
Dynamics of Households’ Consumption and Housing Decisions

Christophe Bruneel-Zupanc∗ Thierry Magnac†‡

May 19, 2022

Abstract

We estimate a dynamic discrete and continuous choice model of households’

decisions regarding their consumption, housing tenure and housing services

over the life-cycle. We use non parametric identification arguments as in

Bruneel-Zupanc (2021) to formulate an empirical strategy in two steps that

(1) estimates discrete choice probabilities and continuous choice distribution

summaries to be used in (2) Bellman and Euler equations that estimate the

structural parameters. Specific modelling strategies are adopted because

of unfrequent mobility due to housing transaction costs. Counterfactuals

that can be evaluated are related to those transaction costs as well as of

prudential policies such as downpayments.
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1 Introduction

Housing accounts for the bulk of assets of most households (61% out of an average

wealth 276,000 e in France in 2018, Cazenave-Lacrouts et al., 2019). Housing is

however a very specific asset since most of it also provides a non-monetary flow of

housing services to its owner over time at the difference of many other assets (Li

and Yao, 2007). Any shock on the value of housing may thus have strong impacts

on consumption of other goods and consumer welfare (Ortalo-Magné and Rady,

2006). Moreover, housing is the target of sizeable public policies either in terms

of household allowances or taxation. Transaction costs under the form of taxes

on buying and selling houses are in France among the highest in the OECD and

strongly affect the mobility of French households.1

In consequence, the evaluation of the impact of those transaction costs is high

on the agenda of economists. For this, different types of dynamic models of housing

are set up : partial equilibrium macro models such as Attanasio et al. (2012) or

Li et al. (2016); general equilibrium macro models (Sommer and Sullivan, 2018;

Bontemps et al., 2019); a sufficient statistics approach on the impact of prices

(Berger et al., 2018; Etheridge, 2019). Those approaches nevertheless significantly

restrict the heterogeneity between households. A few alternatives are offered by

Bajari et al. (2013) and Khorunzhina and Miller (2019) using dynamic discrete

choice models.

In this paper, we build upon these latter approaches and propose a dynamic

continuous and discrete dynamic model whose non parametric identification has

been recently analyzed by Bruneel-Zupanc (2021). We estimate a dynamic housing

model in which the choice of housing tenure (ownership or renting), of housing

services (e.g. house size) and consumption are the endogenous variables observed

during several periods.

We follow Bajari et al. (2013) by having time-specific heterogeneity affect-

ing preferences over consumption and housing services in a Constant Elasticity
1https://www.globalpropertyguide.com/investment-analysis/Housing-transaction-costs-in-

the-OECD
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of Substitution (CES) set up. A second time-specific heterogeneity term among

households governs the tenure decision between ownership and renting. In con-

trast, we follow a more standard Euler approach model by having consumption

modeled with measurement errors only, which is typical of micro data in panels

(Alan et al., 2009).

There are also various idiosyncrasies in housing data we take on board. First,

the frequency of households moving at each period is rather small (between 5%

for owners and 10% for renters) so that it creates selection that we deal with using

information on consumption and restricting somewhat the dimension of hetero-

geneity. Second, when they move, some households are still choosing a level of

housing services which is very similar to the previous level. This should be hin-

dered by the existence of transaction costs, so that to reconcile the data with the

model, we introduce an exogenous shock to mobility. This could be caused by

shocks to employment although those are not directly observed in the data.

Structural parameters are estimated in two steps as in Hotz and Miller (1993)

although using the mix of discrete and continuous variables. In a first step, we

estimate in a flexible way three static equations that concern housing services,

consumption and housing tenure. At the second step, and using the approach

suggested by non-parametric identification, we impose Euler and Belmann restric-

tions to recover structural parameters.

The data we use as the basis for our modelling strategy is the French extract of

the European Survey of Income and Living Conditions (SILC) a 10-years rolling

panel data set between 2004 and 2015. The advantages of this quite short panel

is that it has reasonable good income and asset data, including house values,

mortgages and variables related to labour earnings and benefits. Consumption

however is to be reconstructed from asset and income data and this is also why

we choose to model it with measurement errors.

