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Abstract

Shape restrictions have played a central role in economics as both testable impli-

cations of theory and sufficient conditions for obtaining informative counterfactual

predictions. In this paper we provide a general procedure for inference under shape

restrictions in identified and partially identified models defined by conditional mo-

ment restrictions. Our test statistics and proposed inference methods are based

on the minimum of the generalized method of moments (GMM) objective function

with and without shape restrictions. Uniformly valid critical values are obtained

through a bootstrap procedure that approximates a subset of the true local param-

eter space. In an empirical analysis of the effect of childbearing on female labor

supply, we show that employing shape restrictions in linear instrumental variables

(IV) models can lead to shorter confidence regions for both local and average treat-

ment effects. Other applications we discuss include inference for the variability of

quantile IV treatment effects and for bounds on average equivalent variation in a

demand model with general heterogeneity.

Keywords: Shape restrictions, inference on functionals, conditional moment

(in)equality restrictions, instrumental variables, nonparametric and semiparametric

models, Banach space, Banach lattice, Koltchinskii coupling.

∗We thank Riccardo D’amato for excellent research assistance. We are also indebted to three anony-

mous referees and numerous seminar participants for their valuable comments.
†Research supported by NSF Grant 1757140.
‡Research supported by NSF Grant SES-1426882.



1 Introduction

Shape restrictions have played a central role in economics as both testable implications

of classical theory and sufficient conditions for obtaining informative counterfactual pre-

dictions. A long tradition in applied and theoretical econometrics has as a result studied

shape restrictions, their ability to aid in identification, estimation, and inference, and

the possibility of testing for their validity (Matzkin, 1994). A canonical example of this

interplay between theory and practice is consumer demand analysis, where theoretical

predictions such as Slutsky conditions have been extensively tested for and employed in

estimation (Hausman and Newey, 2016). The empirical analysis of shape restrictions,

however, goes well beyond this important application with recent examples including,

among others, studies into the monotonicity of the state price density (Jackwerth, 2000)

and the existence of complementarities in demand (Gentzkow, 2007).

Shape restrictions are often equivalent to inequality restrictions on parameters of in-

terest and on certain unknown functions. For example, Slutsky negative semi-definiteness

and monotonicity require that certain functions satisfy inequality restrictions. Infer-

ence with inequality restrictions is difficult. Such restrictions lead to discontinuities in

(pointwise) limiting distributions where the inequality restrictions are “close” to bind-

ing, which makes inference challenging due to non-pivotal and potentially unreliable

pointwise asymptotic approximations. Limit discontinuities further make it difficult to

construct confidence intervals with uniform coverage.

We address these challenges by obtaining critical values through a bootstrap proce-

dure that uniformly approximates a subset of the local parameter space. The proposed

critical values simultaneously deliver uniformly valid inference and pointwise limiting

rejection probabilities that, under the null hypothesis, equal the nominal level of the

test in many applications. Our results apply to a class of conditional moment restric-

tion models that encompasses parametric (Hansen, 1982), semiparametric (Ai and Chen,

2003), and nonparametric (Newey and Powell, 2003) instrumental variable (IV) models,

as well as the study of plug-in functionals. For parametric IV our results deliver novel

uniformly valid tests of inequality and equality restrictions as well as confidence intervals

for parameters of interest in the presence of inequality restrictions in both identified and

partially identified models.

Our test statistics and proposed inference methods are based on the difference of

the minimum of a generalized method of moments (GMM) objective function with and

without inequality restrictions. The value of the test statistic increases when more

binding constraints are imposed. To ensure uniform validity, critical values are obtained

through a bootstrap procedure that acknowledges that some inequalities that do not

bind in the sample could have bound under a different draw of the sample. Intuitively,

in the bootstrap, we impose the inequalities that are within a region of the boundary
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that shrinks slower than the convergence rate of the shape restricted estimator. The

bootstrap procedure can further be set to ignore inequalities that are outside this shrink-

ing region, leading to pointwise rejection probabilities that, under the null hypothesis,

equal the nominal level in many applications. As always, uniformity is essential for

confidence intervals to be asymptotically valid over a set of unknown parameter values.

The resulting inference is powerful in exploiting the large amount of information that

inequality restrictions can provide in many cases relevant for applications. Our tests and

confidence intervals remain valid under partial identification. In this setting, the tests

and confidence intervals give an accurate and computationally feasible method of doing

inference for a subvector of parameters. Indeed, these methods have been used by Tor-

govitsky (2019) to construct informative confidence intervals for partially identified state

dependence parameters in the presence of unobserved heterogeneity. Also, Kline and

Walters (2021) used these methods to test shape constraints implied by a model of call-

back probabilities for employment applications. By incorporating nuisance parameters

into the definition of the parameter space, our results can further be applied to partially

identified semi(non)-parametric models defined by conditional moment inequalities.

We demonstrate the usefulness of this approach in an empirical application. Specif-

ically, we conduct inference on the causal effect of childbearing on female labor force

participation by relying on the instrumental variables approach of Angrist and Evans

(1998). We find that monotonicity of the local average treatment effect (LATE) in ed-

ucation is not rejected by the data and neither is monotonicity and negativity – these

restrictions were discussed, but not formally tested, by Angrist and Evans (1998). We

further find that imposing these shape restrictions yields narrower confidence intervals

for the LATE at different schooling levels. Finally, we obtain similar results for the

partially identified average treatment effect (ATE), though the data is less informative

about the ATE because of the low proportion of compliers.

The inequalities associated with nonparametric shape restrictions necessitate con-

sideration of parameter spaces that are sufficiently general yet endowed with enough

structure to ensure a fruitful asymptotic analysis. An important theoretical insight of

this paper is that this simultaneous flexibility and structure is possessed by sets defined

by inequality restrictions on Abstract M (AM) spaces; i.e. Banach lattices whose norm

obeys a condition discussed in Section 3. We also introduce potentially regularized ap-

proximations to the local parameter spaces in order to account for the curvature present

in nonlinear constraints. While aspects of our analysis are specific to models defined by

conditional moment restrictions, the role of the local parameter space is solely dictated

by the shape restrictions. As such, we expect the insights of the set up here to be appli-

cable to the study of shape restrictions in alternative models as well. The critical values

are shown to be uniformly asymptotically valid by developing strong approximations

to both the test and bootstrap statistics. Our coupling arguments and the use of AM
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spaces are key features of the theory that enable us to show that inference is uniformly

valid and that partial identification is permitted.

We illustrate the general applicability of our analysis by obtaining novel uniformly

valid inference results in a variety of problems. Specifically, we: (i) Conduct inference

about partially identified sets of average equivalent variation and other objects of interest

in demand estimation with general heterogeneity and smooth demand functions; (ii)

Test and impose shape restrictions on structural functions identified through quantile

conditional moment restrictions; and (iii) Impose the Slutsky restrictions to conduct

inference in a linear conditional moment restriction model. The latter two examples are

discussed in detail in the Supplemental Appendix.

Our paper contributes to an extensive literature studying semiparametric and non-

parametric models under partial identification. Freyberger and Horowitz (2015), for

instance, develop inference methods for shape restricted partially identified discrete IV

models – their approach, however, is based on limiting distributions that are discon-

tinuous in the true parameters leading to nonuniform inference. When specialized to

finite dimensional models, our results enable us to conduct inference on functionals of

the identified set in models defined by moment (in)equalities. In that context, our re-

sults are complementary to those of Bugni et al. (2017) and Kaido et al. (2019), who

provide uniformly valid procedures for subvector inference. Their analysis is focused

on convex models and can thus be invalid or conservative when conducting inference on

nonlinear functionals or imposing non-convex restrictions – we emphasize, however, that

their analysis is also motivated by a different set of models than the ones we consider.

Our analysis is further related to Santos (2012), Tao (2014), and Chen et al. (2011) who

study inference on functionals of potentially partially identified structural functions, but

do not allow for shape constraints as we do.

Following the original version of this paper, Zhu (2019) and Fang and Seo (2019) pro-

posed inference methods for convex restrictions which, while applicable to an important

class of problems, rule out inference on nonlinear functionals or tests of certain shape

restrictions. Also related is Freyberger and Reeves (2018) who developed uniform infer-

ence for functionals under shape restrictions while imposing point identification. Our

paper is of course part of a large literature on shape restrictions. We highlight here an

important literature on linear Gaussian models focused on adaptivity (which we do not

establish), but not applicable to many of the models that motivate us; see, e.g., Arm-

strong (2015) and references therein. The results here are also highly complementary

to Chetverikov and Wilhelm (2017) in providing inference for nonparametric IV under

shape restrictions while they showed that imposing monotonicity can greatly improve

the convergence rate of the estimator – an observation that additionally motivates our

use of test statistics based on shape constrained (instead of unconstrained) estimators.

The remainder of the paper is organized as follows. In Section 2 we show how to
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implement our tests in a linear IV model with inequality restrictions under both point

and partial identification. Section 2 further illustrates our results by revisiting the

analysis of Angrist and Evans (1998). Section 3 contains our main theoretical results,

while Section 4 applies them to conduct inference in the heterogenous demand model

of Hausman and Newey (2016). All mathematical derivations are included in a series of

appendices; see in particular Appendix A.2 for other applications of our general results.

2 Application for Linear Instrumental Variables

To fix ideas, we first describe our test in a linear instrumental variables model and

illustrate its implementation by revisiting the analysis of Angrist and Evans (1998).

2.1 Linear Instrumental Variables

As perhaps the simplest possible example, we first consider a linear instrumental variable

model in which θ0 ∈ Θ ⊆ Rdθ is identified through the moment conditions

EP [(Y −W ′θ0)Z] = 0,

where Y is a scalar, W and Z are vectors, and P denotes the distribution of V ≡
(Y,W,Z). We are interested in testing whether θ0 belongs to a set R characterized by

R = {θ ∈ Rdθ : Fθ = f, Gθ ≤ g}, (1)

for known matrices F and G and known vectors f and g.

We consider tests based on minimizing the norm of the weighted sample moments

as in Hansen (1982). To this end, we define the criterion

Qn(θ) ≡ ‖Σ̂n{
1

n

n∑
i=1

(Yi −W ′iθ)Zi}‖2, (2)

where ‖ · ‖2 is the standard Euclidean norm and Σ̂n is consistent for (E[ZZ ′U2])−1/2 for

U ≡ Y −W ′θ0. Our analysis then enables us to employ tests based on the statistics

In(R) ≡ min
θ∈Θ∩R

√
nQn(θ) In(Θ) ≡ min

θ∈Θ

√
nQn(θ); (3)

e.g., we may consider a test that rejects for large values of In(R) − In(Θ). In what

follows we also let θ̂n and θ̂u
n denote the minimizers of Qn over Θ∩R and Θ respectively.

