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Abstract. This paper explores the use of deep neural networks for semiparametric esti-

mation of economic models of maximizing behavior in production or discrete choice. We

argue that certain deep networks are particularly well suited as a nonparametric sieve to

approximate regression functions that result from nonlinear latent variable models of con-

tinuous or discrete optimization. Multi-stage models of this type will typically generate

rich interaction effects between regressors (“inputs”) in the regression function so that there

may be no plausible separability restrictions on the “reduced-form” mapping form inputs

to outputs to alleviate the curse of dimensionality. Rather, economic shape, sparsity, or

separability restrictions either at a global level or intermediate stages are usually stated in

terms of the latent variable model. We show that restrictions of this kind are imposed in a

more straightforward manner if a sufficiently flexible version of the latent variable model is

in fact used to approximate the unknown regression function.
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1. Introduction

Artificial Neural Networks (ANN) have been extremely successful at solving certain statis-

tical tasks involving the interpretation of sensory data and replication of human cognition.

This paper pursues the question whether a potential advantage relative to other flexible ap-

proximation devices may carry over to certain types of economic data. We consider plausible

generative models of production and discrete choice that have a latent structure satisfying

shape or other qualitative constraints which do not directly translate into manageable re-

strictions on a “reduced form” in terms of the manifest (observable) variables of the model.

We propose a flexible, “deep” modeling approach for estimation of economic models. We

envision a scenario in which reality is complex but modular in a way that is best captured

by a, possibly nonlinear, latent variable model. That is, mappings transforming observable

inputs into outputs can be disaggregated into simpler components with a simpler structure.

We focus in particular on the role of shape, sparsity and separability restrictions that are

imposed globally, or at intermediate stages of that transformation. These properties are
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in general not inherited by a composition of multiple such stages (“layers”) consisting of

multiple parallel units (“neurons”), but can be imposed as sign or exclusion restrictions in

estimation approaches that replicate this modular structure.

The method of sieves, a term first coined by Grenander (1981), has been theoretically well

understood and widely used in Economics, Statistics, and other fields, see Shen and Wong

(1994), Chen (2007), and reference herein. In contrast to general-purpose sieves to estimate

reduced-form relationships between the observed variables nonparametrically, our approach

consists in using a parametric model for estimation which can then be made arbitrarily

flexible. We see several benefits to such an approach - for one, if economic behavior that is

best described in terms of a latent variable structure, a reduced form will typically display

interaction effects in forcing variables if the relationship is not fully linear. A model with

a similar latent variable structure may more readily reproduce such interaction effects even

at a fairly low degree of approximation, especially if these are disciplined by a fairly low-

dimensional latent factor structure. Furthermore, common qualitative model restrictions -

such as monotonicity, convexity, separability, or sparsity - are usually imposed on economic

primitives but have no analog in the resulting reduced form. We show that shape restrictions

of this kind can be easily imposed as sign or exclusion restrictions in the deep generating

model and also greatly restrict its expressivity, resulting in superior theoretical performance.

Finally, we can also report ancillary aspects or predictions of the estimated model to help

interpret and provide context to the main empirical results.

A particular feature of our approach is that we impose qualitative shape restrictions on

the function of interest, concavity or quasi-concavity, and monotonicity, which are motivated

by economic theory. These restrictions substantially reduce the complexity of the class

of functions that can be represented by the network and therefore improve our ability to

approximate the function flexibly. Furthermore, convexity may also reduce computational

challenges from multiple local minima of the loss function when training the neural network.

The dimension-dependent optimal rates of nonparametric estimation derived in Stone

(1980) impose an absolute constraint on how well an otherwise unconstrained statistical

relationship between multiple variables can be estimated. With that in mind, our results

speak to three key scenarios, depending on sample size and the researcher’s confidence in

the modular structure of the underlying DGP and the importance of shape restrictions.

(1) The researcher may have high confidence in qualitative (shape, sign, sparsity, sep-

arability) restrictions on economic primitives but not necessarily the reduced form,

which can then be directly imposed in the approach proposed in this paper.

(2) In “data-poor” settings when key aspects of the data generating process are only

poorly identified from the data, our approach will favor low-dimensional aspects

according to a modular structure rather than based on a generic linear sieve. This
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allows the researcher to choose the direction of likely inductive biases in favor of an

interpretable, plausible model.

(3) Finally, we also give universal approximation rates that do not depend on a specific

modular structure and give asymptotic guarantees in “data rich” settings.

Our approach therefore seeks to combine a parametric “structural” modeling philosophy with

a nonparametric approach, where we do not assume a “correct” specification of the data gen-

erating process but an approximation that can be made arbitrarily flexible depending on the

available amount of data. Through a nonparametric lens, it is known that the choice of

estimators for nonparametric model components does not affect first-order asymptotic prop-

erties of regular estimators (see e.g. Newey (1994)), however we are interested in settings

when the data may not be sufficiently rich for these formal conclusions to be taken at face

value. Rather, we propose a “regularization path” along a sequence of parsimonious para-

metric models that are adapted to the economic structure of the problem but also have the

usual properties of a nonparametric sieve. Results can also be interpreted “parametrically”

by reporting “projections” of components of the full model onto a nested, lower-dimensional

version of the model in addition to a main effect of functional of primary interest.

We will develop our main ideas for nested CES models which are particularly suited

for problems with convexity constraints. It would be possible to consider different sieves for

modular problems without convexity, however at a greater challenge for controlling statistical

complexity. A theory for estimation of nested separable nonparametric models using B-

splines has been derived by Horowitz and Mammen (2007).

1.1. Related Literature. Our setup has obvious parallels with popular methods in deep

learning, most importantly multilayer feedforward neural networks (MFNN) and deep Boltz-

mann machines (DBM) consisting of multiple hidden layers, each of which processes inputs

from the preceding layers into a vector of outputs. One key difference of our approach is that

we consider settings in which these nested transformations are not mechanical but involve

decisions by economic agents who may also anticipate their effect on subsequent layers of

the process. We also allow for unobservables to enter at each stage of this process rather

than treating the nested model as deterministic.

Various authors, most importantly Horowitz and Mammen (2007), Eldan and Shamir

(2016), Mhaskar and Poggio (2016), Kohler and Krzyzak (2017), Bauer and Kohler (2019),

and Schmidt-Hieber (2020) have shown that deep network architectures have a superior

performance in uncovering compositional models of nested layers of smooth functions that

satisfy certain separability or sparsity conditions. Compositionality of this type is common

in latent variable models which have historically played an important role in describing

economic decisions, see e.g. McFadden (1974), Train (2009), or Heckman (1979). Also, key

concepts in economic models - economic activity, human or physical capital, etc. - are often
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not directly observable as a scalar quantity but are typically inferred as indices or proxies

constructed from measurements or components of that latent concept. Deep learning has so

far been most fruitfully applied in image and video processing which can also be viewed as

latent variable problems, where surfaces defining an object in space can typically not all be

seen at the same time on an image or may be occluded by other objects.

This paper explores the applicability of techniques from deep learning to economic prob-

lems, when observable outcomes of economic activity are best described as a result of multi-

stage decision or production processes and when it is impractical to model the intermediate

stages of that process explicitly e.g. due to the lack of direct measurements or the need to

specify additional model components parametrically or nonparametrically. For an overview

over recent developments in deep learning, see Goodfellow, Bengio, and Courville (2016) and

Zhang, Lipton, Li, and Smola (2020). Recent work by Yarotsky (2017) and Farrell, Liang,

and Misra (2019) derives inferential results for semiparametric inference using deep neural

networks with a ReLU (rectified linear units) activation function.

The paper is organized as follows: Section 2 gives the general framework for the model and

estimation, section 3 analyzes nested models of production as approximations for a general

technology, and section 4 gives rates for approximating a discrete choice model with general

dependence among taste shocks using multi-layer cross-nested Logit models. Section 5 dis-

cusses network architectures to impose additional qualitative constraints on the approximat-

ing network. Section 6 gives our main asymptotic result regarding the rate of nonparametric

estimation with and without additional shape restrictions, section 7 concludes.

2. General Framework

We consider the problem of flexible estimation of a reduced-form relationship between

variables X := (X1, . . . , XK)
′ (“explanatory variables”, “covariates”, or “inputs”) and Y :=

(Y1, . . . , YM)′ (“outcomes”, “outputs”). This could be for the purpose of prediction, causal

inference, or in the context of a structural model. We also let Z := (Y′,X′)′.

We assume that the researcher observes a sample of n i.i.d. units i from a distribution

with joint p.d.f.

f0(y,x) = fY |X(y|x)fX(x)

assuming that the conditional p.d.f. is also well-defined for x. We allow for the possibility

of missing data, where certain components of Y and/or X may not be observed for some

units in the sample. We assume that the object of interest is a function depending on that

distribution,

µ0(z) := µ(z; f0)

Here we will primarily consider cases in which µ0(z) denotes a conditional or unconditional

expectation or probability for an event in Y given X.
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We assume that µ0 is defined as the minimizer of expected loss

µ0 := argmin
µ

E[ℓ(µ,Z)] (2.1)

where the random vector Z is distributed according to f0(z). Following Farrell, Liang, and

Misra (2019) we assume that the loss function ℓ(µ, z) is Lipschitz

|ℓ(µ, z)− ℓ(µ′, z)| ≤ Cl|µ(z)− µ′(z)|

for some constant Cl <∞, and satisfies

c1E[(µ(Z)− µ0(Z))
2] ≤ E[ℓ(µ,Z)− E[ℓ(µ0,Z)] ≤ c2E[(µ(Z)− µ0(Z))

2]

for finite constants c2 > c1 > 0.

For the purposes of this paper, the first leading case is that of a conditional expectation

function, µ0(x) := E[Y |X = x] for scalar Y , which satisfies (2.1) with ℓ(µ, z) := (y−µ(x))2.

A second case of interest is that of a conditional choice probability where Y takes values in a

finite set {y1, . . . , yM} and µ(y,x) := P(Y = y|X = x) is the conditional probability of Y = y

given X. One loss function satisfying (2.1) for this problem is ℓ(µ, z) := −
∑M

m=1 1l{Y =

ym} log µ(ym,x).
Nonparametric estimation of conditional mean or distribution functions is known to be

subject to a curse in dimensionality in the number of covariates and/or outcomes, see Stone

(1980), which is inherent in the estimation problem and not the particular technique that is

used for estimation. The key challenge here is that in the absence of additional separability

restrictions, a flexible model for this relationship would have to account for any possible

interaction effects between functions of two or more components of X.

The approach put forward in this paper does not sidestep or remedy this challenge, how-

ever we propose a nonlinear sieve that (a) incorporates common shape constraints on the

underlying economic model (most importantly convexity), and (b) specifically targets the

interaction effects that would result from standard models of economic decisions and opti-

mization. We argue that when observable data results from nested nonlinear models, then

separability of the reduced form will be the exception and not the rule, and “deep” architec-

tures may have an advantage at replicating these interaction effects with a smaller number

of parameters.

To appreciate this point, consider a linear index model with a scalar outcome variable Yi

and regression function

µ(x) := E[Yi|Xi = x] ≡ G(x′β)
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with coefficient β ∈ RK and link function G : R → R that is twice continuously differentiable.

The cross-partial derivatives of this model,

∂2

∂xk∂xl
µ(x) = βkβlG

′′(x′β)

are generally non-zero, unless the function G(·) is affine. As this simple example illustrates,

a single nonlinear transformation (“activation”) may be sufficient to mask any separability

properties that may have been satisfied in preceding stages of this model. However those

interaction effects are also tightly constrained by the simple parametric structure of this

model, so an estimation approach exploiting that index structure may in fact estimate the

conditional mean function at a much faster rate.

A similar point was established formally for a class of nonlinear compositional or hier-

archical interaction models by Bauer and Kohler (2019) and Schmidt-Hieber (2020). The

potential benefits of deeper, rather than shallow, network architectures to approximate com-

positional functions have recently been analyzed by Eldan and Shamir (2016) and Mhaskar

and Poggio (2016). Specifically, if the model in K regressors is a composition of a bounded

number of functions of at most d∗ ≤ K variables at each step, estimation by a sufficiently

deep network can achieve estimation at a nonparametric rate depending on d∗ rather than

K. This suggests that nested models may have an advantage at leveraging sparsity or sep-

arability restrictions at intermediate stages to achieve faster convergence rates and mitigate

the curse of dimensionality.

As a second key feature, analyzing the data-generating process as a latent variable model

naturally incorporates missing or mismeasured data into estimation. This obviously includes

the cases where the available data are complete or are thought to conform to a “missing at

random” assumption (see Rubin (1976)), but also situations where missing data is at the

heart of the problem, including imperfect measurement (Jöreskog and Goldberger (1975),

Cunha, Heckman, and Schennach (2010)), self-selected samples (Heckman (1979),Ahn and

Powell (1993)), and causal inference (Neyman (1923,1990),Rubin (1978)). More generally,

such an approach can be adapted to situations in which data quality is uneven or observed

variables are only proxies the relevant economic concept.

2.1. Generative Model: Nested Decisions. We develop a technique for solving and es-

timating models involving a large number of nested - discrete or continuous - intermediate

decisions to approximate complex statistical relationships between inputs and outputs. One

key distinguishing feature of our approach is that “activations” at intermediate stages incor-

porate not only states in past layers that are carried forward mechanically, but also constitute

the result of choices by an optimizing agent who anticipates outputs in subsequent layers,

iterating future states backward.
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This results in an multilayer perceptron (MLP) with possibly nonlinear activation func-

tions in which intermediate states can be fed both forward and backwards, so that the

resulting graph is not necessarily acyclic. For the purposes of estimation, these intermediate

stages are latent and not directly observable to the researcher. We then show that such a

model can be made arbitrarily flexible by increasing the number of units (“nodes”) in each

hidden stage (“layer”).

For expositional clarity, we focus on two prototypes for such generative models with latent

discrete or continuous decisions, which may be adapted or combined flexibly. The first

model concerns a model for a production technology, where initial inputs are transformed

into intermediate goods, which in turn serve as inputs in subsequent intermediate and final

stages of production. Specifically, we assume that production takes place in S + 1 stages

(“layers”), where at the sth layer there are separate technologies (“neurons”) to produce

intermediate goods k = 1, . . . , Ks for s = 0, . . . , S.