As this paper remains preliminary, we present descriptive statistics, identifica-

tion arguments and our empirical strategy. We do not report empirical results of

the full estimation, nor the results of any counterfactual exercises. An interesting
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exercise would be to simulate the effects of the decrease in transaction costs on

tenure, consumption and housing services as well as household welfare. Evaluating

prudential policies such as down-payments, would also be an object of interest.

In the following, Section 2 briefly describes the data we intend and started to

use. Section 3 sets up the theoretical framework. Identification arguments and the

empirical strategy in two steps are presented in Section 4 and Section 5. Section

6 concludes.

Literature Review: The closest studies in a continuous and discrete dynamic

set-up such as to ours are Bajari et al. (2013) and Li et al. (2016). They are

both based on the now canonical dynamic model of housing in which housing

tenure, housing services and consumption are modelled in a context in which

credit constraints are important (e.g. Li and Yao, 2007; Attanasio et al., 2012).

Bajari et al. (2013) uses the Panel Study of Income Dynamics data and a two-step

method proposed in previous work by the first author (Bajari et al., 2007). It

differs from our own two-step method in the second stage and consists in setting

up moment conditions that use that some deviations from observed decisions are

suboptimal. In contrast, we use all restrictions of the model in the second stage

and the conditions on the way heterogeneity terms enter the model are clearer

than theirs.

Li et al. (2016) estimates the parameters of their housing model by the sim-

ulated method of moments (SMM), the standard estimation method in the liter-

ature at the intersection of consumption studies and partial equilibrium macroe-

conomics. Among other results, these authors estimate the elasticity of substi-

tution between non-durable consumption and housing services using a Constnat

Elasticity of Substitution (CES) specification for preferences and find that this

substitution elasticity is significantly lower than one. In this vein, Khorunzhina

(2021) provides an interesting way of identifying this substitution elasticity by us-

ing maintenance expenses in the PSID. It allows an household specific price index

to be constructed and used as exogenous variation affecting the ratio of consump-
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tion and housing services. This identifies this substitution elasticity, at least for

owners staying in the same house.

Bruneel-Zupanc (2021) provides the main identification arguments used in our

paper, as well as an empirical application to the canonical dynamic model of

household consumption and labour market participation. He does not analyze a

two-consumption good case as we do and does not consider measurement errors

in consumption. Our procedure also relates to non linear GMM estimation of the

Euler equation as in Alan et al. (2009).

In terms of economic results, our paper belongs to the strand of economic stud-

ies analyzing the mitigation of income risks by households through intertemporal

smoothing of consumption (Blundell et al., 2008). We can indeed use our results

in order to model the degree of insurance that households can achieve at various

points over their life-cycle. Furthermore, we can also compare our results to recent

analyses by Browning et al. (2013) on the impact of house prices on consumption.

The authors find that the effect is mainly due the collateral value of housing and

not to a wealth effect.

Berger et al. (2018) also tries to assess the impact of housing prices on consump-

tion and finds a significant effect that can be summarized by a simple "sufficient

statistics" which is the product of the household marginal propensity to consume

and the value of their housing. In a close contribution, Etheridge (2019) uses the

same decomposition exercise as Blundell et al. (2008) in the case of linear income

and housing risks and shows that a positive common shock to house prices in the

UK increases consumption inequality in cross-section. His empirical conclusions

also hold in a more non-linear structural model. In particular, income and hous-

ing risk interactions are shown to be important to understand consumer behaviour

because increases in house price alleviate borrowing constraints whereas decreases

strengthen them. Paz-Pardo (2021) is another example of recent analyses on how

households deal with risks arising either from their incomes or assets. Using the

PSID, the author shows that changes in the dynamics of income account for a

large part of the recent reduction of homeownership by young households and
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that these investments are not compensated by other assets in their portfolios.

Other key dimensions of the decision making of households are not modelled

here although some are developed in the recent literature. Blundell et al. (2016)

analyzes how family labour supply adjusts to directly mitigate risks in income. Öst

(2012) models the simultaneous housing and fertility decisions in a reduced form

setting, and finds a positive correlation between homeownership and fertility in

particular for younger households. In a more structural set-up, Khorunzhina and

Miller (2019) models how households choose homeownership, fertility and labor

supply. Interestingly, they use a two-step method in a dynamic discrete choice

model (Hotz and Miller, 1993) and this is the inspiration for our own estimation

method although it also uses continuous choices although in a setting where labour

participation and hours are exogenous.

