̂jm,q, j = 1, . . . , kz, of

βq. Denote the kz-vector of estimators by β̂m,q. Let β̂
V
m,q denote the kV-vector

(
β̂jm,q

)
j∈V

and β̂
A
m,q the (kz − kV)-vector

(
β̂jm,q

)
j∈A

. Partition β̂m,q =

((
β̂
A
m,q

)T (
β̂
V
m,q

)T)T
. Then

under the assumptions and from the results of Proposition 1 it follows that

β̂m,q
p→

(
βqιkz−kV + γq

βqιkV

)
,

where γq is the (kz − kV)-vector with elements median
(
δjq
)
j∈A, with δjq as defined in the

proof of Proposition 1. Therefore, if the majority rule holds that kV >
kz
2

, it follows that

βmm,q = median
(
β̂m,q

)
p→ βq,

for q = 1, 2. From Assumption 8 it follows kV >
kz+1
2

> kz
2

, and so it follows that the first

result of Proposition 2 holds, βmm
p→ β.
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For the limiting distribution, we have, for q = 1, 2,

√
n
(
β̂m,q − βqιkz

)
=

 √n(β̂Am,q − (βqιkz−kV + γq
))

+
√
nγq

√
n
(
β̂
V
m,q − βqιkV

) 
and, as kV >

kz
2

,

√
n
(
β̂mm,q − βq

)
= median

(√
n
(
β̂m,q − βqιkz

))
converges in distribution to the distribution of an order statistic of the distribution of the

order statistics
(
Hj

[rj ],kV−1,q

)
j∈V

, which is again Op (1). From this, the second result of

Proposition 2 holds,
√
n (βmm − β) = Op (1).
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