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Abstract

We are interested in the distribution of treatment effects for an experiment where
units are randomized to treatment but outcomes are measured for pairs of units. For
example, we might measure risk sharing links between households enrolled in a mi-
crofinance program, employment relationships between workers and firms exposed to
a trade shock, or bids from bidders to items assigned to an auction format. Such a
double randomized experimental design may be appropriate when there are social in-
teractions, market externalities, or other spillovers across units assigned to the same
treatment. Or it may describe a natural or quasi experiment given to the researcher.
In this paper, we propose a new empirical strategy based on comparing the eigenvalues
of the outcome matrices associated with each treatment. Our proposal is based on a
new matrix analog of the Fréchet-Hoeffding bounds that play a key role in the standard
theory. We first use this result to bound the distribution of treatment effects. We then
propose a new matrix analog of quantile treatment effects based on the difference in
the eigenvalues. We call this analog spectral treatment effects.

1 Introduction

Consider a market designer who wants to learn how a change in auction format impacts the

amounts bid by a set of unique bidders on a set of unique items. For example, the bidders

may be logging companies and the items tracts of forest land. The designer conducts an

experiment where they randomly assign bidders and items to groups, implement a different
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auction format in each group, and observe the amount each bidder bids on each item in each

group. In this scenario, the treatments are the auction formats and the object of interest is

the distribution of treatment effects. That is, the law of the difference between how much a

bidder would bid on an item in the first format and how much the same bidder would bid

on the same item in the second format.

If each format contained one identical item then the designer’s problem reduces to that

of inferring the joint distribution of two potential outcomes (what the same bidder would bid

in each format) from their marginal distributions (what two unrelated bidders would bid in

each format). Though not generally point identified, the distribution of treatment effects can

be bounded using arguments of Fréchet (1951); Hoeffding (1940); Makarov (1982) (see for

instance Manski 1997; 2003; Heckman et al. 1997; Fan and Park 2010; Abadie and Cattaneo

2018; Firpo and Ridder 2019). Under an additional assumption that the rank of an agent’s

bid is the same in both formats, the distribution of treatment effects is point identified and

described by the law of the difference in the quantiles of the bids made in each format. This

assumption is called rank invariance and the parameter, quantile treatment effects (see for

instance Abadie et al. 2002; Chernozhukov and Hansen 2005; Bitler et al. 2006; Firpo 2007).

What is an analogous way to characterize the distribution of treatment effects when

both bidders and items are unique, numerous, and randomized to treatment? Our main

technical contribution is to propose analogs of the Fréchet-Hoeffding bounds for this double

randomized setting. A key complication is that the two dimensions of randomization make

the problem quadratic rather than linear. Sharp bounds are not generally computable.

We instead consider relaxations of the quadratic problem solved by rearranging the eigen-

values of the outcome matrices associated with each treatment. We first bound the distri-

bution of treatment effects building on work by Whitt (1976); Finke et al. (1987). We then

show that under a matrix generalization of rank invariance, the distribution of treatment

effects is point identified and characterized by the difference in the eigenvalues. We call this

matrix analog of quantile treatment effects, spectral treatment effects.

Our setting is related to that of Bajari et al. (2021); Johari et al. (2022). Specifically,

our double randomized experiment is a special case of their simple multiple randomization

design, although these authors do not consider the distribution of treatment effects. Double
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randomization also plays a role in the literature on social interactions and matching (see for

instance Graham 2008; 2011; Graham et al. 2014).

Our setting is distinct from other literatures on heterogeneous effects for matrices, such

as that on vector quantiles (see for instance Carlier et al. 2016; Galichon 2016; Arellano and

Bonhomme 2021; Fan and Henry 2022). These linear tools are not generally appropriate for

the kinds of quadratic problems that arise in a double randomized experiment. See Appendix

Section C for a discussion.

The remainder of this paper is as follows. Section 1.1 provides some motivating exam-

ples. Section 2 reviews the single randomized experimental setting for reference. Section 3

describes our extension to the double randomized experiment. Sections 4 sketches the proof

behind our first result, Section 5 discusses some extensions, Section 6 provides two empirical

demonstrations, and Section 7 concludes. Proof of claims and other details can be found in

the appendices.

1.1 Motivating examples

We describe four motivating examples of double randomized experiments with matrix out-

comes from the literature. We revisit two of these examples in more detail in Section 6.

1.1.1 Example 1: Risk sharing

Banerjee et al. (2021) study the impact of a microfinance program in a sample of villages

in India. They argue that the program decreases informal risk sharing between some house-

holds. Comola and Prina (2021) study the impact of savings accounts in a sample of villages

in Nepal. They argue that the program increases informal risk sharing between some house-

holds. In this example, the units are households, the treatment is program participation,

and the outcomes are risk sharing links between pairs of households.

1.1.2 Example 2: Superstar extinction

Azoulay et al. (2010) study the impact of a superstar researcher’s death in a sample of

research groups in the life sciences. They argue that a superstars’ death decreases the
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quality of research conducted by other nearby researchers in the coauthorship network. In

this example, the units are researchers, the treatment is the death of the superstar, and the

outcomes are the amount of research conducted between coauthors.

1.1.3 Example 3: Auction format

Athey et al. (2011) study the impact of sealed versus open bid designs in a sample of US

Forest Service timber auctions. They argue that a sealed bid design incentivizes some firms

to participate who otherwise would not in the open bid design. In this example, the units

are firms and tracts of land, the treatment is the auction format, and the outcomes are the

bids made by firms on the tracts.

1.1.4 Example 4: Buyer-seller experiment

Bajari et al. (2021) model the impact of an information policy on the likelihood that a buyer

buys an item from a seller. They consider an experimental design where the researcher

independently randomizes buyers and sellers into groups and then assigns policies depending

on the group assignments. In this example, the units are buyers and sellers, the treatment

is the information policy, and the outcomes are the transactions between buyers and sellers.

2 Review of the single randomized experiment

We review the standard setting of a single randomized experiment for reference.

2.1 Model and econometric problem

2.1.1 Model

A population of agents is randomized to a binary treatment t ∈ {0, 1}. The population may

be finite or infinite. Outcomes are measured for each agent. The potential outcomes of an

agent selected uniformly at random are described by a joint distribution function H on R2.

We define (Y ∗1 , Y
∗

0 ) : [0, 1] → R2 such that (Y ∗1 (U), Y ∗0 (U)) has distribution H when U

is standard uniform, see Lemma 2.7 of Whitt (1976). We interpret (Y ∗1 , Y
∗

0 ) as describing

4



the outcomes of a continuum of agent types indexed by [0, 1]. For example, Y ∗t (u) might

describe the income of a worker with type u that participates (t = 1) or does not participate

(t = 0) in a training program.

2.1.2 Parameters of interest

We focus on the joint distribution of potential outcomes (DPO) and distribution of treatment

effects (DTE). The DPO is

F (y1, y0) := P (Y ∗1 (w) ≤ y1, Y
∗

0 (w) ≤ y0) =

∫ ∏
t∈{0,1}

1{Y ∗t (u) ≤ yt}du (1)

where y1, y0 ∈ R are arbitrary and w is a standard uniform random variable. In words, the

DPO is the mass of agent types with potential outcome less than y1 under treatment 1 and

less than y0 under treatment 0.

The DTE is

∆(y) := P (Y ∗1 (w)− Y ∗0 (w) ≤ y) =

∫
1{Y ∗1 (u)− Y ∗0 (u) ≤ y}du. (2)

In words, Y ∗1 (u)− Y ∗0 (u) is the change in outcome associated with switching the treatment

status of an agent with type u from 0 to 1. The DTE is the mass of agents for which this

individual treatment effect is less than y.

Our arguments naturally extend to many other parameters of potential interest, but their

study is left to future work.

2.1.3 Econometric problem

The task is to identify the DPO and DTE. It is complicated by the fact that the researcher

does not observe both Y ∗1 and Y ∗0 for the same population of agents. Agents are assigned to

treatment 1 or treatment 0 but not both.

For example, the researcher may assign workers to participate or not participate in a

training program. They observe the income of a participating worker under the treatment

that the worker participates in the program. They do not observe the income that the
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participating worker would have received had they not participated in the program. To infer

this missing potential outcome, the researcher must use the incomes of the workers that did

not participate in the training program.

This econometric problem is formalized by the assumption that the researcher observes

the marginal distributions of the potential outcomes given by F1(·) := H(·,∞) and F0(·) :=

H(∞, ·) on R, but not any other feature of their joint distribution H(·.·) on R2.

We represent this assumption in a potentially nonstandard way. Specifically, we assume

the the researcher observes not (Y ∗1 , Y
∗

0 ) but (Y1, Y0) : [0, 1] → R2 where Yt is equivalent to

Y ∗t up to an unknown measure preserving transformation. That is,

Yt(ϕt(u)) = Y ∗t (u) (3)

for some unknown ϕt ∈M := {φ : [0, 1]→ [0, 1] with |φ−1(A)| = |A| for any measurable A ⊆

[0, 1]}. Intuitively, Yt is a rearranged version of Y ∗t so that the two have the same marginal

distribution, but no other feature of the joint distribution of Y ∗0 and Y ∗1 can be learned from

Y0 and Y1. To be sure, (3) holds when Yt is the inverse marginal distribution (quantile)

function associated with Y ∗t (see Whitt 1976, Theorem 5.1), and so it is implied by the usual

assumption. We do not formally reference the marginal distribution or quantile function of

Y ∗t in our version of the econometric problem, however, because there is no natural analog

in the double randomized setting. See generally Lovász (2012), Section 7.3.