The technology for producing intermediate good k is given by the production function

w
(s)
k = F̃

(s)
k (w

(s−1)
1 , . . . , w

(s−1)
Ks−1

)

where w
(s−1)
l denotes the quantity of the lth intermediate good from the (s−1) stage employed

in the production of the kth intermediate good at stage s. We show below that the optimal

(cost-minimal) production plan can be characterized recursively as the cost-minimization

problem at neuron k in layer s, with input prices π
(s−1)
1 , . . . , π

(s−1)
Ks−1

given by marginal cost of

production at stage s− 1, and given desired output level v
(s)
k determined by factor demand

at stage s. The values of solution of v
(s)
k , π

(s)
k resulting from this constrained optimization

problem are determined recursively via the activation mappings

π
(s)
k = ϕ̃

(s)
k

(
π
(s−1)
1 , . . . , π

(s−1)
Ks−1

; v
(s)
1 , . . . , v

(s)
Ks

)
(2.2)

v
(s)
k = ψ̃

(s)
k

(
π
(s)
1 , . . . , π

(s)
Ks
; v

(s+1)
1 , . . . , v

(s+1)
Ks+1

)
(2.3)

that take states
(
h
(s−1)
l

)Ks−1

l=1
:=
(
π
(s−1)
l , v

(s−1)
l

)Ks−1

l=1
and

(
h
(s+1)
l

)Ks+1

l=1
:=
(
π
(s+1)
l , v

(s+1)
l

)Ks+1

l=1
,

respectively, as inputs and produce outputs
(
h
(s)
k

)Ks

k=1
.

The second model is a model of nested discrete decisions where at the kth neuron in the

sth layer an agent chooses among Ks+1 discrete nests in the subsequent layer. There are

no flow payoffs, but each terminal node in the top layer is associated with a random utility

where the joint distribution of taste shocks corresponds to that for a cross-nested Logit

(CNL) with that nesting structure (see Vovsha (1997) and Wen and Koppelman (2001)).

This model can be reparametrized as sequential choice among nests starting at the bottom

layer, given the inclusive (continuation) values v
(s)
k for the kth nest in the sth layer. We also

denote the unconditional probability of reaching the kth nest in layer s with π
(s)
k . Inclusive
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values are determined by iterating the activation mappings

v
(s)
k = ψ̃

(s)
k

(
π
(s)
1 , . . . , π

(s)
Ks
; v

(s+1)
1 , . . . , v

(s+1)
Ks+1

)
backwards from the Sth (top) layer to the root node of the graph, and the conditional choice

probabilities for the nests can be obtained by iterating forward over

π
(s)
k = ϕ̃

(s)
k

(
π
(s−1)
1 , . . . , π

(s−1)
Ks−1

; v
(s)
1 , . . . , v

(s)
Ks

)
from the root node. For the CNL specification the mappings ψ

(s)
k (·), ϕ(s)

k (·) are available in

closed form.

2.2. Approximating Model: Artificial Neural Network. The primitive functions F
(s)
k (·)

in the generative model are generally not known and are typically not nonparametrically

identified (see e.g. Horowitz and Mammen (2007) for feedforward networks). We therefore

do not aim to estimate intermediate activation functions but are primarily interested in esti-

mating the reduced form f0(y,x) given shape restrictions on the primitive functions. To this

end we propose an artificial neural network with the capacity to approximate the activation

functions ψ
(s)
k , ϕ

(s)
k flexibly while incorporating qualitative constraints on F

(s)
k (·).

We construct a network of S̃+1 layers, where layer s has K̃s neurons for s = 0, . . . , S̃. For

neuron k in the sth layer we choose the production function (or flow utility for a network of

nested discrete decision) from a parametric family,

F̃
(s)
k (w1, . . . , wK̃s−1

) = f̃
(
w1, . . . , wK̃s−1

;θ
(s)
k

)
where the vector θ

(s)
k consists of parameters β

(s)
k = (β

(s)
k1 , . . . , β

(s)
kKs−1

) governing the effect of

the preceding layer on activation of neuron k in layer s, and potentially additional shape

parameters ϱ
(s)
k .

We then solve the constrained optimization problem analogous to the generative model

given state variables v
(s+1)
1 , . . . , v

(s+1)

K̃s+1
and π

(s−1)
1 , . . . , π

(s−1)

K̃s−1
to obtain the activation functions

π
(s)
k = ϕ

(s)
k

(
π
(s−1)
1 , . . . , π

(s−1)
Ks−1

; v
(s)
1 , . . . , v

(s)
Ks

)
≡ ϕ

(s)
k

(
π
(s−1)
1 , . . . , π

(s−1)
Ks−1

; v
(s)
1 , . . . , v

(s)
Ks
;θ

(s)
k−

)
v
(s)
k = ψ

(s)
k

(
π
(s)
1 , . . . , π

(s)
Ks
; v

(s+1)
1 , . . . , v

(s+1)
Ks+1

)
≡ ψ

(s)
k

(
π
(s)
1 , . . . , π

(s)
Ks
; v

(s+1)
1 , . . . , v

(s+1)
Ks+1

;θ
(s)
k+

)
for some collection of parameters θ

(s)
k−,θ

(s)
k+ from the adjacent layers, s− 1 and s+ 1.

Such a structure with S layers and activation functions ψ
(s)
k , ϕ

(s)
k defines a class HS

K of

neural networks that is indexed by the free parameters θ. We denote the activations of the

hidden units that are consistent with the recursions (2.2) and (2.3) with h
(s)
k (θ).
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π
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(1)
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π
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1

w
(1)
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(1)
2 w

(1)
3

w
(2)
1

Figure 1. Nested production functions (left) and parametrization of the op-
timal production plan (right).

2.3. Estimation and Prediction. Given the sample z1, . . . , zn, we can train this network,

where we identify µ(zi) ≡ µ(zi;θ) with activations h
(s)
ki (θ) of certain neurons, in most cases

in the top and/or bottom layer of the network. Specifically, we estimate µ0(z) by minimizing

the average training error,

µ̂ ∈ arg min
µ∈HS

K∥µ∥∞≤2B

1

n

n∑
i=1

ℓ(µ, zi) (2.4)

for some bound B <∞. Here, minimization over the class HS
K is equivalent to minimization

over the parameter θ. Note that training error in (2.4) is the empirical analog of expected

population loss in (2.1), the criterion defining the target µ0. The trained network can then

be used to compute µ̂(z) for arbitrary values of z.

Our main theoretical results concern statistical properties of µ̂ as an estimator for µ0, and

recommendations for the choice of the number and size of hidden layers. The minimization

problem in (2.4) can be solved adapting commonly used algorithms for conventional feed-

forward networks, including stochastic gradient descent, or Adam. We argue in Appendix

A that the gradient can be approximated using recursive application of the chain rule even

when the graph is not acyclic.

The hidden layers of this model are generally not identified in the sense that the minimum

in (2.4) may be attained (exactly or to an approximation) at multiple values of θ. We do

not address this issue explicitly in this paper, rather the main object of interest for the

purposes of this paper is a reduced-form relationship characterizing the joint distribution

of the observable variables zi. A structural interpretation of the hidden layers may require
9



X1

X2

X3

V1

V2

V3

Y ∗

Y1

Y2

Y3

Y4

Figure 2. Multiple indicators, multiple causes (MIMIC) model for a latent
variable Y ∗ and measurements Y1, . . . , Y4.

additional restrictions and normalizations, see also Horowitz and Mammen (2007) for a

discussion for the case of nonparametric estimation of nested regression functions.

2.4. Examples.

2.4.1. Multiple Measurements. Consider a model for production of outputs Y ∗
i from inputs

Xi where we do not observe Y ∗
i directly, but rather a collection of measurements Yi :=

(Y1i, . . . , YMi). For example there is no direct agreed upon measure for human capital,

rather the term captures groups of distinct skills and attitudes, see e.g. Cunha, Heckman,

and Schennach (2010). In a typical setting, we observe parental investments, indicators of

educational (e.g. test scores) and economic achievement (e.g. labor force status or income)

and want to determine the effects of various educational investments or interventions.

Jöreskog and Goldberger (1975) proposed the parametric Multiple Indicators and Multiple

Causes (MIMIC) model with a single hidden variable to estimate such a production process.

Cunha, Heckman, and Schennach (2010) analyzed a semi-parametric model for human capital

production with two latent factors, cognitive and non-cognitive skills which could in principle

be further disaggregated into more distinct latent skills to explain the link between childhood

investments and testing or economic performance.

Our approach involves a disaggregate description of a technology where we the number

of latent factors can be chosen flexibly, and we may observe only some inputs directly as

quantities, and possibly prices or cost shifters for some others. This approach involves a

trade-off between the predictive performance of the model and interpretability, which should

be resolved depending on the ultimate objective and the functionals/parameters µ used to

summarize this technology.
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X1

X2

Z

V1

V2

V3

W1

W2

W3

Y (0)

Y (1)

D

Y

Figure 3. Instrumental Variable Model for the Causal Effect of D on Y .

2.4.2. Causal Inference. Suppose that we are interested in the causal effect of a binary

intervention (“treatment”) D ∈ {0, 1} on a scalar outcome variable Y . Using the Neyman-

Rubin potential outcomes framework (see e.g. Imbens and Rubin (2015)), each unit i is

associated with two possible outcomes, Y (1) with the intervention D = 1, and Y (0) in the

absence of an intervention, D = 0. For any unit in the sample, only the potential outcome

corresponding to the realized intervention, Y = Y (D) = (1−D)Y (0) +DY (1), is observed.

In this setup, the unit-level treatment effect ∆ := Y (1)− Y (0) can not be determined from

the observable data, so that the problem of causal inference can be viewed as a missing-data

problem.

Suppose that we have a sample of n units for which we observe all relevant covariates X,

the realized treatment D, and the outcome Y = Y (D) Furthermore, assume that we observe

additional variables Z that are conditionally independent of Y (0), Y (1) given X, but not

of D (under the ignorability assumption for observational designs, D itself would meet that

requirement). We can then represent this problem in our framework with a bivariate outcome

vector (Y (1), Y (0))′, where the network architecture can be constrained such that Z serves

as an indirect input determining D, but is excluded from the latent factor model determining

potential outcomes (Y (0), Y (1)).

After training the MLP relating Xi,Zi to Yi, Di, we can simulate from the estimated dis-

tribution of Yi, Di given Xi and different values of Zi = z. In particular we can evaluate the

conditional expectation of Yi(1)−Yi(0) among the compliers according to that estimated dis-

tribution. We may in principle also compute other functionals of the estimated distribution

that are not nonparametrically identified, however these will in general not be consistent

estimates of their population counterparts but vary with the parametrization and the choice

of starting values during training of the MLP.
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Figure 4. 5-Period Production of skills vct , v
nc
t from investments xct , x

nc
t with

measurements yct , y
nc
t based on ?.

3. Nested Production Functions

Following the seminal work by Becker (1964) and Becker (1965), decisions on fertility,

investment in education, and other forms of economic activity have been cast as a problem

of optimal allocation of resources towards efficient home production. Nested models of pro-

duction have been considered by McFadden (1978a), Pollak and Wales (1987), or Pollak and

Wachter (1975) in the context of household production, where Perroni and Rutherford (1995)

established a general approximation property for nested Constant Elasticity of Substitution

(CES) function with regards to the cost functions.

Misspecified production functions can easily lead to inaccurate policy conclusions or ob-

scure economically relevant features of real-world processes. As an important example, ?

and Cunha, Heckman, and Schennach (2010) show in their seminal work on skill formation

that an extension of a single-skill model with a single period of production to two skill types

(cognitive and non-cognitive) and multiple successive periods of investments and accumula-

tion uncovers richer dynamic complementarities in the skill-formation process, and matches

important empirical facts about skill formation that can’t be properly explained by the sim-

pler model. Our approach would allow to disaggregate latent production stages into a larger

number of distinct skills (“intermediate goods”) and stages of production. However our fo-

cus is on approximating a reduced form mapping between observable inputs and outputs,

so we do not analyze identification of intermediate technologies, which was central to their

contribution.

We consider a model of production with a large number of unobserved intermediate goods

to approximate a general technology to approximate a mapping from partially observed factor

quantities and/or prices to multiple outputs. There are K basic inputs x = (x1, . . . , xK)
′ and

M final outputs y = (y1, . . . , yM)′. We describe the technology as the production possibility

set Y0 ⊂ RM+K , where a pair of (y′,x′)′ is interpreted as a transformation of inputs −x to
12



produce outputs y. We also let

Y0(x) := {y : (y′,x′)′ ∈ Y0}

denote the set of feasible outputs given inputs x. We maintain the following assumptions on

the technology:

Assumption 3.1. (Technology) Y0 is a closed, convex subset of RM+K and satisfies the

following: (a) 0 ∈ Y0. (b) Free disposal: if (y′,x′)′ ∈ Y0, then (y′− t1,x
′− t2)

′ ∈ Y0 for any

t1, t2 ≥ 0. (c) Monotonicity: if (x,y) is on the boundary of Y0, then (y′ + t1,x
′ − t2)

′ /∈ Y0

for any t1, t2 ≥ 0.

While these assumptions are common in classical production theory, they are also restric-

tive. Taken together, parts (1) and (3) preclude the existence of fixed costs of production.

Convexity of the production possibility set also restricts returns to scale to be nonincreasing.

A commonly imposed, weaker version of (3) only assumes that input sets are convex from be-

low, which is still sufficient for duality theory to apply (see e.g. McFadden (1978a)). For our

approximation results, weakening parts (1) and (3) would require recentering of intermedi-

ate inputs, thus introducing additional free parameters and complicating the approximating

argument. We therefore maintain the stronger set of assumptions throughout.

We can characterize the convex hull of Y0(x) in terms of its support function,

µ0(u,x) := sup {⟨y,u⟩ : (y,x) ∈ Y0} , u ∈ RM
+

For the case of a single output, µ0(y,x) corresponds to the usual production function, and for

the general case M ≥ 1, the support function µ0(em,x) evaluated at the mth unit vector em

yields the highest achievable level for the mth output given inputs x. We generally assume

efficient production, ⟨y,y⟩ = µ0(y,x), however we do not explicitly model selection among

feasible output combinations on the frontier.

3.1. Nested CES Production Functions. To approximate the production function as-

sociated with Y0, we consider a production network of the following form: production takes

place in S stages, where at stage s, the Ks−1 intermediate inputs w(s−1) produced during

the preceding stage are transformed into Ks intermediate outputs w(s) = (w
(s)
1 , . . . , w

(s)
Ks
)′.