We construct critical values by relying on the Gaussian multiplier bootstrap. Specif-

ically, let b ∈ {1, . . . , B} index a bootstrap draw, {ωbi}ni=1 be i.i.d. independent of the
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data with ωbi ∼ N(0, 1), and for any θ ∈ Rdθ define

Ŵb
n(θ) ≡ 1√

n

n∑
i=1

ωbi{(Yi −W ′iθ)Zi −
1

n

n∑
j=1

(Yj −W ′jθ)Zj},

which is a simulated draw of the true (centered) moment functions.1 We also require an

estimator of the derivative of the moment conditions, and to this end we set

D̂n[h] ≡ − 1

n

n∑
i=1

ZiW
′
ih.

Here, we can think of h as a local parameter, representing the possible values that the

random variable
√
n{θ̂n − θ0} may take (recall θ̂n is the minimizer of Qn over Θ ∩R).

Finally, we need to enforce the inequality constraints in the bootstrap in a way that

delivers a uniformly valid critical value. To this end, we account for the variation in

Gj θ̂n − gj for each j, where Gj is the jth row of G and gj the jth coordinate of g. That

is, we account for the likelihood that a constraint will bind at the restricted estimator

θ̂n when computing In(R) =
√
nQn(θ̂n). For this purpose we introduce the set

V̂n(θ̂n, R) ≡ {h ∈ Rdθ : Fh = 0, Gjh ≤
√
nmax{0,−(rn +Gj θ̂n − gj)} for all j}, (4)

where rn > 0 is a slackness parameter whose choice we discuss shortly. The set V̂n(θ̂n, R)

can be thought of as a local version of R, approximating the set of values h that could

equal
√
n{θ̂n − θ0}. Our bootstrap approximations to In(R) and In(Θ) are then

Û bn(R) ≡ min
h∈V̂n(θ̂n,R)

‖Σ̂n{Ŵb
n(θ̂n) + D̂n[h]}‖2 (5)

Û bn(Θ) ≡ min
h∈Rdθ

‖Σ̂n{Ŵb
n(θ̂u

n) + D̂n[h]}‖2. (6)

Thus, we may obtain a level α test by rejecting whenever the test statistic In(R) −
In(Θ) exceeds the 1− α quantile of Û bn(R)− Û bn(Θ) across the B bootstrap draws. The

main assumption required for the test to be asymptotically valid is that θ0 be strongly

identified – i.e. θ0 can be consistently estimated uniformly in P .

The critical value depends on the choice of rn. When applied to linear instrumental

variables, our asymptotic theory requires that rn tend to zero slower than the conver-

gence rate of the restricted estimator, which is 1/
√
n. Heuristically, when rn tends to

zero any constraint that is not binding at θ0 will also not be binding in the bootstrap

with probability approaching one (under pointwise in P asymptotics). Consequently

inference is not asymptotically conservative for a fixed data generating process. Setting

1We follow previous work (e.g., Hansen (1996)) in considering Gaussian {ωi}ni=1 because it simplifies
the proofs of our main results. We expect our analysis extends to other distributions of {ωi}ni=1 – e.g.,
for ωi following an exponential distribution, which results in a version of the Bayesian bootstrap.
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rn → 0 while satisfying rn
√
n → ∞ leads to uniformly valid inference with constraints

only being conservatively enforced when they are within order 1/
√
n of binding at θ0.

Setting rn = +∞ is always theoretically valid, but it may be conservative and result in

a loss of power. Other, smaller choices of rn can lead to smaller, valid critical values and

so may result in more powerful tests and tighter confidence intervals than rn = +∞.

Intuitively, rn is meant to quantify the sampling uncertainty in G{θ̂n − θ0}. Since

the distribution of θ̂n cannot be uniformly consistently estimated, we suggest linking

rn to the degree of sampling uncertainty in G{θ̂u
n − θ0} instead. Specifically, for θ̂u?

n a

“bootstrap” analogue of θ̂u
n and some γn → 0, we recommend setting rn to satisfy

P (max
j
Gj{θ̂u

n − θ̂u?
n } ≤ rn|Data) = 1− γn. (7)

This approach changes the problem of selecting rn into the problem of selecting γn.

However, γn is more interpretable: If we employed V̂n(θ̂u
n, R) in place of V̂n(θ̂n, R) in

(5), then a Bonferroni bound implies that the test that rejects whenever In(R)− In(Θ)

exceeds the 1−α quantile of Û bn(R)−Û bn(Θ) has asymptotic size at most α+γn even if γn

is fixed with n.2 In particular, if we employed the 1−α+ γn quantile of Û bn(R)− Û bn(Θ)

as a critical value instead, then the resulting test would have asymptotic size at most

α (even if γn is fixed). In simulations, however, we find the described bound to be

pessimistic in that, when setting rn according to (7), our test has a rejection probability

under the null hypothesis of at most α for a wide range of choices of γn.

Remark 2.1. Our results may be employed to obtain confidence regions for a coordinate

of θ0 while imposing restrictions of the form Gθ0 ≤ g on θ0 (e.g., sign or monotonicity

restrictions on w 7→ w′θ0). For example, for θ(k) the kth coordinate of θ ∈ Rdθ we

may set Rλ = {θ ∈ Rdθ : θ(k) = λ, Gθ ≤ g} and obtain a confidence region for θ
(k)
0

by conducting test inversion in λ employing the test based on In(Rλ)− In(Θ); see also

Remark 3.1 for alternative constructions based on our analysis.

Remark 2.2. In certain applications it may be desirable to studentize the constraints in

our bootstrap approximation – i.e. replace Gj and gj by Gj/σ̂j and gj/σ̂j everywhere in

(4) (and in (7) if employed). In the empirical analysis below we proceed in this manner

by setting σ̂2
j to be an estimate of the asymptotic variance of

√
nGj{θ̂u

n − θ0}.

2.1.1 Fertility and Labor Supply: LATE

We illustrate the preceding discussion by revisiting the study by Angrist and Evans

(1998) on the causal effect of childbearing on female labor force participation. Like An-

grist and Evans (1998), we employ the 1980 Census Public Use Micro Sample restricted

2While we may replace V̂n(θ̂n, R) with V̂n(θ̂un, R) in identified models, in partially identified models we
employ V̂n(θ̂n, R) due to the identified set potentially not being a subset of R under the null hypothesis.
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Figure 1: First Panel: Unconstrained and shape restricted LATE estimates (imposing
monotonicty or monotonicity and negativity yield the same estimates). Second and
Third Panels: 95% Confidence intervals for LATE at different education levels.

to mothers aged 21-35 with at least two children, and set: (i) D ∈ {0, 1} to indicate

whether a mother has more than two children (the treatment); (ii) Y ∈ {0, 1} to in-

dicate whether a mother is employed (the outcome of interest); and (iii) Z ∈ {0, 1} to

indicate whether the first two children are of the same sex (the instrument). We further

adopt the heterogeneous treatment effects model of Imbens and Angrist (1994) and let

Yd denote the potential outcome under treatment status d ∈ {0, 1} and employ “C,”

“NT,” and “AT” to denote compliers, never takers, and always takers.

Angrist and Evans (1998) document that the impact of childbearing on labor force

participation depends on observable characteristics. In particular, their two stage least

squares (2SLS) estimates suggest a negative impact of childbearing on labor force par-

ticipation across different levels of schooling, but that the magnitude of the impact

decreases with schooling – a phenomenon that may reflect that more educated moth-

7



ers have a stronger attachment to the labor force. To formally examine this claim, we

introduce dummy variables S for each year of schooling between 9 and 16 and for the

categories “less than 9” and “more than 16.” Defining the local average treatment effects

LATE(S) ≡ E[Y1 − Y0|C, S]

we then test whether: (i) LATE(·) is increasing in schooling, and (ii) LATE(·) is in-

creasing in schooling and nonpositive. Both hypotheses fall within the framework of the

preceding section because LATE(·) is identified through linear moment restrictions and

the hypothesized restrictions are linear in LATE(·). Employing five thousand bootstrap

replications and setting rn = +∞ or rn as suggested in (7) with γn = 0.05 yields in this

case equal p-values that fail to reject either null hypothesis. The p-value for LATE(·)
being nondecreasing is 0.21 and for it being nondecreasing and nonpositive is 0.394.

In Figure 1 we study the values of LATE(S) at different schooling levels. The

first panel displays the unconstrained 2SLS estimates and their monotonicity restricted

counterparts – the latter are negative and hence additionally demanding nonpositivity

does not change the estimates. Unfortunately, two sided confidence regions based on

the (pointwise in P ) asymptotic distribution of the shape-restricted 2SLS estimator can

asymptotically undercover the true parameter. In the second panel of Figure 1 we instead

proceed as in Remark 2.1 to obtain 95% confidence intervals while imposing monotonicity

and again selecting rn by setting γn = 0.05 in (7). Imposing monotonicity in this

manner yields confidence intervals that are sometimes substantially shorter than their

2SLS counterparts. Notably, we observe lower upper ends for the restricted confidence

intervals at the lower education levels and higher lower ends at higher education levels.

The third panel of Figure 1 shows that additionally imposing LATE(·) be nonpositive

reduces the upper bound of our confidence intervals at higher education levels.

2.2 Partial Identification

We next illustrate the implementation of our results in a partially identified setting.

With an eye towards extending the preceding empirical analysis to study average treat-

ment effects (ATEs), we maintain that the parameter of interest θ0 ∈ Θ ⊆ Rdθ satisfies

EP [(Y −W ′θ0)Z] = 0, (8)

but no longer assume θ0 is identified by (8). Instead, we define the identified set

Θ0 ≡ {θ ∈ Θ : EP [(Y −W ′θ)Z] = 0} (9)

and consider the problem of testing whether the intersection of Θ0 and R is nonempty

(i.e. Θ0 ∩ R 6= ∅). Such hypotheses can be employed, for instance, to build confidence
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regions for functionals of the identified set; see Remark 2.3 below. We also now set

R = {θ ∈ Rdθ : ΥF (θ) = 0, Gθ ≤ g}, (10)

for ΥF a known possibly nonlinear function – e.g., ΥF (θ) = Fθ − f recovers (1).

We continue to rely on the statistics In(R) and In(Θ) (as in (3)) for inference.

However, since in many settings in which θ0 fails to be identified by (8) we will have

that the dimension of Z is smaller than that of W , in what follows we assume for ease

of exposition that In(Θ) = 0 (almost surely); see Section 3.2.2 for a general discussion.

Another distinction relative to Section 2.1 is that the choice of Σ̂n (as in (2)) may need

to be modified in settings in which U ≡ Y −W ′θ0 cannot be consistently estimated due

to θ0 being partially identified. In such instances we may, for example, set

Σ̂n ≡ (
1

n

n∑
i=1

ZiZ
′
i(Yi −W ′i θ̂u

n)2)−1/2,

where we now interpret θ̂u
n as the minimum norm minimizer of Qn over Θ. While the

choice of Σ̂n has an impact on how local power is directed, we note that the test has

correct asymptotic size provided Σ̂n converges in probability to a non-stochastic limit.