2.2 Some standard results for the single randomized experiment

We first bound the DPO and DTE following Fréchet (1951); Hoeffding (1940); Makarov

(1982). We then show that under a rank invariance assumption the DPO and DTE are

point identified and that they can be written as functionals of the quantiles of the outcomes

associated with each treatment following Doksum (1974); Lehmann (1975); Whitt (1976).

These results are known to the econometrics literature. We state them as a point of reference

for our extension to the double randomized experiment in Section 3.
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2.2.1 Bounds on the DPO and DTE

Plugging (3) into (1) gives the sharp bounds

min
ϕ0,ϕ1∈M

∫ ∏
t∈{0,1}

1{Yt(ϕt(u)) ≤ yt}du ≤ F (y1, y0)

≤ max
ϕ0,ϕ1∈M

∫ ∏
t∈{0,1}

1{Yt(ϕt(u)) ≤ yt}du. (4)

These bounds have a simple analyical solution. Let Ft(yt) :=
∫
1{Yt(u) ≤ yt}du. Then

Standard Result 1: For any (y1, y0) ∈ R2

max (F1(y1) + F0(y0)− 1, 0) ≤ F (y1, y0) ≤ min (F1(y1), F0(y0)) .

Standard Result 1 is often attributed to Fréchet (1951); Hoeffding (1940), although our

proof sketch in Section 4.2 follows Whitt (1976). The bounds are straightforward to compute

or estimate (in cases of sampled, mismeasured, or missing outcomes). See Manski (1997);

Heckman et al. (1997) for details and applications to program evaluation in economics.

Bounds on the DPO imply bounds on the DTE. Specifically,

Standard Result 2: For any y ∈ R

sup
(y1,y0)∈R2:
y1−y0≤y

max (F1(y1)− F0(y0), 0) ≤ ∆(y) ≤ 1 + inf
(y1,y0)∈R2:
y1−y0≤y

min (F1(y1)− F0(y0), 0) .

Standard Result 2 is often attributed to Makarov (1982). These bounds are also straight-

forward to compute or estimate. See Fan and Park (2010); Firpo and Ridder (2019) for details

and applications to program evaluation in economics.

2.2.2 Point identification of the DTE under rank invariance

The Quantile Treatment Effects parameter (QTE) refers to the difference in the quantile

functions of Y1 and Y0. Specifically, QTE(u) := Q1(u) − Q0(u) where Qt(u) := inf{y ∈ R :

u ≤ Ft(y)} is the inverse distribution (quantile) function associated with Y ∗t , or equivalently,

Yt. It is often attributed to Doksum (1974); Lehmann (1975).
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Although Qt and Y ∗t generally have the same marginal distribution for t ∈ {0, 1}, Q1−Q0

and Y ∗1 − Y ∗0 do not. In fact, the difference in quantiles is a more conservative notion of the

effect of treatment as measured, for example, by mean squared error. That is,

Standard Result 3:
∫

(Q1(u)−Q0(u))2 du ≤
∫

(Y ∗1 (u)− Y ∗0 (u))2 du.

See Corollary 2.9 of Whitt (1976).

However, under a rank invariance assumption, Q1 − Q0 and Y ∗1 − Y ∗0 do have the same

distribution. A treatment effect is rank invariant if Y ∗1 = g(Y ∗0 ) for some nondecreasing

g : R→ R.

Standard Result 4: ∆(y) =
∫
1{Q1(u)−Q0(u) ≤ y}du under rank invariance.

See Theorem 2.5 of Whitt (1976). The DPO is also identified under rank invariance with

F (y1, y0) =
∫ ∏

t∈{0,1} 1{Qt(u) ≤ yt}du.

Intuitively, rank invariance says that the rank of an agent’s outcome in the population

is the same under both treatments, i.e.
∫
1{Y ∗0 (s) ≤ Y ∗0 (u)}ds =

∫
1{Y ∗1 (s) ≤ Y ∗1 (u)}ds for

every u ∈ [0, 1]. See for example Abadie et al. (2002); Chernozhukov and Hansen (2005);

Firpo (2007) for details and applications of QTE to program evaluation in economics. We

suspect that the issues of endogoneity that arise in this work can also be addressed in our

setting through the use of control or instrument variables, but we leave this to future work.

3 The double randomized experiment

We extend the framework and results of Section 2 to the double randomized setting.

3.1 Model and econometric problem

3.1.1 Model

Our focus is on symmetric outcome matrices indexed by one population as in Examples 1

and 2 of Section 1.1. Asymmetric matrices or matrices indexed by two different populations

as in Examples 3 and 4 are handled by symmetrization. See Section 5.1.1 for details.
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A population of agents is randomized to a binary treatment t ∈ {0, 1}. The population

may be finite or infinite. Outcomes are bounded and measured for each pair of agents.

We extend the model from Section 2.1 to the double randomized setting by defining the

potential outcome functions to be indexed by pairs of agent types. Specifically, we define

(Y ∗1 , Y
∗

0 ) : [0, 1]2 → R2 such that (Y ∗1 (U, V ), Y ∗0 (U, V )) gives the distribution of potential

outcomes between a pair of agents, each drawn independently and uniformly at random from

the population, when U and V are independent standard uniform. We interpret (Y ∗1 , Y
∗

0 ) as

describing the outcomes of a continuum of agent types pairs indexed by [0, 1]2. For example,

Y ∗t (u, v) may describe the existence of a risk sharing link between households with types u

and v in the case that both enroll (t = 1) or do not enroll (t = 0) in a microfinance program.

Intuitively, the double indexed function Y ∗t represents a random matrix just as its single

indexed counterpart from Section 2 represents a random variable. This analogy is well

developed in the random matrix literature, see generally Lovász (2012); Graham (2020). In

our model, the only source of uncertainty is from the random sampling of agents. Uncertainty

due to missing data, measurement error, etc. are incorporated in Section 5.3.

3.1.2 Parameters of interest

We define the DPO and DTE as in the single randomized setting. The DPO is

F (y1, y0) := P (Y ∗1 (w, w̃) ≤ y1, Y
∗

0 (w, w̃) ≤ y0) =

∫ ∫ ∏
t∈{0,1}

1{Y ∗t (u, v) ≤ yt}dudv (5)

where y1, y0 ∈ R and w and w̃ are independent standard uniform random variables. In

words, the DPO is the mass of agent type pairs with potential outcome less than y1 under

treatment 1 and less than y0 under treatment 0.

Similarly, the DTE is

∆(y) := P (Y ∗1 (w, w̃)− Y ∗0 (w, w̃) ≤ y) =

∫ ∫
1{Y ∗1 (u, v)− Y ∗0 (u, v) ≤ y}dudv. (6)

In words, Y ∗1 (u, v)−Y ∗0 (u, v) is the change in outcome associated with switching the treatment

status of a pair of agents with types u and v from 0 to 1. The DTE is the mass of pairs of
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agent types for which this individual treatment effect is less than y.

3.1.3 Econometric problem

As before, the task is to identify the DPO and the DTE. It is also complicated by the fact

that the researcher observes at most one potential outcome for any pair of agents.

For example, the researcher may assign households to participate or not participate in a

microfinance program. They observe whether pairs of participating households form a risk

sharing link under the treatment that both households participate in the program. They

do not observe whether these households would have formed a link under the counterfactual

treatment that neither household participates. To infer this missing potential outcome, the

researcher must use the risk sharing links between the nonparticipating households.

As in Section 2.1.3, we formalize the econometric problem by assuming that the researcher

observes not (Y ∗1 , Y
∗

0 ) but (Y1, Y0) : [0, 1]2 → R2 where Yt is equivalent to Y ∗t up to an

unknown measure preserving transformation. That is,

Yt(ϕt(u), ϕt(v)) = Y ∗t (u, v) (7)

for some unknown ϕt ∈ M. Like the single randomized setting, (7) says that Yt and Y ∗t

represent the same random object. However, Y0 and Y1 do not reveal any additional informa-

tion about how the entries of Y ∗0 and Y ∗1 are related. Unlike the single randomized setting,

there is no canonical Yt that serves the role of the inverse marginal distribution (quantile)

function in the double randomized setting. The “marginal distribution of Y ∗t ” is instead an

equivalence class of functions Yt that satisfy (7). This construction is sometimes called a

graphon in the random matrix theory literature, see for example Lovász (2012), Section 7.3.

3.2 Some new results for the double randomized experiment

We first bound the DPO and DTE. We then propose a new matrix generalization of rank

invariance under which the DPO and DTE are point identified and can be written as func-

tionals of the eigenvalues of the potential outcome functions associated with each treatment.

Eigenvalues of functions are defined a bit differently than their matrix counterparts, see
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Appendix A.2 or Lovász (2012), Section 7.5 for a review.

3.2.1 Bounds on the DPO and DTE

As in the single randomized setting, plugging (7) into (5) gives sharp bounds on the DPO

min
ϕ0,ϕ1∈M

∫ ∫ ∏
t∈{0,1}

1{Yt(ϕt(u), ϕt(v)) ≤ yt}dudv ≤ F (y1, y0)

≤ max
ϕ0,ϕ1∈M

∫ ∫ ∏
t∈{0,1}

1{Yt(ϕt(u), ϕt(v)) ≤ yt}dudv. (8)

We do not consider these bounds, however, because their quadratic structure makes them

analytically and computationally intractable in general. See Cela (2013), Section 1.5.

