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Abstract

We develop new robust discrete choice tools to learn about the average willingness to pay and

average cost of a school voucher in a program that randomly allocates vouchers. We consider a

nonparametric, nonseparable choice model that places no restrictions on the functional form of

utilities or the distribution of unobserved heterogeneity. We exploit the insight that the welfare

parameters in this model can be expressed as functions of the demand for the different schools.

However, while the random allocation of the voucher reveals the value of demand at two prices,

the parameters generally depend on its values beyond these prices. We show how to sharply

characterize what we can learn when demand is specified to be entirely nonparametric or to be

parameterized in a flexible manner, both of which imply that the parameters are not necessarily

point identified. We use our tools to analyze the welfare effects of voucher provision in the DC

Opportunity Scholarship Program, a school voucher program in Washington, DC. We find that

the provision of both the status-quo voucher and a wide range of counterfactual vouchers of

different amounts have positive benefits net of costs. In comparison, traditional logit models

produce estimates towards the lower end of our bounds, and hence may understate the benefits.

We also find that the positive results can be explained by the popularity of low-tuition schools

in the program; removing them from the program can result in a negative net benefit.

KEYWORDS: Discrete choice analysis, welfare analysis, demand analysis, nonparametrics, partial

identification, school vouchers, Opportunity Scholarship Program.

JEL classification codes: C14, C25, D12, D61, I21.
∗We thank Ivan Canay, Isis Durrmeyer, Thierry Magnac, Adam Rosen, Max Tabord-Meehan, Alex Torgovitsky,

and participants at several seminars and conferences for useful comments and discussions. Vishal Kamat gratefully

acknowledges funding from ANR under grant ANR-17-EURE-0010 (Investissements d’Avenir program). First version:

arXiv:2002.00103 dated January 31, 2020.

ar
X

iv
:2

00
2.

00
10

3v
3 

 [
ec

on
.G

N
] 

 1
4 

Ju
n 

20
21



1 Introduction

School vouchers are a topic of active policy debate across several countries. In their basic form, they

are government-funded certificates of a certain amount that students can use to offset tuition at an

eligible private school of their choice. By reducing the price of private schools and making them

more affordable, advocates argue that vouchers foster school choice and make recipients better off

(Friedman, 1962).

To empirically investigate this claim, a number of studies have estimated the effects of vouchers

on various outcomes using data from programs that randomly allocate vouchers (e.g., Abdulka-

diroğlu et al., 2018; Angrist et al., 2002; Dynarski et al., 2018; Howell et al., 2000; Krueger and

Zhu, 2004; Mayer et al., 2002; Mills and Wolf, 2017; Muralidharan and Sundararaman, 2015; Wolf

et al., 2010). However, as surveyed in Epple et al. (2017), the evidence from these studies is mixed.

Some find positive effects, while others find null or even negative effects. Nonetheless, despite

this mixed evidence on the effects on outcomes, the data in each of these studies indicate that a

non-trivial proportion of recipients choose to use the voucher. By revealed preference arguments,

this suggests that recipients in general value vouchers and, in turn, that vouchers may be welfare-

enhancing. Yet, little empirical work has attempted to quantify these welfare benefits and analyze

whether they can justify the costs of providing vouchers.

In this paper, we develop new discrete choice tools to quantify the welfare effects of school

vouchers, and use them to study a voucher program in Washington, DC. We make two main

contributions: a methodological and an empirical one.

Methodologically, we show how to robustly learn about the average welfare benefit to recipients

and cost to the government of a voucher in programs that randomly allocate vouchers. We measure

benefits by the willingness to pay for the voucher, a natural welfare money metric that relates to

the compensating variation of the decrease in school prices induced by the voucher. We show how

to characterize what we can learn about these quantities when the choice model remains entirely

nonparametric as well as under flexible parameterizations of demand. As we discuss below, these

tools and the theoretical arguments behind them are novel and of independent interest in discrete

choice analysis beyond the voucher setup we consider in this paper.

Empirically, we use our tools to analyze the welfare effects of voucher provision in the DC

Opportunity Scholarship Program (OSP). Our estimates reveal that both the status-quo voucher

and a wide range of counterfactual vouchers of different amounts would have positive benefits net

of costs, and that these positive results can be explained by the popularity of low-tuition schools

in the program.

Our methodological analysis is motivated by a natural concern one may have with using tradi-

tional parametric discrete choice approaches (e.g., Berry et al., 1995; McFadden, 1974; Train, 2009)
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to learn about our quantities of interest. These approaches are based on fully-parameterized models

chosen to guarantee point identification. The parameterizations include known functional forms

on the utilities and distributions such as the logistic or normal on the unobserved heterogeneity.

However, these parameterizations might be restrictive, and produce results driven by them. Our

analysis therefore aims to alternatively learn about our quantities in an entirely nonparametric

model, or when the parameterization is allowed to be flexibly chosen.

We begin our analysis by considering a nonparametric, nonseparable model of school choice

that imposes no restrictions on the functional form of utilities or on the distribution of unobserved

heterogeneity. The sole noteworthy assumption we make is that the voucher affects choices only

through decreasing prices of eligible private schools. As we argue in Section 2.2, an implication of

this assumption is that our analysis in general can be interpreted as a partial equilibrium one and,

in turn, that our analysis can more concretely be viewed as evaluating the welfare effects of policies

that marginally change voucher provision.

We then exploit the insight from Bhattacharya (2015, 2018) that in our model, the welfare

parameters can be expressed as functions of the demand for the different schools. Given the

random allocation of vouchers, the data on choices of recipients and non-recipients reveal the value

of demand at two prices, namely the prices with and without the application of the status-quo

voucher. The identification problem, however, is that the parameters of interest generally depend

on demand values beyond these two prices.

The tools we develop sharply characterize what we can learn about these parameters under a

given specification of demand. Our baseline specification is completely nonparametric and takes

the demand for each school to be only decreasing with its own price and increasing with the prices

of other schools. We also consider auxiliary specifications that additionally allow demand to be

generally parameterized through a flexible functional form restriction on how it varies with prices.

For both specifications, we develop tractable computational procedures that characterize what we

can learn about our parameters.

An important novelty of our procedures is that they account for the complication that under

both specifications there may not exist a single point identified demand but multiple demand func-

tions consistent with the data. Indeed, this is generally the case unless one focuses attention solely

on arguably restrictive parametric specifications of demand. Our procedures formally show how to

exploit the geometry of our parameters and demand specifications so that we can computationally

search through the space of admissible demand functions and generate the set of all parameter

values consistent with them in the general case, while continuing to generate the unique parameter

value in the restrictive case. In the case of the nonparametric specification, our procedure involves

an additional technical novelty that entails showing how the nonparametric space of admissible de-

mands can without loss of information be reduced to a parametric space. This importantly ensures

that the computational problems are finite dimensional and tractable.

2



Empirically applying the developed tools to the OSP, our estimates reveal that the provision

of the $7,500 status-quo voucher as well as a wide range of counterfactual vouchers of different

amounts have positive welfare benefits net of the costs the government faces to provide them. This

conclusion is robust to several choices of flexible parametric demand specifications and continues to

hold even under the nonparametric specification. For example, under our most flexible parametric

specification, we find that the average benefit net of costs is bounded between $645 and $2,887,

whereas, under the nonparametric specification, it is bounded between $213 and $5,088.

For comparison, we also estimate our parameters using traditional discrete choice tools based

on various fully-parameterized logit specifications of our model. We find that the parameterizations

in these specifications can play an important role in the conclusions one reaches. In particular, the

various specifications all produce estimates of welfare benefits that are towards the lower bounds

of our nonparametric specification and even below those of some of our parametric specifications.

This suggests that the logit specifications potentially understate the response to price changes, a

feature of logit documented in several other empirical settings (e.g., Compiani, 2019; Ho and Pakes,

2014; Tebaldi et al., 2019). As a result, we find that they may substantially understate the benefits

of voucher provision in comparison to our estimates.

Our analysis also reveals which features of the program might be driving the positive welfare

effects. A closer inspection of the data reveals a high number of popular, low-tuition schools in

the program. These schools potentially induce a high welfare benefit for recipients relative to

the net costs the government faces to fund a voucher when redeemed at them. Indeed, a key

rationale for school vouchers cited by Friedman (1962) is that they may subsidize private schools

that provide services individuals value more efficiently than government-funded schools. To measure

the importance of these low-tuition schools in the OSP, we estimate how the welfare effects of the

program would change if these schools were removed from the program. Our estimates reveal the

presence of such schools plays an essential role in explaining our positive findings: absent schools

with tuition of at most $3,500, the program can result in a negative net benefit.

Our analysis contributes to several literatures. Methodologically, we contribute to the growing

literature on identification in nonparametric discrete choice models. Similarly to our analysis,

this literature is motivated by the concern that results based on the traditional approach of using

fully-parameterized models may be driven by specific choices of parameterizations. One approach

pursued in this literature is to argue point identification, which is often based on requiring large

amounts of exogenous variation in the data (e.g., Berry and Haile, 2009, 2014; Briesch et al., 2010;

Chiappori and Komunjer, 2009; Matzkin, 1993). In our empirical setting, however, the random

allocation of the voucher induces only binary exogenous variation in prices. We therefore develop

tools that allow us to more generally partially identify various welfare effects of price changes under

binary variation in prices.

Several papers have similarly developed tools to nonparametrically evaluate alternative dis-
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crete choice questions—such as estimating the effect of different prices and choice sets on demand,

characterizing the underlying utility functions, and testing the premise of utility maximization—in

setups that permit partial identification (e.g., Chesher et al., 2013; Kamat, 2019; Kitamura and

Stoye, 2018; Manski, 2007; Tebaldi et al., 2019). As in our analysis, a key theoretical challenge in

these papers is how to develop a sharp and tractable characterization of what we can learn about

the question of interest given the nonparametric nature of the model. The tools we develop and the

theoretical arguments to justify them, however, are novel and distinct from those in these papers,

which rely on specific features of their respective setups and do not straightforwardly apply to our

setting.

In order to develop our results, we build on recent arguments from the literature on nonpara-

metric welfare analysis. In particular, Bhattacharya (2015, 2018) show that various welfare effects

of price changes can be nonparametrically expressed as known functions of each good’s demand.

If demand is point identified, then one can indeed directly apply these results. The basis of our

identification analysis is to show how to identify various such welfare effects even when demand is

not necessarily point identified. Recently, Bhattacharya (2019) also derives analytic nonparametric

bounds for welfare effects in such cases with two goods where one of them is a numeraire good.

These results however do not straightforwardly extend to the case with multiple goods and prices

present in our setup. We show how the geometry of the known functions characterizing the welfare

effects along with that of our nonparametric demand specification can be exploited to develop a

computational procedure that delivers bounds. In addition, we also show how flexible paramet-

ric specifications can be incorporated into the analysis. In this direction, we exploit ideas from

Mogstad et al. (2018), who show how parametric restrictions can be incorporated in the alternative

setting of a treatment effect model.

From an empirical standpoint, we contribute to the literature on the evaluation of school voucher

programs. As highlighted above, most papers in this area estimate the effects of vouchers on

outcomes. However, these estimates do not address the welfare implications of these programs.

We complement these papers by providing welfare estimates of a specific program, and developing

general tools that can be used to analyze programs beyond the one we study.

A smaller group of papers uses choice models to study various voucher-related school choice

questions of interest (e.g., Allende, 2019; Arcidiacono et al., 2016; Carneiro et al., 2019; Gazmuri,

2019; Neilson, 2013). As we highlight in Section 2.2, these papers analyze questions that generally

go beyond the scope of our analysis, which can be interpreted as asking how much individuals

value a voucher in a partial equilibrium setup. However, they do so using fully-parameterized,

point identified models of choice. Our analysis can therefore be viewed as complementary as we

analyze a narrower, yet relevant question, but do so using arguably more robust, credible tools.

Indeed, our empirical results reveal that welfare estimates based on fully parameterized versions of

our model can be potentially misleading in comparison to those our tools provide.

4



We organize our analysis as follows. Section 2 describes our model of school choice and demand

specifications. Section 3 defines our parameters measuring the welfare effects of voucher provision.

Section 4 presents our identification analysis. Section 5 presents our empirical results. Section 6

concludes and discusses directions for future research. Proofs and additional details are presented

in the Supplementary Appendix.

2 Model and Demand Functions

2.1 Model of School Choice

Suppose the set of schools where individuals can enroll can be partitioned into government-funded

schools, and private schools that do and do not participate in the voucher program. Let Jg denote

the set of government-funded schools, Jn denote the set of private schools not participating in the

voucher program, and Jv denote the set of private schools participating in the voucher program.

The status-quo voucher program provides an amount of at most τsq ∈ R+ to cover the price (the

tuition) for any school in Jv. For the jth school in Jv, let p∗j ∈ R+ denote its original price before

applying the voucher and let pj(τ) denote its price after applying a voucher of amount τ ∈ R+,

where these two prices are related by the relationship pj(τ) = max{0, p∗j − τ}. Under this notation,

the original price and that under the status-quo amount for the jth school in Jv are given by pj(0)

and pj(τsq), respectively. For notational convenience, we use Js = Jg ∪ Jn ∪ Jv to denote the set

of all schools. In addition, we take Jv = {1, . . . , J}, where the schools in this list are ordered in

terms of their original prices, i.e. p∗1 ≤ . . . ≤ p∗J , and we take p(τ) = (p1(τ), . . . , pJ(τ)) to denote

the vector of prices for these schools under a voucher of amount τ .

Each individual i in the population is associated with observables Zi and Di, which respectively

denote an indicator for whether the individual received a voucher and the school in Js where the

individual enrolled. We assume that the observed enrollment choice is the product of an underlying

individual-level utility maximization decision. To this end, let Yij denote the individual’s underlying

disposable income under the jth school in Jg or Jn, and let Uij(Yij) denote the corresponding

indirect utility under that school. For schools in Jv, we can define similar quantities but we need

to explicitly account for the role their prices play as they are altered by the receipt of the voucher.

Specifically, let Yij − pj denote the individual’s underlying disposable income under the jth school

in Jv had the price of that school been set to pj , and let Uij(Yij − pj) denote the corresponding

indirect utility under that school given that price. Note that the indirect utilities here can be

interpreted as the ex-ante utility of enrolling in that school. Moreover, they can be interpreted as

the indirect utility of enrolling in that school net of whether the individual can be admitted there,

i.e. it corresponds to −∞ if the individual cannot be admitted to that school.

Using these quantities, we can define the individual’s utility maximizing choice had the prices

5



of the schools in Jv been set to the vector p = (p1, . . . , pJ) by

Di(p) =





arg max
j∈Jg∪Jn

Uij(Yij) if max
j∈Jg∪Jn

Uij(Yij) > max
j∈Jv

Uij(Yij − pj) ,

arg max
j∈Jv

Uij(Yij − pj) if max
j∈Jg∪Jn

Uij(Yij) ≤ max
j∈Jv

Uij(Yij − pj) .

The observed enrollment choice is then assumed to be related to the underlying utility maximizing

choices and voucher receipt by the relationship

Di = Di (p(τsq)) · Zi +Di (p(0)) · (1− Zi) . (1)

2.2 Model Discussion

We highlight three features of our model. First, it is entirely nonparametric and imposes no

restrictions on the functional form of utilities or on the distribution of unobserved heterogeneity.

This is in contrast to the standard approach in discrete choice analysis that fully parameterizes

the choice model, with parameterizations chosen such that the model can be point identified. For

example, following the practitioner’s guide in Nevo (2000), a common parameterization of our setup

corresponds to taking

Uij(Yij − pj) = γ1i − γ2ipj + x′jγ3i + ξj + εij for j ∈ Jv , (2)

Uij(Yij) = γ1i + x′jγ3i + ξj + εij for j ∈ Jg ∪ Jn , (3)

where xj and ξj denote observed and unobserved school level covariates, respectively, γi =

(γ1j , γ2j , γ
′
3j)
′ denotes individual level coefficients assumed to be linear in observed individual level

covariates Xi and, potentially, a normally distributed stochastic term, and εij denotes idiosyncratic

shocks assumed to have either a Type I extreme value or normal distribution—see Appendix S.4.3

for further details. In comparison to our model, observe that such a model makes a combination

of assumptions including specific functional forms on how the utilities vary with individual and

school level observed and unobserved covariates, and distributional assumptions on the unobserved

heterogeneity across individuals and schools.

Second, we suppose there exists only binary variation in prices, namely the original school

prices and these prices under the status-quo voucher. Along with the nonparametric nature of our

model, this feature has an important consequence for our subsequent analysis. In particular, it

precludes a common approach to identification pursued in nonparametric choice models, which is

based on arguing point identification of the parameters of interest by supposing there exists large

amounts of variation in the data—see Section 1 for references. The discrete variation, in contrast,

will generally imply that our welfare parameters can only be partially identified. A key challenge

of our analysis is to show how to characterize what we can learn about the parameters in this case.

Our identification analysis in Section 4 captures this point more precisely.
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Finally, it is useful to note how we model the variation in prices and its implications on the

interpretation of our analysis. We take the voucher to affect utilities only through decreasing school

prices and in turn increasing disposable income. A natural implication of this is that our analysis

does not capture effects of channels, beyond the change in disposable income, through which the

voucher program may affect individual choices. Examples of such channels noted previously in the

literature primarily correspond to various general equilibrium type effects such as changes in the

set of schools to where an individual can be admitted due to sufficiently large changes in individual

application and school admission behavior, and changes in the utilities under different schools due

to changes in school incentives to invest in quality (Allende, 2019; Neilson, 2013) or changes in peer

composition (Allende, 2019; Gazmuri, 2019). Indeed, capturing such channels requires a richer

model that explicitly introduces them in the structure of the model.