Our bootstrap procedure requires two modifications relative to our preceding dis-

cussion. First, because in (10) we consider nonlinear equality constraints, we now set

V̂n(θ,R) ≡ {h ∈ Rdθ : ΥF (θ+
h√
n

) = 0, Gjh ≤
√
nmax{0,−(rn +Gjθ− gj)} for all j}

(notice that if ΥF (θ) = Fθ − f , then we recover (4)). A distinction with Section 2.1

is that if one aims to employ (7) to select rn, then an alternative to an unrestricted

estimator θ̂u
n may be necessary; see Section 2.2.1 for an example. Second, our bootstrap

approximation employs an estimator Θ̂r
n for Θ0 ∩R. To this end, we set

Θ̂r
n ≡ {θ ∈ Θ ∩R : Qn(θ) ≤ inf

θ∈Θ∩R
Qn(θ) + τn}

where τn ≥ 0 is a bandwidth whose choice we discuss shortly – i.e. Θ̂r
n is the set of

“near” minimizers of Qn over Θ∩R. Our bootstrap approximation to In(R) then equals

Û bn(R) ≡ min
θ∈Θ̂r

n

min
h∈V̂n(θ,R)

‖Σ̂n{Ŵb
n(θ) + D̂n[h]}‖2.

Thus, to obtain a level α test we reject the null hypothesis whenever In(R) exceeds the

1 − α quantile of Û bn(R) across bootstrap draws. Paralleling Section 2.1, a principal

assumption for the test to be asymptotically valid is that Θ0 be strongly identified.

When specialized to the current setting, our asymptotic theory requires that τn tend
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to zero. It is theoretically valid to set τn = 0, which simplifies the computation of our

bootstrap statistic. However, setting τn = 0 can result in lower power in applications

for which the corresponding Θ̂r
n is not (Hausdorff) consistent for Θ0 ∩ R – to ensure

consistency, τn must in addition satisfy τn
√
n → ∞. For applications in which it is

desirable to set τn > 0, we propose a procedure inspired by Romano and Shaikh (2010).

Specifically, for any set K ⊆ Θ ∩R we define the quantile q̂n(K) according to

P (sup
θ∈K
‖Σ̂nŴn(θ)‖2 ≤ q̂n(K)|Data) = 1− γn

where γn ∈ (0, 1). Letting S1 ≡ Θ ∩ R, we then inductively define Sj+1 ≡ {θ ∈ Θ ∩ R :
√
nQn(θ) ≤ q̂n(Sj)} noting that by construction Sj+1 ⊆ Sj . To select τn, we proceed

inductively until we find Sj = ∅, in which case we set τn = 0, or Sj+1 = Sj 6= ∅, in

which case we set τn = q̂n(Sj). Heuristically, under such a choice of τn, the set Θ̂r
n may

be interpreted as a 1 − γn confidence region for Θ0 ∩ R. While power considerations

suggest setting γn to tend to zero, for practical considerations we suggest simply setting

1− γn to be a high quantile fixed with n (e.g., 1− γn = 0.8).

Remark 2.3. The introduced test can be employed to obtain confidence regions for

functionals of the identified set satisfying the coverage requirement advocated by Im-

bens and Manski (2004). Specifically, given a functional ΥF , we may set Rλ = {θ ∈
Rdθ : ΥF (θ) = λ,Gθ ≤ g} and obtain the desired confidence region by conducting test

inversion in λ of the null hypothesis that the set Θ0 ∩Rλ is not empty.

2.2.1 Fertility and Labor Supply: ATE

Returning to our analysis of the causal impact of fertility on female labor force partic-

ipation, we next turn to estimating the average treatment effect at different education

levels S (denoted ATE(S)). Following the literature, we decompose ATE(S) into

LATE(S)P (C|S) + E[Y1 − Y0|AT, S]P (AT|S) + E[Y1 − Y0|NT, S]P (NT|S), (11)

where recall C, AT, and NT denote “compliers,” “always takers,” and “never takers.” With

the exception of E[Y0|AT, S] and E[Y1|NT, S], all terms in (11) can be identified through

linear moment restrictions.Because S has ten support points, we obtain sixty moments

and eighty parameters so that In(Θ) = 0 almost surely.

Following our analysis of LATE(S) we conduct inference on ATE(S) under three

increasingly stringent set of restrictions: (i) The logical bounds implied by Yd ∈ {0, 1};
(ii) Adding to (i) that the average treatment effect be increasing in schooling among all

types (C, NT, and AT); (iii) Adding to (ii) that average treatment effects be nonpositive for

all levels of education and types. Figure 2 reports the resulting 95% confidence regions
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Figure 2: 95% Confidence intervals for ATE at different education levels. “Unr.” uses
bounds implied by Yd ∈ {0, 1}; “Mon. Restr.” adds that average treatment effects be
increasing in education for all types; “Mon.+Neg. Restr.” also requires they be negative.

obtained through the approach described in Remark 2.3 – here, the restriction Gθ ≤ g

imposes the described shape constraints while the nonlinear restriction ΥF (θ) = 0 cor-

responds to imposing a hypothesized value for ATE(S) through (11). In our bootstrap

approximation, we let τn = 0 and set rn according to (7) with γn = 0.05 and where we

used the distribution of estimators of identified parameters for their partially identified

counterparts.3 We do not report estimates of the identified sets for ATE(S) as they are

very close to the obtained confidence intervals: On average the bounds of the confidence

intervals exceed the bounds of the estimates by 0.011. Nonetheless, the unrestricted con-

fidence intervals are large as the estimates for the identified set are large – a result driven

by the low proportion of compliers (5% on average across S). Imposing monotonicity

across types carries identifying information on the upper end of the identified set at low

levels of education and on the lower end of the identified set at high levels of education.

Additionally imposing nonpositivity sharpens the upper bound of the identified set at

all schooling levels. The resulting confidence regions sign ATE(S) at all education levels

(weakly) smaller than 12 as strictly negative, though very close to zero.

Finally, as a preview of our general analysis in Section 3, in Table 1 we employ the

same shape restrictions to report estimates and 95% confidence intervals for the iden-

tified sets of the average treatment effects for: High School Dropouts (edu ∈ [9, 12)),

College Dropouts (edu ∈ [13, 15)), College Graduates (edu ≥ 16) and the overall aver-

age treatment effect. These confidence regions are obtained through test inversion after

noting that a hypothesized value for the average treatment effect of a subgroup can be

written as a nonlinear moment restriction in θ0 through (11) – nonlinear moment re-

strictions fall within our general framework but outside the scope of Section 2.2. Overall

the impact of imposing shape restrictions parallels the results in Figure 2.

3E.g., for the constraint E[Y1|NT, S] ≤ 1 we substituted the corresponding Gj{θ̂un − θ̂u
?

n } term in (7)
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Unrestricted Mon. Restr. Mon.+Neg Restr.
Subgroup Estimate 95% CI Estimate 95% CI Estimate 95% CI
HS Drop [-0.520,0.426] [-0.526,0.432] [-0.489,0.346] [-0.500,0.356] [-0.489,-0.008] [-0.501,-0.003]

Coll. Drop [-0.561,0.380] [-0.566,0.385] [-0.447,0.325] [-0.460,0.337] [-0.447,-0.004] [-0.462,0.000]
Coll. Grad [-0.579,0.375] [-0.586,0.382] [-0.446,0.328] [-0.462,0.339] [-0.446,-0.002] [-0.464,0.000]

All [-0.545,0.395] [-0.547,0.398] [-0.467,0.328] [-0.477,0.338] [-0.467,-0.008] [-0.478,-0.003]

Table 1: Point Estimates and 95% confidence intervals for the average treatment effect
at different groups defined by schooling levels under different shape restrictions.

3 General Analysis

We next develop a general inferential framework that encompasses the tests discussed in

Section 2. The class of models we consider are those in which the parameter of interest

θ0 ∈ Θ satisfies a finite number J of conditional moment restrictions

EP [ρ(X, θ0)|Z] = 0 for 1 ≤  ≤ J

with ρ : X × Θ → R, X ∈ X, and Z ∈ Z. For notational simplicity, we also let

Z ≡ (Z1, . . . , ZJ ) and V ≡ (X,Z) with V ∼ P ∈ P. In some of the applications that

motivate us, the parameter θ0 is not identified. We therefore define the identified set

Θ0 ≡ {θ ∈ Θ : EP [ρ(X, θ)|Z] = 0 for 1 ≤  ≤ J}

and employ it as the basis of our statistical analysis – we emphasize that Θ0 depends on

P , but leave such dependence implicit to simplify notation. For a set R of parameters

satisfying a conjectured restriction, we develop a test for the hypothesis

H0 : Θ0 ∩R 6= ∅ H1 : Θ0 ∩R = ∅; (12)

i.e. we devise a test of whether at least one element of the identified set satisfies the

posited constraint. In what follows, we denote the set of distributions P ∈ P satisfying

the null hypothesis in (12) by P0. We also note that in an identified model, a test of

(12) is equivalent to a test of whether θ0 itself satisfies the hypothesized constraint.

The defining elements determining the type of applications encompassed by (12) are

the choices of Θ and R. In imposing restrictions on Θ and R we therefore aim to allow

for a general framework while simultaneously ensuring enough structure for a fruitful

asymptotic analysis. To this end, we require Θ to be a subset of a complete vector space

B with norm ‖ · ‖B (i.e. (B, ‖ · ‖B) is a Banach space) and consider sets R satisfying

R = {θ ∈ B : ΥF (θ) = 0 and ΥG(θ) ≤ 0}, (13)

with a mean zero normal distribution with the variance of the estimator for E[Y0|NT, S].
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where ΥF : B→ F and ΥG : B→ G are known maps. Our first assumption formalizes

the basic structure of the hypothesis testing problem we study.

Assumption 3.1. (i) {Vi}ni=1 is i.i.d. with V ∼ P ∈ P; (ii) Θ ⊆ B, where (B, ‖ · ‖B)

is a Banach space; (iii) ΥF : B → F and ΥG : B → G, where (F, ‖ · ‖F) is a Banach

space and (G, ‖ · ‖G) is an AM space with order unit 1G.

Through Assumption 3.1(i) we focus on the i.i.d. setting, though extensions to other

sampling frameworks are feasible. Assumption 3.1(ii) allows us to address parametric,

semiparametric, and nonparametric models, while Assumption 3.1(iii) allows ΥF to

impose both finite dimensional or infinite dimensional equality restrictions. Assumption

3.1(iii) further requires that ΥG take values in an AM space G – we provide an overview

of AM spaces in the supplemental appendix. Heuristically, the key properties of G are:

(i) G is a vector space equipped with a partial order “≤”; (ii) The partial order and

the vector space operations interact in the same manner they do on R (e.g. if θ1 ≤ θ2,

then θ1 + θ3 ≤ θ2 + θ3); and (iii) The order unit 1G ∈ G is an element such that for any

θ ∈ G there exists a scalar λ > 0 satisfying |θ| ≤ λ1G (e.g. when G = Rd we may set

1G ≡ (1, . . . , 1)′ ∈ Rd). These properties of an AM space will prove instrumental in our

analysis. In particular, the order unit 1G will provide a crucial link between the partial

order “≤”, the norm ‖ · ‖G, and (through smoothness of ΥG) allow us to leverage a rate

of convergence in B to build a suitable sample analogue to the local parameter space.