We instead propose bounds that are not generally sharp but are tractable. For any

yt ∈ R and t ∈ {0, 1}, let λ1t(y1), ..., λRt(yt) be the R largest (in absolute value) eigenvalues

of 1{Yt(·, ·) ≤ yt} ordered to be decreasing and sR(r) = R − r. For any t, t′ ∈ {0, 1}, let∑
r λrtλrt′ and

∑
r λrtλs(r)t′ refer to

∑R̄
r=1 λrtλrt′ and

∑R̄
r=1 λrtλsR̄(r)t′ where R̄ = max{R ∈

N ∪ {∞} : maxt∈{0,1}minr∈{1,...,R} |λrt| > 0}.

In words, R̄ is the larger of the number of nonzero eigenvalues of 1{Y1 ≤ y1} and

1{Y0 ≤ y0}. When 1{Y1 ≤ y1} and 1{Y0 ≤ y0} have the same number of nonzero eigenvalues

and it is finite, then the sum
∑

r λrtλrt′ is the product of the largest eigenvalues plus the

product of the second largest eigenvalues, and so on. The sum
∑

r λrtλs(r)t′ is the product

of the largest eigenvalue of 1{Yt ≤ yt} and the smallest eigenvalue of 1{Yt′ ≤ yt′} plus the

product of the second largest eigenvalue of 1{Yt ≤ yt} and the second smallest eigenvalue of

1{Yt′ ≤ yt′}, and so on. When 1{Yt ≤ yt} has more nonzero eigenvalues than 1{Yt′ ≤ yt′},

we add 0s to the sequence of eigenvalues for 1{Yt′ ≤ yt′} until they are the same size. When

one or both of the functions have an infinite number of nonzero eigenvalues, we apply the

above algorithm to the R largest nonzero eigenvalues (in absolute value) of each function,

and then take R to infinity.

Our first result is
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Proposition 1: For any (y1, y0) ∈ R2

max

(∑
r

(
λ2
r1 + λ2

r0

)
− 1,

∑
r

λr1λs(r)0, 0

)
≤ F (y1, y0)

≤ min

(∑
r

λ2
r1,
∑
r

λ2
r0,
∑
r

λr1λr0

)
. (9)

We defer a discussion of Proposition 1 to Section 3.4, only remarking here that unlike the

infeasible bounds in (8), those in (9) are straightforward to compute because they only

depend on the eigenvalues of 1{Y ∗t ≤ yt}, or equivalently, 1{Yt ≤ yt}. They can be computed

or estimated (in cases of sampled, mismeasured, or missing outcomes) using standard tools,

see Section 5.1.3.

Following Makarov (1982), (9) also implies bounds on the DTE. Our second result is

Proposition 2: For any y ∈ R

sup
(y1,y0)∈R2:
y1−y0≤y

max

(∑
r

(
λ2
r1 − λ2

r0

)
,
∑
r

(
λ2
r1 − λr1λr0

)
, 0

)
≤ ∆(y)

≤ 1 + inf
(y1,y0)∈R2:
y1−y0≤y

min

(∑
r

(
λ2
r1 − λ2

r0

)
,
∑
r

(
λr1λr0 − λ2

r0

)
, 0

)
(10)

where λ11(y1, λ21(y1, ... and λ10(y0), λ20(y0), ... are implicitly functions of y1 and y0. In finite

data, these bounds only require the researcher to compute eigenvalues for at most N(N + 1)

values of y1 and y0 where N is the number of sampled agents. Optimizing over a smaller set

gives valid but potentially wider bounds.

3.2.2 Definition of spectral treatment effects

We propose a matrix analog of the QTE. Let {σrt}Rr=1 be the R largest (in absolute value)

eigenvalues of Yt ordered to be decreasing and {φr}Rr=1 be any orthogonal basis in L2([0, 1]).

Definition 1: The Spectral Treatment Effects parameter (STE) is

STE(u, v;φ) := lim
R→∞

R∑
r=1

(σr1 − σr0)φr(u)φr(v). (11)
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The STE is similar to the diagonalized difference in the eigenvalues of Y1 and Y0, but its exact

values depend on a choice of basis. Two natural choices are the eigenfunctions of Y1 and Y0,

denoted {φr1}Rr=1 and {φr0}Rr=1 respectively. We call STE(φ1) and STE(φ0) the Spectral

Treatment Effects on the Treated (STT) and Untreated (STU). In words, the STT takes the

observed matrix Y1 and subtracts the counterfactual formed by keeping the eigenfunctions

of Y1 and inserting the eigenvalues of Y0. That is,

STT (u, v) = Y1(u, v)− lim
R→∞

R∑
r=1

σr0φr1(u)φr1(v).

= Y1(u, v)−
∫ ∫

Y0(s, t)W (u, v; s, t)dsdt

where W (u, v; s, t) =
∑

r φr1(u)φr1(v)φr0(s)φr0(t). The second line suggests an alternative

interpretation of the STT where the counterfactual outcome for a pair of agents assigned to

treatment 1 is formed by a W -weighted average of the outcomes of agent pairs assigned to

treatment 0. The weights are generally extrapolative in the sense that they may be negative

and do not necessarily integrate to 1. In some cases the researcher may wish to explicitly

restrict the weights so that they satisfy these properties. We describe one way to do this

in Online Appendix Section D.3, but leave a formal study to future work. The weights will

also necessarily satisfy these properties under the rank invariance condition below.

The STT is analogous to the QTE which imputes a counterfactual for an agent assigned

to treatment 1 by using the outcome of a similarly ranked agent assigned to treatment 0. In

this analogy, the eigenfunctions serve the role of the rank of an agent and the eigenvalues

serve the role of the quantiles. We first show that the STE satisfies conditions analogous to

Standard Results 3 and 4 in Section 2.2.2. We then discuss some behavioral motivations for

the parameter using examples from the economics literature.

3.2.3 Point identification of the DTE under rank invariance

Like the QTE, the STE is also a more conservative notion of the effect of treatment than

Y ∗1 − Y ∗0 as measured by mean squared error. Our third result is
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Proposition 3: For any orthogonal basis {φr}∞r=1∫ ∫
STE(u, v;φ)2dudv ≤

∫ ∫
(Y ∗1 (u, v)− Y ∗0 (u, v))2 dudv. (12)

In addition, under a rank invariance assumption, the STT, STU, and Y ∗1 −Y ∗0 all have the

same distribution. To define rank invariance in the double randomization setting, we extend

the notion of a nondecreasing function to matrices following Horn and Johnson (1991),

Chapter 6.1. For any f : R → R that admits the representation f(x) =
∑∞

r=1 crx
r

and square matrix A (or function A : [0, 1]2 → R), we define the matrix lift of f to

be f(A) =
∑∞

r=1 crA
r where Ar is the rth matrix (or function) power of A, i.e. Arij =∑

t1

∑
t2
...
∑

tr−1
Ait1At1t2 ...Atr−1j. Our matrix generalization of rank invariance is then

Definition 2: A treatment effect is rank invariant if Y ∗1 = g(Y ∗0 ) where g is the matrix lift

of some nondecreasing g : R→ R.

We call Definition 2 a matrix generalization of rank invariance because it implies the

definition from Section 2 when Y ∗1 and Y ∗0 are scalars. Our fourth result is

Proposition 4: Under rank invariance,

∆(y) =

∫ ∫
1{STT (u, v) ≤ y}dudv =

∫ ∫
1{STU(u, v) ≤ y}dudv. (13)

Intuitively, if we think of the treatment working by taking in Y ∗0 and producing Y ∗1 =

g(Y ∗0 ), then rank invariance implies that the treatment affects the eigenvalues but not the

eigenfunctions of the outcome matrix Y ∗0 . This is analogous to rank invariance in the single

randomization setting, where the treatment affects the quantiles but not the ranks of the

outcome vector. We give examples where this assumption may be reasonable below.

3.2.4 Interpretation of the STE and rank invariance

Though rank invariance is a strong assumption, many economic models imply rank invariant

treatment effects. We provide examples from the literature on information diffusion, social

interaction, and community detection in Appendix Section B.
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We also interpret the STE and rank invariance assumption using an orthogonal factor

model. In this model, the outcome between two agents is determined by a weighted combina-

tion of latent orthogonal factors Yt(u, v) =
∑R

r=1 ρrtfrt(u)frt(v). For example, the existence

of a risk sharing connection between two households might depend on household size, so-

cioeconomic status, physical location, etc. The weight that a household with type u places

on the rth such factor is given by frt(u) where
∫
frt(u)fst(u)du = 0 if r 6= s. Intuitively, this

orthogonality condition says that the factors are uncorrelated across the agent types. The

model is linear in the product of the agent pairs. That is, the marginal impact of a unit

change in the product frt(u)frt(v) on the outcome Yt is described by the factor weight ρrt.

The STE contrasts the factor weights ρrt across the two treatment groups, ignoring any

difference in the corresponding factors frt(u). In some cases, a policy maker may only be

interested in the factor weights and so this focus is justified, even if rank invariance does not

hold. For example, in the setting of Golub and Jackson (2010), under certain conditions the

rate of convergence of the beliefs of a collection of näıve learners to a consensus is given by

the second largest eigenvalue of a matrix of interactions. By comparing the factor weights

of the adjacency matrices under various treatments, the policy maker can learn the impact

of the treatment on this particular outcome.

Rank invariance justifies this focus on the difference in factor weights ρr1 − ρr0, because

it implies that the treatment works by shifting the factor weights but no the factors them-

selves. For example, a microfinance treatment might not alter household size, socioeconomic

status, physical location, etc. Instead, it only changes how important these factors are in

determining the risk sharing connections. For example, the treatment might crowd out some

risk sharing between some wealthy households and so decrease the weight associated with the

socioeconomic factor. If the ranks of the factor weights are not changed, then this treatment

effect would satisfy rank invariance.