As we do not explicitly model these various general equilibrium channels, our resulting analysis

should be viewed as taking them as fixed. To this end, our analysis can more appropriately be

viewed as a short term partial equilibrium one that takes various general equilibrium channels as

fixed. More concretely, it can be viewed as analyzing the welfare effects of a marginal policy that

provides a voucher to an additional student who applied to the program but was not admitted.1 As

we highlight in Section 6, extending our analysis to capture general equilibrium effects of vouchers

is an interesting direction for future work.

2.3 Average Demand Functions

Our analysis is based on the demand functions for the different schools in the sense that we use

them to state our assumptions and define our parameters of interest. These functions correspond to

the distribution of enrollment choices across individuals for the different schools at each potential

price vector. More formally, let P =
J∏
j=1

[0, pj(0)] ⊂ RJ
+ denote the domain of price vectors for the

schools in Jv over which we define these functions. Then, for a given p ∈ P, let

qj(p) = Prob{Di(p) = j} ,
qg(p) = Prob{Di(p) ∈ Jg} ,
qn(p) = Prob{Di(p) ∈ Jn}

respectively define the demand for the jth school in Jv, for any school in Jg and for any school

in Jn. Analogously, let qj(p|z) for j ∈ Jv, qn(p|z) and qg(p|z) respectively define these demand

functions conditional on the receipt of the voucher Z = z ∈ {0, 1}. Note we only define demand

for any school in Jg and Jn, and not for each specific school in these sets of schools. As we will

1It is useful, however, to highlight that such equilibrium channels may potentially be less relevant for many small

voucher programs such as the OSP. Nonetheless, they can become relevant here if one is interested in understanding

the effects of scaling up such programs.
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observe, this is because defining demand over this more parsimonious grouping is sufficient for the

definition of our welfare parameters. For notational convenience, let J = {g, n} ∪ Jv denote the

set of indices over which the demand functions are defined.

In the following assumption, we state the restrictions we impose on the demand functions under

our baseline specification. In particular, note that this specification is entirely nonparametric.

Assumption B. (Baseline)

(i) For each j ∈ J , qj(p|z) = qj(p) for all p ∈ P and z ∈ {0, 1}.

(ii) For each j ∈ J , qj is weakly increasing in pm for each m ∈ Jv such that m 6= j.

Assumption B(i) states that the demand functions are invariant to the receipt of the voucher. It

follows from this assumption that the underlying demand functions can be uniquely captured by

the vector q ≡ (qg, qn, q1, . . . , qJ) of unconditional demand functions. As a result, in the remainder

of our analysis, we focus solely on the unconditional demand; whenever we refer to demand, it

is understood we are referring to the unconditional demand. Assumption B(ii) imposes shape

restrictions on how demand behaves with the prices of the private schools in the voucher program.

In particular, it imposes that for each p, p′ ∈ P such that pj > p′j for j ∈ J ′ ⊆ Jv and pj = p′j for

j ∈ Jv \ J ′, we have that

qj(p) ≥ qj(p′) (4)

for each j ∈ J \ J ′. Since by definition we have that

qj(p) = 1−
∑

m∈J\{j}
qm(p)

for each j ∈ Jv, note that it directly follows from Assumption B(ii) that qj is weakly decreasing

in pj for j ∈ Jv, i.e. the standard shape restriction from demand theory that states demand for

each good is weakly decreasing with respect to its own price. Moreover, note that Assumption

B(ii) corresponds to a version of the weak substitutes assumption from Berry et al. (2013). While

Assumption B imposes restrictions directly on the demand functions, note that these restrictions

follow from assumptions on the underlying variables of the model. For example, Assumption B(i)

follows from assuming the voucher is randomly allocated, i.e. Zi is statistically independent of the

remaining underlying variables of the model. On the other hand, Assumption B(ii) follows from

assuming Uij is weakly increasing for each j ∈ Js.

As we noted above, a standard approach in the literature on discrete choice analysis is to

consider model parameterizations such as those in (2)-(3). Indeed, these parameterizations imply

parametric functional form restrictions on the demand functions. Moreover, as they are chosen such

that the model is point identified, they also mean that these implied functional forms are point

8



identified. In our analysis, we also consider auxiliary specifications that directly impose parametric

restrictions on the demand functions in addition to those in Assumption B, but we do not restrict

attention to only those that ensure point identification. In the following assumption, we state the

general class of flexible parametric specifications we consider.

Assumption A. (Auxiliary) For each j ∈ J ,

qj(p) =

Kj∑

k=0

αjk · bjk(p) (5)

for some {αjk : 0 ≤ k ≤ Kj}, where {bjk : 0 ≤ k ≤ Kj} denote some known functions.

Assumption A states that the demand functions are linear functions of some known functions of

prices, where the variable α ≡
(
α′g, α

′
n, α

′
1, . . . , α

′
J

)′
, with αj =

(
αj1, . . . , αjKj

)′
for each j ∈ J ,

parameterizes the demand functions. As we further discuss in Section 4.3, this assumption allows

for several types of parametric specifications. For example, it allows for those that result in point

identification of the demand functions such as

qj(p)− qg(p) = αj0 + αj1 · pj for j ∈ Jv , (6)

qn(p)− qg(p) = αn , (7)

for some {αjk : j ∈ Jv, 0 ≤ k ≤ 1} and αn, i.e. the difference in demand for a given school in Jv
and any school in Jg is a linear functions of that school’s own price and the difference in demand

for any school in Jn and any school in Jg is constant—see Appendix S.2.1 for details on how this

specification imposes restrictions similar to a logit specification and, like the logit, achieves point

identification. However, Assumption A also allows for more flexible specifications where demand

for each school is a polynomial function of own prices as well as prices of all schools, which do not

imply point identification.

3 Welfare Effects of Voucher Provision

In the context of our model, the provision of a voucher can make individuals better off by increasing

their disposable income when enrolled in schools in the voucher program. In this section, we define

the main parameter of interest of our analysis that aims to quantify these potential welfare benefits.

We define this parameter for a generic voucher amount τ ∈ R+. As mentioned below, this generality,

by choosing different values of τ , allows us to analyze the welfare effects of the status-quo voucher

amount as well as alternative counterfactual voucher amounts.

To quantify the benefit for each individual i, we use a money metric for the welfare gains from

the receipt of the voucher. Specifically, we use the amount of money that the individual would pay
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to receive the voucher or, equivalently, the negative of the compensating variation of the reduction

in prices induced by the voucher. Formally, the individual’s willingness to pay for a voucher of

amount τ is defined by the variable Bi(τ) that solves

max

{
max

j∈Jg∪Jn
Uij(Yij), max

j∈Jv
Uij (Yij − pj(0))

}

= (8)

max

{
max

j∈Jg∪Jn
Uij(Yij −Bi(τ)), max

j∈Jv
Uij (Yij − pj(τ)−Bi(τ))

}
,

i.e. the amount of money to be subtracted from the individual’s income under the receipt of the

voucher so that they obtain the same utility as in the absence of the voucher. We then quantify

the average benefit of a voucher that provides an amount τ by

AB(τ) = E[Bi(τ)] , (9)

i.e. the average willingness to pay across individuals to receive that voucher.

As mentioned, our analysis is based on the fact that our parameters of interest can be written

as functions of the demand functions introduced in the previous section. In order to show this for

the average benefit parameter defined above, we exploit results from Bhattacharya (2015, 2018),

who showed that the average value of a variable such as that defined in (8) can be written as a

closed form expression of the demand functions. In the following proposition, we formally state

this result in terms of our setup and notation. In the statement of this proposition, we use j(τ) to

denote the jth school in Jv such that pj(τ)(0) < τ and pj(τ)+1(0) ≥ τ , i.e. the last school in Jv
for which the voucher amount τ is strictly greater than the tuition amount. In addition, we take

{al(τ) : 0 ≤ l ≤ J} to be a set of values such that a0(τ) = 0, al(τ) = pl(0) for 1 ≤ l ≤ j(τ) and

al(τ) = τ for l > j(τ).

Proposition 3.1. For each individual i, suppose Uij is continuous and strictly increasing for each

j ∈ Js. Then we have that Bi(τ) defined in (8) exists and is unique, and that

E[Bi(τ)] =

j(τ)∑

l=0

al+1(τ)∫

al(τ)




J∑

j=l+1

qj (p1(0), . . . , pl(0), pl+1(τ) + a, . . . , pJ(τ) + a)


 da . (10)

While voucher provision is beneficial for individuals, it can be costly to the government financing

the voucher. To benchmark the benefits and perform a cost-benefit analysis, we also consider

parameters that measure these potential costs. To this end, observe that the provision of a voucher

introduces costs to the government when individuals enroll in a school in the program, but can

also bring about savings depending on the costs the government faces at schools where individuals

enroll in the absence of the voucher. To formally capture these net costs, let cj(τ) denote the cost
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that the government associates with the jth demand function in J under a voucher of amount τ .

For example, in our baseline empirical analysis, we take

cj(τ) =





cg for j = g ,

0 for j = n ,

min{pj(0), τ}+ γ · 1{τ > 0} for j ∈ Jv ,

i.e. the cost associated with each government-funded school is some known value cg, the cost

associated with each private school not participating in the program is zero, and the cost associated

with each private school participating in the program is the voucher amount spent to cover tuition

plus some known administrative cost γ of operating the program (i.e. charged only when the

voucher amount is positive). We then measure the average net costs from the provision of a

voucher of amount τ by

AC(τ) =
∑

j∈J
cj(τ) · qj(p(τ))−

∑

j∈J
cj(0) · qj(p(0)) , (11)

i.e. the average costs the government faces when individuals receive the voucher net of those it

faces when individuals do not receive the voucher. Along with the average benefit parameter, we

can then also define the average surplus parameter, which can be used to perform a cost-benefit

analysis. Specifically, for a voucher of amount τ , let

AS(τ) = AB(τ)−AC(τ) (12)

denote the average surplus of the voucher, i.e. the average benefit across individuals of receiving

the voucher net of the average cost for the government of providing that voucher. Note that the

average cost parameter is a function of q and, since the average benefit parameter is a function of

q, so is the average surplus parameter.

The benefit, cost and surplus parameters we described above were defined for a generic voucher

of amount τ . By taking different values of τ , we can evaluate these parameters for both the status-

quo voucher amount as well as alternative counterfactual amounts. More specifically, by taking

τ = τsq, we can evaluate these parameters for the status-quo voucher amount, whereas, by taking

τ = τc 6= τsq, we can evaluate these parameters for a counterfactual amount of τc. In our analysis,

we also study the difference of the parameters under these amounts, i.e.

∆AB (τc) = AB (τc)−AB (τsq) , (13)

∆AC (τc) = AC (τc)−AC (τsq) , (14)

∆AS (τc) = AS (τc)−AS (τsq) , (15)

which allows us to directly compare the benefit, cost and surplus between the counterfactual and

status-quo voucher amounts.

11



4 Identification Analysis

In the previous section, we described our parameters of interest and noted that each of them was a

function of the demand functions. In this section, we study what we can learn about each of these

parameters given what we know about the demand functions from the imposed assumptions and

the distribution of the data, taken to be known for the purposes of this section.

4.1 General Setup

We begin by formally describing the general setup for the identification analysis we develop below.

To this end, let θ(q) denote a pre-specified parameter of interest from Section 3 that we want to

learn about.

Since θ is a known function, it follows that what we can learn about our parameter depends on

what we know about the function q. As q is defined to be a function whose image is a vector of

probabilities, we know by construction that for each p ∈ P we have

0 ≤ qj(p) ≤ 1 for each j ∈ J , (16)
∑

j∈J
qj(p) = 1 , (17)

i.e., for all prices, each demand function lies in the unit interval and their sum together equals one.

Under our baseline specification, we know that q satisfies Assumption B(ii), i.e. it satisfies the

nonparametric shape restrictions stated in (4). Under our auxiliary specifications, we additionally

know that q satisfies Assumption A, i.e. it satisfies the parametric restrictions stated in (5). Finally,

under both specifications, the distribution of the data across individuals also restricts the values

that q can take. Specifically, it follows from (1) and Assumption B(i) that the distribution of the

data reveals

qj(p(0)) = Prob[Di = j|Zi = 0] ≡ Pj|0 , (18)

qj (p (τsq)) = Prob[Di = j|Zi = 1] ≡ Pj|1 (19)

for j ∈ Jv , and

qj(p(0)) = Prob[Di ∈ Jj |Zi = 0] ≡ Pj|0 , (20)

qj (p (τsq)) = Prob[Di ∈ Jj |Zi = 1] ≡ Pj|1 (21)

for j ∈ {g, n}, i.e. the enrollment shares across schools conditional on the receipt of voucher reveal

the values the demand functions take at the vector of prices with and without the status-quo

voucher amount. To summarize the above information on what we know about q, let F denote the

set of all functions from P to R|J |. Then, let

QB = {q ∈ F : q satisfies (16)− (17), (4) and (18)− (21)} (22)
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denote the admissible set of all demand functions that satisfy the various restrictions imposed by

the assumptions and data under our baseline specification, and let

QA = {q ∈ F : q satisfies (16)− (17), (4), (5) and (18)− (21)} (23)

denote the analogous set of such demand functions under our auxiliary specification.

Given what we know about q, our objective is to characterize what we can then learn about

our parameter θ(q). In some cases, observe that there exists a single admissible value of q under

the chosen specification. In such cases, it follows that we can exactly learn the value of θ(q). For

example, as we noted before, this is the case under the specification described in (6)-(7). However,

under more flexible parametric specifications as well as the baseline nonparametric specification,

there generally exist multiple admissible values of q. In these more general cases, it follows that we

can learn a set of values that θ(q) lies in.

Our analysis aims to show what we can learn across both these two cases. We generally do so

by showing how to characterize the identified set. Formally, for a given admissible set of demand

functions Q, the identified set is defined by

θ(Q) = {θ0 ∈ R : θ(q) = θ0 for some q ∈ Q} ≡ Θ , (24)

i.e. the image of the set of admissible functions Q under the function θ. Intuitively, the identified

set corresponds to the set of all parameter values that could have been generated by the admissible

values of q. By construction, it sharply captures all that we can learn about the parameter given

the data and the chosen specification. Indeed, if the parameter is point identified then the identified

set corresponds to a single point. Alternatively, if the parameter is partially identified then the

identified set corresponds to the sharpest set of all possible parameter values consistent with the

data and specification.

The key challenge of our analysis is how to develop a tractable characterization of the identified

set. In what follows, we develop tractable procedures that show how to do so under each of our

specifications: first, in Section 4.2, under our baseline specification, i.e. Θ in (24) when Q = QB;

and then, in Section 4.3, under our auxiliary specification, i.e. Θ in (24) when Q = QA.

4.2 Identified Set under Baseline Nonparametric Specification

In principle, observe that characterizing the identified set corresponds to searching over the various

q in Q and taking their image under the function θ. Under the baseline specification, this problem

can be challenging due to the fact that QB is an infinite-dimensional space. Below, we show how

to feasibly proceed in this case. In particular, we exploit the idea that we can replace QB by a

finite-dimensional space Qfd
B without any loss of information with respect to what we can learn

about the parameter in the sense that θ(QB) = θ
(
Qfd
B

)
. This allows us to indirectly characterize

13



the identified set by searching only through q in Qfd
B , which is a finite-dimensional problem and,

hence, potentially feasible in practice.

We begin by defining the finite-dimensional Qfd
B we consider. Our choice of Qfd

B takes q to be

constant on some finite partition of the space of prices. The partition is intuitively chosen such

that the resulting q based on it is sufficiently rich to equivalently define the various parameters of

interest and the data restrictions in (18)-(21) as well as preserve the information provided by the

shape restrictions in (4).

In order to define the partition, we need to first define a collection of sets that play a role in the

definition of the parameters and data restrictions, and allow the preservation of the information

provided by the shape restrictions. To this end, observe that

Pl(τ) = {p ∈ P : pj = min{pj(0), pj(τ) + a} for a ∈ [al(τ), al+1(τ)] for each j ∈ Jv} (25)

for 0 ≤ l ≤ j(τ) correspond to the various sets of prices that play a role in the definition of the

parameter AB(τ), and

{p(0), p (τsq) , p(τ)} (26)

corresponds to the set of prices that play a role in the definition of the parameter AC(τ) as well as

the data restrictions in (18)-(21). Note it then follows that

P∗ =

j(τsq)⋃

l=0

Pl (τsq)

j(τc)⋃

l=0

Pl (τc)
⋃
{p(0), p (τsq) , p (τc)} (27)

corresponds to the subset of P that plays a role in the definition of all parameters for the status-quo

voucher amount and a counterfactual voucher amount of τc along with the restrictions imposed by

the data. Given this set of prices, we define in the following definition the collection of sets that

we later use in the definition of the partition.

Definition 4.1. Let U denote a finite partition of the set of prices P∗ in (27) such that for all

u ∈ U we have either

(i) u = {p ∈ P : pj = min{pj(0), pj(τ) + a} for a ∈ (au, āu] or (au, āu) for each j ∈ Jv} where

au and āu are such that u ⊆ Pl(τ) for some 0 ≤ l ≤ j(τ) and τ ∈ {τsq, τc}; or

(ii) u = {p (τ)} for some τ ∈ {0, τsq, τc} ,

and for all u, u′ ∈ U we have either

u(j) = u′(j) or u(j) ∩ u′(j) = ∅ (28)

for each j ∈ Jv, where u(j) = {t ∈ R : pj = t for some p ∈ u} for each u ∈ U and j ∈ Jv.
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Figure 1: Various sets of prices for an example with J = 2 and τsq < p1(0) < τc < p2(0)
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(a) Sets that play a role in defining the pa-
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(b) A partition U ≡ {u1, . . . , u12} of the union

of sets in (a) that satisfies Definition 4.1

Definition 4.1 states that U corresponds to a finite partition of P∗, where each element of the

partition satisfies specific properties. In particular, Definition 4.1(i)-(ii) states that each element

is a connected subset of that in (25) or (26). In addition, it states in (28) that any pair of sets in

this partition are such that they either completely overlap or are disjoint in each price coordinate.