At each stage, the transformation of intermediate inputs into intermediate outputs is

described by Constant Elasticity of Substitution (CES) production functions. Specifically,

we define

F
(
w1, . . . , wK ;θ

(s)
k

)
=

[
K∑
l=0

(
β
(s)
kl w

(s−1)
lk

)ϱ] τ
ϱ

(3.1)

13



for parameters θ
(s)
k := (β

(s)
k1 , . . . , β

(s)
kKs−1

, ϱ
(s)
k , τ

(s)
k )′, and assume that output at the kth neuron

in the sth layer is given by

w
(s)
k = F

(s)
k (w

(s−1)
1k , . . . , w

(s−1)
Ks−1k

)

= F
(
w

(s−1)
1k , . . . , w

(s−1)
Ks−1k

;θ
(s)
k

)
Here, w

(s−1)
lk is the quantity of intermediate good w

(s−1)
l committed to the production of the

intermediate output w
(s)
k , and we set w

(s−1)
0 ≡ 1 for each s = 1, . . . , S, which can be thought

of as a non-discretionary input.

Intermediate goods may be rival or non-rival as inputs for future stages of production, and

we assume that they cannot be acquired from outside sources, but can only be produced using

this technology. Note that the stage technologies in (3.1) include the identity w
(s)
k = w

(s−1)
l for

any k, l, so that intermediate outputs could be passed through multiple stages of production

unaltered.

We then identify the intermediate inputs at the first stage with the basic inputs, so that

any feasible production plan must satisfy the resource constraints

wl ≥

{ ∑K1

k=1w
(0)
lk if good l is rival

maxk=1,...,K1 w
(0)
lk if good l is non-rival

Similarly, the intermediate outputs at the last stage are identified with the final outputs,

ym ≤ w(S)
m for any m = 1, . . . ,M =: KS

Furthermore, any feasible production plan must satisfy the resource constraints for interme-

diate goods,

w
(s−1)
l ≥

{ ∑Ks−1

k=1 w
(s−1)
lk if good l is rival

maxk=1,...,Ks−1 w
(s−1)
lk if good l is non-rival

(3.2)

For simplicity, the remainder of this paper will only consider the case in which all intermediate

goods are rival.

We denote the resulting technology with YS
K ⊂ RM+K

+ , that is the set of input/output

vectors (y′,x′)′ that can be achieved via a feasible production plan with intermediate pro-

duction functions (3.1), satisfying constraints (3.2), where the vector K = (K1, . . . , KS)
′.

We denote the corresponding support function with

µS
K(u,x) := sup

{
⟨y,u⟩ : (y,x) ∈ YS

K

}
, u ∈ RM

+

The feasible set YS
K ⊂ RM+K

+ can be described recursively as follows: at stage s, we

let W(s) denote the feasible set of quantities for the intermediate goods from stages s′ =

0, . . . , s, that is the set of values (w(s),w(s−1), . . . ,w(0)) such that there exist w̃
(s−1)
kl for

k = 1, . . . , Ks and l = 1, . . . , Ks−1 such that F
(s)
k (w

(s−1)
k1 , . . . , w

(s−1)
kKs−1

) ≥ w
(s)
k and (w(s−1) +

14



w̃(s−1),w(s−2), . . . ,w(0)) ∈ W (s−1), where w̃(s−1) =
∑Ks

k=1

(
w̃

(s−1)
k1 , . . . , w̃

(s−1)
kKs−1

)′
. Iterating

from W(0) := RK we obtain the set W(S) of feasible combinations of inputs and intermediate

goods for all S stages, so that we can define YS
K1,...,KS

as the intersection of W(S) with

RK × {0} × · · · × {0} × RM , projected on its K +M nontrivial coordinates.

By construction, W(s) is convex for each s. Since YS
K1,...,KS

is the intersection of that set

with a linear subspace, it is also convex. Furthermore, if ϱ
(s)
k > −∞ for all s, k, the efficient

frontier of W(s) is continuously differentiable to any order, implying that the boundary of

the feasible set YS
K1,...,KS

is also arbitrarily smooth. If ϱ
(s)
k = −∞ for some stages and

intermediate goods, we will instead consider limits as ϱ
(s)
k → −∞ for arguments relying on

differentiability of the boundary.

In sum our approximating model consists of nested CES technologies, where the elasticity

of substitution 1
1−ϱ

and the degree of homogeneity τ are allowed to differ across intermediate

technologies. Our main claim in this section is that this technology of nested CES aggregators

is sufficient to approximate any technology Y0 satisfying our main assumptions.

Proposition 3.1. (Universal Approximator) Suppose the production possibility set Y0

satisfies Assumption 3.1. Then for any δ > 0 and compact rectangular set C ⊂ intRK+M
+ ,

there exists an approximating technology YS
K constructed via a production network of S = 2

stages and intermediate technologies of the CES form in (3.1) such that

sup
(u,x)∈C

∣∣µS
K(u,x)− µ0(u,x)

∣∣ ≤ δ

where the number of free parameters is KK1, and

K1 = c(R,K +M)δ−
K+M−1

2

for a constant c(R,K +M) that only depends on the dimension M and diameter R of C.

See the appendix for a proof. The argument is in fact constructive and establishes that only

two stages of production are needed, where basic inputs are perfect complements (ϱ
(1)
k = −∞

for each k) in the production of the intermediate outputs w(1), which in turn are perfect

substitutes (ϱ
(2)
k = 1 for all k) in the production of final outputs y. This nested produc-

tion function spans a polytope of production possibilities in RK+M
+ . The vertices spanning

that polytope correspond to production plans involving only a single intermediate output,

with all remaining components of w(1) equal to zero. Since the technology for intermediate

output w
(1)
k has constant returns to scale up to output β

(1)
k0 , the second-stage technology

then convexifies that vertex set. We can then approximate Y0 arbitrarily well by adding a

sufficient number of appropriately chosen vertices to that polytope. It is also instructive to

compare the approximation rate to the approximation bound for RELu approximation of
15



smooth functions in Yarotsky (2017), where the assumption of convexity results in a rate

comparable to that for the case of weak derivatives up to order 2.

3.2. Optimal Production Plan. We next derive the activation functions ϕ(·), ψ(·) implied

by maximizing behavior in the production model. Given the technology YS
K1,...,KS

and input

prices p = (p1, . . . , pK) we assume that outputs ŷ are produced using a cost-optimal, feasible

production plan. That is,

(ŷ′, x̂′)′ := argmin
x

{
p′x : (ŷ′,x′)′ ∈ YS

K1,...,KS

}
We characterize the optimal production plan at each of the S stages both in terms of quanti-

ties of intermediate inputs employed in each intermediate technology, as well as the implied

price of each intermediate good.

At stage s, the optimal production plan for w
(s)
k ≡ v

(s)
k units of the kth intermediate good

given implied input prices π
(s−1)
0 , . . . , π

(s−1)
Ks−1

for the intermediate outputs from the (s − 1)st

stage is the solution to the cost-minimization problem

min
v
(s−1)
1k ,...,v

(s−1)
Ks−1k

Ks−1∑
l=0

π
(s−1)
l v

(s−1)
lk subject to F

(s)
k (v

(s−1)
0k , . . . , v

(s−1)
Ks−1k

) = v
(s)
k

where the non-discretionary input is held fixed at v
(s−1)
0k = 1.

The value of this constrained optimization problem is given by the cost function

C
(s)
k (π(s−1); v

(s)
k ) ≡ C

(
π(s−1); v

(s)
k ;θ

(s)
k

)
where

C (π; v;θ) := π0 +

[
K∑
l=1

(
πϱ
l

βl

) 1
ϱ−1

] ϱ−1
ϱ (

v
ϱ
τ − βϱ

0

) 1
ϱ

Our framework treats quantities and implicit prices of the intermediate goods as latent

(hidden) variables which are determined recursively by solving the cost-minimization problem

for stages s = 1, . . . , S. Specifically, the price of intermediate good k corresponds to the

marginal cost of production of an additional unit of the good,

π
(s)
k =

∂

∂v
(s)
k

C
(s)
k (π(s−1); v

(s)
k )

=: ϕ
(s)
k

(
π(s−1);v(s);θ

(s)
k

)
where we define

ϕ
(s)
k (π;v;θ) :=

[
K∑
l=1

(
πϱ
l

βl

) 1
ϱ−1

] ϱ−1
ϱ (

v
ϱ
τ
k − βϱ

0

) 1
ϱ
−1 v

ϱ
τ
−1

k

τ
(3.3)
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Given prices, optimal factor demand for intermediate input k for intermediate technology l

at stage s+ 1 is

v
(s)
kl =

(
π
(s)
k

β
(s+1)
lk

) 1

ϱ
(s+1)
l

−1

 Ks∑
j=1

(
(π

(s)
j )ϱ

(s+1)
l

β
(s+1)
lj

) 1

ϱ
(s+1)
l

−1

− 1

ϱ
(s+1)
l

(v
(s+1)
l )

ϱ
(s+1)
l

τ
(s+1)
l − (β

(s+1)
l0 )ϱ

(s+1)
l


1

ϱ
(s+1)
l

so that total factor demand for intermediate good k is

v
(s)
k :=

Ks+1∑
l=1

v
(s)
kl =: ψ

(s)
k

(
π(s);v(s+1);θ(s+1)

)
where we define

ψ
(s)
k (π;v;θ) :=

K2∑
l=1

(
πk
βlk

) 1
ϱl−1

[
K1∑
j=1

(
πϱl
j

βlj

) 1
ϱl−1

]− 1
ϱl (

v
ϱl
τl
l − βϱl

l0

) 1
ϱl

(3.4)

For input levels x and outputs y, we constrain v
(0)
k ≡ xk for k = 1, . . . , K and v

(S)
m ≡ ym for

m = 1, . . . ,M . If factor prices for inputs are observed, we also set π
(0)
k ≡ pk, otherwise we

treat prices as latent as well. In particular, we choose good 1 as the numéraire, π
(0)
1 = 1, so

that for an interior solution to the cost minimization problem at node 1 in layer s = 1, the

first-order conditions for optimal input choices require

π
(0)
k =

(
β
(1)
1k

β
(1)
11

)ϱ
(1)
1
(
v
(1)
k1

v
(1)
11

)ϱ
(1)
1 −1

=: ϕ
(0)
k (v(1);θ

(1)
k )

for k = 2, . . . , K. Intermediate good 1 in layer 1 was chosen arbitrarily, so if only a subset

of inputs are employed in nonzero quantities to produce that good, implied factor prices for

the K initial inputs can be inferred from the first-order conditions at other intermediate

production nodes in layer 1. Additional normalizations may be required if nodes in that

layer only use non-overlapping subsets of the initial inputs.

To summarize, the production system is characterized by hidden states h
(s)
k := (v

(s)
k , π

(s)
k ),

where at the first stage π
(0)
k = pk and v

(0)
k = xk for k = 1, . . . , K0 ≡ K, and at the last stage,

v
(S)
k = yk for k = 1, . . . , KS ≡ M . Latent prices π

(s)
k are determined recursively by iterating

(3.3) forward from s−1 to s starting at s = 1, and quantities v
(s)
k by iterating (3.4) backward

from s+ 1 to s, starting at s = S.

3.3. Data and Unobservables. We consider training the network based on a sample of n

observed combinations zi = (yi,x
′
i)
′ of inputs and outputs. We allow for the possibility of

measurement error in output levels as well as hidden inputs which we treat as stochastic.

We therefore treat the technology Y∗ as a random closed set and seek to approximate its
17



(selection) expectation Y0 := E[Y∗].1 It is known that when the distribution of Y∗ is non-

atomic, Y0 is a convex subset of RK+M (see Theorem 1.15 in chapter 2 of Molchanov (2005)).

We furthermore assume that production is efficient in that any combinations of inputs

(including unobserved inputs) and correctly measured outputs correspond to points on the

efficient frontier of Y∗(ω). We do not explicitly model the choice of a particular output

combination on the efficient frontier in the multiple output case. Rather we assume that

production and demand are separable, and at least in principle a model for demand could

be estimated separately. We then match observed combinations of quantities to points on

the frontier predicted by the ANN. Training loss is given by ℓ(zi,θ) :=
∑M

m=1(ymi−v(S)mi (θ))
2

where v
(S)
mi (θ) is the activation of the mth neuron in the top layer given inputs x1i, . . . , xKi.

More generally, the kth observable covariate Xki could interpreted either as “price”/cost

shifter or the quantity of an input for production, and matched accordingly to either the price

π
(0)
ki or the quantity v

(0)
ki in the initial layer. An implementation of this neural network could

also incorporate additional unobserved inputs at intermediate neurons, with one or multiple

independent random draws from some continuous distribution with non-negative support.

This would also define smooth likelihoods/energy functions for the intermediate stages for

an implementation as a Deep Boltzmann machine. We are not aware of a “conjugate”

distribution for such an unobserved input that would yield closed-form solutions for factor

demand or price equations at intermediate stages, but such an approach would in general have

to rely on simulation by generating several replications for each unit, where data could also

be permuted at random to reflect other invariance restrictions. While implementation is less

straightforward, such an approach would at least conceptually be analogous to convolutional

neural networks commonly used for image and video processing.

4. Nested Discrete Decisions

Models for nested discrete decisions - binary or multinomial - have long been used to model

individual choice behavior, see Ben-Akiva (1973), McFadden (1974), and McFadden (1978b).

Hornik, Stinchcombe, and White (1989) established that multi-layer feedforward networks

with a “squashing” activation function - a nondecreasing function mapping its scalar argu-

ment to the unit interval - can approximate any Borel measurable function on compacta. Our

focus is on a flexible framework for multinomial discrete decisions, generalizing Ben-Akiva

(1973)’s nested Logit model to approximate all members of McFadden (1978b)’s Generalized

Extreme Value (GEV) class.

1Following Molchanov (2005) the selection expectation of the random set Y∗ : Ω → C for some probability
space Ω and the closed sets C in RK+M is the closure of the set of all expectations of integrable selections,
υ(ω) ∈ Y(ω) for ω ∈ Ω.
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There are many examples when a single nesting structure may be too restrictive to model

realistic cross-substitution patterns among a population of agents, especially when alterna-

tives are complex or bundles of more elementary choices. For example when choosing a

travel destination, Barcelona may appear to be a close substitute for Lisbon or Istanbul if

the purpose of the trip is to combine a city trip with a beach vacation, however it may be a

closer substitute to Amsterdam or Prague as a destination for party travel. Vovsha (1997)

also motivates overlapping nests in a model of transportation choice when commuters may

combine various modes of transportation for different legs (“trunk”, “egress”) of the trip.

Categorical outcomes may also result from choices among a richer set of heterogeneous al-

ternatives - for example labor force status is determined by the decision whether to accept

a particular job offer.