4 Sketch and discussion of the proof of Proposition 1

We show some of the main technical ideas of the paper by sketching the proof of Proposition

1. To simplify arguments we consider a finite population along the lines of Whitt (1976);
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Heckman et al. (1997), Section 3. A full proof can be found in Appendix A.

4.1 Finite approximation

To simplify our sketch, we assume in this section that Y ∗t has finite dimension. For the

single randomized experiment, we assume that Y ∗t is an N dimensional vector, the DPO is

1
N

∑N
i=1

∏
t∈{0,1} 1{Y ∗i,t ≤ yt}, and Yi,t =

∑N
j=1 Y

∗
j,tPij,t is observed where Pt is an unknown

permutation matrix. That is, Pt has {0, 1} valued entries. Rows and columns sum to 1.

Intuitively, there are N types of agents. One agent of each type is assigned to treatment

1 and one agent of each type is assigned to treatment 0. Our task is to compare the outcomes

of agents of the same type but different treatment assignment, but we do not know which

agent is of which type. Bounds on the DPO are given by maximizing and minimizing

1
N

∑N
i=1

∑N
j=1

∏
t∈{0,1} 1{Yj,t ≤ yt}Pij,t over all permutation matrices P0 and P1. That this

problem is a good approximation to (4) is outlined in Section 2 of Whitt (1976). See also

Heckman et al. (1997), Section 3.

For the double randomized experiment, we assume that Y ∗t is an N × N dimensional

matrix, the DPO is 1
N2

∑N
i=1

∑N
j=1

∏
t∈{0,1} 1{Y ∗ij,t ≤ yt}, and Yij,t =

∑N
k=1

∑N
l=1 Y

∗
kl,tPik,tPjl,t

is observed where Pt is an unknown permutation matrix. The intuition is the same as

in the single randomized experiment. There are N types of agents, one agent of each

type is assigned to each treatment, and though we would like to compare the outcomes

of agents with the same type but different treatment assignments, we do not know which

agent is of which type. The bounds on the DPO formed by maximizing and minimiz-

ing 1
N2

∑N
i=1

∑N
j=1

∑N
k=1

∑N
l=1

∏
t∈{0,1} 1{Ykl,t ≤ yt}Pik,tPjl,t over P0 and P1 are intractable

“Quadratic Assignment Problems” or QAPs, see generally Cela (2013). Our bounds are

instead based on conservative but tractable relaxations of these bounds.
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4.2 Standard Result 1

The DPO for the finite approximation to the single randomized experiment is FN(y1, y0) =

1
N

∑N
i=1

∑N
j=1

∏
t∈{0,1} 1{Yj,t ≤ yt}Pij,t. We show that

max (FN1(y1) + FN0(y0)− 1, 0) ≤ FN(y1, y0) ≤ min (FN1(y1), FN0(y0)) .

where FNt(yt) = 1
N

∑N
i=1 1{Yi,t ≤ yt} following Whitt (1976), Theorem 2.1. Our sketch relies

on the following “rearrangement inequality” due to Hardy et al. (1952), Theorem 368.

Theorem 368 (Hardy-Littlewood-Polya): For any m ∈ N and g, h ∈ Rm we have∑
r g(r)h(m−r+1) ≤

∑
r grhr ≤

∑
r g(r)h(r) where g(r) is the rth order statistic of g.

4.2.1 Sketch of proof

Theorem 368 implies that

N∑
i=1

1{Y(N−i+1),0 ≤ y0}1{Y(i),1 ≤ y1} ≤ NFN(y1, y0) ≤
N∑
i=1

1{Y(i),0 ≤ y0}1{Y(i),1 ≤ y1}

where Y(i),t is the ith order statistic of Yt. The upper bound follows

N∑
i=1

1{Y(i),0 ≤ y0}1{Y(i),1 ≤ y1} ≤ min
t∈{0,1}

N∑
i=1

1{Yi,t ≤ yt}.

The lower bound follows

N∑
i=1

1{Y(N−i+1),0 ≤ y0}1{Y(i),1 ≤ y1} =
N∑
i=1

(
1− 1{Y(N−i+1),0 > y0}

)
1{Y(i),1 ≤ y1}

≥
N∑
i=1

1{Yi,1 ≤ y1} −min

(
N∑
i=1

1{Yi,1 ≤ y1},
N∑
i=1

1{Yi,0 > y0}

)

= max

(
N∑
i=1

1{Yi,1 ≤ y1}+
N∑
i=1

1{Yi,0 ≤ y0} −N, 0

)
.
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4.3 Proposition 1

The DPO for the finite approximation to the double randomized experiment is

FN(y1, y0) =
1

N2

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

∏
t∈{0,1}

1{Ykl,t ≤ yt}Pik,tPjl,t.

We show that

max

(
N∑
r=1

(
λ2
r1 + λ2

r0

)
−N2,

N∑
r=1

λr1λsN (r)0, 0

)
≤ N2FN(y1, y2)

≤ min

(
N∑
r=1

λ2
r1,

N∑
r=1

λ2
r0,

N∑
r=1

λr1λr0

)

where λrt is the rth eigenvalue of 1{Yt ≤ yt} and sN(r) = N − r + 1. Our sketch has two

parts. The second part relies on the following result due to Birkhoff (1946); von Neumann

(1953). We say that a matrix is doubly stochastic if its entries are positive and every row

and column sums to 1.

Theorem (Birkhoff): If M is doubly stochastic then there exist an m ∈ N, α1, ..., αm > 0,

and permutation matrices P1, ..., Pm such that
∑m

t=1 αt = 1 and Mij =
∑m

t=1 αtPij,t.

4.3.1 Sketch of proof, part 1

We first show max
(∑N

r=1 (λ2
r1 + λ2

r0)−N2, 0
)
≤ N2FN(y1, y0) ≤ min

(∑N
r=1 λ

2
r1,
∑N

r=1 λ
2
r0

)
.

Write N2FN(y1, y0) =
∑N2

r=1

∑N2

s=1

∏
t∈{0,1} 1{Ỹr,t ≤ yt}P̃rs,t where ir = b r−1

N
c + 1, jr =

r−Nb r−1
N
c, Ỹr,t = Yirjr,t, and P̃rs,t = Piris,tPjrjs,t. In words, Ỹt and P̃t are vectorized versions

of Yt and Pt × Pt formed by appending their rows. Theorem 368 implies that

N2∑
r=1

1{Ỹ(N2−r+1),0 ≤ y0}1{Ỹ(r),1 ≤ y1} ≤ N2FN(y1, y0) ≤
N2∑
r=1

1{Ỹ(r),0 ≤ y0}1{Ỹ(r),1 ≤ y1}

and so following the arguments of Section 4.2.1, we have

max

(
N2∑
r=1

1{Ỹr,1 ≤ y1}+
N2∑
r=1

1{Ỹr,0 ≤ y0} −N2, 0

)
≤ N2FN(y1, y0) ≤ min

t∈{0,1}

N2∑
r=1

1{Ỹr,t ≤ yt}.
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The bounds follow since

N2∑
r=1

1{Ỹr,t ≤ yt} =
N∑
i=1

N∑
j=1

1{Yij,t ≤ yt} =
N∑
r=1

λ2
rt.

4.3.2 Sketch of proof, part 2

We now show
∑N

r=1 λr1λsN (r)0 ≤ N2FN(y1, y2) ≤
∑N

r=1 λr1λr0. These bounds follow

N∑
i,j=1

N∑
k,l=1

∏
t∈{0,1}

1{Ykl,t ≤ yt}Pik,tPjl,t =
N∑

i,j=1

[
N∑
r=1

λr1φir,1φjr,1

][
N∑
s=1

λs0φis,0φjs,0

]
=

N∑
r,s=1

λr1λs0W
φ
rs

where (λrt, φrt) is the rth eigenvalue and eigenvector pair of
∑N

k,l=1 1{Ykl,t ≤ yt}Pik,tPjl,t
and W φ, a matrix with rsth entry W φ

rs =
[∑N

i=1 φir,1φis,0

]2

, is the Hadamard square of the

product of two orthogonal matrices and so is doubly stochastic. Birkhoff’s Theorem implies

N∑
i,j=1

N∑
k,l=1

∏
t∈{0,1}

1{Ykl,t ≤ yt}Pik,tPjl,t =
N∑

r,s=1

λr1λs0W
φ
rs =

K∑
k=1

αφk

N∑
r,s=1

λr1λs0P
φ
rs,k.

where αφ1 , ..., α
φ
k > 0, P φ

1 , ..., P
φ
k are permutation matrices, and W φ

rs =
∑K

k=1 α
φ
kP

φ
rs,k. The

claim follows from Theorem 368, which implies that for any permutation matrix P

N∑
r=1

λr1λsN (r)0 ≤
N∑

r,s=1

λr1λs0Prs ≤
N∑
r=1

λr1λr0.