The importance of credit constraints in relation to housing tenure has been

shown repetitively as in the early work of Ortalo-Magné and Rady (2006). Pizzinelli

(2017) is a more recent example studying the interaction between prudential reg-

ulations on credit – imposing loan to value and loan to income ratios to household

mortgages – and labour supply of households, and their impact on homeowner-

ship. This literature, as well as Berger et al. (2018), points out that the leverage

position of households severely restricts their ability to smooth income risks. Ia-

coviello and Pavan (2013) also shows the importance of loan to value ratio, or

downpayment constraints, as well as the importance of non-convex adjustments

costs in housing models. The very large transaction costs in France when purchas-

ing a house dampens liquidity and is a important explanatory factor of the low

level of mobility across houses for owners.

Finally, our results could also be compared to those of studies using French

micro-data and that evaluate housing policies. Housing allowances, zero-interest

loans, housing tax credit, real-estate transaction cost and residence tax have been

the focus of such policy evaluations in recent years. Grislain-Letremy and Trévien

(2014) estimates the impact of housing allowances on prices of housing services in

France between 1987 and 2012 and confirms the inflationary effect that Fack (2006)
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uncovered. Zero-interest access-to-ownership loans are evaluated by Gobillon and

le Blanc (2008). Housing tax credits and their inflationary effects are evaluated

uisng difference-in-difference methods by Bono and Trannoy (2019) and Chapelle

et al. (2018). Bérard and Trannoy (2018) analyses the impact on prices and

quantities of an increase of the transaction tax in various local areas in 2014.

Bontemps et al. (2019) uses a Sommer and Sullivan (2018) general equilibrium

model to analyze counterfactuals such as the impact of a decrease in transaction

costs and housing taxes. A reduced form analysis of dynamic housing and labour-

market participation decisions is provided by Kamionka and Lacroix (2018) and

uses the same data as in our study. Although they model income in a richer way

than we do, they do not estimate the structural parameters of a housing model.

2 Data

We use the French extract of the European Survey of Income and Living Condi-

tions (EU-SILC), a ten-years rolling panel dataset between 2004 and 2015. We

select only couples that stayed together during the survey, in order to avoid model-

ing the merge or division of assets when couples are formed or when they divorce.

We focus on individuals less than 60 years old as retirees may face very different

housing market condition (borrowing in particular).

After cleaning the data, we are left with 7,108 unique couples, giving 22,625

household-year observations. The descriptive statistics of the data, by owner-

ship status, are given in Table 1. 73% of the household own their properties.

On average homeowners are older than renters, they consume more, live in larger

houses and get less benefits. The housing mobility is quite low in the French data:

overall, only 7% of the households change their residence during a year, i.e. we

observe a total of 1,542 moves. It suggests that there is a very high cost of moving

for the households.
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All Owner Renter
Mean (SD) Mean (SD) Mean (SD)

Consumption (c) 39.18 (40.68) 40.56 (43.85) 35.46 (30.20)
House size in sqm (s) 107.98 (37.47) 117.13 (36.85) 83.17 (26.22)
Homeownership (d) 0.73 (0.44) 1.00 (0.00) 0.00 (0.00)
Past Homeownership 0.71 (0.45) 0.97 (0.18) 0.02 (0.13)
House price/rent (yearly) in K euros 228.91 (92.22) 6.08 (2.74)
Est. House value 221.89 (69.10) 6.10 (2.18)
Moved this year 0.07 (0.25) 0.05 (0.22) 0.12 (0.32)
Age 42.67 (9.36) 43.81 (9.07) 39.57 (9.42)
Financial Asset 24.11 (51.16) 27.89 (55.23) 13.85 (36.07)
Landlord Asset 32.54 (90.42) 38.29 (97.06) 16.99 (66.87)
Income 45.02 (20.67) 48.21 (21.06) 36.37 (16.75)
Benefits 4.18 (5.32) 3.58 (4.83) 5.79 (6.19)
Housing Benefits 0.41 (1.08) 0.17 (0.66) 1.07 (1.61)
Live in Social Housing 0.11 (0.31) 0.00 (0.00) 0.41 (0.49)
Number of children 1.35 (1.12) 1.38 (1.10) 1.26 (1.17)
Number of children below 3 y.o. 0.24 (0.48) 0.21 (0.46) 0.32 (0.53)
Number of children below 6 y.o. 0.49 (0.73) 0.45 (0.71) 0.59 (0.76)
Number of children below 18 y.o. 1.30 (1.13) 1.30 (1.10) 1.29 (1.20)
Age of the youngest child 7.55 (5.65) 8.09 (5.68) 5.99 (5.26)