Intuitively, note that the first property, as the sets in (25) and (26) are specifically based on the

parameters and data restrictions, is what ensures that the finite-dimensional q will be sufficiently

rich to define the parameters and data restrictions. On the other hand, note that the latter property,

which implies that the sets can be ordered and pairwise compared across each price coordinate, is

what ensures that the finite-dimensional q will be able to preserve the information provided by the

shape restrictions in (4) that are indeed based on pairwise comparisons of prices.

To better understand these various set of prices, Figure 1(a) first graphically illustrates the sets

of prices in (25) and (26) in the context of a simple example with two voucher schools and a specific

combination of status-quo and counterfactual voucher amounts. Figure 1(b) then shows how the

union of the sets in Figure 1(a) can be partitioned to obtain a collection of sets satisfying Definition

4.1. In particular, it sequentially divides any two sets in Figure 1(a) that partially overlap in a given

coordinate until the condition in (28) is satisfied. In Appendix S.2.2, we describe a computational

procedure that sequentially divides sets in such a manner to obtain a partition satisfying Definition

4.1 in the case of more than two goods.

Using the above defined collection of sets, we can now define the partition of the space of prices

and our choice of Qfd
B . To define the partition, observe that for each j ∈ Jv, the collection of sets

determined by the prices in u ∈ U for the jth school, i.e. {u(j) : u ∈ U}, generates a partition of

[pj(max{τsq, τc}), pj(0)] ⊆ [0, pj(0)]. Given this implies that Uj = {[0, pj(max{τsq, τc}))}
⋃{u(j) :
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u ∈ U} corresponds to a partition of [0, pj(0)] for each j ∈ Jv, observe that

W =

J∏

j=1

Uj ≡ {w1, . . . , wM} ,

denotes a partition of the space of prices P over which q is defined, where, for each element of the

partition, the prices for the jth school in Jv take values in a set that corresponds to an element of

Uj . Then, using this partition, we take

Qfd
B =

{
q ∈ QB : qj(p) =

∑

w∈W
1w(p) · βj(w) for some {βj(w)}w∈W for each j ∈ J

}
, (29)

where 1w(p) ≡ 1{p ∈ w}, i.e. the space we consider corresponds to a subset of QB such that each

q is parameterized to be a constant function over the elements of the partition W.

We next show that replacing QB with this choice of Qfd
B leads to no loss of information with

respect to what we can learn about the parameter of interest, i.e. θ (QB) = θ
(
Qfd
B

)
. In addition,

we also show that characterizing θ
(
Qfd
B

)
, which is a finite-dimensional problem, can be solved

using two finite-dimensional optimization problems. In order to state this result, it is useful to first

restate θ
(
Qfd
B

)
in terms of the variable β ≡

(
β′g, β

′
n, β

′
1, . . . , β

′
J

)′
, where βj = (βj(w1), . . . , βj(wM ))

for each j ∈ J , that parameterizes a given q ∈ Qfd
B . To this end, note that given each parameter

θ is continuous in q and that q is continuous in β, it follows that θ can be written in terms of a

continuous function of β in the sense that there exists a continuous function θB of β such that

θ(q) = θB(β). Similarly, note that QB can also be written in terms of β by

B =

{
β ∈ Rdβ :

(∑

w∈W
1w · βj(w) : j ∈ J

)
∈ QB

}
, (30)

where dβ denotes the dimension of β, i.e. the set of values of β that ensure that the corresponding

q is in QB. Then, we can write θ
(
Qfd
B

)
in terms of β by

{θ0 ∈ R : θB(β) = θ0 for some β ∈ B} ≡ ΘB . (31)

In the following proposition, we state the result that the identified set under the baseline specifica-

tion, i.e. Θ in (24) when Q = QB, is equal to ΘB. In addition, the proposition also shows that we

can characterize ΘB by solving two finite-dimensional optimization problems.

Proposition 4.1. Suppose that Q = QB. Then, the identified set in (24) is equal to that in (31),

i.e. Θ = ΘB. In addition, if B is empty then by definition ΘB is empty; whereas, if B is non-empty

then ΘB = [θB, θ̄B], where

θB = min
β∈B

θB(β) and θ̄B = max
β∈B

θB(β) . (32)
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Proposition 4.1 shows that the identified set under the baseline specification when not empty

is given by a closed interval, where the endpoints can be obtained by solving the two optimization

problems stated in (32). In the proof of the proposition, we explicitly derive B, the constraint

set of these optimization problems, and observe that it is determined by constraints that are all

linear in β. In addition, we also explicitly derive θB, the objectives of these optimization problems,

for each of our parameters of interest and observe that they all correspond to linear functions

of β. These two observations then imply that these optimization problems are, in fact, linear

programming problems, a useful observation in their practical implementation. Lastly, observe

that to characterize the identified set using these linear programs, we specifically require that B is

non-empty or, equivalently, that the model is not misspecified. However, when this is not the case,

these linear programs automatically terminate, indicating that the model is misspecified.

While the optimization problems in (32) are linear programs, they can nonetheless be compu-

tationally expensive in cases where the dimension of the optimizing variable β is large. Such a

case arises especially in settings when J is large as in our empirical analysis, where we have that

J is equal to 68. To ensure tractability in such cases, it is useful to consider alternative lower-

dimensional linear programs that are easier to compute and can continue to allow us to learn about

our parameters. To this end, observe that, given how U captured all sets relevant in defining our

parameters, only a restricted subset of W given by

Wr =



w ∈ W : w =

J∏

j=1

u(j) for some u ∈ U



 ≡ {w

r
1, . . . , w

r
Mr} ,

corresponds to the sets of prices that play a role in the definition of our parameters. In turn, observe

that only a subvector of β defined over these sets given by βr =
(
βrg
′, βrn

′, βr1
′, . . . , βrJ

′)′ ≡ φ(β), where

βrj = (βj(w
r
1), . . . , βj(w

r
Mr)) for each j ∈ J , plays a role in determining θB in the sense that there

equivalently exists a linear function θrB such that θrB(βr) = θB(β). Then, the lower-dimensional

linear programs we consider are those in terms of the subvector βr given by

θrB = min
βr∈Br

θrB(βr) and θ̄rB = max
βr∈Br

θrB(βr) , (33)

where Br denotes a set of βr determined by linear constraints. By an appropriate choice of Br,

these alternative linear programs can continue to allow us to learn about our parameters. To see

how, observe first that if Br = φ(B), we have by construction that these programs are equivalent

to those in (32). In turn, by taking Br to be such that φ(B) ⊆ Br, it follows that we have θrB ≤ θB
and θ̄rB ≥ θ̄B, and can therefore continue to learn about our parameters by obtaining a set that

contains the identified set, i.e. ΘB ∈
[
θrB, θ̄

r
B

]
. In Appendix S.2.3, we provide a natural choice of

such a Br determined by restrictions on βr implied by those in B, which we find in our empirical

analysis can be tractably implemented and also result in informative conclusions.
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4.3 Identified Set under Auxiliary Parametric Specifications

We now proceed to show how to characterize the identified set under our auxiliary specification.

Under this specification, in contrast to the baseline, note that the problem is finite-dimensional in

nature due to the fact that QA is a finite-dimensional parameterized space. As a result, in this

case, the identified set can be directly characterized by searching over q in QA and then taking

their image under the function θ.

In order to state the result that shows how to do this, it useful to first restate the identified set

in terms of the variable α that parameterizes a given q ∈ QA through (5). Given each parameter θ

is continuous in q and that q is continuous in α, note that it follows that θ can be written in terms

of a continuous function of α in the sense that there exists a continuous function θA of α such that

θ(q) = θA(α). Similarly, note that QA can also be written in terms of α by

A =



α ∈ Rdα :




Kj∑

k=0

αjk · bjk : j ∈ J


 ∈ QB



 . (34)

where dα denotes the dimension of α, i.e. the set of values of α that ensure that the corresponding

q is in QB. Then, the identified set under the auxiliary specification, i.e. Θ in (24) when Q = QA,

can equivalently be given by

θA(A) = {θ0 ∈ R : θA(α) = θ0 for some α ∈ A} ≡ ΘA , (35)

i.e. the image of the set A under the function θA. In the following proposition, we show that when

A is connected and non-empty, the closure of this set is equal to an interval, where the endpoints

can be characterized as solutions to two finite dimensional optimization problems.

Proposition 4.2. If A is empty then by definition ΘA is empty; whereas, if A is connected and

non-empty, then the closure of ΘA is given by [θA, θ̄A], where

θA = inf
α∈A

θA(α) and θ̄A = sup
α∈A

θA(α) . (36)

Proposition 4.2 shows how to characterize the identified set under a general class of parametric

restrictions. As we mentioned before, this class allows various types of more flexible versions of

the parametric specification in (6)-(7) that ensured point identification of the demand functions.

We conclude this section by discussing three types of such specifications we later consider in our

empirical analysis that can be implemented using Proposition 4.2.

Assumption O. (Own-price) For each j ∈ Jv,

qj(p)− qg(p) =
K∑

k=0

αjk · pkj

for some {αjk : 0 ≤ k ≤ K}, and qn(p)− qg(p) = αn for some αn.
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Assumption AS. (Additively Separable) For each j ∈ J ,

qj(p) =
J∑

m=1

K∑

k=0

αjmk · pkm

for some {αjmk : m ∈ Jv, 0 ≤ k ≤ K}.

Assumption NS. (Nonseparable) For each j ∈ J ,

qj(p) =
J∑

m=1
m 6=j

K∑

k=0

K∑

l=0

αjmkl · pkj · plm

for some {αjmkl : m ∈ Jv, 0 ≤ k, l ≤ K}, and for each j ∈ {g, n},

qj(p) =

J∑

m=1

K∑

k=0

αjmk · pkm

for some {αjmk : m ∈ Jv, 0 ≤ k ≤ K}.

Assumption O states that the difference in demand for each j ∈ Jv and any j ∈ Jg is a function

only of its own price, where this function is a polynomial of degree K, and the difference in demand

for any j ∈ Jn and any j ∈ Jg is constant. When K equals one, this corresponds to the linear

specification in (6)-(7). However, for larger values of K, it allows for more flexible patterns in prices.

Nonetheless, while more flexible, it can still be viewed as restrictive as it assumes the demand for a

given school with respect to government-funded schools to be invariant to prices of other schools.

To this end, Assumption AS and Assumption NS consider more flexible parametric specifications

that allow the demand for each school to depend on the prices of all voucher schools. Assumption

AS takes the demand for each j ∈ J to be an additively separable function in the prices of each

j ∈ Jv, where these functions are polynomials of degree K. Assumption NS further parsimoniously

relaxes the requirement of additive separability by allowing for nonseparability in its own price. In

particular, it takes the demand for j ∈ Jv to be an additively separable function only in the prices

of each m ∈ Jv \ {j}, where these bivariate functions are bivariate polynomials of degree K.

While the optimization problems in (36) are finite-dimensional, their computational tractability

depends on the structure of the objective θA and constraint set A. In Appendix S.2.4, we illustrate

that, under each of the different parametric specifications considered above, θA for each parameter

is a linear function of α and that A is characterized by linear equality and inequality restrictions

on α. However, we observe here that some of the linear restrictions in these cases are evaluated

at every possible price vector in P, which implies that the resulting optimization problems in (36)

can be generally difficult to compute. To this end, similar in spirit to those in (33), we consider

the following alternative optimization problems

θrA = min
α∈Ar

θA(α) and θ̄rA = max
α∈Ar

θA(α) (37)
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in our empirical analysis, where Ar corresponds to a subset of A that evaluates some of the

restrictions on only a finite set of prices in P—the exact form of Ar for each specification is provided

in Appendix S.2.4. Indeed, since the objective and the finite number of restrictions determining the

constraint sets of these problems are linear in α, they are linear programming problems and hence

generally computationally tractable. But, since A ⊆ Ar, these problems only provide a set that

contains the identified set, i.e. ΘA ⊆ [θrA, θ̄
r
A], similar to how those in (33) do so for the identified

set under the baseline specification. In our empirical analysis, we nonetheless find that these sets

result in informative conclusions.

5 Evaluation of the DC Opportunity Scholarship Program

5.1 Background

The DC Opportunity Scholarship Program (OSP) was a federally-funded school voucher program

established by Congress in January 2004, and which started accepting students for the 2004-2005

(henceforth, 2004) school year. The OSP was structured similarly to other voucher programs that

existed at the time (Epple et al., 2017). It was open to students residing in Washington, DC, and

whose family income was no higher than 185% of the federal poverty line ($18,850 for a family of

four in 2004).2 It could be used only for K-12 education, and at the time of initial receipt was

renewable for up to five years. It provided students a voucher worth $7,500 that could be used

to offset tuition, fees, and transportation at any private school of their choice participating in the

program.

The law that established the program also mandated its evaluation, which culminated with a

final report to Congress (Wolf et al., 2010). The report exploited the fact that the OSP randomly

allocated vouchers to participating students. In particular, Congress expected the program to be

oversubscribed, i.e. the number of applicants would exceed the number of available slots in partic-

ipating private schools. As a result, it required that vouchers be randomly allocated to applicants

through a lottery whenever the program was oversubscribed—see Wolf et al. (2010) for details on

the lottery. Wolf et al. (2010) exploited this random allocation by comparing various outcomes of

voucher recipients to non-recipients to experimentally evaluate the effect of voucher receipt on these

outcomes. The main findings from this report, as listed in its executive summary, can be broadly

summarized as follows. First, they find no conclusive evidence that the receipt of the voucher had

any significant effects on various outcomes corresponding to student achievement. Second, they

find that the receipt of the voucher significantly improved students’ chances of graduating from

high school. Finally, they find that the receipt of the voucher raised parents’ ratings of school

safety and satisfaction.

2All dollar amounts throughout have been deflated to 2004 dollars.
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Table 1: Enrollment shares across school type by voucher receipt

With voucher Without voucher Difference

Government-funded 0.288 0.901 -0.613

[0.453] [0.299] (0.019)

Non-participating private 0.014 0.020 -0.006

[0.117] [0.140] (0.007)

Participating private 0.698 0.079 0.619

[0.459] [0.270] (0.018)

Observations 1,090 730

Observations rounded to the nearest 10. Standard deviations in square brackets and robust standard

errors in parentheses.

SOURCE: Evaluation of the DC Opportunity Scholarship Program: Final Report (NCEE 2010-4018), U.S.

Department of Education, National Center for Education Statistics previously unpublished tabulations.

In what follows, we use the tools developed in the previous sections to complement these findings

by analyzing the welfare effects of providing the status-quo voucher amount as well as alternative

counterfactual amounts. Our analysis is based on the premise that while the receipt of the voucher

revealed mixed evidence on outcomes in the sense that there are zero as well as some positive effects,

parents may nonetheless value the voucher, potentially across dimensions not easily captured by

the outcomes. Indeed, as we highlight below, the data from the program reveals that a non-trivial

proportion of voucher recipients used the voucher, which, by revealed preference arguments, implies

that recipients may value receiving the voucher. Our analysis below estimates these potential

welfare benefits using data collected by the OSP.

5.2 Data and Summary Statistics

The OSP collected detailed data for the first two years of the program, 2004 and 2005, and tracked

students for at least four years. Across these years, the school settings were different—the compo-

sition of applicants and private schools participating in the program changed. Wolf et al. (2010)

provide a detailed description on how the data was collected and various summary statistics for

the various years. To keep prices and the set of available schools the same for all students, in our

analysis we focus on the second year of the program, 2005, which contains around 80% of the entire

sample. In addition, we focus on the initial year of the data for students entering the program this

year. As we note in Section 6, this avoids complications that arise from the dynamics of the setup.

In Appendices S.4.1-S.4.2, we provide details on how our analysis sample was constructed from

the original evaluation data and some statistics on the school setting. Below, we present summary

statistics for the main variables our analysis exploits, namely the enrollment shares and the prices

as measured by the tuition of private schools participating in the program.
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Figure 2: Prices and enrollment shares by voucher receipt across participating private schools
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SOURCE: Evaluation of the DC Opportunity Scholarship Program: Final Report (NCEE 2010-4018), U.S. Depart-

ment of Education, National Center for Education Statistics previously unpublished tabulations.

Table 1 presents the empirical enrollment shares across the three types of schools, i.e. government-

funded schools (which includes charter schools) and private schools participating and not participat-

ing in the program, by voucher receipt. The proportion of voucher recipients who use the voucher,

corresponding to those enrolled in participating private schools, is relatively large (69.8%). By re-

vealed preference, this implies that recipients value the voucher. In addition, the voucher increases

the proportion enrolling in private schools by 61.9 percentage points, suggesting that prices play

an important role in inducing private school enrollment. Finally, observe the nearly symmetric

decline in the proportion enrolled in government-funded schools caused by voucher receipt (-61.3

percentage points), which reveals that nearly all students induced into participating private schools

by the voucher would be in government-funded schools absent the voucher.

In 2005, there were 68 private schools participating in the program (out of a total of 109 in

DC). Figure 2 presents histograms that summarize the variation in prices across these schools

as well as the enrollment shares across these prices. Figure 2(a) reveals that a large number of

participating private schools had low prices—around 80% had prices below the status-quo voucher

amount. Figure 2(b) reveals that the voucher induced a significant proportion to enroll in these

low-price schools—out of the 61.9 percentage point increase in the number of students attending

a participating private school, a full 59 percentage points (95%) was into schools with prices less

than the status-quo voucher amount. As we highlight below, these observations play an important

role in better understanding the welfare effects of the voucher.

To also provide some evidence on why recipients may be choosing participating private schools

and, in turn, value the voucher, Table S.2 in Appendix S.4.2 compares characteristics of these

schools with those of with government-funded schools, where the majority of students enroll absent

the voucher. Private and government-funded schools differ across several attributes. The private
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schools tend to be more religious and specifically Catholic, have smaller school sizes, are more

likely to track students by ability, and are less likely to have programs for students with learning

difficulties. This suggests that recipients may value these attributes and, hence, the voucher that

makes these schools more affordable.