4.3.3 Discussion

Proposition 1 follows by intersecting the bounds from parts 1 and 2. Each part describes a

different relaxation of the intractable QAP. Take for instance the upper bound

max
P∈PN

1

N2

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

∏
t∈{0,1}

1{Ykl,t ≤ yt}Pik,tPjl,t. (14)
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where PN is the set of all N ×N permutation matrices. Part 1 bounds it from above with

max
P∈PN2

1

N2

N∑
i,j=1

N∑
k,l=1

∏
t∈{0,1}

1{Ykl,t ≤ yt}Pr(i,j)r(k,l),t (15)

where PN2 describes permutations of pairs of agents and r(i, j) = N(i− 1) + j. Intuitively,

this relaxation treats the N ×N outcome matrices as vectors of length N2 and uses the fact

that {Pij}Ni,j=1 ∈ PN implies that {PikPjl}Ni,j,k,l=1 ∈ PN2 . Whereas the (14) quadratic, (15)

is linear and can be bounded using Theorem 368.

Part 2 bounds the QAP from above with

max
O∈ON

1

N2

N∑
i,j=1

N∑
k,l=1

∏
t∈{0,1}

1{Ykl,t ≤ yt}Oik,tOjl,t (16)

whereON is the set of orthogonal N×N matrices. This is an upper bound because PN ⊂ ON .

The insight, see Finke et al. (1987), is to use Birkhoff’s Theorem to rewrite the problem as

maxW∈D+
N

∑
r,s λr1λrsWrs where D+

N is the set of doubly stochastic N × N matrices. This

problem is also linear and can be bounded using Birkhoff’s Theorem and Theorem 368.

Our proof of Proposition 1 as stated in Section 3 is complicated by the fact that the

infinite dimensional analog of W φ is not doubly stochastic and so Birkhoff’s Theorem cannot

be directly applied. We address this problem by first approximating the function 1{Yt ≤ yt}

with a fixed rank matrix, applying the arguments of Part 2, and then showing convergence

as the rank is taken to infinity along the lines of Lovász (2012). A similar method of proof

is used to demonstrate Theorem 2.1 of Whitt (1976) (i.e. our Standard Result 1).

These bounds use two of many possible relaxations of the intractable QAP, see broadly

Cela (2013), Section 2. We chose these relaxations because they are straightforward to

compute, characterize, and appear to work well in practice. Intersecting our bounds with

others may lead to smaller identified sets for the DPO and DTE, but potentially at the cost

of greater computational complexity or statistical uncertainty. We leave this to future work.
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5 Extensions

We sketch some extensions to the Section 3 framework. Details are in Appendix Section D.

5.1 Asymmetric outcome matrices

Asymmetric matrices or matrices indexed by two different populations can be handled in

the following way. A population of workers and firms are indexed by latent types in [0, 1]

and [2, 3] respectively. Workers and firms are independently randomized to a binary treat-

ment t ∈ {0, 1} and outcomes are measured for every pair of workers and firms assigned

to the same treatment. The bounded measurable function (Y ∗0 , Y
∗

1 ) : S → R2 records the

potential outcome for every type pair and treatment where S = [0, 1] × [2, 3]. For exam-

ple, Y ∗t (u, v) may describe the wage that a worker of type u would earn at a firm of type

v in the case that the worker and firm are in a market that was affected (t = 1) or not

affected (t = 0) by a trade shock. We assume that the researcher observes Y1 and Y0 where

Yt(φt(u), ψt(v)) = Y ∗t (u, v) for unknown measure preserving φt, ψt. The DPO, for example,

is
∫ ∫ ∏

t∈{0,1} 1{Yt(φt(u), ψt(v)) ≤ yt}dudv.

We symmetrize the potential outcomes as in Auerbach (2019). Let S2 = ([0, 1] ∪ [2, 3])×

([0, 1] ∪ [2, 3]) and define (Y †0 , Y
†

1 ) : S2 → R2 so that

Y †t (u, v) =


Yt(u, v) if (u, v) ∈ [0, 1]× [2, 3]

Yt(v, u) if (u, v) ∈ [2, 3]× [0, 1]

0 otherwise

and ϕt(u) = φt(u)1{u ∈ [0, 1]} + ψt(u)1{u ∈ [2, 3]}. Then the DPO is also equal to∫ ∫ ∏
t∈{0,1} 1{Y

†
t (ϕt(u), ϕt(v)) ≤ yt}dudv/2. Since Y † is symmetric and defined on one

population, the logic of Section 3 can be applied the bound the DPO and DTE. One can

similarly define the STE using the eigenvalues of Y †t .
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5.2 Row and column heterogeneity

Spectral methods may perform poorly when there is significant heterogeneity in the rows or

columns of the outcome matrices. To address this issue we follow Finke et al. (1987) and

decompose 1{Y ∗t (u, v) ≤ yt} = αt(u) + γt(v) + εt(u, v) where
∫
εt(u, v)du =

∫
εt(u, v)dv = 0.

The DPO can then be written

F (y1, y0) =

∫ ∫ ∏
t∈{0,1}

(αt(ϕt(u)) + γt(ϕt(v)) + εt(ϕt(u), ϕt(v))) dudv

=

∫ ∫ ∏
t∈{0,1}

(αt(ϕt(u)) + γt(ϕt(v))) dudv +

∫ ∫ ∏
t∈{0,1}

εt(ϕt(u), ϕt(v))dudv.

The first summand
∫ ∫ ∏

t∈{0,1} (αt(ϕt(u)) + γt(ϕt(v))) dudv can be bounded using argu-

ments from Section 2. The second summand
∫ ∫ ∏

t∈{0,1} εt(ϕt(u), ϕt(v))dudv can be bounded

using arguments from Section 3. One can similarly decompose Y ∗t (u, v) and redefine the STE

by matching on the quantiles of αt, γt, and the eigenvalues of εt.

5.3 Estimation and inference

If the researcher observes only a noisy signal of Y1 and Y0 due to random sampling, missing

data, or measurement error, they can estimate the STE or bounds on the DPO and DTE by

replacing the eigenvalues of the Yt with their empirical analogs. We give sufficient conditions

for consistency and propose inference based on Weyl’s inequality in Appendix D.

An alternative design based approach to inference exploits the random assignment of

agents to treatment. We show how the researcher may, for example, test the null hypothesis

of no treatment effects or bound the variance of any treatment effect in Appendix D.

5.4 Interference

One motivation for implementing a double randomized experimental design is to characterize

social interactions, market externalities, or other spillovers. Our bounds and estimates of

the treatment effect can be used to characterize various heterogeneous spillover effects. The

kinds of spillover effects that are identified depends on the experimental design, see Bajari
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et al. (2021). The following illustrative example is based on their Section 6.

Consider the setting of Example 4, and suppose the researcher is interested in character-

izing how an information treatment assigned to the buyers (sellers) affects their transactions

with the untreated sellers (buyers). To do this, they separately and independently assign

the buyers and sellers to four groups. In the first group both the buyers and the sellers are

treated, in the second group the buyers and not the sellers are treated, in the third group

the sellers and not the buyers are treated, and in the fourth group neither the sellers nor the

buyers are treated. Bajari et al. (2021) define the average buyer (seller) spillover effect to be

the average difference in the outcomes in the second (third) and fourth groups. Following the

symmetrization argument of Section 5.1, the arguments of Section 3 can be used to identify

and estimate the distribution of such spillover effects.

6 Two empirical demonstrations

We revisit Examples 1 and 3 from Section 1.1. We find policy relevant heterogeneity in the

effect of treatment that otherwise might be missed by focusing exclusively on average effects.

6.1 Example 1: Risk sharing

Our first demonstration uses data from Comola and Prina (2021). Households in nineteen

villages are randomly provided with a savings account. The authors argue that this treatment

alters incentives for some agents to form risk sharing links.1 Let treatment 1 be the event

that both households are provided with savings accounts, treatment 0 be the event that

neither household is provided with a savings account, and Yij,t indicate whether household

pair ij reports a risk sharing link under treatment t.

Table 1 shows our bounds on the joint distribution of risk sharing links for villages 3 and

7. We find positive lower bounds on P (Yij,1 = 1, Yij,0 = 0) for both villages, implying that

the treatment created some links. This is consistent with the positive average treatment

effect found by Comola and Prina (2021). However, we also find a positive lower bound on

P (Yij,1 = 0, Yij,0 = 1) for village 7. This implies that the treatment destroyed some links.

1The data can be found at...
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Village 3 Village 7

Lower Upper Lower Upper

P (Yij,1 = 1, Yij,0 = 1) 0.0000 0.0048 0.0000 0.0128
P (Yij,1 = 1, Yij,0 = 0) 0.0012 0.0059 0.0009 0.0139
P (Yij,1 = 0, Yij,0 = 1) 0.0000 0.0048 0.0023 0.0153
P (Yij,1 = 0, Yij,0 = 0) 0.9893 0.9941 0.9708 0.9838

Table 1: Bounds on the joint distribution of risk sharing links in villages 3 and 7 of Comola
and Prina (2021).

Figure 1 shows the distribution of spectral treatment effects on the treated for villages 3

and 7 in panels (a) and (c). For reference, we also show the distribution of average treatment

effects conditional on household size. Specifically, we bin households by household size,

compute the fraction of links between households for each treatment and pair of bins, and

show the distribution of the differences in averages across treatment in panels (b) and (d).

These CATEs are small and economically insignificant for every household pair. Our STTs,

in contrast, are economically significant with changes on the order of thirty to forty percent

for approximately one to five percent of the population. The strong response of some agent

pairs to treatment may be missed by a researcher only looking at average effects.

6.2 Example 3: Auction format

Our second demonstration uses data from Schuster and Niccolucci (1994) (see also Athey et

al. 2011). These authors study US Forest Service (USFS) timber auctions where tracts of

forest land were sold by either open or sealed bid auctions. They argue that participation

is higher for some firms in the sealed bid format.2 Let treatment 1 be the event that a bid

was made under the sealed bid format and treatment 0 be the event that the bid was made

under the open auction format.