Observations 22625 16525 6100

Table 1: Descriptive Statistics of the complete sample and by homeownership
status.

d−1 / d 0 1 Total

0 597 565 1162
(51.4) (48.6) (100.0)

1 109 271 380
(28.7) (71.3) (100.0)

Total 706 836 1542
(45.8) (54.2) (100.0)

Table 2: Housing Tenure (d) change when moving

Renters are more mobile (12%) than homeowners (5%). As described in Table

2, 48.6% of renters who move are becoming homeowners, while homeowners are

considerably less likely to become renters (71.3% become owner of a new house

and only 28.7% become renters). This suggests some differential cost of switching

tenures for households who were owners and household who were renters.
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Figure 1: Histogram of s− s−1 conditional on moving and same tenure

Finally, as shown in Figure 1, conditional on moving, people move to larger houses,

with an average house size change (s− s−1) of about 20 square meters.2 Surpris-

ingly though, we observe that some households also move to very similar prop-

erties. This is at odds with the high cost of moving, and it suggests that some

households are probably moving for some non-housing reasons, e.g. labor mobility

shocks.

3 Framework

We build a dynamic life-cycle model from 25 to 60 y.o. which incorporates all the

empirical facts described in the previous section.

Each period, the timing of the problem is as follows:
2We also observe the same pattern when using the house value adjustment: on average

households move to houses with higher estimated value.
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t

t t+ t++ t+1

Starts
with states

(zt, at, st−1, dt−1)

Shocks
(m, et, ht)

Simultaneously
picks (dt, sdt, cdt)

...

Each period, the household decide of its housing tenure (d, = 1 for owners, = 0

for renters), housing services (sd) and non-housing consumption (c).3 They do so

given three endogenous states: their previous housing tenure (d−1) and housing

services (s−1), their asset (a). And also given some exogenous states z, including

the household income and other demographics (x) which mainly include the age,

the number of children and their age. They also know prices (and forecast them):

p for rent, q for house prices and interest rate (r). Two iid shocks occur each

period. They are unobserved by the econometrician, but known by the house-

holds. Additively separable shocks e affect the housing-tenure choice. e follows an

extreme value type 1 distribution, as in the discrete choice literature (McFadden,

1980; Hotz and Miller, 1993). A non-separable shock h affects the substitution

between housing services and non-housing consumption. h also affect the housing-

tenure choice. As its distribution is not identified, we normalize h ∼ U(0, 1).

Finally, there is a random exogenous binary move shock m. With probability pm,

m = 1 and the household must move for exogenous reasons (e.g. labor mobility

shock).4 When m = 0 (with probability 1− pm), the household can choose freely

to move or not, yielding endogenous moves. m is not observed by the econometri-

cian. We include it to capture the fact that some households move to very similar

houses, even though the fixed cost of moving should be high.

Period utility function:
3The data counterpart to housing services s can either be the housing size in square meters s,

or other housing variables such as the housing value. The advantage of our identification method
is that sd can be a different variable for each d, e.g. for owners s1 is the estimated housing prices
and for renters s0 is the rent.

4We can allow for a pm that depend on our variables, especially the demographics and the
income.
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The utility function take a CES form (close to Li et al., 2016) and is given by

U(d, c, s, s−1, d−1, x,m, h, e) = γ(x)

!
c1−1/γd + φ(h)s1−1/γd

" 1−σ
1−1/γd

1− σ

+ ( µ0 + µ1d−1)# $% &
fixed moving cost

(1{{d ∕= d−1} or {s ∕= s−1, d = d−1} or {m = 1}})