Recall from Section 3 that our analysis also uses a value of cg for the costs the government

faces when a student enrolls in government-funded schools as well as a value of γ for administrative

costs. In our main analysis, we take cg = $5,355, which corresponds to the educational expenditure

reported by the US Census (2005). This is lower than total per-pupil expenditure ($12,979, which

includes some fixed costs), or educational expenditure as measured in other sources ($8,105, Sable

and Hill (2006)). However, given that our surplus parameters are increasing in cg, we choose the

smaller, more conservative value. On the other hand, we take γ = $200, which corresponds to

cost of administration, adjudication and providing information to families for an alternative school

voucher program reported in Levin and Driver (1997).3 For our baseline government-funded schools

cost of $5,355, Figure 2(b) reveals that a large proportion of recipients (81%) redeem the voucher

at schools with prices below this value. Given that Table 1 revealed that the majority of these

recipients would have enrolled in government-funded schools absent the voucher, this suggests that

the government may face only small net costs or even savings from the provision of a voucher, even

accounting for the administrative costs. Our estimates below make this point more precisely.

5.3 Welfare Estimates for the Status-quo Voucher Amount

Table 2 presents the estimates of the welfare effects for the status-quo voucher amount. Each row of

the table corresponds to a parameter from (9), (11) or (12), taking τ = τsq ≡ $7, 500. Each column

corresponds to a specification of demand, which is either the baseline nonparametric specification

defined by Assumption B or an auxiliary parametric specification that additionally imposes either

Assumption O, Assumption AS or Assumption NS for some value of K. We consider K = 1, 2, 3.

The estimates under the nonparametric specification are computed using the optimization problems

in (33) with the choice of Br described in Appendix S.2.3 and those under the parametric speci-

fications are computed using the optimization problems in (37) with the choices of Ar described

in Appendix S.2.4, where in both cases the enrollment shares in the restrictions in (18)-(21) are

replaced by their empirical counterparts. We also report 95% confidence intervals, and specifica-

tion test p-values in the case of misspecification. These are both constructed using a subsampling

procedure from Kalouptsidi et al. (2020), which we describe in Appendix S.3. To compare our

results to those obtained using standard discrete choice tools, we also report in Appendix S.4.3,

and briefly discuss below, results under common fully-parameterized, point identified versions of

our model based on taking a logit specification for the idiosyncratic error terms in (2)-(3).

3As a sensitivity analysis, we also present results for a range of other values of cg and γ in Appendix S.4.4.
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Table 2: Estimated welfare effects of the status-quo voucher

Nonparametric Own-price Additively separable Nonseparable

K K K

1 2 3 1 2 3 1 2 3

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AB(τsq)

239

∅ ∅ ∅

1,669 1,000 720 1,669 1,000 720

364 1,769 1,100 795 1,769 1,100 795

5,239 1,873 2,518 2,912 1,920 2,608 3,038

5,414 1,973 2,618 3,037 2,020 2,733 3,163

AC(τsq)

-20

∅ ∅ ∅

0 0 0 0 0 0

150 150 150 150 150 150 150

300 290 290 290 290 290 290

AS(τsq)

113

∅ ∅ ∅

1,519 825 545 1,519 825 545

213 1,619 950 645 1,619 950 645

5,088 1,723 2,368 2,762 1,770 2,458 2,887

5,313 1,848 2,493 2,912 1,870 2,583 3,012

Spec. p-value - 0.00 0.00 0.00 - - - - - -

For each parameter, each panel reports the lower endpoint of the 95% CI, the estimated lower bound, the estimated

upper bound, and the upper endpoint of the 95% CI, respectively. Upper and lower bound not repeated if they

coincide. The ∅ denotes the empty set and indicates that the specification was rejected by the data. For rejected

specifications, we provide the specification test p-value.

SOURCE: Evaluation of the DC Opportunity Scholarship Program: Final Report (NCEE 2010-4018), U.S. Depart-

ment of Education, National Center for Education Statistics previously unpublished tabulations.

The empty sets reveal that some of the specifications may be misspecified. Specifically, the

specification in (6)-(7) in Column (2) that implies point identification of the demand function as well

as more flexible versions in the form of Assumption O in Columns (3) and (4) may be misspecified.

To see why this arises, observe that Assumption O requires the difference between qg(p) and qn(p)

to be constant for all values of p, which then implies that the difference in enrollment shares for any

government-funded and non-participating private school with and without the voucher be equal;

however, their empirical counterparts in Table 1 reveal these values are in fact different. The

p-values in the final row of Table 2 reveal that this difference is also statistically significant. In

contrast, the data do not reject the nonparametric specification in Column (1) or the more flexible

parametric specifications in Columns (5)-(10). In these cases, as highlighted in Section 4, there

exist multiple demand functions consistent with data and, as a result, we can generally only obtain

bounds for the parameters. Nonetheless, as we discuss below, these bounds are quite tight and

allow us to reach informative conclusions.

The estimates for AB (τsq) under the nonparametric specification in Column (1) reveal that
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the average benefit from the status-quo voucher is between $364 and $5,239. Under auxiliary

parametric specifications, the bounds can substantially tighten. For example, under the most

informative specification in Column (5), the average benefit is between $1,769 and $1,873, whereas,

under the most flexible specification in Column (10), it is between $795 and $3,038.

The estimates for AC (τsq) reveal that the lower and upper bounds are equal and, in turn,

that it is point identified across all specifications. In particular, point identification arises because

AC (τsq) is a function of demand at values of prices at which the demand is exactly observed in

the data, namely the prices with and without the status-quo voucher. The point identified value

reveals that the average net cost of providing the status-quo voucher is equal to $150. While this

voucher provides an amount of up to $7,500, the cost is relatively low due to the fact, as highlighted

above, that a large proportion of recipients redeem the voucher at low-cost private schools relative

to the government-funded schools they would have enrolled in absent the voucher.

Taking the difference of the average benefit and cost, the estimates for AS (τsq) reveal that the

average benefit net of costs of the status-quo voucher across all specifications is generally positive.

In particular, under the nonparametric specification in Column (1), the average surplus is between

$213 and $5,088 and, under the most flexible parametric specification in Column (10), between

$645 and $2,887. Intuitively, the positive net benefit arises due to the relatively low net costs of

providing the voucher that we highlighted above. Specifically, the voucher recipients have a high

welfare benefit from the low-price private schools at which they redeem the voucher relative to

the low net costs the government faces to fund the voucher at these schools, which then implies a

positive net benefit.

In Appendix S.4.4, we perform several robustness checks on the above conclusion that the

provision of the status-quo voucher amount has a positive average surplus. As we noted above, our

analysis uses a specific value of cg for the costs the government faces when a student enrolls in a

government-funded school, and a value of γ for the administrative costs of providing a voucher. In

addition, while the OSP allowed the voucher to be used to offset additional fees and transportation

costs, our analysis implicitly assumed that they could be only used to offset tuition. Our robustness

analysis measures the sensitivity of our average surplus estimates to taking different values of cg

and γ, and supposing that the voucher could be used to offset an amount δ in addition to the

tuition. We find that our conclusions continue to hold for a range of values of cg, γ and δ.

In comparison to the above results, Appendix S.4.3 reveals that results based on fully-parameterized

specifications of our model can potentially provide a misleading picture of the welfare effects. Specif-

ically, we find that these specifications all provide estimates of the average benefit parameter that

are consistently towards the lower bound of our nonparametric specification, and even below those

of some of our parametric specifications. In turn, the resulting average surplus parameter may sub-

stantially understate the net benefit of the voucher. We find that this pattern holds across different

specifications that allow for observed heterogeneity in the price coefficients as well as those that
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Figure 3: Estimated upper and lower bounds on welfare effects for counterfactual voucher amounts
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SOURCE: Evaluation of the DC Opportunity Scholarship Program: Final Report (NCEE 2010-4018), U.S. Depart-

ment of Education, National Center for Education Statistics previously unpublished tabulations.

allow for unobserved heterogeneity, i.e. a mixed logit. This suggests that the parameterizations

present in these specifications potentially underestimate the individual valuations for the price de-

crease induced by the voucher, and in turn how responsive individuals are to this price change.

We also find that these patterns continue to hold for parameters measuring the welfare effects of

providing counterfactual voucher amounts when comparing the logit estimates of these parameters

to those that our tools provide, which we discuss next.

5.4 Welfare Estimates for Counterfactual Voucher Amounts

Figure 3 next presents the estimates of our various parameters measuring the welfare effects of

providing counterfactual voucher amounts. These parameters correspond to those illustrated in

Table 2 but for a range of values of τ = τc not necessarily equal to τsq. We also report the differences

with the parameter when τ = τsq, as described in (13)-(15). For conservativeness, we present only

results under the nonparametric and the most flexible parametric specifications from Table 2, i.e.

Columns (1) and (10), respectively. For expositional reasons, since the plots of the estimated

bounds and the 95% confidence intervals are close to each other and hence difficult to visually

distinguish, we report only the former. The confidence intervals are available in Appendix S.4.5.
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The estimates forAB (τc) and ∆AB (τc) reveal, unsurprisingly, that the average benefit increases

with the voucher amount. As in Table 2, the bounds under the parametric specification can

be considerably tighter than those under the nonparametric specification. Under the parametric

specification, we find that the bounds vary more for lower voucher amounts and are more stable

for larger amounts. The estimates for AC (τc) and ∆AC (τc) reveal, in contrast to the status-

quo amount in Table 2, that they are generally not point identified but only bounded. This is

because, unlike AC (τsq), these parameters are generally functions of demand at values of prices

not observed in the data. Unsurprisingly, the bounds under the nonparametric specification vary

non-smoothly and those under the parametric specification vary smoothly given that the latter

specification imposes a smooth relationship of how demand varies with prices while the former does

not. Similar to the average benefit, the average cost also varies more at lower voucher amounts.

For some voucher amounts, the estimates are negative, i.e the government has cost savings. This

arises because at these values, as before, recipients continue to redeem the voucher and switch to

low-price schools from government-funded schools, but now the government actually saves as the

costs of funding the voucher at these schools are significantly lower than that of government-funded

schools.

Taking the difference of average benefit and cost, the estimates for AS (τc) reveal that the

provision of counterfactual voucher amounts may have a positive average benefit net of costs.

Specifically, under the nonparametric specification, the bounds reveal that we have a positive

average surplus for voucher amounts below the status-quo, but potentially not above it. This is

because the average costs are low relative to the benefit and potentially even negative at voucher

amounts below the status-quo, but drastically increase in a non-smooth manner above the status-

quo. Under the parametric specification, the smooth relationship of demand with prices allows the

pattern of costs below the status-quo voucher to smoothly extend to voucher amounts above it as

well, implying a positive average surplus for all voucher amounts. However, not all counterfactual

voucher amounts have the same surplus as the status-quo. Comparing the counterfactual to the

status-quo surplus at τc = $1,500, the bound for ∆AS ($1,500) under the parametric specification

is [−$1,578, $229]. This suggests that providing vouchers in such low amounts would likely reduce

surplus relative to the status-quo amount.

5.5 Role of Low-tuition Schools in the Program

In summary, our welfare estimates reveal that voucher provision has a positive average surplus

under both the status-quo and counterfactual voucher amounts. While discussing these results, we

specifically noted that they arose in part due to the presence of low-tuition schools in the program

that many recipients attend, but that have a small net cost to the government. We conclude

our analysis by more directly investigating the importance of these schools in the program when

providing the status-quo voucher amount.
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Figure 4: Estimated upper and lower bounds on welfare effects of removing schools with tuition at

most κ from the program
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SOURCE: Evaluation of the DC Opportunity Scholarship Program: Final Report (NCEE 2010-4018), U.S. Depart-

ment of Education, National Center for Education Statistics previously unpublished tabulations.

Specifically, we analyze how our estimates change when we remove schools having prices at

most a certain amount from the program. To this end, for a given κ ∈ R+, let J κ = {j ∈ Jv :

pj(0) ≤ κ} denote the set of participating private schools with prices no more than κ, and let

jκ = arg maxJ κ denote the school with the highest price removed from the program. In addition,

let pκ(τsq) = (p1(0), . . . , pjκ(0), pjκ+1(τsq), . . . pJ(τsq)) denote the prices of the schools in Jv under

the application of the status-quo amount when schools with prices at most κ are removed, i.e. the

status-quo voucher amount is applied to only schools with prices above κ. Then, similar to (9), the

average benefit of the status-quo voucher amount absent these schools can be defined by

ABκ (τsq) = E[Bκ
i (τsq)] . (38)

where Bκ
i (τsq) is given by the variable that solves (8) when replacing pj(τ) with pκj (τsq) for j ∈ Jv.

Similarly, the average cost and benefit net of costs can be defined by

ACκ (τsq) =
∑

j∈J
cκj (τsq) · qj(pκ(τsq))−

∑

j∈J
cj(0) · qj(p(0)) , (39)

ASκ (τsq) = ABκ (τsq)−ACκ (τsq) . (40)

where cκj (τsq) = cj(τsq) for j ∈ J \ J κ
and cκj (τsq) = 0 for j ∈ J κ, i.e. we take the same costs as

before except with the difference that we take the schools that are removed from the program to

have zero costs. In Appendix S.2.5, we describe how we can continue to use the programs in (33)

and (36) to learn about these parameters and, in turn, obtain estimates for these parameters using

their empirical counterparts as in Table 2 and Figure 3.

Figure 4 presents the results for the above parameters for a range of values of κ and, as in

Figure 3 for conservativeness, for the nonparametric and most flexible parametric specifications

from Table 2. Similar to Figure 3, we only report estimates here and present confidence intervals
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in Appendix S.4.5. The bounds under the nonparametric specification are considerably wider than

those under the parametric specification and especially so for the average benefit, where the upper

bound stays constant across all values of κ. This is because the data do not provide any cross-price

variation and, unlike the parametric specification, the nonparametric specification does not impose

any cross-price restrictions. Under the parametric specification, Figure 4(a)-(b) reveal that the

average benefits and costs first steeply decrease and increase, respectively, from the removal of low-

tuition schools from the program and then become more stable when more expensive schools are

removed. This highlights that recipients strongly value the presence of low-tuition schools in the

program, and when these schools are removed, switch into relatively expensive government-funded

schools.

Taking the difference of the average benefit and costs, Figure 4(c) reveals that the removal of low-

tuition schools from the program generally results in the reduction of average surplus. Specifically,

we find that absent schools with tuition at most $3,500 in the program we can potentially have a

negative surplus. A closer look at Figure 2(a) reveals that nearly 30% of schools in the program

have tuition of at most this value. The estimates from Figure 4(c) highlight that the presence of

these low-tuition schools in the program play an essential role in explaining the positive net benefit

our analysis finds for the provision of the status-quo voucher amount.

6 Conclusion

In this paper, we develop new discrete choice tools that show how to robustly learn about the welfare

effects of providing school vouchers of a given amount in settings where vouchers are randomly

allocated. We use our tools to analyze the welfare effects of voucher provision in the DC Opportunity

Scholarship Program (OSP). Our estimates reveal that provision of both the status-quo voucher and

a wide range of counterfactual vouchers of different amounts have a positive net average benefit,

and that these positive results can be explained by the popularity of low-tuition schools in the

program.

We conclude by highlighting some fruitful directions for future research, which are beyond scope

of this paper. As noted in Section 2, we do not model the potential general equilibrium effects of

vouchers. Our analysis should therefore be interpreted as reflecting short-term, partial equilibrium

welfare effects, taking long-term general equilibrium responses as fixed. These responses, however,

could have potentially ambiguous effects on the welfare of both voucher recipients and non-recipients

(Epple et al., 2017). It would hence be interesting to account for these responses and analyze

their consequences on the welfare effects of the voucher. For some recent advancements in this

direction, see Bhattacharya et al. (2019), who provides welfare results accounting for certain types

of equilibrium responses in a different policy setting.
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On a related point, note that our welfare analysis is based on a static choice model. In particular,

while the OSP provided vouchers valid for at least five years, we model and analyze school choices

collected only in the initial year. In this sense, unless individuals do not change their choices across

years, our results should be more appropriately interpreted as the welfare effects of a voucher that

is to be used in the same year. As noted in Wolf et al. (2010), there is in fact substantial variation

in choice across years. It would hence also be interesting to extend our analysis to encompass

related welfare parameters in a dynamic discrete choice model, and study if the positive results we

find continue to hold.

Finally, and more generally, it would be interesting to generalize our approach to other types of

price variation observed in practice. Specifically, we exploit the fact that in our application there

was exogenous, discrete variation in prices due to the random allocation of the voucher. However,

in many applications, prices could be endogenously related to the underlying variables of the model.

A promising avenue for further research would be to extend our tools to accommodate for such

endogeneity, for example through instrumental variable-type assumptions as in Berry and Haile

(2009, 2014).
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Abstract

This document presents proofs and additional details pertinent to the main analysis for the

authors’ paper titled “Estimating Welfare Effects in a Nonparametric Choice Model: The Case

of School Vouchers.” Section S.1 presents proofs of all results. Section S.2 presents additional

details pertinent to the identification analysis. Section S.3 presents the procedures used to

perform statistical inference in the empirical analysis. Section S.4 presents additional details

pertinent to the empirical analysis.
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S.1 Proofs of Propositions

S.1.1 Proof of Proposition 3.1

The proof of this proposition follows from Bhattacharya (2018, Proposition 1) and Bhattacharya

(2018, Theorem 1). We reproduce these proofs here in the context of our setup and notation for

completeness. For convenience, we drop the i sub-index here.