Standard random utility models (RUM) for discrete choice can be made more flexible to

accommodate these richer substitution patterns, either by allowing for dependence among

taste shocks, or modeling decisions sequentially via a richer latent hierarchy of nests of

alternatives. Our modeling approach follows the second route but we also show that within

McFadden (1978b)’s Generalized Extreme Value (GEV) framework, the two are equivalent

in terms of the distributions that a fully flexible model can generate.

4.1. Nested Discrete Choice Model. We consider a model of multinomial choice Y

among M options {y1, . . . , yM} given agent and alternative specific attributes x. The object

of interest are the conditional choice probabilities

µ0(ym,x) := P(Y = ym|X = x), m = 1, . . . ,M

which are assumed to result from a random utility model (RUM) with a flexible dependence

structure among taste shocks. Specifically, we let

Uim := U∗
im + εim, m = 1, . . . ,M

with systematic parts U∗
im := U∗(xim) that are nonstochastic functions of agent/alternative

specific characteristics, and idiosyncratic taste shocks εim that are independent of xim with a

common marginal distribution G(ε). The systematic part U∗
im can itself be specified flexibly,

e.g. as an additively separable function of elements of xim.

By Sklar’s theorem, the joint distribution of taste shocks for the M alternatives can be

written as

G(ε1, . . . , εM) = C(G(ε1), . . . , G(εM))

where the copula C : [0, 1]M → [0, 1] is a M -non-decreasing function that is onto, where

C(0, . . . , 0) = 0 and C(1, . . . , um, . . . , 1) = um for each k = 1, . . . ,M . Taking logs of joint

and marginal c.d.f.s, we can rewrite the copula as

G(ε1, . . . , εM) = exp {−F0 (− logG(ε1), . . . ,− logG(εM))}
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where we refer to the mapping F0 : RM
+ → R+, F0 : (w1, . . . , wM) 7→ F0(w1, . . . , wM) as the

generating function associated with the copula C(·).
For the case when the marginal distribution G(ε) = exp{−e−ε} is extreme-value type I,

Theorem 1 in McFadden (1978b) shows that any conditional choice probabilities of the form

µ0(ym,x) =
eU

∗
m(x) ∂

∂wm
F0

(
eU

∗
1 (x), . . . , eU

∗
M (x)

)
F0

(
eU

∗
1 (x), . . . , eU

∗
M (x)

) (4.1)

can be generated by such a RUM under additional regularity conditions on the generating

function F0(·). Specifically, he assumes the following

Assumption 4.1. (GEV Generating Function) F0(w) is linearly homogeneous and M

times continuously differentiable, where (−1)p+1 ∂p

∂wm1 ...∂wmp
F0(w) ≥ 0 for all p = 1, . . . ,M

and any distinct m1, . . . ,mp ∈ {1, . . . ,M}. In addition we assume that the same sign re-

striction on the cross-partial derivatives also holds with m1 = m2 and p ≤ 3.

The alternating sign condition on partial derivatives is satisfied by any function F0(·) that
isM times differentiable andM -nondecreasing (see Nelsen (2006), p.43 for a definition). Dif-

ferentiability of degree greater than 1 is not needed for our results, whereas M -monotonicity

is needed to ensure that the generating function defines a proper copula for the joint dis-

tribution of taste shocks under a random-utility interpretation of the conditional choice

probabilities. In particular, these restrictions ensure that the mapping

C(u1, . . . , uM) = exp {−F0(− log u1, . . . ,− log uM)}

of marginal ranks u1, . . . , uM to [0, 1] is M -increasing and therefore yields a well-defined

joint distribution function. However, these restrictions do not guarantee that C(u1, . . . , uM)

satisfies the boundary conditions C(1, . . . , um, . . . , 1) = um, so the function need not be a

proper copula. Rather, permissible generating functions under Assumption 4.1 may produce

joint distributions with marginals that are different from the extreme value type-I distribu-

tion. We discuss the possibility of allowing for flexible, smooth specifications of the marginal

distributions G1(ε), . . . , GM(ε) in Appendix B.

We now propose a strategy to approximate the generating function flexibly using a model

of multiple stages of discrete decisions. Following Vovsha (1997) and Wen and Koppelman

(2001) we assume a nesting structure with multiple layers where alternatives can be grouped

according to various, not necessarily exclusive aspects, rather we allow for each alternative

to belong to multiple nests at a time. Overlapping nests may occur in settings when a

heterogeneous population of agents with different nesting structures - in an example by

Vovsha (1997) on the choice of transportation modes, an agent may assign a “Park and

Ride” commute either to a “private” or “public transit” nest, depending on which leg of the

commute is more prominent.
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We consider nested generating functions F
(s)
k : RKs−1

+ → R+, where

F
(s)
k (w1, . . . , wKs+1) ≡ F

(s)
k (w1, . . . , wKs+1 ;θ

(s)
k )

=

(
Ks+1∑
l=1

(
β
(s)
kl wl

)ϱ(s)k

) 1

ϱ
(s)
k

(4.2)

where θ
(s)
k := (β

(s)
k1 , . . . , β

(s)
kKs+1

, ϱ
(s)
k )′. The nesting coefficients ϱ

(s)
k ≥ 1 parameterize depen-

dence of taste shocks within nests, where ϱ
(s)
k = 1 corresponds to the case in which shocks

are independent across nests, and ϱ
(s)
k = ∞ to the case of perfect rank dependence. The

weights β
(s)
kl can be interpreted as allocation parameters, measuring the relevance of nest k for

choosing alternative l. We then construct a generating function F S
K(w1, . . . , wM) recursively,

where

w
(S)
k = wk, k = 1, . . . ,M

w
(s)
k = F

(s)
k (w

(s+1)
1 , . . . , w

(s+1)
Ks+1

) (4.3)

We can interpret this structure as a cross-nested Logit model with S layers, where in each

layer s the agent chooses among Ks latent nests ks = 1, . . . , Ks, and we also assume that

the 0th (bottom) layer consists of a single root node, i.e. K0 = 1. The resulting nesting tree

is a weighted directed, acyclic graph where a terminal node may be reached through various

paths.

The conditional choice probabilities µ(ym,x) are then approximated by

µS
K(ym,x) :=

eU
∗
m(x) ∂

∂wm
F S
K

(
eU

∗
1 (x), . . . , eU

∗
M (x)

)
F S
K

(
eU

∗
1 (x), . . . , eU

∗
M (x)

) (4.4)

in analogy to (4.1). We allow for the possibility that F S
K(w) is only directionally differ-

entiable, in which case the partial derivative is taken to be the derivative from the right,
∂

∂wm
F S
K(w1, . . . , wm, . . . , wM) := limt↓0

FS
K(w1,...,wm+t,...,wM )−FS

K(w1,...,wm,...,wM )

t
.

We next show that with a sufficient number of latent nests, this model can in fact approx-

imate the conditional choice probabilities resulting from the random utility model satisfying

Assumption 4.1 arbitrarily well.

Proposition 4.1. (Universal Approximator) Suppose that F0 : RM
+ → R+ satisfies

Assumption 4.1. Then for any δ > 0 and compact rectangular set C ⊂ intRM
+ , there exists

an approximating function F S
K constructed via (4.3) with stage-wise generating functions of

the form (4.2) with S = 3 such that

sup
x∈C

∣∣µS
K(ym,x)− µ0(ym,x)

∣∣ ≤ δ, m = 1, . . . ,M

21



where the number of free parameters is MK2, and

K2 = c(R,M)δ−
M
2

for a constant c(R,M) that only depends on the dimension M and diameter R of C.

See the appendix for a proof. For the restriction of the approximation to arguments

w1, . . . , wM in the interior of the positive orthant, notice that (4.1) evaluates the generating

function and its first partial derivatives only at arguments wm = exp{U∗
m(x)} so that we

can restrict our attention to compact subsets of int(RM
+ ) as long as U∗

1 (x), . . . , U
∗
M(x) are

bounded functions of x.

By (4.1) the conditional choice probabilities can be expressed as continuous functions

of F0(w1, . . . , wM) and its first partial derivatives. Our proof is constructive in that we

propose a four-layer neural network which approximates the subgraph of F0(w1, . . . , wM)

on C with vertices corresponding to the K2 neurons in the second layer, where the free

weights determine the location of those support points, and the remaining layers generate

the surface of that polytope using parameters which depend on F (w) only through those

weights from the second layer. We then use known results on approximations of convex sets

by polyhedra to bound the resulting error regarding the function F0(w1, . . . , wM) and its first

partial derivatives.

It is also important to note that for this approximation, nest-specific weights β
(s)
kl are

non-negative, and nesting coefficients satisfy ϱ
(s)
k ≥ 1, so that the approximating model is

consistent with random utility maximization. One interpretation of the conventional nested

Logit model represents the taste shifters for the alternatives in the final layer as a sum of

independent alternative- and nest-specific random utility shocks (see Ben-Akiva and Lerman

(1985) and Galichon (2021)). We can therefore think of the deep network approximating the

“true” error distribution with a convolution of independent shocks some of which are shared

by subsets of the M alternatives.

4.2. Implementation. To nest this model into the recursive framework in (2.2) and (2.3),

we parameterize conditional choice probabilities from maximizing behavior in terms of inclu-

sive values. Specifically we define the inclusive value for nest k in the sth layer recursively

via

v
(S)
k := eU

∗
k

v
(s)
k := ψ

(s)
k (v

(s+1)
1 , . . . , v

(s+1)
Ks+1

;θ
(s)
k ) (4.5)

where

ψ
(s)
k (v(s+1);θ

(s)
k ) := log

[Ks+1∑
l=1

(
β
(s)
kl e

v
(s+1)
l

)ϱ(s)k

]1/ϱ(s)k

 (4.6)
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Note that we can take limits

lim
ϱ→∞

[
K∑
l=1

(βle
vl)ϱ
]1/ϱ

= max {βlev1 , . . . , βKevK}

so that for large values of ϱ
(s)
k , we can interpret ψ

(s)
k in (4.6) as a softmax mapping from

ev
(s+1)
1 , . . . , e

v
(s+1)
Ks+1 to ev

(s)
k .

We can next characterize the conditional choice probabilities from this random utility

model recursively in terms of these inclusive values. Specifically, we define the probabilities

π
(s)
k of reaching the kth nest in the sth layer via the recursion

π
(0)
1 := 1

π
(s)
k := ϕ

(s)
k (v(s),π(s−1);θ

(s)
k ) (4.7)

initialized at the root node. Lemma 4.1 below shows that this mapping is given by

ϕ
(s)
k (v(s),π(s−1);θ

(s)
k ) :=

Ks−1∑
l=1

(
β
(s)
kl e

v
(s−1)
l

)ϱ(s)k

∑Ks−1

m=1

(
β
(s)
kme

v
(s−1)
m

)ϱ(s)k

π
(s−1)
l (4.8)

Lemma 4.1. Consider the nested model in (4.3). Then the conditional choice probability

for alternative ym is given by π
(S)
m , with intermediate states h

(s)
k := (π

(s)
k , v

(s)
k ) characterized

recursively by the mappings (4.6) and (4.8).

See the appendix for a proof. It is interesting to note that the recursion defining inclusive

values and conditional choice probabilities is triangular in that the mapping iterating inclu-

sive values (4.6) does not take conditional choice probabilities π
(s)
k as an argument, so that

all hidden states can be calculated with a single backward pass followed by a forward pass

of the recursions ψ
(s)
k (·) and ϕ(s)

k (·), respectively.
The main object of interest in the nested GEV model is the conditional choice probability

µ0(y,x) := P(Y = y|X = x)

Given the trained network, the model prediction for µ0(y,x) is then given by the activations

µS
K(y,x;θ) :=

{
π
(S)
m (x;θ) if y = ym for some m = 1, . . . ,M

0 if y /∈ {y1, . . . , yM}

In order to train the network, we can therefore use the activations π
(S)
1 (x,θ), . . . , π

(S)
M (x,θ)

in the top layer in a regression layer with loss ℓ(z,θ) := −
∑M

m=1 1l{y = ym} log π(S)
m (x,θ)

and deeper layers specified according to (4.5) and (4.7).

Remark 4.1. (Aggregation over Heterogeneous Alternatives) So far we have treated

the number of alternatives in the multinomial choice problem as given. We next extend
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this framework to a problem where the observable alternatives k = 0, . . . , KS aggregate a

larger number of heterogeneous alternatives. For example, in residential choice, we may only

observe a coarse partition of the set of available alternatives, with the agent choosing among

the alternatives that are optimal within each category.

Specifically, we could consider a fixed set of observable categories {1, . . . ,M} which are

a partition of a set of primitive alternatives k = 1, . . . , KS, where m : {1, . . . , KS} →
{1, . . . ,M} assigns each alternative to one of theM categories. Random utility for alternative

k is given by

Uik := x′iγ
(S)
k + h(S)(zm(k)) + εik, k = 1, . . . , KS

where coefficients βk may vary within each category of alternatives, and h(z) is a smooth

function of alternative-specific characteristics. We will also generally assume that h(z) is

additively separable in the scalar components of z. We interpret the alternative-specific co-

efficients β
(S)
k is as unobserved attributes or “amenities” of each primitive alternative that

vary in relevance to agents with different attributes xi.

The conditional probability of choosing an alternative in category m is then given by

P
(

max
m(k)=m

Uik ≥ max
k
Uik

)
=

∑
k:m(k)=m

P
(
Uik ≥ max

k
Uik

)
Allowing for KS to grow large would provide additional flexibility in approximating condi-

tional choice probabilities among the J categories.

5. Separability and Sparsity Restrictions

Generally speaking, whether or not there is an advantage in approximating the relationship

between inputs and outputs using a nested model which mimics this structure depends on

whether there are any meaningful constraints on the nested mappings ϕk(·) and ψk(·) in

the generative model. Specifically, we consider qualitative restrictions on the intermediate

transformation functions
{
F

(s)
k (w1, . . . , wKs−1)

}
k,s

either in production or the construction

of the GEV generating function, which are the main economic primitives of either problem.

Our general approach already makes use of global shape restrictions - monotonicity, con-

vexity, homogeneity where applicable - on certain economic primitives. Generally speaking,

qualitative restrictions on components of a structural model do not necessarily translate into

analogous restrictions that could be imposed on the reduced form in a straightforward man-

ner. However, for the flexible approximating models proposed in this paper we show that

these shape constraints can be incorporated quite naturally into estimation as sign restric-

tions on model parameters and yield a substantial reduction of its statistical complexity.
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In this section we consider two additional qualitative/nonparametric restrictions that for-

malize how economic primitives at individual stages of this model may be more “fundamen-

tal” than their composition.