+ ( ν0 + ν1d−1# $% &
tenure swapping cost

)1{d ∕= d−1} + ed

γ(x) is an equivalence scale as a function of the demographics x. c and s are

non separable choices under this CES specification. The shock h mainly affects

the substitution between cd and sd and φ(h) is simply a strictly increasing trans-

formation with respect to h (e.g. φ(h) = a + bh) to get more general effects of

the shock. The CES parameters γd and σ are such that ∂U(·)/∂sd∂h > 0 and

∂U(·)/∂cd∂h < 0. It means that the optimal housing service consumption (s∗d) is

strictly increasing with h and the optimal non-housing consumption (c∗d) is strictly

decreasing with it: h governs the substitution between c and s.5

You also have some additively separable costs in the utility function. In the model,

we observe that an household move if d ∕= d−1 or s ∕= s−1 and d = d−1. In this

case, the household endures a fixed moving cost µ0 + µ1d−1. With µ0 < 0 and

µ0 +µ1 < 0 because it is costly to move. This cost depends on the past tenure, as

suggested in the data where owners do not move as much as renters (suggesting

µ1 < 0). This fixed utility cost will yield optimal choice where individuals will

choose not to move in the model, and stay in their current house: s = s−1 and

d = d−1.6 Individuals are also forced to move when m = 1. In this case, they

endure the fixed utility cost, which becomes irrelevant for their choices because

they face it no matter what they do. Thus, these individuals are not ‘constrained’

to choose s = s−1 by the fixed cost (and there is a zero likelihood that they will

pick exactly s = s−1 since s is a continuous choice). The exogenous move friction

m only enters the household problem here.

Moreover, there is also a tenure swapping cost ν0 + ν1d−1. We expect ν0 < 0 and
5Note that we can also have a specification with complementary goods that would both

increase with respect to h. We only need both choices to be stricly monotone with respect to h,
increasing or decreasing.

6Notice that we also include monetary transaction costs in the model, which also explains
part of the staying behaviour.
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ν0 + ν1 < 0 because it is costly to swap tenure. And probably ν1 < 0 because it is

even more costly for previous homeowners to become renters: as observed in the

data, homeowners are less likely to become renters.

Transitions :

The budget constraint is:

a+1 ≤ (1 + r)a+ income − c− T (x, d, s, d−1, s−1)# $% &
Tax

−ps(1− d)# $% &
Net rent

− q(s− s−1)dd−1# $% &
Price of house change

− qsd(1− d−1)# $% &
Price of new house

+ qs(1− d)d−1# $% &
Gains from selling and renting

.

Notice that d−1 enters the budget constraint as previous owners (d−1 = 1) are po-

tentially richer than previous renters (d−1 = 0) because they can sell their housing

asset when they move. It also enters the tax schedule. The tax (benefits) schedule

T () can be modelled realistically from the French law to include income tax, pay-

roll tax, residential tax, property tax, housing sale and purchase tax and housing

benefits.

The transitions of the other variables: household income and family demo-

graphics are exogenous in the model. Households can exogenously have a new

child. They cannot divorce in this model. And we focus on couples so there is no

couple formation either. This simplifies the asset and housing transition in cases

of divorce or couple formation. Transitions of income and demographics depends

on current income and demographics, not on s−1 or d−1.

Dynamic life-cycle problem:

Let’s introduce the dynamic optimization problem of the households. Slightly

change the notation to add the index t to each variable. Here the households choose

(dt, sdt, cdt) in order to sequentially maximize their discounted sum of payoffs, with

discount factor β. Let’s define Vt(zt, dt−1, st−1) the ex ante value function of this

discounted sum of future payoffs at the beginning of period t, just before the

shocks (et, ht) are revealed and conditional on behaving according to the optimal
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decision rule afterwards.

Vt(zt, at, dt−1, st−1) = E
' T(

τ=t

βτ−t max
dτ ,sdτ ,cdτ

U(dτ , cdτ , sdτ , sτ−1, dτ−1, xτ ,mτ , hτ , eτ )
)

s.t. at+1 ≤ (1 + rt)at + incomet − ct − T (xt, dt, st, dt−1, st−1)

− ptst(1− dt)− qt(st − st−1)dtdt−1 − qtstdt(1− dt−1) + qtst(1− dt)dt−1

Thus, each period, the household chooses d, sd and cd to maximize their expected

sum of payoffs:

max
dt,sdt,cdt

Ut(dt, cdt, sdt, st−1, dt−1, xt,mt, ht, et) + βEzt+1

'
Vt+1(zt+1, at+1, dt, st)

***zt, at, sdt, cdt, dt, dt−1, st−1

)
.