To see why the variable B(τ) exists and is unique, note first that the right hand side of (8) is

continuous in B(τ) as Uj is a continuous function for each j ∈ Js. In addition, since

Yj > Yj −B(τ) for j ∈ Jg ∪ Jn ,
Yj − pj(0) > Yj − pj(τ)−B(τ) for j ∈ Jv ,

for B(τ) > τ , and

Yj < Yj −B(τ) for j ∈ Jg ∪ Jn ,
Yj − pj(0) < Yj − pj(τ)−B(τ) for j ∈ Jv ,

for B(τ) < 0, note that it follows from the fact that Uj is strictly increasing for each j ∈ Js that

if B(τ) > τ then the right hand side of (8) is strictly smaller than its left hand side, whereas if

B(τ) < 0 then the right hand side will be strictly greater than the left hand side. Then, using

these two arguments together, it follows by the intermediate value theorem that there exists a

B(τ) ∈ [0, τ ] such that the right hand side equals the left hand side, i.e. a solution to (8) exists.

Furthermore, given that Uj is strictly increasing for each j ∈ Js, it also follows that the solution

to (8) must be unique.

To see why the average value of B(τ) is given by (10), note first from above that B(τ) ∈ [0, τ ]

and, in turn, that

Prob[B(τ) ≤ a] = 0 for a < 0 ,

Prob[B(τ) ≤ a] = 1 for a ≥ τ .

Next, to calculate this probability for a ∈ [0, τ), note that since Uj is strictly increasing for each

j ∈ Js, we have that B(τ) ≤ a is equivalent to

max

{
max

j∈Jg∪Jn
Uj(Yj) , max

j∈Jv
Uj (Yj − pj(0))

}

≥

max

{
max

j∈Jg∪Jn
Uj(Yj − a) , max

j∈Jv
Uj (Yj − pj(τ)− a)

}
.
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Then, it follows that for a ∈ [al(τ), al+1(τ)) for l = 0, . . . , j(τ), we have

Prob[B(τ) ≤ a] =
∑

j∈Jg∪Jn
Prob


Uj(Yj) ≥ max





max
m∈Jg∪Jn\{j}

Um(Ym) , max
m∈Jv

Um (Ym − pm(0)) ,

max
m∈Jg∪Jn

Um(Ym − a) , max
m∈Jv

Um (Ym − pm(τ)− a)








+
∑

j∈Jv
Prob




Uj(Yj − pj(0))

≥ max





max
m∈Jg∪Jn

Um(Ym) , max
m∈Jv\{j}

Um (Ym − pm(0)) ,

max
m∈Jg∪Jn

Um(Ym − a) , max
m∈Jv

Um (Ym − pm(τ)− a)








=
∑

j∈Jg∪Jn
Prob


Uj(Yj) ≥ max





max
m∈Jg∪Jn\{j}

Um(Ym) , max
m∈Jv , m≤l

Um (Ym − pm(0)) ,

max
m∈Jv ,m>l

Um (Ym − pm(τ)− a)








+
l∑

j=1

Prob




Uj(Yj − pj(0))

≥ max





max
m∈Jg∪Jn

Um(Ym) , max
1≤m≤l,m6=j

Um (Ym − pm(0)) ,

max
l<m≤J

Um (Ym − pm(τ)− a)








=
∑

j∈{g,n},
1≤j≤l

qj (p1(0), . . . , pl(0), pl+1(τ) + a, . . . , pJ(τ) + a) ,

where the second equality follows from the fact that Uj is strictly increasing for each j ∈ Js
along with Yj − pj(τ) − a ≤ Yj − pj(0) for j ≤ l as pj(τ) = 0 and a ≥ aj(τ) = pj(0), and

Yj − pj(τ) − a ≥ Yj − pj(0) for j > l as pj(0) − pj(τ) = min{τ, pj(0)} ≥ al+1(τ) > a, and the

final equality follows from the definition of the average demand functions. Finally, given that for a

positive random variable X we have that its expectation is given by

E[X] =

∫ ∞

0
[1− Prob[X ≤ x]] dx ,

it follows from the above characterization of Prob[B(τ) ≤ a] along with noting that

J∑

j=l+1

qj(p1(0), . . ., pl(0), pl+1(t) + a, . . . , pJ(τ) + a)

= 1−




∑

j∈{g,n},
1≤j≤l

qj (p1(0), . . . , pl(0), pl+1(τ) + a, . . . , pJ(τ) + a)


 ,

that the average value of B(τ) is given by (10). This concludes the proof.

S.1.2 Proof of Proposition 4.1

In order to prove the proposition, we need to show that Θ ⊆ ΘB and ΘB ⊆ Θ, and that ΘB =

[θB, θ̄B] if B is non-empty. Below, we divide the proof into three parts respectively showing each
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of these statements. First, we show Θ ⊆ ΘB, i.e for every θ0 ∈ Θ there exists a β ∈ B such that

θB(β) = θ0. Second, we show ΘB ⊆ Θ, i.e. for every θ0 ∈ ΘB there exists a q ∈ Q such that

θ(q) = θ0. Third, we show that if B is non-empty then ΘB = [θB, θ̄B] .

Before proceeding, it is useful to first explicitly state the restrictions on β that characterize B as

well as the expression for the function θB. To this end, note that B corresponds to all β such that

the corresponding q determined by (29) satisfies the restrictions in (16)-(17), (4) and (18)-(21). In

turn, observe that (16) and (17) equivalently correspond to

0 ≤ βj(w) ≤ 1 for each j ∈ J , (S.1)
∑

j∈J
βj(w) = 1 (S.2)

for each w ∈ W. To state the equivalent restriction corresponding to (4), we introduce additional

notation where w(j) = {t ∈ R : pj = t for some p ∈ w} for each w ∈ W and j ∈ Jv. Then, observe

that (4) equivalently corresponds to stating that for each w,w′ ∈ W such that t > t′ for all

t ∈ w(j), t′ ∈ w′(j) for j ∈ J ′ ⊆ Jv and w(j) = w′(j) for j ∈ Jv \ J ′, we have that

βj(w) ≥ βj(w′) (S.3)

for each j ∈ J \ J ′. Finally, observe that (18)-(21) equivalently corresponds to

βj ({p(0)}) = Pj|0 , (S.4)

βj ({p(τsq)}) = Pj|1 , (S.5)

for each j ∈ J . Then, it follows we can equivalently characterize B as

B =
{
β ∈ Rdβ : β satisfies (S.1)− (S.5)

}
, (S.6)

i.e. the set of all β that satisfy the above restrictions. The expression for θB depends on the choice

of parameter. As each of our parameters can be characterized by AB(τ) or AC(τ) by appropriately

choosing τ ∈ {τsq, τc} along with taking differences, we only derive the expression for θB when θ

corresponds to either AB(τ) or AC(τ) for some generic τ ∈ {τsq, τc}. In the case of AB(τ), observe

that θ and θB are given by

θ(q) ≡
j(τ)∑

l=0

J∑

j=l+1

al+1(τ)∫

al(τ)

qj(min{p(0), p(τ) + a}) da , (S.7)

=

j(τ)∑

l=0

J∑

j=l+1

∑

u∈U(l,τ)

āu∫

au

qj(min{p(0), p(τ) + a}) da , (S.8)

=

j(τ)∑

l=0

J∑

j=l+1

∑

u∈U(l,τ)

(āu − au) · βj(h(u)) ≡ θB(β) , (S.9)
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where min{p(0), p(τ) + a} ≡ (min{p1(0), p1(τ) + a}, . . . ,min{pJ(0), pJ(τ) + a}), U(l, τ) ≡ {u ∈ U :

u ⊆ Pl(τ)} and h(u) ∈ W for a given u ∈ U is such that h(u) =
J∏
j=1

u(j). In particular, the first

line simply recalls rewriting of AB(t) in terms of q from (10), the second line follows from rewriting

(10) in terms of the collection of sets U , and the third line then directly follows from substituting

the equation in (29). In the case of AC(τ), observe that θ and θB are given by

θ(q) ≡
∑

j∈J
cj(τ) · qj(p(τ))−

∑

j∈J
cj(0) · qj(p(0)) , (S.10)

=
∑

j∈J
cj(τ) · βj({p(τ)})−

∑

j∈J
cj(0) · βj({p(0)}) ≡ θB(β) , (S.11)

where the first line simply recalls the definition of AC(τ) from (11), and the second line follows

directly from substituting the equation in (29).

Given the explicit characterizations of B and θB, we now proceed to presenting the proofs of

each of the three parts.

Part 1: Since θ0 ∈ Θ, there exists by definition a q ∈ Q such that θ(q) = θ0. Using this q, we

construct a β such that β ∈ B and θB(β) = θ0. In particular, we take β to be such that

βj(w) =

1∫

0

qj (p(a,w)) da (S.12)

for each w ∈ W and j ∈ J , where, for each a ∈ (0, 1), p(a,w) = (p1(a,w), . . . , pJ(a,w)) with

pj(a,w) = w(j) + (w̄(j) − w(j)) · a for each j ∈ Jv such that w̄(j) = sup{t : t ∈ w(j)} and

w(j) = inf{t : t ∈ w(j)}.

We now show this constructed β is such that β ∈ B and θB(β) = θ0. First, we show that β ∈ B,

i.e. it satisfies the restrictions in (S.1)-(S.5). The restriction in (S.1) is satisfied for each w ∈ W
and j ∈ J as

0 ≤ βj(w) =

1∫

0

qj (p(a,w)) da ≤
1∫

0

1da ,

where the equality follows from (S.12) and the inequalities follow from (16). Similarly, the restriction

in (S.2) is satisfied for each w ∈ W and j ∈ J as

∑

j∈J
βj(w) =

1∫

0

∑

j∈J
qj (p(a,w)) da =

1∫

0

1da ,

where the first equality follows from (S.12) and the second equality from (17). Next, to see why

(S.3) is satisfied, take w,w′ ∈ W such that t > t′ for all t ∈ w(j), t′ ∈ w′(j) for j ∈ J ′ ⊆ Jv and
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w(j) = w′(j) for j ∈ Jv \ J ′. Observe, for each a ∈ (0, 1), it follows that pj(a,w) > pj(a,w) for

j ∈ J ′ ⊆ Jv and pj(a,w) = pj(a,w
′) for j ∈ Jv \ J ′. In turn, it directly follows from (4) that

qj(a,w) ≥ qj(a,w′)

for each a ∈ (0, 1) and j ∈ J \ J ′. Then, taking the integral over a ∈ (0, 1) and using (S.12), it

directly follows that (S.3) is satisfied. Finally, we show that the restrictions in (S.4) and (S.5) are

satisfied. To this end, observe that this is the case as

βj({p(0)}) = qj(p(0)) = Pj|0 ,

βj({p(τsq)}) = qj(p(τsq)) = Pj|1

for each j ∈ J , where in both lines the first equality follows from (S.12) and the second equality

follows from (18)-(21).

Next, we show that the constructed β is such that θB(β) = θ0. Since θ(q) = θ0, this is equivalent

to showing θB(β) = θ(q). As we noted above, each of our parameters can be written in terms of

AB(τ) or AC(τ) for an appropriate choice of τ ∈ {τsq, τc}. As a result, we only show θB(β) = θ(q)

when our parameter is equal to either AB(τ) or AC(τ) for a generic τ ∈ {τsq, τc}. In the case

of AB(τ), observe that the various components in θ(q) in (S.8) can be written in terms of the

constructed β as

āu∫

au

qj (min{p(0), p(τ) + a}) da = (āu − au)

1∫

0

qj (p(a, h(u))) da = βj(h(u))

for each u ∈ U(l, τ), 0 ≤ l ≤ j(τ) and l+1 ≤ j ≤ J , where the first equality follows from the change

of variables a = au + (āu − au) · a′ along with the above definition of p(a,w) with w = h(u), and

the second equality from (S.12). Similarly, in the case of AC(τ), observe the various components

of θ(q) in (S.10) can be written as

qj
(
p(τ ′)

)
=

1∫

0

qj
(
p
(
a, {p(τ ′)}

))
da = βj({p(τ ′)})

for each τ ′ ∈ {0, τ} and j ∈ J , where the first equality follows by construction given that

p (a, {p(τ ′)}) = p(τ ′) and the second equality from (S.12). Then, in both cases, substituting these

components rewritten in terms of β in the expressions for θ(q) in (S.8) and (S.10) results in the cor-

responding expression for θB(β) in (S.9) and (S.11), respectively, and, in turn, that θB(β) = θ(q).

This completes the first part of the proof.

Part 2: Since θ0 ∈ ΘB, there exist by definition a β ∈ B such that θB(β) = θ0 and, in turn,

by how ΘB and θB were constructed, a q ∈ Qfd
B that is related to β by the equation in (29) such

that θ(q) = θB(β) = θ0. Since it holds that Qfd
B ⊆ QB, it follows that q ∈ Q. This completes the

second part of the proof.
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Part 3: Given the various linear restrictions that define B in (S.6), observe that B is a convex

and compact set. In addition, it is also a non-empty set by assumption. Then, since θB is a

continuous real-valued scalar function, it follows that the image of this function over B given by

ΘB is a convex, compact and non-empty set on the real line, i.e. a closed interval with endpoints

given by (32). This completes the final part of the proof.

S.1.3 Proof of Proposition 4.2

Note A is a connected and non-empty set. Then, since θA is a continuous real-valued scalar function,

it follows that the image of this function over A given by ΘA is a connected and non-empty set on

the real line, i.e. an interval whose closure has endpoints given by (36).

S.2 Additional Details on Identification Analysis

S.2.1 Point Identification of Demand Functions

In this section, we show the demand functions q can be point identified under the specification in

(6)-(7). To this end, observe, under this specification, the data restrictions in (18)-(21) imply

αj0 + αj1 · pj (0) = Pj|0 − Pg|0 , (S.13)

αj0 + αj1 · pj (τsq) = Pj|1 − Pg|1 (S.14)

for each j ∈ Jv, and

αn = Pn|0 − Pg|0 = Pn|1 − Pg|1 . (S.15)

From (S.13)-(S.14), given there are two equations and two unknowns, it follows that αj0 and αj1

are point identified for j ∈ Jv by the data provided pj (τsq) does not equal pj (0). From (S.15), it

directly follows that αn is point identified. In turn, since α is point identified, it follows that the q

is point identified under this specification.

It is worth highlighting that the specification in (6)-(7) imposes restrictions conceptually similar

to a logit specification, a commonly used parameterization in discrete choice analysis, that also

achieves point identification in our setup. This logit specification is given by

log(qj(p))− log(qg(p)) = γj0 + γj1 · pj for j ∈ Jv , (S.16)

log(qn(p))− log(qg(p)) = γn , (S.17)

for some {γjk : j ∈ Jv, 0 ≤ k ≤ 1} and {γj0 : j ∈ {g, n}}, i.e. the difference in the log demands

for a given school in Jv and any school in Jg is a linear function of that school’s price and the
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difference in the log demands for any school in Jn and any school in Jg is constant. Often, the logit

specification is imposed by making assumptions on the underlying utilities. The one in (S.16)-(S.17)

can for example be implied by assuming that

Uij = γj0 + γj1 · pj + εij for j ∈ Jv ,

max
j∈Jn

Uij = γn + εin ,

max
j∈Jg

Uij = 0 ,

i.e. the utility of each school in Jv is linear function of its own price and additively separable

in the remaining underlying unobservables and the utility of the maximum government school

is normalized to zero, and by also assuming that the components of the remaining underlying

unobservables

(εin, εi1, . . . , εiJ)

are independently and identically distributed according to the Type I extreme value distribution.

Importantly, comparing (6)-(7) to (S.16)-(S.17), observe that both specifications impose ar-

guably strong restrictions that do not allow each demand function in J to flexibly vary with prices

of other schools. Similar to how (6)-(7) does not allow qj − qg for a given j ∈ J to not vary with

prices pm for m 6= j ∈ Jv, (S.16)-(S.17) also does not allow log(qj) − log(qg) to vary in such a

manner. As a result, similar to how the data in our empirical analysis in Section 5 reveals that

(6)-(7) is misspecified, the data will also imply that this is the case with (S.16)-(S.17).

S.2.2 Procedure to Compute U

In this section, we describe a procedure that can be used to obtain a collection of sets U that

partition P∗ in (27) as in Definition 4.1. Before proceeding, note, in the formal sense, a partition

ensures that each element of P∗ is only in one set of U . As a result, this requires carefully defining

the boundaries of the set u ∈ U satisfying Definition 4.1(i) to be either closed or open. However,

in a practical sense, this distinction is not required in our analysis as our parameters only take

Lebesgue integrals over these sets. To this end, in this section, we instead consider the following

alternative set of prices to that in (27):

P∗∗ =

j(τsq)⋃

l=0

P ′l (τsq)

j(τc)⋃

l=0

P ′l (τc)
⋃
{p(0), p (τsq) , p (τc)}

where P ′l(τ) = {p ∈ P : pj = min{pj(0), pj(τ) + a} for a ∈ (al(τ), al+1(τ)) for each j ∈ Jv} for 0 ≤
l ≤ j(τ) for each τ ∈ {τsq, τc}, and describe a procedure to show how to obtain a collection of sets

U that partition this set as in Definition 4.1. We emphasize, however, by using more notation to

7



carefully adjust the endpoints of the intervals, the collection of sets we obtain will also correspond

to a partition of P∗.