Definition 5.1. (Sparsity) (a) We say the function F (s) : RKs−1 → R is d∗-sparse if it

can be written as a function of at most d∗ of its arguments, that is there exist k1, . . . , kd∗ and

F̃ (s) : Rd∗ → R such that

F (s)(w1, . . . , wKs−1) ≡ F̃ (s)(wk1 , . . . , wkd∗ )

for all w1, . . . , wKs−1. (b) A MLP of S layers is said to be d∗-sparse if each hidden layer

consists of at most d∗ neurons, each of which are a d∗-sparse function F
(s)
k (w(s−1)) of inputs

from the preceding layer.

In models of production, sparsity reflects that intermediate technologies may only use

some of the available inputs for production. For nested models of discrete choice, sparsity

restricts the cross-nesting structure by allowing any nest to have at most d∗ successors in the

following nesting layer. Sparsity is assumed for the results in Mhaskar and Poggio (2016)

and Bauer and Kohler (2019) with d∗ = 2, and general d∗ ≤ K, respectively.

Definition 5.2. (Separability) (a) We say that the function F (s) : RKs−1 → R is separable

in its arguments if there exist Ks−1 functions g
(s)
k : R → R and a transformation f (s) : R → R

such that

F (s)(w1, . . . , wKs−1) ≡ f (s)(g
(s)
1 (w1) + · · ·+ g

(s)
Ks−1

(wKs−1))

for all w1, . . . , wKs−1, where f
(s)(·), g(s)k (·) are Lipschitz continuous with Lipschitz constant

λ <∞. (b) A MLP of S layers is said to be separable if each hidden layer consists of at most

K neurons, each of which are a separable function F
(s)
k (w(s−1)) of inputs from the preceding

layer.

Separability is satisfied by index models F (v′β) for arbitrary link functions F (·) and the

constant-elasticity of substitution (CES) family of production functions, including the cases

of perfect complements and perfect substitutes. When the functions g
(s)
1 (·), . . . , g(s)Ks−1

(·)
are the identity, this corresponds to the nested nonparametric regression model analyzed

in Horowitz and Mammen (2007). In principle, this definition can be extended to include

models satisfying separability among partitions of w1, . . . , wKs−1 into subsets of multiple

variables.

One key observation is that neither of these properties of link functions F
(s+1)
k , F

(s)
l , . . . , F

(s)
Ks

is generally inherited by compositions

F
(s,s+1)
k (w1, . . . , wKs−1) := F

(s+1)
k (F

(s)
1 (w1, . . . , wKs−1), . . . , F

(s)
Ks

(w1, . . . , wKs−1))
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Moreover, our main focus will be on cases in which the relevant intermediate state variables

v
(s)
k , π

(s)
k are the result of optimization with an objective function F

(s)
k (·) satisfying sparsity

or separability, whereas the activation functions ψ
(s)
k (·), ϕ(s)

k derived from these primitives

need in general not exhibit either property. It is for these reasons that we aim to construct

the approximating network to mirror the nested architecture of the data generating process

when applicable.

We now propose network architectures which directly impose either sparsity or separability

within components of an S-layer generative model with neurons of unspecified functional

form. Within our framework, it is then possible to construct a common architecture which

would nest all three cases - sparse, separable, and unrestricted - where either restriction can

be imposed by setting weights for certain connections equal to zero. For simplicity, we state

our results for estimation of production models, the case of discrete choice models is entirely

analogous.

5.1. Sparsity. We first consider approximation of a model with stage technologies that are

d∗-sparse according to Definition 5.1 with dimension d∗ ≤ K, i.e. a production or generating

function of the form

F
(s)
k (w1, . . . , wKs−1) = f

(s)
k (wk1 , . . . wkd∗ )

Following the construction in Bauer and Kohler (2019), we propose the following approxi-

mating network:

• We use a three-layer network F̂
(s)
k to approximate F

(s)
k where the bottom layer takes

w1, . . . , wKs−1 as inputs and has K1 = 3d∗ neurons.

• The middle layer consists of K2 = Q neurons (independent of K), and

• the top layer consists of a single linear neuron with ϱ
(3)
1 = τ

(3)
1 = 1. All other

parameters are left unrestricted.

• Finally, we assemble the full MLP F S
K,Q consisting of S layers of three-stage neurons

F̂
(s)
k , k = 1, . . . , d∗ and s = 1, . . . , S.

We can now state the main result regarding the rate of approximation for a sparse stage

production technology given that network architecture:

Proposition 5.1. (Sparse Stage Technologies) Suppose that the technology Y0 can be

characterized by a d∗-sparse MLP with S layers, where F
(s)
k (w(s−1)) are concave, nondecreas-

ing and uniformly Lipschitz. Then for any δ > 0 and compact rectangular set C ⊂ intRK+M
+ ,

there exists an approximating function F S
K,Q constructed on a network of the type (SP-CES)

with depth 3S such that

sup
(u,x)∈C

∣∣µS
K(u,x)− µ0(u,x)

∣∣ ≤ δ

where

Q = c(R, S, d∗)δ−
d∗
2
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and c(R, S, d∗) is a constant that only depends on the dimension d∗ and diameter R of C.

See the appendix for a proof. Comparing this result to the rates in Proposition 3.1, all rates

are in terms of the effective dimensionality d∗ under sparsity rather than K. An analogous

result can be given for the discrete choice model under Assumption 4.1 when the generating

function is d∗-sparse.

5.2. Separability. We next consider separability restrictions in the production model. For

models of discrete decisions, these restrictions can be imposed in an entirely analogous

manner. In order to approximate an intermediate production technology that is separable in

the sense of Definition 5.2, i.e. satisfying

F
(s)
k (w1, . . . , wKs−1) = f

(s)
k (g

(s)
k1 (w1) + · · ·+ g

(s)
kKs−1

(wKs−1))

we propose the following Four-layer CES (4L-CES) specification of the production network

uses three layers of nested CES production functions to approximate F
(s)
k .

• The bottom layer consists of Q neurons with τ
(1)
q = 1 and the remaining parameters

β(1),ϱ(1) unrestricted.

• The second layer consists of a single neuron with τ (2) = ϱ(2) = 1 and the remaining

parameters β(2) varying freely.

• The third layer consists of Q neurons with τ
(3)
q = 1 and the remaining parameters

β(3),ϱ(3) unrestricted.

• The fourth (top) layer is linear and consist of a single neuron with ϱ(3) = τ (3) = 1

and β(2) varying freely. These four layers form a self-contained module which does

not connect to those approximating other stage technologies in the same layer.

• Finally, we assemble the full MLP consisting of S layers of three-stage neurons F̂
(s)
k ,

k = 1, . . . , d∗.

Using this construction we can achieve the following approximation rates for separable

stage technologies:

Proposition 5.2. (Separable Stage Technologies) Suppose that the technology Y0 can

be characterized by a MLP with S layers of at most K neurons, where F
(s)
k (w(s−1)) are

separable and uniformly Lipschitz, with concave and nondecreasing link functions f
(s)
k (·) and

g
(s)
kl (·). Then for any δ > 0 and compact rectangular set C ⊂ intRK+M

+ , there exists an

approximating function F S
K,Q constructed on a network of the type (4L-CES) with depth 4S

such that

sup
(u,x)∈C

∣∣µS
K(u,x)− µ0(u,x)

∣∣ ≤ δ

where

Q = c(R, S,K)δ−
1
2
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and c(R, S,K) is a constant that only depends on the dimension d∗ and diameter R of C.

See the appendix for a proof.

6. Asymptotic Theory

This section gives convergence rates for estimating the function µ0(y,x), where we approx-

imate the underlying model primitives - the feasible set Y0 or the generating function F0(w),

respectively - with a multilayer perceptron. We consider the class HS
K of multilayer neural

networks with S layers, K = (K1, . . . , KS) hidden nodes, and W free parameters (weights

β
(s)
k and coefficients ϱ

(s)
k ). We denote the resulting approximation to the target function

with µS
K(y,x). Note that in implementing this approach we do not explicitly compute and

report the full set Y0 or generating function F0(w), rather the trained network only evaluates

whether any given point in the sample belongs to that set. Global shape restrictions on that

set then only restrict complexity of ways of assigning points in and outside of that set.

Estimation of µ0 is based on a sample of n observations, where we assume the following:

Assumption 6.1. (a) The sample z1, . . . , zn consists of i.i.d. realizations of a random

variable Z = (X,Y), where the p.d.f. of X is bounded away from zero on its support

X ≡ [−1, 1]K. (b) For the production model we furthermore assume that Y0(x) ⊂ [0, B]M

for all x ∈ X and that Z has full support on the boundary of Y0 ∩ X × RM . (c) For the

discrete choice model we also assume that random utilities satisfy |U∗
m(x)| ≤ B for some

B <∞ and all m = 1, . . . ,M .

The assumption of a rectangular support for X is primarily for analytical convenience

and can be generalized to other compact subsets of RK with nonempty interior. The con-

dition that we observe input/output combinations over the entire efficient frontier of Y0

requires additional assumption on the mechanism for selection among multiple efficient in-

put/output combinations, e.g. due to sufficient variation in input and output prices for a

profit-maximizing producer. A more rigorous formulation in terms of economic primitives is

beyond the scope of this paper and will be left for future research. If that condition fails,

the researcher may still learn about a segment of the efficient frontier determining µ0(u,x)

for certain directions u and a restricted set of input combinations x.

Our asymptotic results then concern the estimate of µ0(y,x) based on that sample. Fol-

lowing Farrell, Liang, and Misra (2019), suppose that we train the network according to a

loss function ℓ(µ, z) such that

µ0 = argmin
µ

E[ℓ(µ,Z)].

In addition we assume that ℓ(·, ·) is Lipschitz and that there exist c1, c2 > 0 such that

c1E
[
(µ− µ0)

2
]
≤ E [ℓ(µ,Z)]− E [ℓ(µ0,Z)] ≤ c2E

[
(µ− µ0)

2
]
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After training the network HS
K we obtain the estimator

µ̂n ∈ argmin
µ∈HS

K∥τ∥∞≤2B

1

n

n∑
i=1

ℓ(µ, zi) (6.1)

6.1. VC Dimension. To characterize the asymptotic properties of µ̂n we start by stating

a general VC bound of the approximating neural network which applies to general convex

approximating architectures.

Lemma 6.1. For the class HS
K of networks with W free parameters satisfying β

(s)
k ≥ 0 and

ϱ
(s)
k ≤ 1 for all k, s, the VC dimension is bounded by

V Cdim(HS
K) = O (2W log(2e))

See the appendix for a proof. The proof of this result applies the generic bound in The-

orem 2 by Karpinski and Macintyre (1997), noting that for any concave function all level

and contour sets are connected, so that in the notation of their paper B = 1. Furthermore,

it is important to note that their results apply to Boolean combinations of “atomic formu-

las” which are arbitrary, infinitely differentiable functions of the data and parameters. In

particular, the theorem does not require the µS
K(y,x) to be defined in terms of an acyclic

(feedforward) multilinear perceptron.

Other restrictions, like sparsity or separability enter through the architecture of the neural

network, where the constrained network requires only a smaller number W of adjustable

weights. Since Lemma 6.1 depends only on W with no additional assumptions on network

architecture, VC bounds for shape constrained networks can be obtained from that same

result.

Remark 6.1. It is useful to compare this VC bound to “generic” VC bounds for a neural

network with S layers and W adjustable weights without shape constraints: If the coefficients

β
(s)
jl are unrestricted, 1 ≤ τ

(s)
l ≤ k are integer, and ϱ

(s)
l ∈ {−∞, 1,∞}, the resulting network

corresponds to one with a piecewise polynomial activation function of degree k or less. It

then follows from Theorem 1 in Bartlett, Maiorov, and Meir (1998) that the VC dimension

of the resulting network is of the order no greater than

V Cdim(H) = O
(
WS logW +WS2

)
For non-integer values of τ

(s)
l the resulting activation functions are no longer polynomial.

Rather, we can use the fact that power functions can be embedded into Pfaffian chains of

length 1, so that from section 4.2 in Karpinski and Macintyre (1997) it follows that the VC

dimension grows at a rate no faster than

V Cdim(H) = O
(
W 2m2

)
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Karpinski and Macintyre (1997) also suggest that this rate may not be sharp but conjecture

that it may be imrpoved to match that for the piecewise polynomial case even for general

Pfaffian activation functions.

Most notably the bound in Lemma 6.1 implies no penalty for network depth besides

through the number of adjustable parameters, whereas all of the generic results (allowing for

negative coefficients) do. The main reason for this is that without convexity or monotonic-

ity, lower contour sets of the functions a neural network may generate consist of multiple

connected components, where the number of connected components increases with network

depth.

6.2. Convergence Rate. Given the previous results regarding the rate of approximation

and VC dimension of these networks, we can adapt the proofs for the main results in Far-

rell, Liang, and Misra (2019) to obtain the asymptotic rate for estimation of µ0(·). Our

approximation results in Propositions 3.1 and 4.1 and Lemma 6.1 will simply take the place

of Lemmas 6 and 7 in their argument, which is otherwise not specific to the case of ReLU

feedforward networks.

Theorem 6.1. Convergence Rate Suppose that Assumption 6.1 (a) holds, and let µ̂n ∈
HS

K1
be the estimator defined in (6.1). If in addition, the model satisfies Assumptions 3.1

and 6.1 (b), there exists a constant C > 0, independent of n such that for d = K +M − 1,

S = 2 and K1 ≍
(

n
logn

) d
4+d

we have that for a compact rectangular set C ⊂ Rd,

∥µ̂n − µ0∥2C,2 ≤ C

(
log n

n

) 4
4+d

with probability approaching 1. If the model satisfies Assumptions 4.1 and 6.1 (c), then the

analogous conclusion holds with d =M and S = 3.

We state the result for the smallest number of hidden layers required for the approximation

in 3.1 and 4.1, noticing that neither result suggests an added benefit to depth for the case

in the absence of additional shape restrictions. However, that conclusion changes once we

assume that stage technologies are sparse or separable, and we derive convergence rates for

that case separately below. Note also that the rate for µ̂n matches the minimax risk bound

for nonparametric estimation of convex functions in Theorem 2.4 by Han and Wellner (2016),

up to logarithmic terms. Interestingly, they also point out that the default nonparametric

estimator, bounded least squares, fails to achieve that bound for d > 4.

As discussed in the context of Theorem 3 in Farrell, Liang, and Misra (2019), the ap-

proximation bounds underlying this result can also be strengthened in order to establish

asymptotic normality and variance estimation for certain functionals of µ0(·). Since apart

from the separate derivation of the VC dimension of HS
K and its approximating properties
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the argument is completely analogous to their case we do not prove the analogous conclusions

separately for the present framework.