3.1 Main Results

Our analysis centers around a statistic In(R) that constitutes a “building block” for

different tests of (12) – e.g., it may be employed to implement generalizations of the J

or incremental J tests. In this section we first introduce In(R), obtain an approximation

to its distribution, and devise a bootstrap procedure for estimating its quantiles.

3.1.1 The Building Block

We first introduce the statistic In(R) that we employ to build different tests. To this

end, for each instrument Z we consider transformations {qk,}
kn,
k=1 and let q

kn,
 (z) ≡

(q1,(z), . . . , qkn,,(z))
′. Recalling that Z ≡ (Z1, . . . , ZJ ), we further set kn ≡

∑J
=1 kn,,

qkn(z) ≡ (q
kn,1
1 (z1)′, . . . , q

kn,J
J (zJ )′)′, ρ(x, θ) ≡ (ρ1(x, θ), . . . , ρJ (x, θ))′, and let

ρ(Xi, θ) ∗ qkn(Zi) ≡


ρ1(Xi, θ)q

kn,1
1 (Zi,1)

...

ρJ (Xi, θ)q
kn,J
J (Zi,J )

 ;
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i.e. for each θ we take the product of each “residual” ρ(X, θ) with the transformations

of its respective instrument Z. For a kn × kn matrix Σ̂n, we then define

Qn(θ) ≡ ‖ 1

n

n∑
i=1

ρ(Xi, θ) ∗ qkn(Zi)‖Σ̂n,p,

where ‖a‖Σ̂n,p ≡ ‖Σ̂na‖p and ‖ · ‖p is the p-norm on Rkn for any p ≥ 2 – i.e. ‖a‖p ≡
(
∑d

i=1 |a(i)|p)1/p for any a ≡ (a(1), . . . , a(d))′ ∈ Rd. Letting Θn∩R be a finite dimensional

subset of Θ ∩R that grows dense in Θ ∩R, we then define In(R) to equal

In(R) ≡ inf
θ∈Θn∩R

√
nQn(θ).

We note that setting p = 2 is often computationally attractive. However, we allow for

p > 2 because higher values of p enable us to establish distributional approximations

under weaker conditions on the number of unconditional moments kn.

Intuitively,
√
nQn should diverge to infinity when evaluated at any θ /∈ Θ0 and

remain “stable” when evaluated at a θ ∈ Θ0. Thus, examining the minimum of
√
nQn

over R should reveal whether there is a θ that simultaneously makes
√
nQn(θ) “stable”

(θ ∈ Θ0) and satisfies the conjectured restriction (θ ∈ R). This intuition suggests In(R)

may be employed as a test statistic that is similar in spirit to the J-test of Hansen

(1982). Alternatively, we may build a test by considering the recentered test statistic

In(R) − In(Θ), which is similar in spirit to the incremental J-test. Conceptually, it is

important to note that In(Θ) is a special case of In(R) (i.e. set R = Θ). We refer to

In(R) as a “building block” in the sense that, together with closely related variants like

In(Θ), it may be employed to obtain a variety of different tests.

3.1.2 Strong Approximation

We next obtain a strong approximation to In(R). To this end, we first define the class

Fn ≡ {ρ(·, θ) : θ ∈ Θn ∩R and 1 ≤  ≤ J}. (14)

The “size” of Fn plays a crucial role, and we control it through the bracketing integral

J[ ](δ,Fn, ‖ · ‖P,2) ≡
∫ δ

0

√
1 + logN[ ](ε,Fn, ‖ · ‖P,2)dε,

where ‖f‖P,2 ≡ (EP [f2(V )])1/2 andN[ ](ε,Fn, ‖·‖P,2) is the smallest number of ε-brackets

(under ‖ · ‖P,2) required to cover Fn. Finally, we denote the empirical process by

Gn(θ) ≡ 1√
n

n∑
i=1

{ρ(Xi, θ) ∗ qkn(Zi)− EP [ρ(X, θ) ∗ qkn(Z)]}.
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Our next assumptions imposes requirements on Θn ∩R and the transformation qkn(Z).

Assumption 3.2. (i) max1≤≤J max1≤k≤kn, ‖qk,‖∞ ≤ Bn with Bn ≥ 1; (ii) The

eigenvalues of EP [q
kn,
 (Z)q

kn,
 (Z)

′] are bounded uniformly in kn, and P ∈ P; (iii)

Fn has envelope Fn, supP∈P ‖Fn‖P,2 < ∞, and supP∈P J[ ](‖Fn‖P,2,Fn, ‖ · ‖P,2) ≤ Jn

with Jn <∞.

Assumption 3.3. (i) supθ∈Θn∩R ‖Gn(θ)−WP (θ)‖p = oP (an) uniformly in P ∈ P for

some an = o(1) and Gaussian WP satisfying E[WP (θ)] = 0 and Cov{WP (θ),WP (θ′)} =

CovP {Gn(θ),Gn(θ′)}; (ii) There is a norm ‖ · ‖E, κρ > 0, and Kρ < ∞ such that

EP [‖ρ(X, θ1)− ρ(X, θ2)‖22] ≤ K2
ρ‖θ1 − θ2‖

2κρ
E for all θ1, θ2 ∈ Θn ∩R and P ∈ P.

Assumptions 3.2(i)(ii) impose standard requirements on the transformations qkn –

e.g., Assumption 3.2(i) holds with Bn = 1 for trigonometric series and Bn �
√
kn for

normalized B-splines. Assumption 3.2(iii) controls the “size” of Fn. We allow Jn to

depend on n to accommodate non-compact parameter spaces (Chen and Pouzo, 2015).

Assumption 3.3(i) requires that the empirical process be approximately Gaussian. The

sequence {an}∞n=1 denotes a bound on the rate of coupling, which in turn character-

izes the rate of convergence of our strong approximation. In the appendix, we verify

Assumption 3.3(i) by relying on existing results or a novel extension of Koltchinskii’s

coupling. Assumption 3.3(ii) imposes a mild restriction on the moment functions that

ensures WP is equicontinuous with respect to ‖ · ‖E.

In establishing our strong approximation to In(R), it is helpful to derive the rate of

convergence of the minimizer of Qn over Θn ∩ R. To this end, we follow the literature

on set estimation (Chernozhukov et al., 2007) and for any sets A and B we define

−→
d H(A,B, ‖ · ‖E) ≡ sup

a∈A
inf
b∈B
‖a− b‖E,

which is known as the directed Hausdorff distance. For each θ ∈ Θ ∩ R, we further let

Πnθ denote its approximation on Θn ∩R and denote the approximation to Θ0 ∩R by

Θr
0n ≡ {Πnθ : θ ∈ Θ0 ∩R}. (15)

Our next assumption enables us to obtain a rate of convergence (under ‖ · ‖E) to Θr
0n.

Assumption 3.4. There are Vn(P ) ⊆ Θn ∩ R and a sequence of constants {νn} with

0 < ν−1
n = O(1) such that (i) For any θ ∈ Vn(P ) it holds that

ν−1
n

−→
d H(θ,Θr

0n, ‖ · ‖E) ≤ sup
θ̃∈Θr

0n

‖EP [(ρ(X, θ)− ρ(X, θ̃)) ∗ qkn(Z)]‖ΣP ,p;

(ii) There is a θ̂n ∈ Vn(P ) satisfying Qn(θ̂n) ≤ infθ∈Θn∩RQn(θ) + o(an/
√
n) with prob-

ability tending to one uniformly in P ∈ P0.
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Assumption 3.4(ii) requires that an approximate minimum of Qn over Θn ∩ R be

attained at a point θ̂n in a set Vn(P ) with high probability. Typically, Vn(P ) may be

taken to equal the entire sieve in convex models, or it may be taken to equal a local

neighborhood of Θr
0n after establishing the consistency of θ̂n through standard argu-

ments; see Lemma S.1.1. Assumption 3.4(i) introduces a local identification condition

on Vn(P ) by requiring that the moments “change” at a rate ν−1
n as θ moves away from

Θr
0n. The parameter ν−1

n , which implicitly depends on kn and the choice of sieve Θn∩R,

is conceptually related to sieve measure of ill-posedness (Blundell et al., 2007).

By employing Assumption 3.4, we are able to show that with arbitrarily high prob-

ability, θ̂n is contained in a ‖ · ‖E-neighborhood of Θr
0n that shrinks at a rate

Rn ≡ νn{
k

1/p
n

√
log(1 + kn)JnBn√

n
}, (16)

where recall Bn and Jn where introduced in Assumption 3.2. Under assumptions on the

(Hausdorff) distance between Θr
0n and Θ0 ∩ R, the triangle inequality can yield a rate

of convergence of θ̂n to Θ0 ∩ R. Heuristically, we focus on convergence to Θr
0n (instead

of Θ0 ∩R) because our strong approximation will rely on undersmoothing.

In our final assumptions, we follow the literature and accommodate non-differentiable

moment functions by requiring that their conditional expectations be differentiable

(Chen and Pouzo, 2015). Specifically, for each 1 ≤  ≤ J and θ ∈ Θ we set

mP,(θ)(Z) ≡ EP [ρ(X, θ)|Z];

i.e. mP, maps each θ ∈ Θ to a square integrable function of Z. Letting Bn denote the

vector subspace generated by Θn ∩R, we then impose the following:

Assumption 3.5. There is a norm ‖ · ‖L on Bn, linear maps ∇mP,(θ) : B → L2
P ,

and constants ε > 0 and Km,M < ∞ such that for all P ∈ P, h ∈ Bn, and elements

θ1, θ2 ∈ {θ ∈ Θn ∩ R :
−→
d H(θ,Θr

0n, ‖ · ‖E) ≤ ε} we have: (i) ‖mP,(θ1) − mP,(θ2) −
∇mP,(θ2)[θ1−θ2]‖P,2 ≤ Km‖θ1−θ2‖L‖θ1−θ2‖E; (ii) ‖∇mP,(θ1)[h]−∇mP,(θ2)[h]‖P,2 ≤
Km‖θ1 − θ2‖L‖h‖E; (iii) ‖∇mP,(θ2)[h]‖P,2 ≤M‖h‖E.

Assumption 3.6. (i) k
1/p
n

√
log(1 + kn)Bn supP∈P J[ ](R

κρ
n ,Fn, ‖ · ‖P,2) = o(an); (ii)

supP∈P0
supθ∈Θr

0n

√
n‖EP [ρ(X, θ) ∗ qkn(Z)]‖ΣP ,p = o(an).