We focus on two outcomes. The first is about entry and is indexed by firms and tracts.

Eij,t describes whether firm i bid on tract j in auction format t. The second outcome matrix

is about coentry and is indexed by pairs of tracts. Cij,t =
∑

k Eik,tEjk,t describes the number

of firms who submit bids on both tracts i and j. Intuitively, the first outcome describes the

2The data can be found at...
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(a) Spectral treatment effects on the treated for
village 3. Not shown is a mass of 0.993 at 0.

(b) Average treatment effects for village 3 condi-
tional on household size.

(c) Spectral treatment effects on the treated for
village 7. Not shown is a mass of 0.956 at 0.

(d) Average treatment effects for village 7 condi-
tional on household size.

Figure 1: This figure shows two characterizations of the distribution of treatment effects for
villages 3 and 7 of Comola and Prina (2021). Panels (a) and (c) show the distribution of
spectral treatment effects on the treated, ignoring a point mass at 0. Panels (b) and (d)
show the distribution of average treatment effects conditional on household size.
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amount of participation in the auction. The second outcome describes how substitutable

the tracts are. A policy maker interested in encouraging firms to make more bids may be

interested in the first outcome. A policy maker interested in encouraging firms to bid on

different types of tracts may be interested in the second outcome.

Table 2 shows our bounds on the joint distribution of entry decisions. We find a strictly

positive lower bound on P (Eij,1 = 1, Eij,0 = 0) implying that the treatment caused some

entry. This is consistent with a conclusion of Athey et al. (2011). However, our bounds do

not rule out the possibility that the treatment only effects a small fifth of a percent of firm

and tract pairs.

Lower Upper

P(Eij,1 = 1, Eij,0 = 1) 0.0000 0.0166
P(Eij,1 = 1, Eij,0 = 0) 0.0020 0.0186
P(Eij,1 = 0, Eij,0 = 1) 0.0000 0.0166
P(Eij,1 = 0, Eij,0 = 0) 0.9647 0.9814

Table 2: Bounds on the joint distribution of entry using data from Schuster and Niccolucci
(1994).

Figure 2 shows the distribution of spectral treatment effects on the treated in panel (a).

For reference, we also show the distribution of average treatment effects conditional on firm

size and tract location in panel (b). The distribution of the STE matches the variance of

the CATEs, but not the skewness. Both distributions predict a nontirival mass of firms and

tracts actually have less participation under the sealed bid format.

Figure 3 shows our bounds on the joint distribution of treatment effects for coentry. We

first note that ∆(0) ≥ 0.25. That is, the sealed bid format treatment decreases coentry for

at least a quarter of tract pairs. We interpret this result as demonstrating higher levels of

substitutability under the open auction format.

The distribution of spectral treatment effects and average treatment effects conditioning

on tract location can be found in Figure 4. In this case, our method matches the skewness

but not the variance of the conditional average treatment effects. Both methods suggest that

the sealed bid format treatment decreases substitutibility for most tract pairs.
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(a) Spectral treatment effects on the treated for
entry. Not shown is a mass of 0.074 at 0.

(b) Average treatment effects for entry condi-
tional on firm size and tract location.

Figure 2: Panel (a) shows the distribution of spectral treatment effects on the treated for
entry, ignoring a point mass at 0. Panel (b) shows the distribution of average treatment
effects for entry conditional on firm size and tract location.

Figure 3: Bounds on the distribution of treatment effects for coentry using data from Schuster
and Niccolucci (1994).

7 Conclusion

We characterize the distribution of treatment effects in a setting where each treatment is

associated with a matrix of outcomes. We propose bounds on the distribution of treatment

effects and a matrix analog of quantile treatment effects. Our proposal is based on a new

matrix analog of the Fréchet-Hoeffding bounds that play a key role in the standard theory.

We illustrate our methodology with two empirical demonstrations and find policy relevant
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(a) Spectral treatment effects on the treated for
coentry. Not shown is a mass of 0.140 at 0.

(b) Average treatment effects for coentry condi-
tional on tract location.

Figure 4: Panel (a) shows the distribution of spectral treatment effects on the treated for
coentry, ignoring a point mass at 0. Panel (b) shows the distribution of average treatment
effects for coentry conditional on tract location.

heterogeneity that might be missed by focusing exclusively on averages.
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A Appendix: proof of Propositions 1-4

A.1 Definitions and lemmas

A.1.1 Graph embedding

Any finite dimensional matrix admits a function representation along the lines of Section

3.1, often called a graph embedding. See generally Lovász (2012). Let Y ∗t refer to an N ×N

matrix of potential outcomes with ijth entry Y ∗ij,t. The graph embedding of Y ∗t : [0, 1]2 → R

is Y ∗t (u, v) = Y ∗dNuedNve,t for u, v ∈ [0, 1]. Intuitively, the graph embedding assigns the mass

of types in the region Si :=
(
i−1
N
, i
N

]
to observation i. Similarly, any permutation matrix

Πt can be written as a measure preserving transformation ϕt(u) = dNue −Nu + Πt(dNue)

where Πt(k) = {l ∈ N : Πkl = 1}. Intuitively, if Πkl = 1, ϕt maps
(
k−1
N
, k
N

]
to
(
l−1
N
, l
N

]
.

Eigenvalues are defined a bit differently for matrices and their graph embeddings. In

particular, if λ1, ..., λN are the nonzero eigenvalues of a matrix, then the nonzero eigenvalues

of its graph embedding will be λ1/N, ..., λN/N .

A.1.2 Kernel operators

Any bounded symmetric measurable function f : [0, 1]2 → R defines a compact Hilbert-

Schmidt integral operator. As a result, it has a countable set of nonzero real eigenvalues

with 0 as the only limit point. It also admits the spectral decomposition
∑

r λrφr(u)φr(v)

where φr is the eigenvalue associated with eigenvalue λr, see Section 7.5 of Lovász (2012).
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The functions {φr}∞r=1 form an orthonormal basis, so that
∫
φr(u)2du = 1 and

∫
(φr(u) −

φs(u))2du = 2 if r 6= s.

A.1.3 Definitions

Let ft(u, v) refer to either Yt(ϕt(u), ϕt(v)) or 1{Yt(ϕt(u), ϕt(v)) ≤ yt} for some yt ∈ R and

ϕt ∈ M := {φ : [0, 1] → [0, 1] with |φ−1(A)| = |A| for any measurable A ⊆ [0, 1]}. For

any n ∈ N let Si :=
(
i−1
n
, i
n

]
, F n

t be an n × n matrix with F n
ij,t ∈ R as its ijth entry,

and fnt (u, v) =
∑

ij F
n
ij,t1{u ∈ Si, v ∈ Sj} such that

∫ ∫
(ft(u, v)− fnt (u, v))2 dudv → 0 as

n→∞. In words, F n
t is an n×n matrix approximation of ft and fnt is its graph embedding.

The existence of such a sequence of matrices F n
t follows Lemma 1 below.

Let {λnrt}r∈[R] be the eigenvalues of fnt where [R] := {1, ..., R} for some R ∈ N ∪ {∞}.

Let Pn be the set of n×n permutation matrices ({0, 1} valued entries with row and column

sums equal to 1), D+
n be the set of n × n doubly stochastic matrices (positive entries with

row and column sums equal to 1), and On be the set of n× n orthogonal matrices (any two

rows or any two columns have inner product 1 if they are the same or 0 otherwise).

A.1.4 Lemmas

Lemma 1: For every bounded measurable g : [0, 1]2 → R there exists sequences {Gn}n∈N
and {gn}n∈N where Gn is an n× n matrix with ijth entry Gn

ij and gn : [0, 1]2 → R with

gn(u, v) =
∑

ij G
n
ij1{u ∈ Si, v ∈ Sj} and Si :=

(
i−1
n
, i
n

]
such that for every ε > 0 there

exists an m ∈ N such that
∫ ∫

(g(u, v)− gn(u, v))2 dudv ≤ ε for every n > m.

Proof of Lemma 1: Fix an arbitrary ε > 0. Lusin’s Theorem (see Appendix Section

B.1.1) implies that for any measurable g : [0, 1]2 → R and ε > 0, there exists a compact

Eε
g ⊆ [0, 1]2 of measure at least 1− ε such that g is continuous when restricted to Eε

g.

Let Gnε
ij =

∫ ∫
(u,v)∈Eεg

gt(u,v)1{u∈Si,v∈Sj}dudv∫ ∫
(u,v)∈Eεg

1{u∈Si,v∈Sj}dudv if
∫ ∫

(u,v)∈Eεg
1{u ∈ Si, v ∈ Sj}dudv > 0 and Gnε

ij = 0

otherwise. Also let gnε(u, v) =
∑

ij G
nε
ij 1{u ∈ Si, v ∈ Sj} and ε = θ(ε) := ε/(8ḡ) where

ḡ := sup(u,v)∈[0,1]2 |g(u, v)|2.
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Since g is continuous on E
θ(ε)
g there exists an m(ε) ∈ N such that∫ ∫

(u,v)∈Eθ(ε)g

(
g(u, v)− gnθ(ε)(u, v)

)2
dudv ≤ ε/2 for every n > m(ε). In addition,∫ ∫

(u,v)6∈Eθ(ε)g

(
g(u, v)− gnθ(ε)(u, v)

)2
dudv ≤ 4ḡθ(ε) = ε/2 for every n. So∫ ∫

(u,v)∈[0,1]2

(
g(u, v)− gnθ(ε)(u, v)

)2
dudv ≤ ε for every n > m(ε).