In order to appreciate the gains from imposing additional shape restrictions, we next state

the convergence rates under sparsity and separability restrictions for the stage functions in

an S-layer model with neurons of unknown functional form.

Corollary 6.1. Convergence Rate under Sparsity Suppose that Assumption 6.1 holds,

and let µ̂n ∈ H(3S)
Q be the estimator based on the network (SP-CES). If the model satisfies

Assumption 3.1 and is d∗-sparse with d∗ ≤ K + M − 1, there exists a constant C > 0,

independent of n such that for S = 2 and Q ≍
(

n
logn

) d∗
4+d∗

we have that for a compact

rectangular set C ⊂ Rd,

∥µ̂n − µ0∥22 ≤ C

(
log n

n

) 4
4+d∗

with probability approaching 1. If the model satisfies Assumption 4.1 and is d∗-sparse with

d∗ ≤M , then the analogous conclusion holds for S = 3.

This result follows immediately from the proof of Theorem 6.1, noting thatQ can be chosen

according to the approximation rate in Proposition 5.1 and that the resulting approximating

network has less than 3Sd∗Q free parameters.

Corollary 6.2. Convergence Rate under Separability Suppose that Assumption 6.1

holds, and let µ̂n ∈ H(4S)
Q be the estimator based on the network (4S-CES). If the model

satisfies Assumption 3.1 or Assumption 4.1 and consists of separable stage functions, there

exists a constant C > 0, independent of n such that for S = 2 and Q ≍
(

n
logn

) 1
5
we have

that for a compact rectangular set C ⊂ Rd,

∥µ̂n − µ0∥22 ≤ C

(
log n

n

) 4
5

with probability approaching 1. If the model satisfies Assumption 4.1, then the analogous

conclusion holds for S = 3.

As for the d∗-sparse case, this result follows again from the proof of Theorem 6.1, where

Q can be chosen according to the approximation rate in Proposition 5.2. The resulting

approximating network has less than (K + 5)SQ free parameters, so that we obtain the

conclusion by applying that rate to the generic VC bound in Lemma 6.1.

7. Conclusion

This paper explores the use of artificial neural networks to approximate the reduced form

of models of production and discrete decisions. For one we illustrate the expressive capacity

of nested models of optimizing behavior, where in the absence of additional restrictions on
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the number of hidden units, such a model can generate any reduced form within a non-

parametric class satisfying only broad shape constraints. Conversely that approximating

property can be used for estimation, where nested models can be used to approximate an

otherwise unconstrained reduced form. Here our results imply that the reduced form can be

estimated at an asymptotic rate corresponding to the optimal nonparametric rate for esti-

mating regression functions with bounded partial derivatives up to order two. Furthermore,

monotonicity and convexity can be imposed as simple sign restrictions on model parameter.

One important benefit of using an approximating function class that mirrors a structural

model for the data generating process is that additional sparsity or separability restrictions

can be imposed directly on the network architecture, resulting in a faster rate of convergence

for the estimator. This raises the question whether the network architecture can be made

adaptive to the unknown structure of the underlying model, e.g. using L1-penalization of

weights, which will be left for future research.
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Appendix A. Training and Computation

Since some versions of the MLP proposed in this paper contain some states that iterate forward and

others that iterate backwards, the gradient of the objective function cannot be evaluated directly using

the backpropagation algorithm. We discuss an interpretation of the classical backpropagation algorithm

as a recursive computation of the matrix inverse of the Jacobian for the system of fixed point equations

characterizing all hidden and manifest states of the network. We then argue that the same approach continues

to provide an arbitrarily good approximation to the gradient under a stability condition even when the

network graph may contain cycles. This generalization of the the classical backpropagation algorithm was

first proposed by Almeida (1987) and Pineda (1987); Liao, Xiong, Fetaya, Zhang, Yoon, Pitkow, Urtasun,

and Zemel (2018) provided a more recent appraisal. A memory-efficient implementation of deep equilibrium

models using root-finding algorithms was recently proposed by Bai, Kolter, and Koltun (2019).

In order to train the model, we use an algorithm that iterates between three steps:

• given parameters θt, we update the hidden states of the network πt,vt.

• given states πt,vt, we compute the gradient of the loss function with respect to parameters θ,

∇θL(θt).

• We update weights using a learning rule

θt+1 = θt + η∇θL(θt)

given the learning rate η.

To compute the gradient with respect to weights θ, we propose a generalization of the back-propagation

algorithm, which was first proposed for training neural networks by Rumelhart, Hinton, and Williams (1986).

In multi-layer feedforward networks, back-propagation computes the partial derivatives of the training cri-

terion with respect to all neuron weights using the chain rule. In typical implementations of deep networks,

the number of weights is large, and standard numerical differentiation would require re-evaluating the net-

work separately for each weight, whereas back-propagation can compute partial derivatives with respect to

all weights simultaneously via a single pass through the network. Since the hidden units are only updated

recursively, the first approach becomes prohibitively time intensive even for networks of only moderate depth.
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Back-propagation exploits the recursive structure of the network, however it is not directly applicable to

our problem since there are two sets of network states, one that is determined by iterating forward, the other

by backward induction. There are some special cases (e.g. with bidirectional recurrent networks) in which

those two sets of states do not interact and the backward propagation algorithm can be run simultaneously

on two non-overlapping networks in opposing directions. However nested optimization models of the kind

considered in this paper generally exhibit feedback loops where hidden states in multiple layers are determined

simultaneously rather than recursively, and the Jacobian matrix of partial derivatives of activation functions

and hidden states cannot be made triangular.

We argue that feedback cycles are not an unsurmountable obstacle to the application of a back-propagation

algorithm, but rather that an iterative algorithm of this type can be used to approximate the gradient of the

criterion function arbitrarily well after finitely many steps. Specifically, the recursive application of the chain

rule in the classical back-propagation algorithm can be interpreted as the von-Neumann series approximating

a matrix inverse, where in the special case of the Jacobian for a feedforward network, that approximation

becomes exact after S steps.

Specifically, we can represent the network in (2.2) and (2.3) as a system of equations[
π

v

]
=

[
ϕ(π, v;θ)

ψ(π, v;θ)

]

where we stack the states v := (v
(0)
1 , . . . , v

(S)
KS

)′,π := (π
(0)
1 , . . . , π

(S)
KS

) and the mappings

ϕ(π, v;θ) :=
(
π
(0)
1 , . . . , π

(0)
K0
, ϕ

(1)
1

(
π
(0)
1 , . . . , π

(0)
K0

; v
(1)
1 , . . . , v

(1)
K1

)
, . . . , ϕ

(S)
KS

(
π
(S−1)
1 , . . . , π

(S−1)
KS−1

; v
(S)
1 , . . . , v

(S)
KS

))
and

ψ(π, v;θ) :=
(
ψ
(1)
1

(
π
(1)
1 , . . . , π

(1)
K1

; v
(2)
1 , . . . , v

(2)
K2

)
, . . . , ψ

(S−1)
KS−1

(
π
(S−1)
1 , . . . , π

(S−1)
KS−1

; v
(S)
1 , . . . , v

(S)
KS

)
, v

(S)
1 , . . . , v

(S)
KS

)
In the following, we will use the more compact notation

h := υ(h;θ)

where h := (π′,v′)′ and υ := (ϕ′,ψ′)′. For any given value of θ we also denote the solution of this fixed

point condition with h(θ).

In that notation, we can write the Jacobian of the activation mapping with respect to the hidden states

as

Υh := ∇hυ(h;θ) =

(
∂

∂hi
υj(h;θ)

)
ij

By construction dim(υ) = dim(h), so that Υh is a square matrix. The top diagonal block of this matrix

consists of the partial derivatives of ϕ with respect to π which is an upper triangular matrix with all diagonal

elements except for the first equal to zero. Similarly, the bottom diagonal block of Υh is lower triangular.

The bottom left off-diagonal block of Υh consisting of partial derivatives of ϕ with respect to v is strictly

upper diagonal, and the top right off-diagonal block of that matrix is strictly lower diagonal.

We also denote the Jacobian with respect to activation weights and shape parameters with

Υθ := ∇θυ(h;θ) =

(
∂

∂θi
υj(h;θ)

)
ij

which is generally not square but sparse since no component of the parameter vector θ is shared among

multiple elements of the mapping υ(h;θ).
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Since the objective function L(θ) depends on the parameter only through the hidden states h, we can use

the chain rule to obtain the gradient

∇θL(θ) = ∇θh(θ)∇hL

The gradient ∇hL is readily available in closed form, with the objective function only depending on states

in the bottom and top layer. In contrast, the mapping h(θ) is not available in closed form but defined by

the fixed point condition

h− υ(h;θ) = 0

From this fixed-point condition, we can use the implicit function theorem to obtain the derivative

∇θh(θ) = Υθ (I−Υh)
−1

(A.1)

assuming the inverse exists, where all derivatives are evaluated at h(θ),θ.

Since the dimension of h is potentially very large, the main challenge in evaluating this gradient is the

computation of the inverse matrix. We propose to sidestep this difficulty by approximating the gradient

based on the Neumann representation of the inverse via the infinite series

(I−Υh)
−1

=

∞∑
q=0

Υq
h

where the Aq denotes the q-fold product of a square matrix A. If I −Υh is nonsingular, the series on the

right-hand side converges, so that we can approximate its inverse by the finite sum

(I−Υh)
−1

=

Q∑
q=0

Υq
h +RQ (A.2)

for some Q < ∞. If the eigenvalues of (I−Υh) are bounded from below by λ > 0, then the remainder is

bounded by ∥RQ∥2 ≤ λQ/(1− λ) under the spectral matrix norm.

We propose to approximate the inverse according to (A.2) where the q = 2, . . . , Q-fold matrix products

are obtained recursively. This approach also exploits that the matrix Υh is sparse for deep networks, where

only blocks corresponding to inputs and outputs in adjacent layers can be nonzero.

As a special case, for multilayer feedforward neural networks, the matrix Υh is upper triangular, where

we can verify that ΥS+1
h = 0, so that the approximation in (A.2) becomes exact for Q ≥ S. In particular,

for MLP, the backpropagation algorithm by Rumelhart, Hinton, and Williams (1986) can be interpreted

as evaluating the gradient according to (A.1). Specifically, the Neumann series representation to evaluate

the matrix inverse using the formula (I−Υh)
−1

=
∑S

q=0 Υ
q
h simplifies to the iterative application of the

chain rule as under the classical backpropagation algorithm. We can therefore view our approach as a

generalization of the backpropagation algorithm to multilayer neural networks with feedback, showing that

we can control the approximation error from truncating the Neumann series after the first Q summands.

In sum we propose the following algorithm to evaluate the gradient of the objective function:

(1) Obtain and store Υh, then

(2) compute JQ :=
∑Q

q=0 Υ
q
h recursively.

(3) Obtain Υθ and ∇hL, and compute the gradient

∇̂θL = ΥθJQ∇hL

Note that the components Υh, Υθ, and ∇hL are sparse in the sense that out of the 2
∑S

s=1Ks entries

along the dimension corresponding to an element of h at most 2maxsKs can be non-zero. This sparsity
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can significantly reduce the computational cost of evaluating the matrix products in steps 2 and 3 of this

algorithm, especially if the network is deep and narrow.

The resulting vector ∇̂θL is only an approximation to the exact gradient ∇θL unless the matrix product

ΥQ+1
h is equal to zero. This feature is shared with other popular approaches for deep learning models with

feedback, for example variational methods for training deep belief networks or deep Boltzmann machines

(see e.g. Salakhutdinov and Hinton (2009)).

Another issue that is shared with other implementations of MLP is the vanishing gradient problem, i.e.

that gradients with parameters entering deeper layers in the network will be zero (or near zero) even far from

a global optimum. This phenomenon is typically due to near-zero partial derivatives of activation functions

with respect to hidden states in subsequent layers. This is especially he “squashing” activation functions

that are natural in the discrete choice context whose derivatives vanish for arguments distant from the origin.

This property is not shared by nested CES production functions, which may be less vulnerable to the issue.

In the wider literature on deep learning with MLP, the ReLU activation function has become popular for

applications in particular since it largely avoids the vanishing gradient problem, however it is more difficult

to justify its use for generative models of the type considered in this paper.

Appendix B. Discrete Choics with Flexible Marginals

The generalized extreme-value distribution introduced in Section 4 assumes a generating function that is

homogeneous of degree 1 so that the marginal distributions of ε1, . . . , εM are required to be powers of the

extreme-value type I distribution. This model can be made more flexible by allowing for generating functions

F (w1, . . . , wM ) := F̃ (χ1(w1), . . . , χM (wM ))

where F̃ (·) is homogeneous of degree one, and the functions χk : R+ → R+ are continuous and nondecreasing,

but otherwise unrestricted. This extended model can generate an arbitrary continuous marginal distribution

with c.d.f. Fk(ε) by choosing

χm(w) := −

[
∂

∂zm
F̃ (0, . . . , 0, zm, 0, . . . , 0)

∣∣∣∣
zm=χm(wm)

]−1

logGm(− logw)

We propose to approximate the generating function in two steps, where the linearly homogeneous function

F̃ (z1, . . . , zM ) is approximated by the cross-nested model (4.3), and the component-wise functions χm(w)

by a polynomial

χ̂mK(y) :=

K∑
l=1

βmlw
l

By Weierstrass’ theorem, for an appropriate choice of K and the coefficients βml, χ̂mK(w) approximates

χm(w) uniformly on an arbitrarily chosen compact subset of R+. This approximation consists of two nested

layers

χ̂mK(w) := F (2)
m

(
F

(1)
m1(w), . . . , F

(1)
mK(w)

)
where F

(2)
m (w1, . . . , wK) :=

∑K
l=1 β

(2)
mlwl and F

(1)
ml (z) := zl are both special cases of

F (s)
m (w1, . . . , wKs

) :=

Ks+1∑
l=1

(
β
(s)
mlw

τ(s)
m

l

)ϱ(s)
m

 1

ϱ
(s)
m

where τ
(s)
m may be different from one.
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Note that this activation function is homogeneous of degree τ
(s)
m , so that we first need to generalize

results for the nesting functions to nonlinearly homogenous functions. We can first establish the following

generalization of Theorem 1 in McFadden (1978b):

Lemma B.1. Suppose that the assumptions of Theorem 1 in McFadden (1978b) hold, but that the generating

function F (w1, . . . , wM ) is of arbitrary positive degree of homogeneity, F (λw1, . . . , λwM ) = λτF (w1, . . . , wM ).