In order to understand the main idea behind our procedure, observe first that

U(τsq) ∪ U(τc)

equals P∗∗, where

U(τ) =
{
P ′0(τ), . . . ,P ′j(τ)(τ), {p(0)}, {p(τ)}

}
,

For each τ ∈ {τsq, τc}, observe that U(τ) corresponds to a partition of the union of the sets in it

and that and also that each u ∈ U(t) satisfies Definition 4.1(i) or (ii) along with each u, u′ ∈ U(t)

satisfying (28). However, for a given u ∈ U(τsq) and u′ ∈ U(τc), it may possibly be that (28)

is not satisfied. In particular, it may be the case that u(j) 6= u′(j) for some j ∈ Jv, but that

u(j) ∩ u′(j) is a non-empty set equal to some interval with end points corresponding to those of

either u(j) or u′(j). For example, if u = P ′l(τsq) for some l ∈ {0, . . . , j(τsq)} and u′ = P ′l(τc) for

some l′ ∈ {0, . . . , j(τc)}, we can have for some j ∈ Jv that

u(j) ∩ u′(j) =
(
min {pj(0), pj(τc) + al′(τc)} ,min

{
pj(0), pj(τsq) + a(l+1)(τsq)

})

or

u(j) ∩ u′(j) =
(
min {pj(0), pj(τsq) + al(τsq)} ,min

{
pj(0), pj(τc) + a(l′+1)(τc)

})

depending on whether the lower (upper) end point of u′(j) is greater or lower than the lower (upper)

end point of u′(j), and, alternatively, if u′ = {p(τc)} instead, we can have for some j ∈ Jv that

u(j) ∩ u′(j) = {pj(τc)} .

Our procedure is based on the idea that in such cases we can further partition the elements of

U(τsq) and U(τc) to alternatively obtain U1(τsq) and U1(τc) such that, for each τ ∈ {τsq, τc}, we

continue to have that each u ∈ U1(τ) satisfies Definition 4.1(i) or (ii) and that each u, u′ ∈ U1(τ)

satisfies (28), but, in addition, we also have that each u ∈ U1(τsq) and u′ ∈ U1(τc) satisfy (28) for

a given j∗ ∈ Jv. For a given j∗ ∈ Jv and each τ ∈ {τsq, τc}, denoting by

A1(τ) = {a0(τ), . . . , aj(τ)+1(τ)}

the set of points used to define the sets in (25) and by

A2(τ) = A1(τ) ∪ {min{pj∗(0), a+ pj∗(τ
′)} − pj∗(τ) : a ∈ A1(τ ′)}

the resulting set that includes all the points in A1(τ) in addition to those that play a role, when

we sum it with pj∗(τ), in defining the end points of the interval u(j∗) for each u ∈ U(τ ′) for

τ ′ 6= τ ∈ {τsq, τc}, this alternative set can be given by

U1(τ) =
{
P ′′0 (τ), . . . ,P ′′L(τ)−1(τ), {p(0)}, {p(τ)}

}
(S.18)
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where a∗0(τ) < . . . < a∗L(τ)(τ) denotes the ordered values of the set A2(τ) and

P ′′l (τ) =
{
p ∈ P : pj = min{pj(0), pj(τ) + a}, a ∈

(
a∗l (τ), a∗l+1(τ)

)
for each j ∈ Jv

}

for 0 ≤ l ≤ L(τ)−1. As before, observe that each u ∈ U1(τ) satisfies Definition 4.1(i) or (ii) and that

each u, u′ ∈ U1(τ) satisfies (28). To see why, in addition, for each u ∈ U1(τsq) and u′ ∈ U1(τc) we

have that (28) is satisfied for j∗ ∈ Jv, suppose that it wasn’t the case. In this case, we would then

instead have that u(j∗)∩u′(j∗) = [a, ā] (or, alternatively, [ā, a]), where a = min{pj∗(0), pj∗(τsq)+a}
for some a ∈ A2(τsq) and ā = min{pj∗(0), pj∗(τc) + a′} for some a′ ∈ A2(τc). However, observe

since, by construction, we have that ā− pj∗(τsq) ∈ A2(τsq) and a− pj∗(τc) ∈ A2(τc), it follows that

there also exists a ũ ∈ U1(τsq) and ũ′ ∈ U1(τc) such that ũ(j∗), ũ′(j∗) ⊆ [a, ā]. As a result, since

it holds that u, ũ ∈ U1(τsq) and u′, ũ′ ∈ U1(τc) both satisfy (28), it must in fact be the case that

u(j∗) = u′(j∗) = [ā, a] or that u(j∗) ∩ u′(j∗) = ∅.

Our procedure is based on applying this same idea simultaneously to all j ∈ Jv with the aim

of ensuring that (28) is satisfied for all j ∈ Jv. However, unlike doing it for a given j∗, doing so

simultaneously may generate sets that do not necessarily satisfy (28) for all j ∈ Jv. As a result, our

procedure then continues to iterate through simultaneous applications of the idea until it generates

sets that satisfy (28) for all j ∈ Jv.

To summarize, we present the above described procedure in terms of the following step-wise

algorithm:

Step 1: For each τ ∈ {τsq, τc}, take A∗0(τ) = ∅ and

A∗1(τ) = {a0(τ), . . . , aj(τ)+1(τ)} ,

which corresponds to the set of points used to define the sets in (25).

...

Step s+ 1: If A∗s(τ) = A∗s−1(τ), then stop and take

U = U(τsq) ∪ U(τc) ,

where, for each τ ∈ {τsq, τc}, we have that

U(τ) =
{
P∗0 (τ), . . . ,P∗L∗(τ)−1(τ), {p(0)}, {p(τ)}

}
,

P∗l (τ) =
{
p ∈ P : pj = min{pj(0), pj(τ) + a}, a ∈

(
a∗l (τ), a∗l+1(τ)

)
for each j ∈ Jv

}

0 ≤ l ≤ L∗(τ)−1, and a∗0(τ) < . . . < a∗L(τ)(τ) denotes the ordered values of A∗s(τ). Otherwise,

i.e. if A∗s(τ) 6= A∗s−1(τ), then for each τ ∈ {τsq, τc} with τ ′ 6= τ ∈ {τsq, τc}, take

A∗s+1(τ) = A∗s(τ)

J⋃

j=1

{
min{pj(0), a+ pj(τ

′)} − pj(τ) : a ∈ A∗s(τ ′) \ A∗s−1(τ ′)
}
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which correspond to the set of all points that simultaneously define the end points of the

intervals for all j ∈ Jv not included in the previous step.

...

S.2.3 Example of a Set Br

In this section, we describe an example of a set Br such that φ(B) ⊆ Br that we use in our empirical

analysis when implementing the linear programs in (33).

To this end, it is first useful to consider an equivalent representation of the restrictions in (S.3)

written in terms of pairs w,w′ ∈ W. Specifically, consider the following restrictions

∑

j∈J>
w′,w∪J †

βj(w) ≥
∑

j∈J>
w′,w∪J †

βj(w
′) (S.19)

for each J † ⊆ J =
w,w′ and w,w′ ∈ W, where

J >w,w′ =
{
j ∈ Jv : t > t′ for all t ∈ w(j) , t′ ∈ w′(j)

}
,

J =
w,w′ = J \

(
J >w,w′ ∪ J >w′,w

)
.

and, as before, w(j) = {t ∈ R : pj = t for some p ∈ w} for each w ∈ W and j ∈ Jv. To see why

these restrictions imply those in (S.3), consider w,w′ ∈ W such that t > t′ for all t ∈ w(j), t′ ∈ w′(j)
for j ∈ J ′ ⊆ Jv and w(j) = w′(j) for j ∈ Jv \ J ′. In this case, note that J >w,w′ = J ′, J >w′,w = ∅,
and J =

w,w′ = J \J ′. Then, taking J † = {j} for each j ∈ J =
w,w′ in (S.19) implies that (S.3) holds for

each j ∈ J ′. To see why the restrictions in (S.3) imply those in (S.19), consider w,w′ ∈ W as well

as a w′′ ∈ W such that we have w′′(j) = w′(j) = w(j) for j ∈ Jv \
(
J >w,w′ ∪ J >w′,w

)
, w′′(j) = w(j)

for j ∈ J >w,w′ , and w′′(j) = w′(j) for j ∈ J >w′,w. Since this implies that t′′ > t for all t ∈ w(j),

t′′ ∈ w′′(j) for j ∈ J >w′,w and w(j) = w′′(j) for j ∈ Jv \ J >w′,w, it follows from (S.3) that

βj(w
′′) ≥ βj(w) (S.20)

for each j ∈ J =
w,w′ ∪ J >w,w′ . Similarly, since it also implies that t′′ > t′ for all t ∈ w′(j), t′′ ∈ w′′(j)

for j ∈ J >w,w′ and w′(j) = w′′(j) for j ∈ Jv \ J >w,w′ , it also follows from (S.3) that

βj(w
′′) ≥ βj(w′) (S.21)

for each j ∈ J =
w,w′ ∪ J >w′,w. Then, for each J † ⊆ J =

w,w′ , this implies that (S.19) holds as

∑

j∈J>
w′,w∪J †

βj(w
′) ≤

∑

j∈J>
w′,w∪J †

βj(w
′′) = 1−

∑

j∈J\
(
J>
w′,w∪J †

)
βj(w

′′)

≤ 1−
∑

j∈J\
(
J>
w′,w∪J †

)
βj(w) =

∑

j∈J>
w′,w∪J †

βj(w)
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where the first inequality follows from (S.21), the second equality follows from (S.2), the third

inequality from (S.20), and the final equality from (S.2).

Given the equivalence between the restrictions in (S.3) and (S.19), we can alternatively write

B in (S.6) as

B =
{
β ∈ Rdβ : β satisfies (S.1)− (S.2), (S.19), and (S.4)− (S.5)

}
.

In this set, observe that each restriction on β is for a given w ∈ W or for a pair of w,w′ ∈ W.

Our choice of Br corresponds to the subset of these restrictions on β for w ∈ Wr or for pairs of

w,w′ ∈ Wr, i.e. the subset of restrictions that directly correspond those that are in terms of βr.

More specifically, these restrictions correspond to the following

0 ≤ βr
j(w) ≤ 1 for each j ∈ J and w ∈ Wr , (S.22)

∑

j∈J
βr
j(w) = 1 for each w ∈ Wr , (S.23)

∑

j∈J>
w′,w∪J †

βr
j(w) ≥

∑

j∈J>
w′,w∪J †

βr
j(w
′) for each J † ⊆ J =

w,w′ and w,w′ ∈ Wr , (S.24)

βr
j({p(0)}) = Pj|0 for each j ∈ J , (S.25)

βr
j({p(τsq)}) = Pj|1 for each j ∈ J . (S.26)

Then, denoting by dβr the dimension of βr, the set we consider is given by

Br =
{
βr ∈ Rdβr : βr satisfies (S.22)− (S.26)

}
.

S.2.4 Implementation Details for Auxiliary Parametric Assumptions

In this section, we characterize θA and A for the optimization problems in (36), for each of our

parameters under each specification in Assumption O, Assumption AS and Assumption NS. As

highlighted in Section 4.3, we compute bounds for our parameters under these specifications using

the linear programs in (37), which are based on an alternative constraint set Ar under each specifi-

cation. As we will observe more precisely below, this is because the corresponding sets A are based

on restrictions evaluated on all possible prices in P, which makes the problems in (36) difficult to

compute. The set Ar we consider is based on taking these same restrictions but only evaluated

on a given, finite set of prices in P. The set of prices Pr we consider is given by
J∏
j=1
Pr
j , where

Pr
j = {0, pj(0)/L, pj(0) ·2/L, . . . , pj(0) · (L−1)/L, pj(0)} for some pre-specified value of L, i.e. a set

of (L + 1) equidistant points in [0, pj(0)]. In our empirical results, we take L = 4. In unreported

results, we find that increasing the value of L generally tightens the bounds in a gradual manner,

but at the cost of increased computational time, specifically for the confidence intervals.
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Below, for completeness, we also present the set of restrictions that determine Ar for each of

the specifications. For these purposes, let {p0,j , . . . , pL,j} denote the set of ordered values of Pr
j for

each j ∈ Jv and let ∆pkl,j = pkl,j − pkl−1,j denote the difference in two consecutive prices in this set,

where each of these two prices is raised to the power of k.

S.2.4.1 Under Assumption AS

We start with Assumption AS as Assumption O can be shown to be a special case of Assumption

AS. Similar to Section S.1.2, we only derive the expression for θA for the parameters AB(τ) and

AC(τ) for a generic value of τ as the expressions for the remainder of the parameters can then be

straightforwardly derived from them. In the case of AB(τ), observe that we have

θA(α) ≡
j(τ)∑

l=0

∫ al+1(τ)

al(τ)

J∑

j=l+1

(
l∑

m=1

K∑

k=0

αjmk · (pm(0))k +
J∑

m=l+1

K∑

k=0

αjmk · (pm(τ) + a)k

)
da

=

j(τ)∑

l=0

J∑

j=l+1

(
l∑

m=1

K∑

k=0

αjmk · (pm(0))k · (al+1(τ)− al(τ)) +

J∑

m=l+1

K∑

k=0

αjmk ·
(

(pm(τ) + a)k+1

k + 1

∣∣∣∣
al+1(τ)

al(τ)

))
, (S.27)

where the first line follows from directly substituting the relation between q and α from Assumption

AS in (10), and the second line from evaluating the integrals. Similarly, by substituting the relation

between q and α in (11), observe that in the case of AC(τ) we have

θA(α) ≡
∑

j∈J

J∑

m=1

K∑

k=0

αjmk ·
(
cj(τ) · (pm(τ))k − cj(0) · (pm(0))k

)
. (S.28)

Next, to see the linear restrictions that determine A, observe that by substituting the relation

between q and α into the various restrictions in (16)-(17), (4) and (18)-(21) we obtain

J∑

m=1

K∑

k=0

αjmk · pkm ≥ 0 for each j ∈ J , (S.29)

∑

j∈J

J∑

m=1

K∑

k=0

αjmk · pkm = 1 (S.30)

for all p ∈ P,

J∑

m=1

K∑

k=0

αjmk ·
(

(pm)k − (p′m)k
)
≥ 0 (S.31)
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for each j ∈ J \ J ′ and p, p′ ∈ P such that pj > p′j for j ∈ J ′ ⊆ Jv and pj = p′j for j ∈ Jv \ J ′,
and

J∑

m=1

K∑

k=0

αjmk · (pm(0))k = Pj|0 , (S.32)

J∑

m=1

K∑

k=0

αjmk · (pm(τsq))k = Pj|1 (S.33)

for each j ∈ J . In turn, we have that A = {α ∈ Rdα : α satisfies (S.29)− (S.33)}, i.e. the set of α

satisfying the above restrictions.

As mentioned above, considering the above restrictions at all prices in P can be generally

difficult. We therefore only consider a subset of these restrictions that are evaluated at prices in

Pr. Simplifying and removing some jointly redundant restrictions using algebra, these restrictions

can be given by

K∑

k=0

αjjk · pkl,j +
J∑

m=1

K∑

k=0

αjmk · pk1,m ≥ 0 for each j ∈ Jv, 0 ≤ l ≤ L , (S.34)

J∑

m=i

K∑

k=0

αjmk · pk1,m ≥ 0 for j ∈ {g, n} , (S.35)

∑

j∈J

J∑

m=1

K∑

k=0

αjmk · pk1,m = 1 , (S.36)

∑

j∈J

K∑

k=0

αjmk ·∆pkl+1,m = 0 for m ∈ Jv, 0 ≤ l ≤ L− 1 , (S.37)

K∑

k=0

αjmk ·∆pkl+1,m ≥ 0 for each j ∈ J , m 6= j ∈ Jv, 0 ≤ l ≤ L− 1 , (S.38)

and (S.32)-(S.33), and, in turn, we have that Ar = {α ∈ Rdα : α satisfies (S.34)−(S.38) and (S.32)−
(S.33)}.

S.2.4.2 Under Assumption O

We can show that Assumption O corresponds to a special case of Assumption AS. In particular,

summing the equations in the statement of Assumption O across j ∈ Jv ∪ {n} and then using the

restriction in (17), we can show that

qg(p) =
1

J + 2

(
1− αn −

J∑

m=1

K∑

k=0

αmk · pkm

)
.

Along with relation between qg and the other demand functions under Assumption O, this then

implies that Assumption O corresponds to a special case of Assumption AS.
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As a result, the implementation of the bounds under Assumption O is the same as that under

Assumption AS but with a different constraint set that includes the additional restrictions imposed

by Assumption O. To this end, note that, in the presence of Assumption AS, imposing Assumption

O is equivalent to requiring that qj(p)− qg(p) = qj(p
′)− qg(p′) for all j ∈ Jv and all p, p′ ∈ P such

pj = p′j , and qn(p)− qg(p) = qn(p′)− qg(p′) for all p, p′ ∈ P, i.e. the difference in demand between

a given private voucher school or any non-participating private school and any government-funded

school is invariant to changes in the prices of the other voucher schools. Substituting the relation

between q and α from Assumption AS in these restrictions allows us to rewrite them in terms of

α, and A in this case can be given by the same one as that under Assumption AS above but with

the addition of these restrictions.

Considering these restriction only on the prices in Pr and simplifying and removing some jointly

redundant restrictions, the additional restrictions correspond to

K∑

k=0

(αjmk − αgmk) ·∆pkl+1,m = 0 (S.39)

for each j ∈ J , m 6= j ∈ Jv and 0 ≤ l ≤ L − 1. In turn, we have that Ar = {α ∈ Rdα :

α satisfies (S.34)− (S.38), (S.32)− (S.33) and (S.39)}, i.e. the set of restrictions under Assumption

AS along with the additional restriction in (S.39).