Assumption 3.7. (i) For each P ∈ P there is a kn × kn matrix ΣP > 0 such that

‖Σ̂n−ΣP ‖o,p = oP (1∧an{k1/p
n

√
log(1 + kn)BnJn}−1) uniformly in P ∈ P; (ii) ‖ΣP ‖o,p

and ‖Σ−1
P ‖o,p are uniformly bounded in kn and P ∈ P.

Assumption 3.5(i) ensures mP, is approximated by linear maps ∇mP, with an ap-

proximation error that is controlled by ‖ · ‖E and a potentially stronger norm ‖ · ‖L. In
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turn, Assumptions 3.5(ii)(iii) impose continuity conditions on∇mP, – these assumptions

are not used in this section, but will be needed for our bootstrap results. Assumption

3.6 contains our key rate restrictions. Assumption 3.6(i) ensures the rate of convergence

Rn (as in (16)) is sufficiently fast to overcome an asymptotic loss of equicontinuity

– a requirement that can hold even when Rn is slower than the traditional o(n−1/4)

rate employed to linearize nonlinear models. Assumption 3.6(ii) is an undersmoothing

assumption, which ensures that In(R) is properly centered under the null hypothesis.

Finally, Assumption 3.7 requires Σ̂n to converge to an invertible matrix ΣP at a suitable

rate – here, ‖ · ‖o,p denotes the operator norm when Rkn is endowed with ‖ · ‖p.

The introduced assumptions suffice for obtaining a strong approximation through a

local reparametrization. Formally, we denote the local deviations from θ ∈ Θn ∩R by

Vn(θ,R|`) ≡ {h ∈ Bn : θ +
h√
n
∈ Θn ∩R and ‖ h√

n
‖E ≤ `}.

Recall Bn denotes the vector subspace generated by Θn ∩R and for any h ∈ Bn set

DP (θ)[h] ≡ EP [∇mP (θ)[h](Z) ∗ qkn(Z)],

where ∇mP (θ)[h](Z) ≡ (∇mP,1(θ)[h](Z1), . . . ,∇mP,J (θ)[h](ZJ ))′. For any given se-

quence `n, we then define a sequence of random variables UP (R|`n) to be given by

UP (R|`n) ≡ inf
θ∈Θr

0n

inf
h∈Vn(θ,R|`n)

‖WP (θ) + DP (θ)[h]‖ΣP ,p. (17)

As a final piece of notation, for any two norms ‖ · ‖A1 and ‖ · ‖A2 defined on Bn, we set

Sn(A1,A2) ≡ sup
b∈Bn

‖b‖A1

‖b‖A2

,

which we note depends on the sample size n only through the choice of sieve Θn ∩R.

The next result establishes the relation between UP (R|`n) and In(R). It is helpful

to recall here that the norm ‖ · ‖L and constants Km, introduced in Assumption 3.5,

control the linearization of the moments and that Km = 0 for linear models.

Theorem 3.1. Let Assumptions 3.1(i), 3.2, 3.3, 3.4, 3.5(i), 3.6, and 3.7 hold. Then:

(i) For any `n ↓ 0 satisfying k
1/p
n

√
log(1 + kn)Bn × supP∈P J[ ](`

κρ
n ,Fn, ‖ · ‖P,2) = o(an)

and Km`
2
n × Sn(L,E) = o(ann

−1/2) it follows uniformly in P ∈ P0 that:

In(R) ≤ UP (R|`n) + oP (an).

(ii) If in addition KmR2
n × Sn(L,E) = o(ann

−1/2), then `n may be additionally chosen
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to satisfy Rn = o(`n), in which case it follows uniformly in P ∈ P0 that:

In(R) = UP (R|`n) + oP (an).

Theorem 3.1 is perhaps best understood as establishing the validity of a family (in-

dexed by {`n}) of strong approximations that differ on the size of the local neighborhoods

of Θr
0n that they employ. Its proof crucially relies on the linearization

DP (θ)[h] ≈
√
n{EP [ρ(X, θ +

h√
n

) ∗ qkn(Z)]− EP [ρ(X, θ) ∗ qkn(Z)]}, (18)

which holds for nonlinear moments (Km 6= 0) when h/
√
n is sufficiently small. In

particular, if the infimum defining In(R) is attained at a point θ̂n that converges to Θr
0n

sufficiently fast, then we may apply (18) to establish Theorem 3.1(ii). Regrettably, in

certain models the rate of convergence of θ̂n may be too slow to apply the approximation

in (18) to θ̂n. In such instances, we may instead rely on the inequality

In(R) = inf
θ∈Θn∩R

√
nQn(θ) ≤ inf

(θ,h)∈(Θr
0n,Vn(θ,R|`n))

√
nQn(θ +

h√
n

) (19)

and successfully couple the right hand side of (19) by restricting attention to sequences

`n for which (18) is accurate. Thus, by regularizing the local parameter space through

a norm bound, we obtain in Theorem 3.1(i) a distributional approximation that, while

potentially conservative, holds under weaker requirements on the rate of convergence.

3.1.3 Bootstrap Approximation

Theorem 3.1 shows that the distribution of UP (R|`n) is a suitable approximation for

the distribution of In(R). We next develop a bootstrap procedure for estimating the

distribution of UP (R|`n) with the goal of obtaining valid critical values.

We estimate the distribution of UP (R|`n) by replacing population parameters with

suitable sample analogues. The key ingredients are: (i) A random variable Ŵn whose

distribution conditional on the data is consistent for the distribution of WP ; (ii) An

estimator D̂n(θ) for DP (θ); (iii) An estimator Θ̂r
n for Θr

0n (as in (15)); and (iv) A sample

analogue V̂n(θ,R|`n) for the local parameter space Vn(θ,R|`n). We then approximate

the distribution of UP (R|`n) by the distribution (conditional on the data) of

Ûn(R|`n) ≡ inf
θ∈Θ̂r

n

inf
h∈V̂n(θ,R|`n)

‖Ŵn(θ) + D̂n(θ)[h]‖Σ̂n,p.

For concreteness, we employ the following sample analogues in our construction.

Gaussian Distribution: We estimate the distribution of WP with the multiplier boot-
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strap. Specifically, for i.i.d. {ωi}ni=1 with ωi ∼ N(0, 1) independent of {Vi}ni=1 we let

Ŵn(θ) ≡ 1√
n

n∑
i=1

ωi{ρ(Xi, θ) ∗ qkn(Zi)−
1

n

n∑
j=1

ρ(Xj , θ) ∗ qkn(Zj)}.

We focus on the multiplier bootstrap due to its theoretical tractability, though we note

that alternative bootstrap approaches can also be valid.

The Derivative: We estimate DP (θ) by employing a construction that is applicable to

non-differentiable moments. Specifically, for any θ ∈ Θn ∩R and h ∈ Bn we set

D̂n(θ)[h] ≡ 1√
n

n∑
i=1

(ρ(Xi, θ +
h√
n

)− ρ(Xi, θ)) ∗ qkn(Zi).

We employ D̂n(θ) due to its general applicability, though alternative approaches may

be preferable in some applications. In particular, if moments are differentiable, then

employing n−1
∑

i∇θρ(Xi, θ)[h] ∗ qkn(Zi) as an estimator for DP (θ)[h] leads to a com-

putationally simpler bootstrap statistic.

The Identified Set: We estimate the identified set by employing the set of (approxi-

mate) minimizers of Qn on Θn ∩R. Formally, for a sequence τn ↓ 0, we let

Θ̂r
n ≡ {θ ∈ Θn ∩R : Qn(θ) ≤ inf

θ∈Θn∩R
Qn(θ) + τn}. (20)

We may set τn = 0 in identified models, in which case Θ̂r
n reduces to the minimizer of

Qn. In partially identified models, Θ̂r
n can be shown to asymptotically lie in a shrinking

neighborhood of Θr
0n provided τn → 0. In order for Θ̂r

n to additionally be Hausdorff

consistent for Θr
0n, however, τn must not tend to zero too fast; see Lemma S.1.1.

Local Parameter Space: We account for the role inequality constraints play in deter-

mining the local parameter space by estimating “binding” sets in analogy to approaches

pursued in the moment inequalities literature (Chernozhukov et al., 2007; Andrews and

Shi, 2013). Specifically, for a sequence rn and any θ ∈ Θn ∩R we define

Gn(θ) ≡ {h ∈ Bn : ΥG(θ +
h√
n

) ≤ (ΥG(θ)−Kgrn‖
h√
n
‖B1G) ∨ (−rn1G)},

where recall 1G is the order unit in G and g1 ∨ g2 represents the supremum of any

g1, g2 ∈ G. The constant Kg, formally introduced in Assumption 3.8 below, is related

to the curvature of ΥG and equals zero for linear ΥG. For any `n we then define

V̂n(θ,R|`n) ≡ {h ∈ Bn : h ∈ Gn(θ), ΥF (θ +
h√
n

) = 0 and ‖ h√
n
‖B ≤ `n}, (21)

i.e. in comparison to Vn(θ,R|`n) we: (i) Replace ΥG(θ + h/
√
n) ≤ 0 by h ∈ Gn(θ); (ii)
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Retain ΥF (θ + h/
√
n) = 0; and (iii) Substitute ‖h/

√
n‖E ≤ `n with ‖h/

√
n‖B ≤ `n.

Before establishing the asymptotic validity of the proposed bootstrap procedure,

we require some additional notation. For any set A ⊆ Bn, we let (A)ε ≡ {θ ∈ Bn :

infa∈A ‖a − θ‖B ≤ ε}. We further denote the closure of the linear span of ΥF (Bn) by

Fn, and for any linear map Γ on B we let N (Γ) ≡ {h ∈ B : Γ(h) = 0} denote its null

space. In what follows, it is helpful to recall that Θr
0n is implicitly a function of P .

Assumption 3.8. For some Kg,M <∞, ε > 0 and all n, P ∈ P0, θ1, θ2 ∈ (Θr
0n)ε (i)

ΥG is Fréchet differentiable with ‖ΥG(θ1)−ΥG(θ2)−∇ΥG(θ1)[θ1−θ2]‖G ≤ Kg‖θ1−θ2‖2B;

(ii) ‖∇ΥG(θ1)−∇ΥG(θ2)‖o ≤ Kg‖θ1 − θ2‖B; (iii) ‖∇ΥG(θ1)‖o ≤M .

Assumption 3.9. For some Kf ,M <∞, ε > 0 and all n, P ∈ P0, θ1, θ2 ∈ (Θr
0n)ε (i)

ΥF is Fréchet differentiable with ‖ΥF (θ1)−ΥF (θ2)−∇ΥF (θ1)[θ1−θ2]‖F ≤ Kf‖θ1−θ2‖2B;

(ii) ‖∇ΥF (θ1) − ∇ΥF (θ2)‖o ≤ Kf‖θ1 − θ2‖B; (iii) ‖∇ΥF (θ1)‖o ≤ M ; (iv) ∇ΥF (θ1) :

Bn → Fn admits a right inverse ∇ΥF (θ1)− with Kf‖∇ΥF (θ1)−‖o ≤M .