It follows that µ†(n) := infe>0{m(e) ≤ n} → 0 as n→∞. Let Gn = Gnθ(µ†(n)) and

gn = gnθ(µ
†(n)). Then

∫ ∫
(u,v)∈[0,1]2

(g(u, v)− gn(u, v))2 dudv ≤ µ†(n) for n > µ†(n) by

construction and the claim follows by taking m sufficiently large so that µ†(m) < ε. �

Lemma 2:
∑

r∈[n] λ
n
sn(r)0λ

n
r1 ≤

∫ ∫
fn1 (u, v)fn0 (u, v)dudv ≤

∑
r∈[n] λ

n
r0λ

n
r1 where

sn(r) = n− r + 1.

Proof of Lemma 2: By construction
∫ ∫

fn1 (u, v)fn0 (u, v)dudv = 1
n2

∑
ij F

n
ij,1F

n
ij,0 so it is

sufficient to show that n2
∑

r∈[n] λ
n
sn(r)0λ

n
r1 ≤

∑
ij F

n
ij,1F

n
ij,0 ≤ n2

∑
r∈[n] λ

n
r0λ

n
r1. Recall that

{nλnrt}r∈[n] are the eigenvalues of F n
ij,t.

Since F n
t is square and symmetric, the spectral theorem (see Appendix Section B.1.1)

implies that F n
ij,t = n

∑
r∈[n] λ

n
rtφ

n
ir,tφ

n
jr,t where φnir,t is the eigenvector of F n

ij,t associated with

eigenvalue nλnrt. As a result
∑

ij F
n
ij,1F

n
ij,0 = n2

∑
r,s∈[n] λ

n
r1λ

n
s0

[∑
i φ

n
ir,1φ

n
is,0

]2
.

The matrix
[∑

i φ
n
ir,1φ

n
is,0

]2
is an element of D+

n and so Birkhoff’s Theorem (see Appendix

Section B.1.1) implies that

∑
r,s∈[n]

λnr1λ
n
s0

[∑
i

φnir,1φ
n
is,0

]2

=
∑
r,s∈[n]

λnr1λ
n
s0

∑
t∈[m]

αtPij,t =
∑
t∈[m]

αt
∑
r,s∈[n]

λnr1λ
n
s0Pij,t

where m ∈ N, α1, ..., αm > 0, with
∑

t∈[m] αt = 1, and P1, ..., Pm ∈ Pn.

The Hardy-Littlewood Theorem (see Appendix Section B.1.1) implies that

∑
r∈[n]

λnr1λ
n
sn(r)0 ≤

∑
r,s∈[n]

λnr1λ
n
s0Pij ≤

∑
r∈[n]

λnr1λ
n
r0
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for any P ∈ Pn and so

∑
r∈[n]

λnr1λ
n
sn(r)0 ≤

∑
t∈[m]

αt
∑
r,s∈[n]

λnr1λ
n
s0Pij,t ≤

∑
r∈[n]

λnr1λ
n
r0

because
∑

t∈[m] αt = 1. �

Lemma 3: For every ε > 0 there exists an m ∈ N such that

i.
∣∣∫ ∫ fn1 (u, v)fn0 (u, v)dudv −

∫ ∫
f1(u, v)f0(u, v)dudv

∣∣ ≤ ε, and

ii.
∣∣∣∑r∈[n] λ

n
σn(r)0λ

n
r1 −

∑
r λσ(r)0λr1

∣∣∣ ≤ ε,

for every n > m where
∑

r λσ(r)tλr1 refers to
∑

r∈[R̄] λσR̄(r)tλrt′ for t, t′ ∈ {0, 1}, σx(r) refers

to r or sx(r) := x− r + 1, and R̄ = max{R ∈ N ∪∞ : maxt∈{0,1}minr∈[R] |λrt| > 0}.

Proof of Lemma 3: Fix an arbitrary ε > 0. Part i. follows from

∫ ∫
fn1 (u, v)fn0 (u, v)dudv −

∫ ∫
f1(u, v)f0(u, v)dudv

=

∫ ∫
(fn1 (u, v)− f1(u, v)) fn0 (u, v)dudv +

∫ ∫
(fn0 (u, v)− f0(u, v)) f1(u, v)dudv

≤
(∫ ∫

(fn1 (u, v)− f1(u, v))2 dudv

)1/2

f̄n0 +

(∫ ∫
(fn0 (u, v)− f0(u, v))2 dudv

)1/2

f̄1

≤ ε
(
f̄n0 + f̄1

)
for n > m(ε) where m(ε) is from the hypothesis of Lemma 1

≤ ε for n > m (ε) for ε < ε/(f̄n0 + f̄1)

where f̄n0 =
(∫ ∫

fn0 (u, v)2dudv
)1/2

and f̄1 =
(∫ ∫

f1(u, v)2dudv
)1/2

, the first inequality is

due to Cauchy-Schwarz, and the second is due to Lemma 1.

To demonstrate Part ii, we first bound
∑

r∈[n] λ
n
σn(r)0λ

n
r1 −

∑
r∈[n] λσn(r)0λr1 where the sum∑

r∈[n] λσn(r)0λr1 is over the product of the n largest eigenvalues of f0 and f1 in absolute
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value (see Section 3.2.1).

∑
r∈[n]

λnσn(r)0λ
n
r1 −

∑
r∈[n]

λσn(r)0λr1 =
∑
r∈[n]

(
λnσn(r)0λ

n
r1 − λσn(r)0λr1

)
=
∑
r∈[n]

(
λnσn(r)0 − λσn(r)0

)
λnr1 +

∑
r∈[n]

(λnr1 − λr1)λσn(r)0

≤

∑
r∈[n]

(λnr0 − λr0)2

1/2∑
r∈[n]

(λnr1)2

1/2

+

∑
r∈[n]

(λnr1 − λr1)2

1/2∑
r∈[n]

(λr0)2

1/2

≤

∑
r∈[n]

(λnr0 − λr0)2

1/2

f̄n1 +

∑
r∈[n]

(λnr1 − λr1)2

1/2

f̄0

where the first inequality is due to Cauchy-Schwarz. Since fnt and ft are uniformly

bounded then for every ε > 0 there exists a R,m ∈ N such that
∑

r∈[n]−[R] (λnrt)
2 < ε and∑

r∈[n]−[R] (λrt)
2 < ε for every n > m and t ∈ {0, 1}. As a result,

∑
r∈[n]

λnσn(r)0λ
n
r1 −

∑
r∈[n]

λσn(r)0λr1

≤

∑
r∈[n]

(λnr0 − λr0)2

1/2

f̄n1 +

∑
r∈[n]

(λnr1 − λr1)2

1/2

f̄0

≤

∑
r∈[R]

(λnr0 − λr0)2

1/2

f̄n1 +

∑
r∈[R]

(λnr1 − λr1)2

1/2

f̄0 + 2
√
ε(f̄n1 + f̄0)

≤
√
R

(∫
(fn0 (u, v)− f0(u, v))2

)1/2

f̄n1 +
√
R

(∫
(fn1 (u, v)− f1(u, v))2

)1/2

f̄0 + 2
√
ε(f̄n1 + f̄0)

≤ (
√
Rε̃+ 2

√
ε)(f̄n1 + f̄0) for n > m(ε̃) where m(ε̃) is from the hypothesis of Lemma 1

≤ ε/2 for n > m(ε/2)

where the third inequality follows because the eigenvalues of compact Hermitian operators

are Lipschitz continuous (see Appendix Section B.1.1) and the last inequality follows if ε

and R are chosen so that ε < ε2/(8f̄n1 + 8f̄0)2 and then ε̃ and m are chosen so that

ε̃ < ε/(4
√
Rf̄n1 + 4

√
Rf̄0).
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Finally, to bound
∣∣∣∑r∈[n] λ

n
σn(r)0λ

n
r1 −

∑
r λσ(r)0λr1

∣∣∣, we consider two cases. In the case that

R̄ =∞ we have
∑

r λσ(r)0λr1 = limn→R̄
∑

r∈[n] λσn(r)0λr1 and so can choose m so that

|
∑

r λσ(r)0λr1 −
∑

r∈[n] λσn(r)0λr1| < ε/2. In the case that R̄ <∞ we can choose m > R̄ so

that
∑

r λσ(r)0λr1 =
∑

r∈[n] λσn(r)0λr1. It follows that

∣∣∣∣∣∣
∑
r∈[n]

λnσn(r)0λ
n
r1 −

∑
r

λσ(r)0λr1

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
r∈[n]

λnσn(r)0λ
n
r1 −

∑
r∈[n]

λσn(r)0λr1

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
r∈[n]

λσn(r)0λr1 −
∑
r

λσ(r)0λr1

∣∣∣∣∣∣
≤ ε/2 + ε/2 = ε

where the first inequality is due to the triangle inequality. �

Lemma 4: If fn0 and fn1 take values in [0, 1] then max
(∑

r∈[n] ((λnr0)2 + (λnr1)2)− 1, 0
)
≤∫ ∫

fn1 (u, v)fn0 (u, v)dudv ≤ min
(∑

r∈[n](λ
n
r0)2,

∑
r∈[n](λ

n
r1)2
)

.

Proof of Lemma 4: The upper bound follows

∫ ∫
fn1 (u, v)fn0 (u, v)dudv ≤ min

t∈{0,1}

∫ ∫
fnt (u, v)dudv = min

t∈{0,1}

∑
r∈[n]

(λnrt)
2.