S.2.4.3 Under Assumption NS

As in Assumption AS, we derive the expressions for θA for the parameters AB(τ) and AC(τ) for

some generic value of τ . In the case of AB(τ), observe that we have

θA(α) ≡
j(τ)∑

l=0

al+1(τ)∫

al(τ)

J∑

j=l+1




l∑

m=1

K∑

kj ,km=0

αjmkjkm · (pj(τ) + a)kj · (pm(0))kmda +

J∑

m=l+1,m 6=j

K∑

kj ,km=0

αjmkjkm · (pj(τ) + a)kj · (pm(τ) + a)kmda




=

j(τ)∑

l=0

J∑

j=l+1




l∑

m=1,m 6=j

K∑

kj ,km=0

αjikjkm · (pm(0))km

(
(pj(τ) + a)kj+1

kj + 1

∣∣∣∣
al+1(τ)

al(τ)

)

J∑

m=l+1,m 6=j

K∑

kj ,km=0

αjmkjkm ·
al+1(τ)∫

al(τ)

(pj(τ) + a)kj · (pm(τ) + a)kmda , (S.40)

where the first line follows from directly substituting the relation between q and α from Assumption

NS in (10), and second line follows from evaluating one of the integrals. Moreover, using the
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binomial theorem, the remaining integral can also be analytically given by

al+1(τ)∫

al(τ)

(pj(τ) + a)kj · (pm(τ) + a)kmda =

kj∑

lj=0

km∑

lm=0

((
kj
lj

)(
km
lm

)
(pj(τ))kj−lj · (pm(τ))km−lm ·

(
alj+lm+1

lj + lm + 1

∣∣∣∣
al+1(τ)

al(τ)

))
.

Similarly, substituting the relation between q and α in (11), observe that in the case of AC(τ) we

have

θA(α) ≡
J∑

j=1

J∑

m=1,m6=j

K∑

kj ,km=0

αjik ·
(
cj(τ) · (pj(τ))kj · (pm(τ))km − cj(0) · (pj(0))kj · (pm(0))km

)

+
∑

j∈{g,n}

J∑

m=1

K∑

k=0

αjik ·
(
cj(τ) · (pm(τ))kj − cj(0) · (pm(0))km

)
. (S.41)

Similar to (S.29)-(S.33) under Assumption AS, we can substitute the relation between q and α

from Assumption NS in (16)-(17), (4) and (18)-(21) to derive analogous restrictions that determine

A in this case. Below we state Ar that evaluates these restrictions at prices in Pr. Simplifying and

removing some jointly redundant restrictions, these restrictions can be stated as

J∑

m=1,m6=j

K∑

kj ,km=0

αjmkjkm · p
kj
l,j · pkm1,m ≥ 0 for j ∈ Jv, 0 ≤ l ≤ L , (S.42)

J∑

m=1

K∑

k=0

αjmk · pk1,m ≥ 0 for j ∈ {g, n} , (S.43)

J∑

j=1

J∑

m=1,m 6=j

K∑

kj ,km=0

αjmkjkm · p
kj
1,j · pkm1,m = 1 , (S.44)

+
∑

j∈{g,n}

J∑

m=1

K∑

k=0

αjmk · pk1,m

J∑

m=1,m 6=j

K∑

kj ,km=0

(αjmkjkm + αmjkmkj ) ·∆p
kj
l+1,j · pkm1,m = 0 for j ∈ Jv, 0 ≤ l ≤ L− 1 , (S.45)

+
∑

m∈{g,n}

K∑

k=0

αmjk ·∆pkl+1,j

K∑

kj ,km=0

(αjmkjkm + αmjkmkj ) ·∆p
kj
lj+1,j ·∆pkmlm+1,m = 0 for j ∈ Jv, m 6= j ∈ Jv, (S.46)

0 ≤ lj , lm ≤ L− 1,

K∑

kj ,km=0

αjmkjkm · p
kj
lj ,j
·∆pkmlm+1,m ≥ 0 for j ∈ Jv, m 6= j ∈ Jv , (S.47)
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0 ≤ lj ≤ L, 0 ≤ lm ≤ L− 1 ,

K∑

k=0

αjmk ·∆pkl+1,m ≥ 0 for j ∈ {g, n}, m ∈ Jv , (S.48)

0 ≤ l ≤ L− 1 ,

J∑

m=1,m 6=j

K∑

kj ,km=0

αjmkjkm · (pj(0))kj · (pm(0))km = Pj|0 for j ∈ Jv , (S.49)

J∑

m=1,m6=j

K∑

kj ,km=0

αjmkjkm · (pj(τsq))kj · (pm(τsq))km = Pj|1 for j ∈ Jv , (S.50)

J∑

m=1

K∑

k=0

αjmk · (pj(0))k = Pj|0 for j ∈ {g, n} , (S.51)

J∑

m=1

K∑

k=0

αjmk · (pj(τsq))k = Pj|1 for j ∈ {g, n} , (S.52)

and, in turn, we have that Ar = {α ∈ Rdα : α satisfies (S.42)− (S.52)}.

S.2.5 Extension for the Role of Low-tuition Schools in the Program

In the empirical analysis in Section 5.5, we noted that our identification analysis can be straightfor-

wardly extended to evaluate what we can learn for the parameters defined in (38)-(40) for a given

value of κ ∈ R+. In this section, we describe this extension.

To begin, observe, similar to the parameters in Section 3, each of these parameters can be

written as functions of q. Indeed, this is true by definition for ACκ(τsq). For ABκ(τsq), one can

modify the arguments in Proposition 3.1 in a straightforward manner to obtain that

ABκ(τsq) =

ajκ+1(τsq)∫

0




J∑

j=jκ+1

qj(p1(0), . . . , pjκ(0), pjκ+1(τsq) + a, . . . , pJ(τsq) + a)


 da

+

j(τsq)∑

l=jκ+1

al+1(τsq)∫

al(τsq)




J∑

j=l+1

qj(p1(0), . . . , pl(0), pl+1(τsq) + a, . . . , pJ(τsq) + a)


 da .

(S.53)

Then, given that both ABκ(τsq) and ACκ(τsq) can be written in terms of q, it also directly follows

that ASκ(τsq) can as well. Below, we show how we can continue to apply Proposition 4.1 and

Proposition 4.2 to characterize what we can learn for each of these parameters under the baseline

nonparametric specification and under the auxiliary parametric specifications, respectively.
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S.2.5.1 Baseline Nonparametric Specification

We start with the baseline nonparametric specification. Recall from the proof of Proposition 4.1

that it is useful to first derive the expression for θB for each of the parameters. In the case of

ABκ(τsq), similar to AB(τsq) in (S.7)-(S.9), observe that θ and θB can be shown to be given by

θ(q) ≡
jκ+1∑

l=0

J∑

j=jκ+1

∑

u∈U(l,τsq)

āu∫

au

qj(p1(0), . . . , pjκ(0), pjκ+1(τsq) + a, . . . , pJ(τsq) + a) da

+

j(τsq)∑

l=jκ+1

J∑

j=l+1

∑

u∈U(l,τsq)

āu∫

au

qj(min{p(0), p(τsq) + a}) da

=

jκ+1∑

l=0

J∑

j=jκ+1

∑

u∈U(l,τsq)

(āu − au) · βj(hκ(u)) +

j(τsq)∑

l=jκ+1

J∑

j=l+1

∑

u∈U(l,τsq)

(āu − au) · βj(h(u))

≡ θB(β) ,

where, similar to before, min{p(0), p(τsq) + a} ≡ (min{p1(0), p1(τsq) + a}, . . . ,min{pJ(0), pJ(τsq) +

a}), U(l, τsq) ≡ {u ∈ U : u ⊆ Pl(τsq)} and h(u) ∈ W for a given u ∈ U is such that h(u) =
J∏
j=1

u(j),

and, in addition, hκ(u) ∈ W for a given u ∈ U is such that hκ(u)(j) = {pj(0)} for j ≤ jκ(τsq) and

hκ(u)(j) = u(j) for j > jκ(τsq). In the case of ACκ(τsq), similar to AC(τ) in (S.10)-(S.11), observe

that θ and θB can be shown to be given by

θ(q) ≡
∑

j∈J
cκj (τsq) · qj(pκ(τsq))−

∑

j∈J
cj(0) · qj(p(0))

=
∑

j∈J
cκj (τsq) · βj({pκ(τsq)})−

∑

j∈J
cj(0) · βj({p(0)}) ≡ θB(β) .

The expression from ASκ(τsq) can similarly be derived from the difference of the above two expres-

sions. Then, recall again from the proof of Proposition 4.1 that we can show that the proposition

applies to these parameters if in Part 1 of the proof we can show that every for every q ∈ QB with

θ(q) = θ0, the β constructed from this q through (S.12) satisfies θB(β) = θ0. This can be shown for

these parameters using arguments analogous to those used to show this was the case for AB(τsq)

and AC(τsq) in Part 1 of the proof, from which it then follows that Proposition 4.1 applies to these

parameters.

Recall in our empirical analysis for the parameters in Section 3 we don’t directly apply opti-

mization problems from Proposition 4.1, but the more computationally tractable alternatives from

(33). However, for the above parameters, the constructed Wr is slightly different as they are de-

fined over a slightly different sets of prices. For these parameters, observe the following larger set

of prices given by

Wκ,r =Wr ∪ {w ∈ W : w(j) = {pj(0)} for j ≤ jκ,
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w(j) ∈ (pj(τsq), pj(τsq) + ajκ+1(τsq)) or {pj(τsq)} for j > jκ}

corresponds to a set of prices that are sufficient in the definition of these additional parameters.

Then, replacing Wr by Wκ,r in the arguments leading to (33), we can similarly only consider

a subvector of β defined over this set sufficient to define the parameters, and similarly obtain

linear programs as in (33) giving outer sets containing the identified set for these parameters with

constraints corresponding to those on this subvector determined from every pair of w,w′ ∈ Wκ,r as

in Section S.2.3.

S.2.5.2 Auxiliary Parametric Specifications

We next proceed to the auxiliary parametric specifications. In this case, recall from the proof

of Proposition 4.2 that the proof, and hence the proposition, directly applies since each of these

parameters, analogous to the parameters in Section 3, can be rewritten as continuous functions of

α. However, as observed in Section S.2.4, recall that the expressions for these functions play an

important role in the implementation of the problems in (36) and the more practical versions in

(37). Similar to the derivation of the expressions for AB(τsq) and AC(τsq) in Section S.2.4, one can

derive these expressions for ABκ(τsq) and ACκ(τsq), and in turn ASκ(τsq), for the specifications in

Assumption O, Assumption AS and Assumption NS. For completeness, we present these expressions

below.

We start with Assumption AS, as Assumption O corresponds to a special case of it. In the case

of ABκ(τsq), similar to (S.27), observe that by directly substituting the relation between q and α

from Assumption AS in (S.53) we have

θA(α) ≡
J∑

j=jκ+1

K∑

k=0




jκ∑

m=1

αjmk · (pm(0))k · ajκ(τsq) +

J∑

m=jκ+1

αjmk ·
(pm(τsq) + ajκ+1(τ))k+1

k + 1
da




+

j(τsq)∑

l=jκ+1

J∑

j=l+1

(
l∑

m=1

K∑

k=0

αjmk · (pm(0))k · (al+1(τsq)− al(τsq)) +

J∑

m=l+1

K∑

k=0

αjmk ·
(

(pm(τsq) + a)k+1

k + 1

∣∣∣∣
al+1(τsq)

al(τsq)

))

where the integrals can be explicitly characterized as in (S.27). In the case of ACκ(τsq), similar to

(S.28), observe that by directly substituting the relation between q and α from Assumption AS in

(39) we have

θA(α) ≡
∑

j∈J

jκ∑

m=1

K∑

k=0

αjmk ·
(
cκj (τsq)− cj(0)

)
· (pm(0))k

+
∑

j∈J

J∑

m=jκ+1

K∑

k=0

αjmk ·
(
cκj (τsq) · (pm(τsq))k − cj(0) · (pm(0))k

)
.
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Next, we present the expressions for Assumption NS. In the case of ABκ(τsq), similar to (S.40),

observe that by directly substituting the relation between q and α from Assumption NS in (S.53)

we have

θA(α) ≡
J∑

j=jκ+1




jκ∑

m=1

K∑

kj ,km=0

αjmkjkm · (pm(0))km ·




ajκ+1(τsq)∫

0

(pj(τsq) + a)kj da




+
J∑

m=jκ+1
m6=j

K∑

kj ,km=0

αjmkjkm ·




ajκ+1(τ)∫

0

(pj(τsq) + a)kj · (pm(τsq) + a)km da







+

j(τsq)∑

l=jκ+1

J∑

j=l+1




l∑

m=1

K∑

kj ,km=0

αjmkjkm · (pm(0))km ·




al+1(τsq)∫

al(t)

(pj(τsq) + a)kj da




+
J∑

m=l+1
m6=j

K∑

kj ,km=0

αjmkjkm ·




al+1(τsq)∫

al(τsq)

(pj(τsq) + a)kj · (pm(τsq) + a)km da





 ,

where the integrals can be explicitly characterized (S.40). In the case of ACκ(τsq), similar to (S.41),

observe that by directly substituting the relation between q and α from Assumption AS in (39) we

have

θA(α) ≡
jκ∑

j=1

jκ∑

m=1
m 6=j

K∑

kj ,km=0

αjmkjkm · (pj(0))kj · (pm(0))km ·
(
cκj (τsq)− cj(0)

)

+

jκ∑

j=1

J∑

m=jκ+1
m 6=j

K∑

kj ,km=0

αjmkjkm · (pj(0))kj ·
(

(pm(τsq))km · cκj (τsq)− (pm(0))km · cj(0)
)

+
J∑

j=jκ+1

jκ∑

m=1
m6=j

K∑

kj ,km=0

αjmkjkm · (pm(0))km ·
(

(pj(τsq))kj · cκj (τsq)− (pj(0))kj · cj(0)
)

+

J∑

j=jκ+1

J∑

m=jκ+1
m6=j

K∑

kj ,km=0

αjmkjkm ·
(

(pj(τsq))kj · (pm(τsq))km · cκj (τsq)

− (pj(0))kj · (pm(0))km · cj(0)
)

+
∑

j∈{g,n}

jκ∑

m=1

K∑

k=0

αjmk · (pm(0))k ·
(
cκj (τsq)− cj(0)

)

+
∑

j∈{g,n}

J∑

m=jκ+1

K∑

k=0

αjmk ·
(

(pm(τsq))k · cκj (τsq)− (pm(0))k · cj(0)
)
.
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S.3 Statistical Inference

In this section, we describe the procedures used to construct confidence intervals for our parameters

of interest and p-values for the specification tests presented in our empirical analysis in Section 5.

To this end, let

{(Di, Zi) : 1 ≤ i ≤ N} (S.54)

denote our sample of N observations, assumed to be independently and identically distributed, on

which our statistical tests are based. In Section S.3.1 below, we first describe the procedure for

constructing confidence intervals; and, in Section S.3.2, we then describe the related procedure for

constructing p-values for testing the specification.

S.3.1 Confidence Interval

Recall that our parameters of interest are generally bounded across our various specifications, where

the lower and upper bounds are given by minimization and maximization problems, respectively.

We construct confidence intervals such that each point in these bounds lies in the interval with

probability at least (1 − α)% for some pre-specified value of α ∈ (0, 1). In order to describe the

common procedure that we use across all the parameters and specifications, it is useful to first

define the common structure present in all these cases. To this end, note that each point in the

bounds across these cases can be written as c′x for some vector x ∈ Rdx of dimension dx that

satisfies

A1x = b1 , (S.55)

A2x ≤ b2 , (S.56)

where x corresponds to the optimizing variable in the minimization and maximization problems,

c corresponds to the vector defining the objective in these problems that depends on the choice

of parameter, the restrictions in (S.55) capture the restriction imposed on the optimizing variable

by the observed enrollment shares through (18)-(21), and the restrictions in (S.56) capture the

restriction imposed by the shape restrictions through (16)-(17) and (4). Note that across these

cases the values c, A1, A2 and b2 are known and deterministic, and only b1 needs to be estimated

as it corresponds to the observed enrollment shares.

We construct confidence intervals for the various parameters across the various specifications by

test inversion. In particular, we test the null hypothesis at level α that there exists a x satisfying

the restrictions in (S.55) and (S.56) such that c′x = θ0 for some given value of θ0 ∈ R. Confidence

intervals are then constructed by collecting the set of values of θ0 that are not rejected.
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We test this null hypothesis using a recentered subsampling procedure from Kalouptsidi et al.

(2020), who show it can have several desirable theoretical properties. In our above setup, the test

procedure can be described in the following steps:

1. Compute the test statistic

TSN (θ0) = N ·min
x

(b̂1 −A1x)′(b̂1 −A1x) (S.57)

subject to x satisfying c′x = θ0 and the restrictions in (S.56), where b̂1 corresponds to the

estimated counterpart of b1 using the data in (S.54), namely where the enrollment shares are

replaced by the empirical counterparts using the empirical distribution of the data.

2. For l = 1, . . . , B, compute the recentered subsampling test statistics

TSl,N (θ0) = Ns ·min
x

(b̂l,1 − b̂1 +A1ν̂ −A1x)′(b̂l,1 − b̂1 +A1ν̂ −A1x) (S.58)

subject to x satisfying c′x = θ0 and the restrictions in (S.56), where ν̂ corresponds to the

argmin of the minimization problem in (S.57), and b̂l,1 corresponds to the analogue of b̂1

using the lth subsample of size Ns drawn without replacement from the data in (S.54). Here

note that Ns, the subsample size, is a tuning parameter that is required to satisfy Ns < N ,

Ns → ∞ and Ns/N → 0 as N → ∞. For our empirical results, following Kalouptsidi et al.

(2020), we take Ns ≈ 8N1/2. Moreover, we take B = 200.

3. Compute the critical value of the test ĉ(1 − α, θ0) by taking the (1 − α)-quantile of the

distribution of computed subsample test statistics

HN (t, θ0) =
1

B

B∑

l=1

1{TSl,N (θ0) ≤ t} .

4. The test procedure is given by φN (θ0) = 1{TSN (θ0) > ĉ(1 − α, θ0)}, i.e we reject if the test

statistic is greater than the critical value, and do not reject if it is equal to it or below.

Given the above test procedure for a given value of θ0, we can then use it construct confidence

intervals by collecting the set all points at which we don’t reject, namely {θ0 ∈ R : φN (θ0) = 0}.