Assumption 3.10. Either (i) ΥF : B→ F is affine, or (ii) There are constants ε > 0,

M <∞ such that for every P ∈ P0, n, and θ ∈ Θr
0n there exists a h ∈ Bn∩N (∇ΥF (θ))

satisfying ΥG(θ) +∇ΥG(θ)[h] ≤ −ε1G and ‖h‖B ≤M .

Assumption 3.8 imposes that ΥG be Fréchet differentiable. The constant Kg, em-

ployed in the construction of V̂n(θ,R|`n), may be interpreted as a bound on the second

derivative of ΥG and equals zero when ΥG is linear. Assumptions 3.9 and 3.10 mark

an important difference between hypotheses in which ΥF is linear and those in which

ΥF is nonlinear – note linear ΥF automatically satisfy Assumptions 3.9 and 3.10. This

distinction reflects that when ΥF is linear its impact on the local parameter space is

known and need not be estimated.4 Thus, while Assumptions 3.9(i)-(iii) impose con-

ditions analogous to those required of ΥG, Assumption 3.9(iv) additionally demands

that ∇ΥF (θ) posses a norm bounded right inverse on (Θr
0n)ε – the existence of a right

inverse is equivalent to a classical rank condition.5 Finally, for nonlinear ΥF , Assump-

tion 3.10(ii) requires the existence of a local perturbation to any θ ∈ Θr
0n that relaxes

“active” inequality constraints without a first order effect on the equality restrictions.

We impose a final set of assumptions in order to couple our bootstrap statistic.

Assumption 3.11. supθ∈Θn∩R ‖Ŵn(θ) −W?
P (θ)‖p = oP (an) uniformly in Φ × P with

P ∈ P for Φ the standard normal distribution, an = o(1), and W?
P independent of

{Vi}ni=1 and having the same distribution as WP .

4For linear ΥF , the requirement ΥF (θ + h/
√
n) = 0 is equivalent to ΥF (h) = 0 for any θ ∈ R.

5Recall for a linear map Γ : Bn → Fn, its right inverse is a map Γ− : Fn → Bn such that ΓΓ−(h) = h
for any h ∈ Bn. The right inverse Γ− need not be unique if Γ is not bijective, in which case Assumption
3.9(iv) is satisfied as long as it holds for some right inverse of ∇ΥF (θ) : Bn → Fn.
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Assumption 3.12. (i) For some M < ∞, ‖h‖E ≤ M‖h‖B for all h ∈ Bn; (ii) There

is an ε > 0 such that P ((Θ̂r
n)ε ⊆ Θn) tends to one uniformly in P ∈ P0; (iii) For Vn(P )

as in Assumption 3.4, P (Θ̂r
n ⊆ Vn(P )) tends to one uniformly in P ∈ P0.

Assumption 3.13. (i) Either ΥF and ΥG are affine or (Rn+νnτn)×Sn(B,E) = o(1);

(ii) The sequences `n, τn satisfy k
1/p
n

√
log(1 + kn)Bn× supP∈P J[ ](`

κρ
n ∨ (νnτn)κρ ,Fn, ‖ ·

‖P,2) = o(an), Km`n(`n+Rn+νnτn)×Sn(L,E) = o(ann
−1/2), and `n(`n+{Rn+νnτn}×

Sn(B,E))1{Kf > 0} = o(ann
−1/2); (iii) The sequence rn satisfies lim supn→∞ 1{Kg >

0}`n/rn < 1/2 and (Rn + νnτn)× Sn(B,E) = o(rn).

Assumption 3.11 demands that Ŵn be coupled with a Gaussian W?
P independent

of {Vi}ni=1. This condition implies the multiplier bootstrap is valid in our potentially

non-Donsker setting; see Appendix S.7 for sufficient conditions. More generally, we note

that our analysis remains valid if the multiplier bootstrap is replaced with any other re-

sampling scheme (e.g., nonparametric bootstrap) satisfying a coupling requirement like

Assumption 3.11. Assumption 3.12(i) ensures that ‖·‖B is (weakly) stronger than ‖·‖E.

Assumption 3.12(ii) demands that Θ̂r
n be asymptotically contained in the interior of Θn.

This requirement does not rule out that parameter space restrictions be binding at Θr
0n

– instead, Assumption 3.12(ii) requires that all such restrictions be stated through R.

Together with Assumption 3.4(i), Assumption 3.12(iii) enables us to obtain a rate of

convergence for Θ̂r
n and may be verified in the same manner as Assumption 3.4(ii).

Assumption 3.13 contains our main rate requirements. In particular, Assumption

3.13(i) ensures the one sided Hausdorff convergence of Θ̂r
n to Θr

0n under ‖ · ‖B when-

ever ΥF or ΥG are nonlinear. The main conditions on `n, employed in constructing

V̂n(θ,R|`n), are contained in Assumption 3.13(ii). These conditions ensure the con-

sistency of D̂n(θ)[h], the applicability of Theorem 3.1, and that V̂n(θ,R|`n) be well

approximated by the true local parameter space. Heuristically, whenever the rate of

convergence Rn is too slow, regularizing the local parameter space by selecting a small

`n can ensure the asymptotic validity of the test. As in Section 2, however, we note

that whenever the rate of convergence Rn is sufficiently fast such regularization is un-

necessary and it is possible to set `n = +∞ – in such applications, setting `n to be too

small can lead to a loss of power. In turn, Assumption 3.13(iii) requires that rn not

decrease to zero faster than the ‖ · ‖B-rate of convergence of Θ̂r
n. Assumption 3.13(iii) is

always satisfied if rn = +∞, though setting rn → 0 can improve power against certain

alternatives. Similarly, we note that the requirements on τn imposed by Assumption

3.13 can always be satisfied by setting τn = 0 but, as discussed in Section 2.2, such a

choice can lead to a loss of power in certain partially identified models.

Our next result provides a coupling result for our bootstrap statistic. In its state-

ment, U?P (R|`n) is defined identically to UP (R|`n) but with W?
P in place of WP .
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Theorem 3.2. If Assumptions 3.1, 3.2, 3.3, 3.4(i), 3.5, 3.6(ii), 3.7, 3.8, 3.9, 3.10,

3.11, 3.12, 3.13 hold, then there is ˜̀
n � `n so that uniformly in P ∈ P0

Ûn(R|`n) ≥ U?P (R|˜̀n) + oP (an).

Theorem 3.2 shows that with probability tending to one uniformly on P ∈ P0 our

bootstrap statistic is bounded from below by a random variable that is independent

of the data. Crucially, the lower bound is equal in distribution to the coupling to

In(R) obtained in Theorem 3.1. Thus, Theorems 3.1 and 3.2 provide the basis for

constructing tests that employ increasing functions of In(R) as a test statistic and the

analogous bootstrap quantiles of Ûn(R|`n) as critical values. The resulting tests may be

conservative if the inequalities in Theorems 3.1 and 3.2 are not “sharp.” In particular, in

order for the pointwise (in P ) rejection probability to equal the nominal level of the test

under the null hypothesis we require: (i) The rate of convergence Rn must be sufficiently

fast for Theorem 3.1(ii) to apply (in which case setting `n = +∞ is often valid); (ii) We

should select rn to tend to zero with n; and (iii) In partially identified settings, τn must

tend to zero sufficiently slowly so that Θ̂r
n is Hausdorff consistent for Θr

0n.

3.2 The Tests

We next employ the theoretical results of Section 3.1 to establish the asymptotic validity

of different tests of the null hypothesis defined in (12). In what follows, for any statistic

T̂n that is a function of {Vi}ni=1 and the bootstrap weights {ωi}ni=1, we let q̂τ (T̂n) denote

its conditional τ quantile given {Vi}ni=1. For example, we have that

q̂1−α(Ûn(R|`n)) = inf{u : P (Ûn(R|`n) ≤ u|{Vi}ni=1) ≥ 1− α}.

3.2.1 Tests Based on In(R)

We first examine a test that employs In(R) as a test statistic. As has been shown in the

literature, uniform consistent estimation of approximating distributions is not sufficient

for characterizing the asymptotic size of a test. Heuristically, to establish the asymptotic

validity of a test the approximating distributions must additionally be suitably uniformly

continuous. Our next assumption suffices for verifying this final requirement.

Assumption 3.14. There is η ≥ 0 and %n = o(a−1
n ) such that for ĉn = q̂1−α(Ûn(R|`n))

and any ˜̀
n � `n: (i) P (In(R) > ĉn) = P (In(R) > ĉn ∨ η) + o(1) uniformly in P ∈ P0,

and (ii) supP∈P0
supt∈(η−an,+∞) P (|UP (R|˜̀n)− t| ≤ ε) ≤ %n(ε ∧ 1) + o(1).

Assumption 3.14(i) trivially holds with η = 0 since both In(R) and Ûn(R|`n) are

(weakly) positive. However, in some applications it is possible to verify Assumption
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3.14(i) in fact holds with η > 0 by arguing that the bootstrap quantiles of Ûn(R|`n) are

suitably bounded away from zero when In(R) is strictly positive. Establishing Assump-

tion 3.14(i) holds with η > 0 eases the verification of Assumption 3.14(ii), which requires

that UP (R|˜̀n) be continuously distributed on (η − an,+∞) with a density bounded by

a, possibly diverging, %n. Because UP (R|˜̀n) is a functional of the Gaussian measure

WP , Assumption 3.14(ii) can in some applications be verified using available results in

the literature. For instance, when UP (R|˜̀n) is a convex function of WP , as in Section

2.1.1, the distribution of UP (R|˜̀n) can readily be shown to be continuous on (0,+∞).

The next result establishes the asymptotic validity of a test based on In(R).

Corollary 3.1. Let Assumption 3.14 hold and the conditions of Theorem 3.1(i) and

Theorem 3.2 be satisfied. If ĉn = q̂1−α(Ûn(R|`n)), then it follows that:

lim sup
n→∞

sup
P∈P0

P (In(R) > ĉn) ≤ α.

In Algorithm 1 below we describe how to compute the p-value of the test described in

Corollary 3.1 when the moments are differentiable. We note that if there are no inequal-

ity constraints, then it is possible to show that the test in Corollary 3.1 is similar and its

asymptotic size equals the nominal level whenever the conditions of Theorem 3.1(ii) hold.

The consistency of the test against any P ∈ P \P0 for which max ‖EP [ρ(X, θ)|Z]‖P,2
is bounded away from zero (in θ ∈ Θ ∩ R) is also straightforward to establish. Finally,

we note that if we instead employ the critical value ĉn = q̂1−α+δ(Ûn(R|`n)) + δ for any

δ > 0, then the conclusion of Corollary 3.1 holds without needing to impose Assumption

3.14; see Corollary S.3.1. This modification to the critical value was originally proposed

in a different context by Andrews and Shi (2013), who suggest setting δ = 10−6.