Remember that zt include the exogenous states, i.e. the demographics xt, but also

the income and the prices.

Retirement :

At 60 years old, we assume the household retire, and live off of their pension and

wealth (housing and non-housing) for 15 more years.

Measurement errors :

Moreover, the non-housing consumption is observed with measurement error ζ by

the econometrician, i.e.

cobs = c∗ + ζ.

But ζ does not enter the household problem. The measurement error is indepen-

dent from every other variables, and is iid every periods.

4 Identification

At each period, we observe data on the variables (d, sd, cd, s−1, d−1, a, z). We only

observe s0 and c0 if d = 0 and s1 and c1 if d = 1. In other words:

sd = s0(1− d) + s1d

cd = c0(1− d) + c1d.

Shocks m, h and e are observed by the agents but not observed by the econometri-

cian. Moreover, a noisy measure of cd is observed because of measurement errors,
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i.e. we observe cd + ζ.

We first study identification of the following objects: the optimal Conditional Con-

tinuous Choices (CCCs) s∗d(h, s−1, d−1, a, z,m) and c∗d(h, s−1, d−1, a, z,m), as well

as the optimal Conditional Choice Probabilities (CCPs) Pr(d|h, s−1, d−1, a, z,m).

Then, following Bruneel-Zupanc (2021) we will use the identified optimal choices

to identify the structural parameters of the model.

The identification proof will use arguments of Bruneel-Zupanc (2021). How-

ever, this paper cannot be applied directly as the setup here is more complicated

for three main reasons. (i) d−1 violates the exclusion restriction of Bruneel-Zupanc

(2021), and is not directly an instrument. Indeed, it affects the budget constraint

and thus the future value. (ii) Because of fixed costs, the optimal choice s will

not be strictly monotone. In a related note, the presence of unobserved m binary

shock implies there are additional objects to identify. (iii) Consumption is an ad-

ditional choice and this was not dealt with in the previous paper.7 We show how

to identify it if it is measured with errors.

To show how the identification works here, we proceed stepwise. First we show

how the optimal choices would be identified if everyone was moving freely, i.e. if

the fixed cost was irrelevant (everyone pays it even if they do not move). Then we

show how the optimal choices are identified with a fixed moving cost in the model

that makes some households stay in their previous house. Finally, we show how

the consumption choice is also identified despite the measurement errors and how

it can be used to identify the housing tenure probability choice even for stayers.

Without loss of generality, we proceed conditional on any given exogenous state z

in this section, and we omit z in what follows.

4.1 Identification when everyone moves

Assume everyone moves. In other words, everyone pays the fixed cost, even if they

do not move, such that households will no longer choose s = s−1 to avoid paying
7Notice that sd in this paper would be the direct counterpart to cd in Bruneel-Zupanc (2021).

Because cd is measured with additional errors, so it cannot be used directly to recover h.
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the fixed cost. The utility function is then written as:

U(d, c, s, s−1, d−1, x,m, h, e) = γ(x)

!
c1−1/γd + φ(h)s1−1/γd

" 1−σ
1−1/γd

1− σ

+ (µ0 + µ1d−1) + (ν0 + ν1d−1)1{d ∕= d−1} + ed

Very importantly, notice that this is equivalent to the general setup when m =

1, i.e. where households are forced to move. A model without any fixed cost

(µ0 + µ1d−1) term would also be equivalent in terms of optimal choices. Indeed,

the fixed cost does not differentially affect the discrete alternatives so the optimal

choice d∗ does not depend on it. Furthermore, by additive separability, s∗d and c∗d

are also independent from it.

Even when everyone moves, we cannot apply the strategy employed by Bruneel-

Zupanc (2021) directly. Indeed, d−1 is not excluded from the budget constraint.

So the optimal continuous choices s∗d and c∗d will depend on d−1 since, everything

else equal, a previously homeowner is richer than a previously renter.