Then

P
(
max
m

Um = Uk

)
=
eU

∗
k ∂
∂wk

F
(
eU

∗
1 , . . . , eU

∗
M

)
τF
(
eU

∗
1 , . . . , eU

∗
M

)
See the appendix for a proof. Moreover, the conditional choice probabilities resulting from the nested

model with stage-wise generating functions

F
(s)
k (w1, . . . , wKs+1

) =

Ks+1∑
l=1

(
β
(s)
kl w

τ
(s)
k

l

)ϱ
(s)
k

 1

ϱ
(s)
k

can be written in terms of inclusive values determined by the recursion

v
(S)
k := eU

∗
k

v
(s)
k := ψ

(s)
k (v

(s+1)
1 , . . . , v

(s+1)
Ks+1

)

where

ψ
(s)
k (v

(s+1)
1 , . . . , v

(s+1)
Ks+1

) := log


Ks+1∑

l=1

(
β
(s)
kl e

τ
(s)
k v

(s+1)
l

)ϱ(s)
k

1/ϱ
(s)
k

 (B.1)

Applying this recursion to the mapping χ̂k(·) we obtain an approximation

F̂
(
eU

∗
1 , . . . , eU

∗
M

)
= F̃

(
χ̂1(e

U∗
1 ), . . . , χ̂M (eU

∗
M )
)

It is important to notice that the approximating function χ̂m(w) is generally not nonnegative or non-

decreasing at each value of w, so the iteration (4.6) would generally require that arguments be trimmed

at some small positive number. However since the approximand is positive and nondecreasing, this would

not affect the rate of approximation under Proposition 4.1. Furthermore, the bottom layer of this network

generates nests consisting of a single alternative, which will therefore be “selected” with probability one

conditional on reaching that nest. Nevertheless, these intermediate nests are not irrelevant since they alter

the inclusive values that get passed on to the next layer. Again following the representation for nested Logit

in Ben-Akiva and Lerman (1985) and Galichon (2021), this approach can be interpreted as an approximation

of the marginal distributions of taste shocks by a weighted sum of independent draws from an extreme value

distribution.

Appendix C. Proofs

C.1. Proof of Proposition 3.1. We fix the second-stage technology for each output at

F (2)
m (w

(1)
1 , . . . , w

(1)
K1

) :=

K1∑
l=0

β
(2)
mlw

(2)
l

where β
(2)
ml = 1 if (l −m)/M is an integer, and zero otherwise. This production function satisfies (3.1) with

parameter values τ (2) = ϱ(2) = 1 and β
(2)
ml = 1 for all l = 1, . . . ,K1 and m = 1, . . . ,M .
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Next we fix a point (y′
q,w

′
q)

′ on the boundary of Y0 and choose M first-stage technologies

F̃ (1)
qm(w

(0)
1 , . . . w

(0)
K0

) = min
{
β̃qm0, β̃qm1w

(0)
1 , . . . , β̃qmK0

w
(0)
K

}
for m = 1, . . . ,M , where we choose β̃

(1)
qml :=

yqm

wql/M
where yqm denotes the mth component of yq, and

wql denotes the lth component of wq. These technologies transforms equal fractions 1
M of the input into

yq1, . . . , yqM units of the intermediate output.

We can apply this construction to a set of support points (y′
q,w

′
q)

′ with q = 1, . . . , Q. To simplify notation

we change the order of enumeration for the first stage technologies and let

F
(1)
M(q−1)+m(w

(0)
1 , . . . , w

(0)
K0

) := F̃ (1)
qm(w

(0)
1 , . . . , w

(0)
K0

)

where we set β
(1)
(M(q−1)+m)l := β̃

(1)
qml and the number of intermediate goods in the first stage equals K1 =MQ.

By construction the technology set YK1 resulting from this two stage technology includes the points

(y′
q,w

′
q)

′ for each q = 1, . . . , Q. By inspection, we also have 0 ∈ YK1
. The intermediate technologies also

satisfy free disposal by assumption, so that (yq,wq + t) and (0, t) are also in YK1
for any t ≥ 0.

Furthermore, we argue that any convex combination of these points is included in YK1 as well: for the

point
∑Q

q=1 λq(y
′
q,w

′
q)

′ with
∑

q=1 λq ≤ 1, we consider a production plan that employs a quantity λqwq/M

for production with the intermediate technology ϕM(q−1)+m(·), and the resulting output w
(1)
M(q−1)+m for

production of the output ym. Since each first-stage technology ϕ
(1)
M(q−1)+m(·) has constant returns to scale for

inputs w(0) ≤ wq/M , the resulting output is
∑Q

q=1 λqyq so that the convex combination
∑Q

q=1 λq(y
′
q,x

′
q)

′ ∈
YK1 .

Next, consider a point (ỹ′, w̃′)′ such that for any λ1, . . . , λQ ≥ 0 with
∑

q λq ≤ 1, we have
∑

q λqỹq < ỹ

or
∑

q λqx̃q > x̃. Then for any production plan there must be m ≤M and q ≤ Q such that

F
(1)
M(q−1)+m(w

(0)
1q , . . . , w

(0)
K0q

) = min
l

{
yqm
wql/M

w
(0)
lq

}
< ỹm,

so that the point (ỹ′, w̃′)′ is infeasible. Hence YK1
excludes all points outside the convex hull of (y′

q,w
′
q+t)′,

for q = 1, . . . , Q and t ∈ {0,∞}K .

Hence the technology set YK1 forms a polytope with a vertex set consisting of the origin and points

(y′
q,w

′
q + t)′, for q = 1, . . . , Q and t ∈ {0,∞}K . Since Y0 is convex as well, and the choice of points (y′

q,x
′
q),

q = 1, . . . , Q was arbitrary, the approximation can be made arbitrarily close by choosing Q large enough.

The rate of approximation under the Hausdorff metric, dH(Y0,YS
K) given K1 follows directly from the main

theorem for the approximation of a convex body using convex polyhedra in Bronshtein and L. (1975). Since

C is rectangular, we can assume without loss of generality that the vertices of YK1
contain the input/output

combinations corresponding to the 2K vertices of C, so that the projection of YK1 onto its first K components

contains all of C.
Now let the set Y0(x) denote the intersection of a Y0 with the subspace

{
(x,u) : u ∈ RM

}
. Since Y0(x)∩

RM
+ ̸= ∅, µ0(u, 0) ≥ 0 for all u ∈ RM

+ . Furthermore, free disposal implies that Y0(x) ⊂ Y0(x
′) whenever

x ≤ x′, so that µ0(u,x) is nondecreasing in x with respect to the component-wise order. In particular for

compact C ⊂ intRK
+ , the partial derivatives of µ0(u,x) are bounded over x ∈ C, implying that µ0(u,x)

is Lipschitz on C. Therefore dH(Y0,YS
K) < δ implies supx∈C,u∈RM

∣∣µ0(u,x)− µS
K(u,x)

∣∣ < L1δ for some

L1 <∞. Since δ > 0 was arbitrary, this establishes the claim □

C.2. Proof of Proposition 4.1. Fix δ > 0. In light of McFadden (1978b)’s characterization of conditional

choice probabilities (4.1), we will give a constructive proof that a two-layer network with K1 nodes in the
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top layer suffices to approximate the level and first partial derivatives of F0(w1, . . . , wm) up to an error not

exceeding δ > 0.

We first show that the network can approximate the subgraph of F (·) on C: note that Assumption 4.1

implies that F0(w) is convex on RM
+ : Since all second-order cross-partial derivatives ∂2

∂wj∂wk
F0(w1, . . . , wM )

are negative for any j ̸= k, the function is submodular with respect to the component-wise order on RM
+ (see

Topkis (1978)). Since F (·) is furthermore homogeneous of degree 1 on RM
+ , it then follows from Theorem 3

in Marinacci and Montrucchio (2008) that the function is also quasiconvex (a previous version of that result

was previously given as Theorem 54.1 in Choquet (1954)).

Furthermore, any homogeneous function is homothetic, so that it is sufficient to show that we can ap-

proximate the lower contour set of F for one particular non-zero value - without loss of generality, we will

focus on one lower contour set for F0,

LC(λ) :=
{
w ∈ RM : F0(w) ≤ λ

}
for some arbitrarily chosen level λ > 0, where we choose λ = 1. Since F0 is quasi-convex, the set LC(λ) is

convex.

We therefore first show that we can construct a neural network resulting in a linearly homogeneous

function FS
K(w) such that the lower contour set LCS

k (λ) :=
{
w ∈ RM : FS

K(w) ≤ λ
}
approximates LC(λ)

according to

dH(LCS
K(λ), LC(λ)) ≤ δ

where dH(A,B) denotes the Hausdorff distance between sets A and B.
We can verify that the class (4.2) include the functions β1w1 + · · ·+βMwM and max {β1w1, . . . , βMwM},

corresponding to ϱ = 1 and ϱ = +∞, respectively. This allows us to define a four-layer model according to

(4.3), where the top layer s = 3 consists of the K3 = M neurons with activations w
(3)
m = exp {U∗

m}. Layer

s = 2 consists of K2 nodes with generating functions

F
(2)
k := max

{
β
(2)
k1 w1, . . . , β

(2)
kMwM

}
.

Layer s = 1 consists of K1 =
(
K2

M

)
neurons, indexed by all subsets Pk of M out of K1 neurons, where the

kth neuron is identified with the generating function

F
(1)
k :=

K2∑
l=1

β
(1)
kl w

(2)
l

where β
(1)
kl := 1

M 1l{l ∈ Pk}. The bottom (root) layer s = 0 consists of a single node, K0 = 1,

F
(0)
1 := max

{
w

(1)
1 , . . . , w

(1)
K1

}
Note that in this construction, only the weights in layer 2 are varying freely.

The composition of these mappings defines the boundary of a convex polytope withK2 vertices and O(K2)

faces in RM+1. In particular, the maximum in F
(0)
1 (·) is attained only at a subset of O(K2) nodes, layer 1

could be replaced by a layer containing only O(K2) nodes that would be fully determined by the weights in

layer 2. Those O(M) nodes correspond to a tesselation such that no other node is contained in the convex

hull of Pk.

The locations of the vertices are determined by the coefficients in layer 2, which we choose as follows: let

B := maxw∈C max{w1, . . . , wM} and L := ⌈B
δ ⌉, the smallest integer greater than B

δ . We then construct a

grid of K2 := LM−1 points (wl1,1, . . . , wlM−1,M−1) = (l1, . . . , lM−1)δ with l1, . . . , lM−1 ∈ {1, . . . , L}, and we
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also let wl1,...,lM−1,M , := min
{
z : F (wl1,1, . . . , wlM−1,M−1, z) ≥ λ

}
. We then define

wk(l1,...,lM−1) := (wl1,1, . . . , wlM−1,M−1, wl1,...,lM−1,M )

where we index grid points by k(l1, . . . , lM−1) = l1 + l2L + · · · + lM−1L
M−2. We will then use this grid as

support points on the boundary of the lower contour set of F0(w1, . . . , wM ).

Specifically, we choose the parameters in (4.2) for neurons in the first layer so that F
(2)
k (wk,1, . . . , wk,M ) = 1

by setting ϱ
(2)
k = ∞ and

β
(2)
kj :=

1

wk,j

for each k = 1, . . . ,K1. Since F (w1, . . . , wM ) is non-decreasing and linearly homogeneous, F
(2)
k (w1, . . . , wM ) ≤

F (w1, . . . , wM ) for all w1, . . . , wM , so that the lower contour set

LC
(2)
k (λ) := {w ∈ RM : F

(2)
k (w) ≤ λ} ⊂ LC(1).

noting that LC(1) is convex. Similarly, LC
(1)
k (λ) is the convex hull of

⋃
m∈Pk

LC
(2)
lm

(λ) which is also con-

tained in LC(λ) by convexity. Finally, for F
(0)
1 := max{w1, . . . , wK1

}, we have that LC0
1 (1) is the union

of LC
(1)
1 (λ), . . . , LC

(1)
K1

(λ) ⊂ LC(λ). In particular, LC
(0)
1 (1) ⊂ LC(1), so that it remains to be shown that

d(w, LCS
k (1)) ≤ δ for any point in LC(1).

To this end, fix an arbitrary point w̃ = (w̃1, . . . , w̃M ) ∈ LC, where the adjacent grid points for the first

M −1 coordinates are determined according to wlj ,j ≤ w̃j ≤ wlj+1,j . By construction, each of the points wk

is on the boundary of LC(1), so that by monotonicity of F (w), wl1,...,lM−1,M ≤ w̃M . Moreover, monotonicity

of F
(2)
k(l1,...,lM−1)

(w1, . . . , wM ) in each argument also implies that (wl1,1, w̃2, . . . , w̃M ) ∈ LCS
k (1), so that

d(w̃, LCS
k (1)) ≤ |w̃1 − wl1,1| ≤ δ.

so that indeed dH(LC(λ), LCS
k (λ)) ≤ δ as claimed.

Since C is compact and F0(w) is continuous, λ∗ := maxw∈C F (w) < ∞ is well-defined and finite. Fur-

thermore, by linear homogeneity and monotonicity, LC(λ) = λLC(1) and LCS
k (λ) = λLCS

k (1), so that for

every λ ∈ [0, λ∗],

dH(LC(λ), LCS
k (λ)) =

λ

λ∗
dH(LC(λ∗), LCS

k (λ
∗)) ≤ δ

Furthermore, by construction

F 3
K(w) := F

(0)
1

(
F

(1)
1 (F

(2)
1 (w), . . . , F

(2)
K2

(w)), . . . , F
(1)
K1

(F
(2)
1 (w), . . . , F

(2)
K2

(w))
)
≤ F0(w1, . . . , wM ),

so that the maximal Hausdorff distance between the lower contour sets corresponding to levels λ ∈ [0, λ∗] is

an upper bound for the Hausdorff distance between the subgraphs of F 3
K(w1, . . . , wM ) and F (w1, . . . , wM ),

respectively, intersected with C × R. The rate of approximation with regards to the generating function

F0(w1, . . . , wM ) then follows directly from applying the main theorem for the approximation of a convex

body using convex polyhedra in Bronshtein and L. (1975) to the lower contour sets of F0(w).