Remark 3.1. Suppose θ0 is identified, we aim to test whether ΥF (θ0) = 0, and we are

confident θ0 satisfies ΥG(θ0) ≤ 0. We could then set R to equal R1 or R2, where

R1 = {θ ∈ B : ΥG(θ) ≤ 0 and ΥF (θ) = 0} R2 = {θ ∈ B : ΥF (θ) = 0}.

The power functions of the corresponding tests are not necessarily ranked. It can

therefore be desirable to combine both tests by, for instance, using the test statistic

Tn ≡ max{F1(In(R1)), F2(In(R2))} for F1, F2 increasing functions, and the quantiles of

max{F1(Ûn(R1|`n)), F2(Ûn(R2|`n))} as critical values. The asymptotic validity of this

test follows from Theorems 3.1 and 3.2 under a modification of Assumption 3.14.

3.2.2 Tests Based on In(R)− In(Θ)

We next establish the asymptotic validity of a test based on In(R)−In(Θ) by also relying

on Theorems 3.1 and 3.2. In what follows, we signify parameters associated with setting
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Algorithm 1 Computing the p-value of the test based on In(R)

Require: Θn, ΥF , ΥG, {ρ(Xi, θ) ∗ qkn(Zi)}ni=1, Σ̂n, rn, τn, `n

. Compute the Test Statistic
1: Qn(θ)← ‖Σ̂n{ 1

n

∑n
i=1 ρ(Xi, θ) ∗ qkn(Zi)}‖p . Criterion function

2: R← {θ : ΥF (θ) = 0,ΥG(θ) ≤ 0} . Constraint Set
3: In(R)← minθ∈Θn

√
nQn(θ) s.t. θ ∈ R . Test Statistic

. Prepare variables for bootstrap problem
4: D̂n(θ)[h]← 1

n

∑n
i=1∇θρ(Xi, θ)[h] ∗ qkn(Zi) . Moments Derivative

5: Θ̂r
n ← {θ ∈ Θn ∩R : Qn(θ) ≤ In(R)/

√
n+ τn} . Boot Constraint θ

6: Gn(θ)← {h : ΥG(θ + h/
√
n) ≤ (ΥG(θ)−Kgrn‖h/

√
n‖B1G) ∨ (−rn1G)}

7: V̂n(θ,R|`n)← {h ∈ Gn(θ) : ΥF (θ + h/
√
n) = 0, ‖h‖B ≤ `n

√
n} . Boot Constraint h

. Compute B bootstrap statistics and obtain p-value
8: for b = 1 to B do
9: {ωbi}ni=1 ← Generate i.i.d. sample of N(0, 1) variables

10: Ŵb
n(θ)← 1√

n

∑n
i=1 ω

b
i{ρ(Xi, θ) ∗ qkn(Zi)− 1

n

∑n
j=1 ρ(Xj , θ) ∗ qkn(Zj)}

11: F bn(θ, h)← ‖Σ̂n{Ŵb
n(θ) + D̂n(θ)[h]}‖p . Boot Criterion

12: Boot[b] ← minθ,h F
b(θ, h) s.t. θ ∈ Θ̂r

n, h ∈ V̂n(θ,R|`n) . Boot Statistic
13: end for
14: pval ← 1

B

∑B
b=1 1{In(R) ≤ Boot[b]} . Compute p-value

R = Θ by a “u” superscript – e.g. Fu
n is understood to be as in (14) but with R = Θ.

In order to obtain a distributional approximation to the recentered statistic, we may

simply apply Theorem 3.1(i) to In(R) and Theorem 3.1(ii) to In(Θ) to conclude that

In(R)− In(Θ) ≤ UP (R|`n)− UP (Θ|`un) + oP (an). (22)

Moreover, by Theorem 3.2 we may approximate the distribution of UP (R|`n) by using

Ûn(R|`n). Similarly, to obtain a bootstrap approximation to UP (Θ|+∞), we define

Θ̂u
n ≡ {θ ∈ Θn : Qn(θ) ≤ inf

θ∈Θn
Qn(θ) + τu

n};

i.e. Θ̂u
n is simply the set estimator in (20) applied with Θ = R. For Bu

n the closed linear

span of Θn, we then approximate the law of UP (Θ|`un) by employing

Ûn(Θ|+∞) ≡ inf
θ∈Θ̂u

n

inf
h∈Bu

n

‖Ŵn(θ) + D̂n(θ)[h]‖Σ̂n,p;

i.e. the bootstrap approximation equals that of Theorem 3.2, with the local parameter

space being unconstrained due to the absence of equality or inequality restrictions.

The preceding discussion suggests that the quantiles of Ûn(R|`n) − Ûn(Θ| + ∞)

conditional on the data provide valid critical values for the recentered statistic. Our

next result formally establishes that the resulting test is indeed asymptotically valid.
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Corollary 3.2. Let the conditions of Theorems 3.1(i) and 3.2 hold with R as in (13),

the conditions of Theorems 3.1(ii) and 3.2 hold with R = Θ, and Assumption 3.14 hold

with In(R)−In(Θ), Ûn(R|`n)−Ûn(Θ|+∞), and UP (R|˜̀n)−UP (Θ|˜̀u
n) in place of In(R),

Ûn(R|`n), and UP (R|˜̀n) with ˜̀u
n satisfying Ru

n = o(˜̀u
n) and Assumption 3.13(ii) with

R = Θ. If τu
n ↓ 0 satisfies Ju

nBnk
1/p
n

√
log(1 + kn)/n = o(τu

n ) and νu
nτ

u
n×Su

n(B,E) = o(1),

then for ĉn ≡ q̂1−α(Ûn(R|`n)− Ûn(Θ|+∞)) it follows that

lim sup
n→∞

sup
P∈P0

P (In(R)− In(Θ) > ĉn) ≤ α.

It is worth emphasizing that in coupling In(Θ) we must rely on Theorem 3.1(ii)

instead of Theorem 3.1(i) in order to ensure that (22) holds. As a result, whenever mo-

ments are nonlinear, Corollary 3.2 requires the rate of convergence of the unconstrained

estimator to be sufficiently fast for Theorem 3.1(ii) to apply. Similarly, in coupling

Ûn(Θ|+∞) it is important that Θ̂u
n be consistent in the Hausdorff metric. Thus, while

we may set τu
n = 0 in identified models, in partially identified models we require that τu

n

not tend to zero too fast; see Theorem S.1.1. Finally, we note that in identified models

it is possible to employ either Ŵn(θ̂n) or Ŵn(θ̂u
n) in constructing both Ûn(R|`n) and

Ûn(Θ|+∞) – a change that results in an asymptotically equivalent coupling but ensures

that the bootstrap statistic Ûn(R|`n)− Ûn(Θ|+∞) is (weakly) positive.

4 Heterogeneity and Demand Analysis

For our final example, we illustrate how to conduct inference in the heterogeneous de-

mand model of Hausman and Newey (2016) – for alternative models of demand under

conditional moment restrictions see Chen and Christensen (2018) and references therein.

Specifically, for Y ∈ [0, 1] the expenditure share on a commodity, W ∈ W a vector of

prices, income, and covariates, and η unobserved individual heterogeneity suppose

Y = g(W, η) (23)

where g is a known function of (W, η). As in Hausman and Newey (2016), we note that

the unobserved heterogeneity η can potentially be infinite dimensional.

If the covariates W are independent of η, then for any c ∈ R it follows that

P (Y ≤ c|W ) = P (g(W, η) ≤ c|W ) =

∫
1{g(W, η) ≤ c}µ0(dη) (24)

where µ0 denotes the unknown distribution of η. Result (24) restricts the possible values

of µ0 and hence the identified set for functionals of µ0, such as average exact consumer

surplus or average share. Specifically, for Ψ(g, η) an object of interest for preferences
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denoted by η, such as equivalent variation, Hausman and Newey (2016) study functionals∫
Ψ(g, η)µ0(dη), (25)

which is the average across individuals. By evaluating the set of values of (25) which

can be generated by a distribution µ0 satisfying (24) at a grid {c}J=1, Hausman and

Newey (2016) provide estimates of the identified set for the functional of interest. We

further note bounds on the distribution of Ψ(g, η) under µ0 can be obtained by replacing

Ψ(g, η) in (25) with an indicator that Ψ(g, η) be less than or equal to some number.

In what follows, we apply our results to conduct inference on functionals as in (25).

To this end, we let FP (c|W ) ≡ P (Y ≤ c|W ) for a given grid {c}J=1. To define

B, we suppose η ∈ Ω for some known Hausdorff space Ω, set B to be the Borel σ-

algebra on Ω, letM be the space of regular signed Borel measures on Ω, and let ‖ · ‖TV
denote the total variation norm. Assuming FP (c|·) ∈ CB(W) for CB(W) the space

of continuous and bounded functions on W, we set B = (
⊗J

=1CB(W)) ×M, for any

({F (c|·)}J=1, µ) = θ ∈ B let ‖θ‖B =
∑J

=1 ‖F (c|·)‖∞ + ‖µ‖TV , and set

Θ = {({F (c|·)}J=1, µ) = θ ∈ B : max
1≤≤J

‖F (c|·)‖∞ ≤ 2}, (26)

where the “2” norm bound is simply selected to ensure Θ0 is in the interior of Θ.

Letting X = (Y,W ) and setting Z = W for every 1 ≤  ≤ J we then define

ρ(X, θ) = 1{Y ≤ c} − F (c|W ), (27)

which yields conditional moment restrictions that identify FP (c|W ) – note, however,

that µ0 is potentially partially identified. For a grid {wl}Ll=1 ⊆ W we test whether a

hypothesized value λ belongs to the identified set for the functional in (25) by setting

R =
{

({F (c|·)}J=1, µ) : µ(Ω) = 1, µ(B) ≥ 0 for all B ∈ B,
∫

Ψ(g, η)µ(dη) = λ,

and F (c|wl) =

∫
1{g(wl, η) ≤ c}µ(dη) for all 1 ≤  ≤ J , 1 ≤ l ≤ L

}
. (28)

Thus, the null hypothesis that Θ0 ∩R be nonempty corresponds to requiring that there

exist a distribution µ for η satisfying the restrictions in (24) at the points (c, wl) and

yielding a value for the functional in (25) of λ. By conducting test inversion in λ we can

obtain a confidence region for the desired functional. To map R into the framework of

Section 3, we set G = `∞(B) for `∞(B) the set of bounded functions on B and for any

({F (c|·)}J=1, µ) = θ ∈ B let ΥG : B→ `∞(B) be given by

ΥG(θ)(B) = −µ(B). (29)
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Finally, we set ΥF : B→ RJL+2 to equal ΥF (θ) = (Υ
(e)
F (θ),Υ

(µ)
F (θ),Υ

(s)
F (θ)), where

Υ
(e)
F (θ) = {F (c|wl)−

∫
1{g(wl, η) ≤ c}µ(dη)}1≤≤J ,1≤l≤L

Υ
(µ)
F (θ) = µ(Ω)− 1

Υ
(s)
F (θ) =

∫
Ψ(g, η)µ(dη)− λ. (30)

Given these definitions, we may then map R (as introduced in (28)) into the framework

of Section 3 by noting that R = {θ ∈ B : ΥF (θ) = 0 and ΥG(θ) ≤ 0}.