S.3.2 Specification Test

We next describe how we construct p-values for testing whether a chosen specification is correctly

specified. To this end, note that testing whether this is the case is equivalent to testing whether

there exists an admissible demand function that can generate the observed enrollment shares as

well as satisfy the various imposed restrictions. Alternatively, given the common structure present

across all our specifications noted above, this corresponds to testing the null hypothesis that there
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exists a x such that it satisfies the restrictions in (S.55) and (S.56), where the x and the restrictions,

as before, depend on the choice of specification.

Indeed, this null hypothesis is the same as that on which our confidence intervals were based

except for the absence of the additional restriction that c′x = θ0 for some value of θ0. As a result,

we can use the same stepwise test procedure described above except for removing this restriction in

the computation of the test statistics. Specifically, in this case, the test statistic in (S.57) becomes

TSN = N ·min
x

(b̂1 −A1x)′(b̂1 −A1x)

subject to x just satisfying the restrictions in (S.56); whereas the test statistic in each subsample

in (S.58) becomes

TSl,N = Ns ·min
x

(b̂l,1 − b̂1 +A1ν̂ −A1x)′(b̂l,1 − b̂1 +A1ν̂ −A1x)

subject to x just satisfying the restrictions in (S.56) and ν̂ corresponding to the argmin of the

minimization problem in computing TSN above. Using these test statistics, the test can as before

be performed by φN = 1{TSN > ĉ(1 − α)}, where ĉ(1 − α) denotes the (1 − α)-quantile of the

distribution of the computed subsample test statistics. Given these test statistics, we can also

compute a p-value for the null hypothesis by

pvalue =
1

B

B∑

l=1

1{TSl,N ≥ TSN} .

S.4 Additional Details on Empirical Analysis

S.4.1 Data Construction

In this section, we describe how we construct the data used in our empirical analysis in Section

5. The original data sample comes from the replication files for the evaluation of OSP, which are

available from the US Department of Education (Wolf et al., 2010). Recall that our analysis focuses

on the initial school choice for students who entered the experiment in 2005. Beginning with this

subsample, we make the following data-cleaning choices to reach our final analysis data.

Our analysis requires only the prices (as measured by the tuition) of the participating private

schools and the school choices of the students (to compute their enrollment shares). For all par-

ticipating private schools, we observe tuition in either the first or second year of the study, but

not necessarily both. If we observe tuition only in the first year, we assume that it was unchanged

between the first and second year (recall we use only the second year of data). Under these tu-

ition values, we find that the dimension of the program in (33) used to compute bounds under

the baseline specification can be quite large for parameters measuring welfare effects under some
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counterfactual voucher amounts. This specifically makes computing the confidence intervals for

these parameters computationally intensive. However, these computations become very tractable

when we round tuition to the closest $500. To maintain consistency across all results, we therefore

round the tuition to the closest $500 in our analysis sample. In unreported results, we also compute

the results in Table 2 without any rounding, and find that the numerical results are very similar

and the qualitative conclusions remain unchanged.

The second requirement is school choices. In our data, these are missing for 36% of the students.

By a fortunate quirk of the research design, however, participating private schools reported all

voucher students to the researchers. Unobserved school choices must therefore be either in non-

participating private schools, or government-funded schools. For these students, we assume they

enroll in these two groups at the same relative rate that students with observed choices enroll in

non-participating private and government-funded schools. Once we obtain these school choices, we

weight these observed choices using the baseline weights of the original evaluation—see Wolf et al.

(2010, Appendix A.7) for details on how these weights were constructed.

S.4.2 Summary Statistics on School Setting

In this section, we describe some additional information on the students and schools in our analysis

data that we did not present in Section 5.2.

Table S.1 reports mean characteristics of students and their families. Only families making less

than 185% of the federal poverty line were eligible for the program, and so unsurprisingly the stu-

dents are relatively disadvantaged. Approximately 50% of the children’s mothers were married, and

fewer than 50% were employed at baseline. Family income was slightly less than $17,000. Baseline

achievement reflects both positive and negative selection: families selected into participation in the

experiment, but they also had to be relatively poor to qualify. The table also reveals that voucher

recipients and non-recipients are balanced in terms of the various predetermined characteristics.

This suggests that the receipt of the voucher was random, in line with Assumption B(i).

Table S.2 reports characteristics of the private and government-funded schools in the sample,

both unweighted and weighted by attendance. Panel A reveals that the private schools are substan-

tially whiter, have smaller student/teacher ratios, and are more likely to track students by ability.

Most strikingly, many of the private schools are religious—35% of them are Catholic, and an ad-

ditional 20% another religion. In addition, private schools tend to have lower share of minorities,

lower share of student/teacher ratio, lower school sizes, have more students tracked by ability and

have lower learning difficulties program. Comparing Panel A and Panel B reveals that among the

schools that students actually attended (as reported in the attendance-weighted results in Panel

B), there are smaller differences between private and government-funded schools. For example,

while the average private school is only 73% minority (relative to 96% for the government schools),
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Table S.1: Student and family characteristics by voucher receipt

With voucher Without voucher Difference

Mother married (=1) 0.52 0.55 -0.034

Mother years education 12.20 12.25 -0.057

Mother works full time (=1) 0.35 0.38 -0.028

Mother works part time (=1) 0.11 0.11 0.007

Family income ($) 16,725 17,372 -647

HH receives govt transfers (=1) 0.03 0.01 0.016

Household size 4.11 4.14 -0.030

Black (=1) 1.00 1.00 -0.001

Male (=1) 0.50 0.47 0.030

Grade ≤ 5 (=1) 0.65 0.65 0.000

Grade 6-8 (=1) 0.21 0.21 -0.000

Grade ≥ 9 (=1) 0.14 0.14 0.000

Child learning disabilities (=1) 0.09 0.09 -0.004

Observations 1,090 730

Table shows mean student and family characteristics by treatment group, weighted using the baseline

weights. Observations rounded to the nearest 10.

SOURCE: Evaluation of the DC Opportunity Scholarship Program: Final Report (NCEE 2010-4018),

U.S. Department of Education, National Center for Education Statistics previously unpublished tabu-

lations.

the average private school attended by a voucher student is 96% minority.

S.4.3 Details and Empirical Results on Parameterized Models

In this section, we describe the various fully parameterized models we consider and how we estimate

them, and also report the estimates under them. Denoting by Pi = p(τsq) · Zi + p(0) · (1− Zi) the

realized price vector that an individual faces, the general model in (2)-(3) under the realized price

in the absence of school level covariates can be given by

Uij = −γ2iPij + ξj + εij for j ∈ Jv ,
Uin = ξn + εin for j ∈ Jn ,
Uig = 0 for j ∈ Jg .

Note that we do not include school level covariates because we do not observe them for all the schools

in our data, and also because they are constant within each school and hence their coefficients

cannot be separately identified from the school fixed effects unless additional assumptions are

made. Moreover, note here that we have normalized the utility of the group of government schools

to be 0 and hence do not have γ1i in the equations.
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Table S.2: Characteristics of sample schools

Private Government-funded Difference

Panel A: Unweighted characteristics

Share minority 0.73 0.96 -0.227

School size 222.97 325.90 -102.924

Student/teacher ratio 8.92 12.82 -3.897

Catholic (=1) 0.35 0.00 0.354

Other religious (=1) 0.20 0.00 0.200

Secular (=1) 0.45 1.00 -0.554

Gifted program (=1) 0.35 0.39 -0.040

Learning difficulties program (=1) 0.48 0.93 -0.447

Individual tutors available (=1) 0.64 0.69 -0.052

Students tracked by ability (=1) 0.79 0.60 0.192

Remedial classes available (=1) 0.61 0.68 -0.070

Panel B: Attendance-weighted characteristics

Share minority 0.96 0.98 -0.017

School size 205.86 419.46 -213.605

Student/teacher ratio 13.17 13.72 -0.551

Catholic (=1) 0.53 0.00 0.534

Other religious (=1) 0.25 0.00 0.252

Secular (=1) 0.21 1.00 -0.786

Gifted program (=1) 0.34 0.34 -0.000

Learning difficulties program (=1) 0.45 0.96 -0.518

Individual tutors available (=1) 0.80 0.77 0.026

Students tracked by ability (=1) 0.70 0.55 0.157

Remedial classes available (=1) 0.68 0.73 -0.048

Observations 60 160

Displays school characteristics for private and government-run schools. We do not break out the

private schools by participation status because the non-participating schools almost never responded.

Observations rounded to the nearest 10.

SOURCE: Evaluation of the DC Opportunity Scholarship Program: Final Report (NCEE 2010-

4018), U.S. Department of Education, National Center for Education Statistics previously unpub-

lished tabulations.

The various specifications we consider all assume that εij are independent and identically dis-

tributed with a Type I extreme value distribution. The difference across the various specifications

is how they treat γ2i, i.e. the individual level coefficient on prices. They are given by the following:

L1 (Logit 1): γ2i = γ̄0, i.e. the price coefficient is constant across individuals.

ML1 (Mixed Logit 1): γ2i = γ̄0 + vi, where vi is normally distributed with mean 0 and

variance σ2, i.e. there is unobserved heterogeneity in the price coefficient across individuals.
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L2 (Logit 2): γ2i = γ̄0 + γ̄1Xi, i.e. there is observed heterogeneity in the price coefficient

across individuals.

ML2 (Mixed Logit 2): γ2i = γ̄0 + γ̄1Xi+vi, where vi is normally distributed with mean 0 and

variance σ2, i.e. there is both observed and unobserved heterogeneity in the price coefficient

across individuals.

Since Pi = p(τsq)·Zi+p(0)·(1−Zi), where Zi is statistically independent of all the unobservables,

we can estimate the coefficients in the utilities and distributions of the unobserved terms in the

various specifications above using standard logit and mixed logit methods based on maximum

likelihood estimation. In our implementation, the individual level covariates correspond to: an

indicator whether the mother is married, an indicator for the mother is working full time, and

indicators for which bin the family income lies in, where there are four bins determined by quartiles

of the empirical distribution of family income.

Once we have the coefficient estimates, we can estimate the demand for j ∈ Jv ∪{g, n} at price

p, potentially using simulation methods. For example, for ML2, we have that

q̂j(p) =
n∑

i=1

∫
e−γ

∗
2pj+ξ̂j

1 + eξ̂n +
∑
l∈Jv

e−γ
∗
2pl+ξ̂j

φ(γ∗|ˆ̄γ, σ̂,Xi)dγ
∗ for j ∈ Jv ,

q̂n(p) =

n∑

i=1

∫
eξ̂n

1 + eξ̂n +
∑
l∈Jv

e−γ
∗
2pl+ξ̂j

φ(γ∗|ˆ̄γ, σ̂,Xi)dγ
∗ ,

q̂g(p) =
n∑

i=1

∫
1

1 + eξ̂n +
∑
l∈Jv

e−γ
∗
2pl+ξ̂j

φ(γ∗|ˆ̄γ, σ̂,Xi)dγ
∗ ,

where ξ̂j denotes the estimated version of ξj , and the integrals are estimated by simulating a large

number of draws from φ which corresponds to the density function of a normal distribution with

mean ˆ̄γ0 + ˆ̄γ1Xi and variance σ̂2, where ˆ̄γ and σ̂ are the estimated versions of γ̄ = (γ̄0, γ̄1) and

σ, respectively. Given these estimates, we can then compute AB(τ) using the expression in (10)

by numerical integration, and AC(τ) using the expression in (11) and the estimated values of

the demands at p(τsq) and p(0). In particular, for AB(τ), we take an equally spaced fine grid

{a1, . . . aM} with spacings ∆ on [0, τ ] and then take

ÂB(τ) =
M∑

m=1

j(τ)∑

l=0

J∑

j=l+1

1{am ∈ (al(τ), al+1(τ))} ·∆ · q̂j (p1(0), . . . , pl(0), pl+1(τ) + am, . . . , pJ(τ) + am) .

Figure S.1 reports the estimates of our various parameters measuring the welfare effects of

providing various voucher amounts. These are the counterparts of Figure 3(a)-(c). For comparison,

we also plot the bounds under the parametric specification from these figures here. To make the

figures visually clearer, we do not plot the bounds under the nonparametric specification.

26



Figure S.1: Parametric bounds and logit point estimates on welfare effects for counterfactual

voucher amounts
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SOURCE: Evaluation of the DC Opportunity Scholarship Program: Final Report (NCEE 2010-4018), U.S. Depart-

ment of Education, National Center for Education Statistics previously unpublished tabulations.

As briefly discussed in Section 5.3, Figure S.1(a) reveals that the various logit specifications

all produce estimates of the welfare benefits that are towards our lower bounds. For example,

the average benefit of the status-quo voucher is $1,173 under the most flexible mixed logit model,

ML2, relative to a bound of [$795, $3,038] under our most flexible parametric specification and a

bound of [$364, $5,239] under our nonparametric specification. The estimates are also sometimes

below the lower bounds of some of our stronger parametric specifications, specifically the AS and

NS specifications with K=1. We see a similar pattern at all counterfactual voucher amounts; if the

voucher were worth $12,000 then ML2 would predict an average benefit of $1,285, relative to a

bound of [$839, $3,463] under our most flexible parametric specification. As a result, given that the

estimated average costs are near the middle of the bounds (Figure S.1(b)), the logit specifications

produce estimates of the average surplus that are also towards our lower bounds, and hence may

understate the net benefits of the voucher (Figure S.1(c)). For example, the average benefit of the

status quo voucher is $1,033 under the most flexible mixed logit model, ML2, relative to a bound

of [$645, $2,887] under our most flexible parametric specification. More broadly, this suggests that

the logit specifications potentially underestimate the individual valuations for the price decrease

induced by the voucher, and in turn how responsive individuals are to this price change.

S.4.4 Sensitivity Analysis

In this section, we perform several sensitivity analyses to analyze the robustness of our empirical

results in Section 5.3 that revealed that the provision of the status-quo voucher amount results in

a positive net average benefit.

First, recall that our analysis used a pre-specified value for cg, the cost the government faces

when a student enrolls in a government-funded school. Our baseline value was $5,355. Figure
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Figure S.2: Estimated upper and lower bounds of average surplus for status-quo voucher amount

under alternative pre-specified values
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SOURCE: Evaluation of the DC Opportunity Scholarship Program: Final Report (NCEE 2010-4018), U.S.

Department of Education, National Center for Education Statistics previously unpublished tabulations.

S.2(a) presents estimates for the parameter AS(τsq), estimated in the same way as in Table 2, for a

range of values of cg. For conservativeness, we focus on the two most flexible specifications in Table

2, i.e. the nonparametric specification in Column (1) and the most flexible auxiliary parametric

specification in Column (10). The estimates reveal the average surplus increases with cg. This

arises simply due to the fact that the voucher induces recipients away from government-funded

schools, which implies that a higher cg results in higher net cost savings and hence a higher average

surplus. Observe that as long as we assume that cg is at least slightly above $5,000, the conclusion

that there is positive net average benefit continues to hold under both specifications.

Next, recall that our analysis used a pre-specified value for γ, the possible administrative costs

of providing a voucher. Our baseline value is $200. Figure S.2(b) presents estimates for AS(τsq)

for a range of values of γ. The estimates reveal that average surplus decreases with γ. This arises

simply because it makes providing the voucher more costly. For values of γ lower than $400, we

continue to find positive net average benefits under both specifications.

Finally, recall that our analysis presumed that the price of private schools was only the tuition

amount and, in turn, implicitly assumed that the voucher could be used to only offset tuition.

However, in practice, the voucher could also be used to offset other costs such as fees and trans-

portation costs. Unfortunately, it is difficult to fully account for these other additional costs in our

analysis due to the fact that they are unobserved for each individual. Nonetheless, to analyze the

sensitivity of our conclusions to this implicit assumption, we suppose that each individual has an

additional homogenous cost δ for each private participating school j in Jv that the voucher can

be used to offset. In this case, observe that the price of that school corresponds to pj(0) + δ as

opposed to pj(0), the case in our analysis. While higher values of δ weakly increase the average

benefit of the voucher as the voucher potentially offsets a higher amount, it can also increase the

net costs of the voucher. Figure S.2(c) presents the estimates for the parameter AS(τsq) for a range
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of values of δ when the price for the jth school in Jv in our main analysis is redefined from pj(0)

to pj(0) + δ. The estimates reveal that average surplus decreases with δ, implying the increase in

costs is greater than that of benefits. Observe that as long as we assume that the costs are not

more than around $400, the conclusion that there is positive net average benefit continues to hold

under both specifications.

S.4.5 Confidence Intervals for Main Results

Given that the estimated confidence intervals nearly coincide with the estimated bounds, for clarity

we did not report them in Figures 3 or 4. For completeness, we do so here; our substantive

conclusions are unchanged.

Figure S.3: Estimated upper and lower bounds on counterfactual voucher amounts
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Panels (a)-(c) respectively show the upper and lower bounds on estimated average benefit, average cost, and average

surplus for each possible value of the voucher. Panels (d)-(f) show the upper and lower bounds on the difference

between the parameter at a given level of voucher generosity and the parameter for the status-quo voucher generosity.

In each figure, point estimates are represented by the thicker lines and 95% confidence intervals by the thinner lines.

SOURCE: Evaluation of the DC Opportunity Scholarship Program: Final Report (NCEE 2010-4018), U.S. Depart-

ment of Education, National Center for Education Statistics previously unpublished tabulations.
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Figure S.4: Estimated upper and lower bounds on welfare effects of removing schools with tuition

below κ from the program
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Panels (a)-(c) respectively show the upper and lower bounds on the estimated average benefit, average cost, and

average surplus for a voucher of the status quo amount ($7,500), but excluding schools below the tuition level given

on the x axis. In each figure, point estimates are represented by the thicker lines and 95% confidence intervals by

the thinner lines.

SOURCE: Evaluation of the DC Opportunity Scholarship Program: Final Report (NCEE 2010-4018), U.S. Depart-

ment of Education, National Center for Education Statistics previously unpublished tabulations.
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