The lower bound follows

∫ ∫
fn1 (u, v)fn0 (u, v)dudv =

∫ ∫
fn1 (u, v) (1− (1− fn0 (u, v))) dudv

≥
∫ ∫

fn1 (u, v)dudv −min

(∫ ∫
fn1 (u, v)dudv,

∫ ∫
(1− fn0 (u, v)) dudv

)
= max

(
0,

∫ ∫
fn1 (u, v)dudv +

∫ ∫
fn0 (u, v)dudv − 1

)

= max

∑
r∈[n]

(
(λnr0)2 + (λnr1)2

)
− 1, 0

 .

Both inequalities are because fn0 and fn1 take values in [0, 1]. �
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A.2 Proposition 1

Let ft(u, v) = 1{Y ∗t (u, v) ≤ yt}. For any ε > 0 there exists an m ∈ N such that for every

n > m

∫ ∫
f1(u, v)f0(u, v)dudv <

∫
fn1 (u, v)fn0 (u, v)dudv + ε

≤ min

(∑
r

λnr1λ
n
r0,
∑
r

λ2n
r1 ,
∑
r

λ2n
r0

)
+ ε

< min

(∑
r

λr1λr0,
∑
r

λ2
r1,
∑
r

λ2
r0

)
+ 2ε

where the first inequality is due to Part i of Lemma 3, the second inequality is the intersec-

tions of the upper bounds in Lemmas 2 and 4, and the third inequality is due to Part ii of

Lemma 3. Similarly,

∫ ∫
f1(u, v)f0(u, v)dudv >

∫
fn1 (u, v)fn0 (u, v)dudv − ε

≥ max

(∑
r

λnr1λ
n
s(r)0,

∑
r

(
λn2
r0 + λn2

r1

)
− 1, 0

)
− ε

> max

(∑
r

λr1λs(r)0,
∑
r

(
λ2
r0 + λ2

r1

)
− 1, 0

)
− 2ε.

Since ε > 0 was arbitrary, the claim follows. �

A.3 Proposition 2

For any y1, y0 ∈ R such that y1 − y0 = y we have

P (Y ∗1 − Y ∗0 ≤ y) ≥ P (Y ∗1 ≤ y1 ∩ −Y ∗0 < −y0)

= P (Y ∗1 ≤ y1)− P (Y ∗1 ≤ y1 ∩ Y ∗0 ≤ y0)

≥
∑
r

λ2
r1 −min

(∑
r

λ2
r1,
∑
r

λ2
r0,
∑
r

λr1λr0

)

= max

(∑
r

(λ2
r1 − λ2

r0),
∑
r

(λ2
r1 − λr1λr0), 0

)
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and

P (Y ∗1 − Y ∗0 ≤ y) ≤ P (Y ∗1 ≤ y1 ∪ −Y ∗0 < −y0)

= 1 + P (Y ∗1 ≤ y1 ∩ Y ∗0 ≤ y0)− P (Y ∗0 ≤ y0)

≤ 1 + min

(∑
r

λ2
r1,
∑
r

λ2
r0,
∑
r

λr1λr0

)
−
∑
r

λ2
r0

= 1 + min

(∑
r

(λ2
r1 − λ2

r0),
∑
r

(λr1λr0 − λ2
r0), 0

)

where the the first inequality in both systems is due to the fact that for any u, v ∈ [0, 1],

1{Y ∗1 (u, v) ≤ y1}1{−Y ∗0 (u, v) < −y0} ≤ 1{Y ∗1 (u, v)− Y ∗0 (u, v) ≤ y}

≤ max (1{Y ∗1 (u, v) ≤ y1},1{−Y ∗0 (u, v) < −y0})

and the second inequality in both systems is due to the upper bound in Proposition 1. Since

these inequalities holds for any such y1, y0, the claim follows. �

A.4 Proposition 3

This result is an infinite dimensional version of the Hoffman-Wielandt inequality (see Ap-

pendix Section B.1.1). Let ft(u, v) = Y ∗t (u, v) and σrt denote the rth eigenvalue of ft (ordered

to be decreasing). For any ε > 0 there exists an m ∈ N such that for every n > m

∫ ∫
(f1(u, v)− f0(u, v))2dudv

=

∫ ∫
f1(u, v)2dudv +

∫ ∫
f0(u, v)2dudv − 2

∫ ∫
f1(u, v)f ∗0 (u, v)dudv

≥
∫ ∫

f1(u, v)2dudv +

∫ ∫
f0(u, v)2dudv − 2

∫ ∫
fn1 (u, v)fn0 (u, v)dudv − ε

≥
∑
r

σ2
r1 +

∑
r

σ2
r0 − 2

∑
r

σnr1σ
n
r0 − ε

≥
∑
r

σ2
r1 +

∑
r

σ2
r0 − 2

∑
r

σr1σr0 − 2ε

=
∑
r

(σr1 − σr0)2 − 2ε
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where the first inequality is due to Part i of Lemma 3, the second inequality is due to the

upper bound of Lemma 2, and the third inequality is due to Part ii of Lemma 3.

The claim then follows from the fact that
∫ ∫

STE(u, v;φ)2dudv =
∑

r(σr1 − σr0)2 for

any choice of orthogonal basis {φr}∞r=1. Specifically,

∫ ∫
STE(u, v;φ)2dudv =

∫ ∫ ∑
r,s

(σr1 − σr0)(σs1 − σs0)φr(u)φr(v)φs(u)φs(v)dudv

=
∑
r,s

(σr1 − σr0)(σs1 − σs0)

[∫
φr(u)φs(u)du

]2

=
∑
r

(σr1 − σr0)2.

The last equality is because {φr}∞r=1 is orthogonal and so
[∫
φr(u)φs(u)du

]2
= 1{r = s}. �

A.5 Proposition 4

Let
∑

s csx
s be the series representation of g(x) and (σrt, φ

∗
rt) be the rth eigenvalue-eigenfunction

pair of Y ∗t where the eigenvalues are ordered to be decreasing. Then

Y ∗1 (u, v) = g(Y ∗0 (u, v)) =
∑
s

csY
∗

0 (u, v)s =
∑
r,s

csσ
s
r0φ
∗
r0(u)φ∗r0(v) =

∑
r

g(σr0)φ∗r0(u)φ∗r0(v)

where the third equality follows from the identity hs =
∑

r ρ
s
rψrψr where (ρr, ψr) is the rth

eigenvalue-eigenfunction pair of h. Since Y ∗1 =
∑

r σ1rφ
∗
r1φ
∗
r1, it follows the assumption that

g is increasing that σ1r = g(σ0r), φ
∗
r1 = φ∗r0, and so

Y ∗1 − Y ∗0 =
∑
r

(σr1 − σr0)φ∗r1φ
∗
r1 =

∑
r

(σr1 − σr0)φ∗r0φ
∗
r0.

Since STT (u, v) =
∑

r (σr1 − σr0)φr1(u)φr1(v) and STU(u, v) =
∑

r (σr1 − σr0)φr0(u)φr0(v)

where φ∗r1(u) = φr1(ϕ1(u)) and φ∗r0(u) = φr0(ϕ0(u)), we have

Y ∗1 (u, v)− Y ∗0 (u, v) = STT (ϕ1(u), ϕ1(v)) = STU(ϕ0(u), ϕ0(v)).
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and so

∫ ∫
1 {Y ∗1 (u, v)− Y ∗0 (u, v) ≤ y} dudv =

∫ ∫
1 {STT (u, v) ≤ y} dudv

=

∫ ∫
1 {STU(u, v) ≤ y} dudv

as claimed. �

B Additional claims and details

B.1 Auxiliary lemmas

B.1.1 Lemmas used in Appendix Section A

Lemma A1 (Lusin): For every measurable f : [0, 1]2 → R and ε > 0 there exists a compact

Eε ⊆ [0, 1]2 with measure at least 1− ε such that f is continuous when restricted to Eε.

See Dudley (2002) Theorem 7.5.2.

Lemma A2 (Spectral): Let H be a Hilbert space with inner product < ·, · >H and f be a

compact normal operator on H. Then there exist a sequence of eigenvalues λr with 0 as its

only limit point and orthonormal basis φr such that f(φr) = λrφr and

f(ψ) =
∑

r λr < ψ, φr > φr for any ψ ∈ H.

See Kowalski (n.d.) Theorem 2.5.

Lemma A3 (Continuity): Let H be a Hilbert space and f, g be positive compact operators

such that ||f − g||L(H) ≤ ε. Then |λk(f)− λk(g)| ≤ ε for all k ≥ 1.

See Kowalski (n.d.) Corollary 2.16(2).

Lemma A4 (Birkhoff-von Neumann): For every M ∈ D+
n there exists an m ∈ N,

α1, ..., αm > 0, and P1, ..., Pm ∈ Pn such that
∑m

t=1 αt = 1 and Mij =
∑m

t=1 αtPij,t.

See Birkhoff (1946).
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Lemma A5 (Hardy-Littlewood-Polya): For any m ∈ N and g, h ∈ Rm we have∑
r g(r)h(m−r+1) ≤

∑
r g(r)hr ≤

∑
r g(r)h(r) where g(r) is the rth order statistic of g.

See Hardy et al. (1952), Section 10.2, Theorem 368.

Lemma A6 (Hoffman-Wielandt): Let {λgr}r∈N and {λhr}r∈N be the ordered eigenvalues of

two N ×N real symmetric matrices G and H. Then
∑

r

(
λgr − λhr

)2 ≤
∑

i,j (Gij −Hij)
2.

See Hoffman and Wielandt (1953).
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