As in Hausman and Newey (2016), we can impose utility maximization by requiring

that the support Ω consist only of η such that g(·, η) satisfies the Slutsky conditions.

One may sample from Ω by drawing randomly from sets of η that satisfy Slutsky sym-

metry and only keeping those where the compensated price effects matrix is negative

semidefinite on a grid. This is the procedure followed in Hausman and Newey (2016) for

two goods. Importantly, we emphasize that because the utility maximization restrictions

are imposed through Ω, they do not affect the basic structure of ΥF and ΥG – i.e., ΥF

and ΥG remain linear maps satisfying Assumptions 3.8-3.10. In this sense, as long as

they are imposed through the support Ω of η, our procedure allows us to accommodate

a wide array of shape restrictions on individual demand g(·, η).

Given a collection of orthogonal probability measures {δs}sns=1 ⊆M we employ

Mn = {µ ∈M : µ =

sn∑
s=1

αsδs for some {αs}sns=1 ∈ Rsn}

as a sieve for M. Employing orthogonal measures, such as distinct Dirac measures, is

computationally attractive as it simplifies imposing the nonnegativity constraint on any

µ ∈ Mn. As a sieve for {FP (c|·)}J=1, we employ approximating functions {pj}jnj=1. In

particular, setting pjn(w) = (p1(w), . . . , pjn(w))′, we set as our sieve

Θn = {({pjn′β}J=1, µ) : µ ∈Mn and max
1≤≤J

‖pjn′β‖∞ ≤ 2}.

Similarly, for a sequence {qk}knk=1 and kn × kn positive definite matrices {Σ̂,n}J=1, we

set qkn(w) = (q1(w), . . . , qkn(w))′ and for any ({F (c|·)}J=1, µ) = θ define

Qn(θ) = {
J∑
=1

‖ 1

n

n∑
i=1

(1{Yi ≤ c} − F (c|Wi))q
kn(Wi)‖2Σ̂,n,2}

1/2. (31)

The statistics In(R) and In(Θ) then equal the minimums of
√
nQn over Θn∩R and Θn.

Our next set of assumptions enable us to couple In(R) and In(R)− In(Θ).

Assumption 4.1. (i) {Yi,Wi}ni=1 is i.i.d. with (Y,W ) ∼ P ∈ P; (ii) supw ‖pjn(w)‖2 .
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√
jn; (iii) EP [pjn(W )pjn(W )′] has eigenvalues bounded away from zero and infinity uni-

formly in P ∈ P and jn; (iv) For each P ∈ P0 and θ ∈ Θ0 ∩ R, there exists a Πnθ =

({Fn(c|·)}J=1, µn) ∈ Θn ∩ R such that
∑J

=1 ‖EP [(Fn(c|W ) − FP (c|W ))qkn(W )]‖2 =

O((n log(n))−1/2) uniformly in P ∈ P0 and θ ∈ Θ0 ∩R.

Assumption 4.2. (i) max1≤k≤kn ‖qk‖∞ .
√
kn; (ii) EP [qkn(W )qkn(W )′] has eigenval-

ues bounded uniformly in P ∈ P and kn; (iii) EP [qkn(W )pjn(W )′] has singular values

bounded away from zero uniformly in P ∈ P and (kn, jn); (iv) k2
njn log3(n) = o(n1/2).

Assumption 4.3. For all 1 ≤  ≤ J : (i) ‖Σ̂,n − Σ,P ‖o,2 = oP (1/kn
√
jn log2(n))

uniformly in P ∈ P; (ii) The kn × kn matrices Σ,P are invertible and ‖Σ,P ‖o,2 and

‖Σ−1
,P ‖o,2 are bounded uniformly in P ∈ P and kn.

Assumptions 4.1(ii)-(iv) state the conditions on Θn, with Assumptions 4.1(ii)(iii) be-

ing satisfied by standard choices such as B-Splines or wavelets. Assumption 4.1(iv) is an

asymptotic unbiasedness requirement – a condition that is eased by noting no require-

ments are imposed on the approximating space for µ0. The requirements on {qk}knk=1 are

imposed in Assumption 4.2(i)(iii) and are again satisfied by standard choices. Assump-

tion 4.2(iv) states a rate condition that suffices for verifying the coupling requirements

of Theorem 3.1. Assumption 4.3 imposes the requirements on the weighting matrices.

Our next result employs Theorem 3.1(ii) to obtain strong approximations.

Theorem 4.1. Let Assumptions 4.1, 4.2, 4.3 hold, an = (log(n))−1/2, and for any

θ = ({F (c|·)}J=1, µ) ∈ B let ‖θ‖E =
∑J

=1 supP∈P ‖F (c|·)‖P,2. If `n, `
u
n ↓ 0 satisfy

kn
√
jn log2(n)(`n∨`un) = o(1), kn

√
jn log(n)/

√
n = o(`n∧`un), then uniformly in P ∈ P0:

In(R) = UP (R|`n) + oP (an)

In(R)− In(Θ) = UP (R|`n)− UP (Θ|`un) + oP (an).

In order to conduct inference, we next aim to estimate the distributions of UP (R|`n)

and UP (Θ|`un). To this end, we note that Θr
0n (as in (15)) is potentially non-singleton

and we therefore employ a set estimator Θ̂r
n (as in (20)) to estimate the distribution

of UP (R|`n). In contrast, since UP (Θ|`un) only depends on the identified component

{FP (c|·)}J=1, for the unconstrained problem we employ any minimizer θ̂u
n of Qn over

Θn. With regards to the local parameter space, we note that in this application

Gn(θ) = {({pjn′β,h}J=1, µh) : µh(B) ≥
√
nmin{rn − µ(B), 0} for all B ∈ B} (32)

for any θ = ({F (c|·)}J=1, µ). Computationally, since any µ, µh ∈Mn has the structure

µ =
∑sn

s=1 αsδs and µh =
∑sn

s=1 αshδs it follows that the constraints in (32) reduce

to αsh ≥
√
nmin{rn − αs, 0} for all 1 ≤ s ≤ sn whenever {δs}sns=1 are orthogonal.
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Furthermore, since moments and restrictions are linear, we may let `n = +∞ and set

V̂n(θ,R|+∞) = {({pjn′β,h}J=1, µh) : h ∈ Gn(θ), ΥF (h) = 0}. (33)

For each θ ∈ Θn, we denote the bootstrap process for the th conditional moment by

Ŵ,n(θ) =
1√
n

n∑
i=1

ωi{ρ(Xi, θ)q
kn(Wi)−

1

n

n∑
j=1

ρ(Xj , θ)q
kn(Wj)}.

Similarly, we set D̂,n[h] = −
∑n

i=1 q
kn(Wi)p

jn(Wi)
′β,h/n for any h = ({pjn′β,h}J=1, µh).

Thus, the estimators of the strong approximations obtained in Theorem 4.1 equal

Ûn(R|+∞) = inf
θ∈Θ̂r

n

inf
h∈V̂n(θ,R|+∞)

{
J∑
=1

‖Ŵ,n(θ) + D̂,n[h]‖Σ̂,n,2}
1/2

Ûn(Θ|+∞) = inf
h
{
J∑
=1

‖Ŵ,n(θ̂u
n) + D̂,n[h]‖Σ̂,n,2}

1/2.

Before stating our final assumption, we need an auxiliary result. To this end, define

Γn(θ) ≡ {µ̃ ∈Mn : θ̃ = ({F (c|·)}J=1, µ̃) satisfies ΥF (θ̃) = 0, ΥG(θ̃) ≤ 0} (34)

for any θ = ({F (c|·)}J=1, µ) – i.e. Γn(θ) is the set of distributions of η that agree with

the restrictions implied by {F (c|·)}J=1. Our next result bounds the ‖ · ‖TV -Hausdorff

distance between Γn(θ1) and Γn(θ2), which we denote by dH(Γn(θ1),Γn(θ2), ‖ · ‖TV ).

Lemma 4.1. If the probability measures {δs}sns=1 are orthogonal, then for every n there

is a ζn < ∞ satisfying dH(Γn(θ1),Γn(θ2), ‖ · ‖TV ) ≤ ζn
∑J

=1 ‖F1(c|·) − F2(c|·)‖∞ for

any ({F1(c|·)}J=1, µ1) = θ1 ∈ Θn ∩R, and ({F2(c|·)}J=1, µ2) = θ2 ∈ Θn ∩R.

We introduce our final assumption to show the validity of our bootstrap procedure.

Assumption 4.4. (i) Ψ(g, ·) is bounded on Ω; (ii) The probability measures {δs}sns=1

are orthogonal; (iii) k4
nj

5
n log5(n)/n = o(1); (iv) Πnθ = ({Fn(c|·)}J=1, µn) satisfies

‖Fn(c|·)−FP (c|·)‖∞ = o(1) uniformly in θ ∈ Θ0∩R and P ∈ P0; (v) kn
√
jn log2(n)τn =

o(1), and ζn(knjn log(n)/
√
n+
√
jnτn) = o(rn).

The boundedness of Ψ(g, ·) on Ω ensures Υ
(s)
F (as in (30)) is continuous, while As-

sumption 4.4(ii) allows us to apply Lemma 4.1. Assumption 4.4(iii) is a low level suf-

ficient condition for verifying the bootstrap coupling requirement of Assumption 3.11.

These rate requirements could be improved under smoothness conditions on FP (c|·).
Finally, Assumption 4.4(iv) imposes a mild requirement on the sieve, while Assumption

4.4(v) states conditions on τn and rn – note τn = 0 and rn = +∞ are always valid,

though such choices can lead to lower local power against certain alternatives.
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Our final result obtains a coupling for our bootstrap approximations.

Theorem 4.2. Let the conditions of Theorem 4.1 hold and Assumption 4.4 be satis-

fied. Then: there are sequences `n, `
u
n ↓ 0 satisfying kn

√
jn log(n)/

√
n = o(`n ∧ `un) and

kn
√
jn log2(n)(`n ∨ `un) = o(1) such that uniformly in P ∈ P0

Ûn(R|+∞) ≥ U?P (R|`n) + oP (an)

Ûn(R|+∞)− Ûn(Θ|+∞) ≥ U?P (R|`n)− U?P (Θ|`un) + oP (an).

In particular, since the conditions on `n and `un imposed in Theorems 4.1 and 4.2 are

the same, it follows that we may employ the quantiles of Ûn(R|+∞) and Ûn(R|+∞)−
Ûn(Θ|+∞) conditional on the data as critical values for In(R) and In(R)− In(Θ).
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