Next we need to apply a similar argument to bound the approximation error to the first partial deriva-

tives, ∂
∂wm

F0(w1, . . . , wM ), to obtain rates for conditional choice probabilities according to (4.1). Note that

the second part of Assumption 4.1 implies that the first partial derivative is non-negative and a convex

function of w1, . . . , wM . Furthermore, linear homogeneity of the generating function implies homogene-

ity of degree zero of its first partial derivatives, so that without loss of generality it suffices to approximate

frac∂∂wmF (w̃1, . . . , w̃M ) for values ofw in the simplex S :=
{
w ∈ RM

+ :
∑M

k=1 wk = 1
}
. Furthermore, since

42



by assumption the test set C is a compact subset of the interior of the positive orthant and ∂
∂wm

F0(w) ≥ 0

and ∂2

∂w2
m
F0(w) ≤ 0, it follows that

∣∣∣ ∂
∂wm

F0(w)
∣∣∣ ≤ B1 for some B1 <∞.

For the approximating network, note that FS
K(·) is piecewise linear on each of the partition elements of

RM corresponding to the projection of the faces of the polytope approximating LC(λ) onto their first M

coordinates. In particular, the partial derivative ∂
∂wm

FS
K(·) is constant within each set of that partition. By

the mean value theorem, we furthermore have ∂
∂wm

FS
K(w̃1, . . . , w̃M ) = ∂

∂wm
F0(w̃1, . . . , w̃M ) for some value of

(w̃1, . . . , w̃M ) in that set. Finally, by inspection FS
K(·) is also homogeneous of degree 1, so that its directional

partial derivatives are homogenous of degree zero, as for the approximand F0(w).

For an arbitrary choice of δ0 > 0 we can now partition the range of ∂
∂wm

F0(w1, . . . , wM ) into Q = ⌊B1δ
−1
0 ⌋

intervals of the form [λq − δ0, λq] with partition points λ1 = δ0, . . . , λQ = B1. Since ∂
∂wm

F (w1, . . . , wM ) is

a convex function, any lower contour set LCm(λq) :=
{
w ∈ RM : ∂

∂wm
F (w1, . . . , wM ) = λq

}
is a convex set

in RM for each λq. Using again the main theorem in Bronshtein and L. (1975) the intersection of LCm(λq)

with the (M − 1)-dimensional simplex S can be approximated with the intersection of a polytope with

K2m = cm(R,M)δ−M−22
0 vertices with S. We can therefore approximate all Q lower contour sets jointly

over a tesselation with QK2m(λq) = cm(R,M)δ−M2
0 vertices.

Now, for a given value w, ∂
∂wm

FS
K(w) is equal to ∂

∂wm
F0(w̃) for a point w̃ that is part of the same partition

set. Now choose λ, λ̃ ∈ {λ1, . . . , λQ} such that λ̃− δ0 ≤ ∂
∂wm

F0(w̃) ≤ λ̃ and λ− δ0 ≤ ∂
∂wm

F0(w) ≤ λ, where

we assume w.l.o.g. that λ ≤ λ̃. If λ = λ̃, then by choice of λ, λ̃, we have
∣∣∣ ∂
∂wm

F0(w̃)− ∂
∂wm

F0(w)
∣∣∣ ≤ 2δ0.

For the case λ < λ̃, we have by construction that either d(w̃, LCm(λ)) ≤ δ0 or d(w,UCm(
˜˜ − δ0λ)) ≤ δ0

for the upper contour set UCm(
˜˜ − δ0λ) :=

{
w ∈ RM : ∂

∂wm
F0(w) ≥ λ̃− δ0

}
. Since C is compact and third

partial derivatives are monotone by Assumption 4.1, there exists B2 < ∞ such that
∣∣∣ ∂2

∂wm∂wl
F0(w)

∣∣∣ ≤ B2

for every l = 1, . . . ,M and w ∈ C ∩ S. It therefore follows that
∣∣∣ ∂
∂wm

F0(w̃)− ∂
∂wm

F0(w)
∣∣∣ ≤ (B2 + 2)δ0.

Hence choosing δ0 = δ/(B2 + 2) we can approximate ∂
∂wm

F0(w) as a function of w uniformly over C up to

an error no greater than δ.

Taking the union of the K2 := c(R,M)δ−M−12 +
∑M

m=1 cm(R,M)
(

δ
B2+2

)−M2

=: c̄(R,M)δ−
M
2 support

points for approximating the level of F (w) and the partial derivatives ∂
∂wk

F (w), we obtain a network that

is capable of approximating the level and all partial derivatives jointly up to an error no greater than δ.

Since F0(w) is bounded away from zero on C, the mapping of levels and partial derivatives to
wm

∂
∂wm

F0(w)

F0(w) is

Lipschitz continuous with Lipschitz constant L1 <∞, say, so that ∥µS
K(y, x)− µ0(y, x)∥ ≤ L1δ, establishing

the claim □

C.3. Proof of Lemma 4.1. From Theorem 1 in McFadden (1978b),

P

(
max

j
Uj = Uk

)
=
eU

∗
k ∂
∂wk

F
(
eU

∗
1 , . . . , eU

∗
M

)
F
(
eU

∗
1 , . . . , eU

∗
M

) =: π
(S)
k

where the generating function F (·) was defined by the recursion (4.3). The derivative ∂
∂wK

F (·) can then be

obtained via the chain rule

∂

∂wk
F (·) =

KS−1∑
kS−1=1

· · ·
K1∑

k1=1

∂

∂wkS−1

F
(S)
1 · · · · · ∂

∂wk
F

(1)
k1

(C.1)
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and the partial derivatives of (4.2) are

∂

∂wl
F

(s)
k

(
ev

(s−1)
1 , . . . , e

v
(s−1)
Ks−1

)
=

Ks−1∑
m=1

(
β
(s)
kme

v(s−1)
m

)ϱ(s)
k

 1

ϱ
(s)
k

−1 (
β
(s)
kl e

v
(s−1)
l

)ϱ(s)
k

e−v
(s−1)
l

= ev
(s)
k

(
β
(s)
kl e

v
(s−1)
l

)ϱ(s)
k

∑Ks−1

m=1

(
β
(s)
kme

v
(s−1)
m

)ϱ(s)
k

e−v
(s−1)
l

where the second equality follows from (4.6). Furthermore, (4.6) also implies that

F
(
eU

∗
1 , . . . , eU

∗
M

)
= ev

(S)
1

Hence, we can simplify the products

∂

∂wkS−1

F
(S)
1 · · · · · ∂

∂wj
F

(1)
k1

=

(
β
(S)
kSkS−1

e
v
(S−1)
kS−1

)ϱ
(S)
kS

∑KS−1

m=1

(
β
(S)
kSkS−1

ev
(S−1)
m

)ϱ(S)
kS

· . . .

(
β
(1)
k1j
eU

∗
j

)ϱ(1)
k1

∑M
q=1

(
β
(1)
k1q
eU

∗
q

)ϱ(1)
k1

F
(
eU

∗
1 , . . . , eU

∗
M

)
e−U∗

j

Substituting this into (C.1), we obtain

π
(S)
k =

KS−1∑
kS−1=1

· · ·
K1∑

k1=1

S∏
s=1

(
β
(s)
ksks−1

e
v
(s−1)
ks−1

)ϱ
(s)
ks

∑Ks−1

m=1

(
β
(s)
ksks−1

ev
(s−1)
m

)ϱ(s)
ks

Note that the same expression can be obtained alternatively via the recursion (4.7) with the mapping (4.8)

given the inclusive values, establishing the claim □

C.4. Proof of Lemma B.1. Notice that most parts of the original proof do not require homogeneity of

degree 1 and therefore continue to go through. Rather we only need to update the calculation for Pi on p.11.

Noting that the partial derivative of a function that is homogeneous of degree τ is homogeneous of degree

τ − 1, we have for k = 1

P

(
max

j
Uj = U1

)
=

∫ ∞

−∞

∂

∂ε1
G(ε, U∗

1 − U∗
2 + ε, . . . , U∗

1 − U∗
M + ε)dε

=

∫ ∞

−∞
e−ε ∂

∂w1
F
(
e−ε, e−ε−U∗

1 +U∗
2 , . . . , e−ε−U∗

1 +U∗
M

)
exp

{
−F

(
e−ε, e−ε−U∗

1 +U∗
2 , . . . , e−ε−U∗

1 +U∗
M

)}
dε

=

∫ ∞

−∞
e−τε−(τ−1)U∗

1
∂

∂w1
F
(
eU

∗
1 , . . . , eU

∗
M

)
exp

{
−e−τ(ε+U∗

1 )F
(
eU

∗
1 , . . . , eU

∗
M

)}
dε

=
eU

∗
1 ∂
∂w1

F
(
eU

∗
1 , . . . , eU

∗
M

)
τF
(
eU

∗
1 , . . . , eU

∗
M

)
evaluating the integral using the change of variables t = e−τ(ε+U∗

1 ). The calculation for k ̸= 1 is completely

analogous so that the conclusion follows as claimed □

Proof of Proposition 5.1. Fix δ > 0. By assumption the functions F
(s)
k (w(s)) satisfy the conditions for

the target function in Proposition 4.1, and the approximating two-layer perceptron as a function of the

d∗ non-trivial inputs can be replicated by the top two layers of the network (SP-CES). Hence it follows
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from Proposition 4.1 that each F
(s)
k (w(s)) can be approximated at an error not exceeding δ by including

Q
(s)
k = c1(R, d

∗)δ−
d∗
2 neurons in the middle layer. Since the stage functions are uniformly Lipschitz and S

is finite, it follows that Q
(s)
k can be chosen to be equal to a common value Q of the same order in δ, but with

a constant c(R,S, d∗) <∞ depending on c1(R, d
∗), S, and the common Lipschitz constant □

Proof of Proposition 5.2. Fix δ > 0. By assumption the functions g
(s)
kl (w

(s−1)
l ) and f

(s)
k (z) satisfy the

conditions for the target function in Proposition 3.1 with K = 1, and the respective approximating two-layer

perceptrons can be replicated by the second and fourth layers of the network (4L-CES). Hence it follows

from Proposition 3.1 that each F
(s)
k (w(s)) can be approximated at an error not exceeding δ by including

Q
(s)
k = c1(R)δ

− 1
2 neurons in the middle layer. Since the stage functions are uniformly Lipschitz and S and

d are finite, it follows that Q
(s)
k can be chosen to be equal to a common value Q of the same order in δ, but

with a constant c(R,S,K) <∞ depending on c1(R), S, and the common Lipschitz constant □

Proof of Lemma 6.1. We first show that the stage technologies W(s) are convex under the sign restrictions

for β
(s)
k and ϱ

(s)
k . For the start of induction, W(0) = RK which is convex. For the inductive step, suppose

that W(s−1)
k is convex and consider two distinct points w1,w2 ∈ W(s).

By construction only factors w
(s−1)
1 , . . . , w

(s−1)
Ks−1

produced in the (s− 1)th layer serve as inputs in the sth

layer, so that without loss of generality we can restrict our attention to the components (w
(s−1)
1 ,w

(s)
1 ) and

(w
(s−1)
2 ,w

(s)
2 ) corresponding to intermediate goods produced in the (s− 1)th and sth layer. Without loss of

generality we assume that both points are on the boundary of W(s), so that neither w1 ≥ w2 nor w1 ≤ w2.

By the inductive hypothesis, the components of λw1 + (1 − λ)w2 are in W(s−1) for an arbitrary value

of λ ∈ [0, 1]. We can therefore verify whether λw1 + (1 − λ)w2 ∈ W(s) by checking whether starting at

w1 there exists a feasible production plan to transform the vector λ(w
(s−1)
2 − w

(s−1)
1 ) into the vector of

quantities λ(w
(s)
2 −w

(s)
1 ) for the intermediate goods at stage s. For λ ∈ {0, 1} this is obviously true since

by assumption w1 ∈ W(s) and w2 ∈ W(s).

By inspection, the production function for each intermediate good k in layer s is concave in its input,

where only factors w
(s−1)
1 , . . . , w

(s−1)
Ks−1

produced in the (s − 1)th layer serve as inputs, so that the convex

combination of the input combinations to achieve w
(s)
1 and w

(s)
2 achieves a vector of output quantities at

stage s greater than λw1+(1−λ)w2 so that indeed λw1+(1−λ)w2 ∈ W(s) for any λ ∈ [0, 1]. Hence, W(s)

is convex for each s, so that the intersection W0 of W(S) with any linear subspace is also convex.

We next establish the bound on the VC dimension of H for the case in which ϱ
(s)
k > −∞ for all neurons. In

that case, notice that the boundary of W0 is infinitely differentiable for each s = 0, . . . , S, so that τSK,L(w̃; θ)

is also infinitely differentiable by the chain rule. By convexity of W0,K we have that all lower contour sets

of τSK(w̃; θ) are fully connected, so that Theorem 2 in Karpinski and Macintyre (1997) applies with B = 1,

establishing the conclusion for the case in which ϱ
(s)
k > −∞ for each neuron.

It therefore remains to be shown that the same bound applies when there may be some neurons such that

ϱ
(s)
k = −∞. To this end, consider any finite set of Q points a1, . . . , aQ that is shattered by the set of MLPs

H allowing for unbounded values of ϱ
(s)
k . Since Q is finite, we can separate the points by a distance δ > 0,

i.e. d(ap, aq) ≥ δ for all p ̸= q. By continuity of neurons in each layer there must exist configurations of

the MLPs with ϱ
(s)
k ≥ ϱ > −∞ which also shatters that set. However that restricted family of MLPs again

satisfies the assumptions of Theorem 2 in Karpinski and Macintyre (1997), so that Q must satisfy the same

finite bound given in that result. In particular, H cannot shatter any infinite sets. Since that upper bound

VC dimension for networks does not depend on a lower bound for ϱ
(s)
k , we also obtain the conclusion of the

Lemma for networks when ϱ
(s)
k = −∞ for some neurons □
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Proof of Theorem 6.1. Reviewing the proof of Theorem 1 in Farrell, Liang, and Misra (2019), we first

notice that their argument does not depend on the network being a feedforward MLP with ReLU activation

functions except for the use of their Lemmas 6 and 7 which give a bound on the statistical complexity and

the approximation error for the ReLU implementation of the network. In order to establish our claim, it

therefore suffices to replace their Lemma 6 with Lemma 6.1 in our paper, and Propositions 3.1 and 4.1,

respectively, take the place of Lemma 7 in Farrell, Liang, and Misra (2019) (which in turn corresponds to

Theorem 1 in Yarotsky (2017)). When applying either result, note that under Assumption 6.1, the support

of z is contained in a compact subset C of the interior of the positive orthant. The convergence rate is

then obtained by substituting in the rates from these results into (A.17) in Farrell, Liang, and Misra (2019),

establishing the conclusion of the theorem □
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