We adopt the following solution in this specific setup. One can show that d−1 only

affect housing wealth in the budget constraint when everyone moves. Denote s̃∗d

the optimal choices in this setup where everyone moves, or the optimal housing

service choice conditional on moving. We can also call it the unconstrained optimal

choice, in the sense that it is not constrained by the fixed cost. One can show that

for all h, d and s′−1:

s̃∗d(h, d−1 = 1, s−1, a) = s̃∗d(h, d−1 = 0, s′−1 = ·, a′ = a+ q
s−1

1 + r
). (1)

In other words, conditional on moving, ex-homeowners with financial asset a and

house of size s−1 will have a total wealth equal to (1+r)a+qs−1 (plus their income

and taxes, that we abstract from here). They will make the same choice as ex-

renters with the same total wealth, i.e. with financial asset a′ = a+ qs−1/(1 + r).

Because ex-renters (d−1 = 0) do not own their house, their previous house size

s′−1 do not affect their wealth, so the property holds for all s′−1. The property

holds because s−1 only matters in terms of wealth for the previous homeowners

without fixed cost of moving here. Apart from the housing wealth it provides them

when they move, previous homeowners are exactly equivalent to previous renters

here. So, conditional on total wealth, (1 + r)a + qs−1d−1, the optimal housing
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service choice s̃∗d is independent from d−1. It is true because d−1 only matters in

determining the total wealth, it does not play a role anywhere else in the other

variables transition.

Notice also that d−1 is (strictly) relevant for the choice to be a homeowner

or a renter at a given total wealth. Indeed, because of the tenure swapping cost

(ν0 + ν1d−1)1{d ∕= d−1}, we have that:

Pr(D = 1|h, d−1 = 1, s−1, a) > Pr(D = 1|h, d−1 = 0, s′−1 = ·, a′ = a+ q
s−1

1 + r
),

(2)

in which the strict inequality comes from the fact that ν0 + ν1d−1 < 0 for all d−1,

i.e. it is costly to swap tenure, no matter the previous tenure. In other words,

at equal total wealth, ex-homeowners are strictly more likely to be homeowners

today than ex-renters.

Therefore, even if we cannot count on an exclusion restriction as defined in Bruneel-

Zupanc (2021), we can apply refined version of the identification proof in the pa-

per using property (1). In short, the idea of the proof is to match ex-homeowners

(d−1 = 1) with endogenous states (s−1, a) to ex-renters (d−1 = 0) with endoge-

nous states yielding the same total wealth, i.e. a′ = a + qs−1/(1 + r) (and any

s′−1), instead of matching them with ex-renters with the same covariates (a′ = a

and s′−1 = s−1). For these pairs, we have the ‘exclusion’ and the ‘relevance’ of

d−1, conditional on the total wealth, and we can apply the same reasoning as in

Bruneel-Zupanc (2021). We show how it works in what follows.

Sketch of the proof:

When d−1 = 1, conditional on moving, we have:

h = Pr(h ≤ h)

= Pr(h ≤ h|s−1, a, d−1 = 1)

= Pr(h ≤ h|D = 0, s−1, a, d−1 = 1)Pr(D = 0|s−1, a, d−1 = 1)

+ Pr(h ≤ h|D = 1, s−1, a, d−1 = 1)Pr(D = 1|s−1, a, d−1 = 1)

= Pr
+
s ≤ s̃∗0(h, s−1, a, d−1 = 1)|D = 0, s−1, a, d−1 = 1

,
Pr(D = 0|s−1, a, d−1 = 1)

+ Pr
+
s ≤ s̃∗1(h, s−1, a, d−1 = 1)|D = 1, s−1, a, d−1 = 1

,
Pr(D = 1|s−1, a, d−1 = 1)
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= FS0|D=0,s−1,a,d−1=1(s̃
∗
0(h, s−1, a, d−1 = 1)) Pr(D = 0|s−1, a, d−1 = 1)

+ FS1|D=1,s−1,a,d−1=1(s̃
∗
1(h, s−1, a, d−1 = 1)) Pr(D = 1|s−1, a, d−1 = 1), (3)

where the first equality comes from h ∼ U(0, 1) by normalization. The second

is because h ⊥ (d−1, a, s−1). The third equality comes from the law of total

probability. The fourth equality comes from the strict monotonicity of s̃∗d(h, ·)

with respect to h. The fifth equality is just a notation change for the conditional

distribution functions.

Similarly, when d−1 = 0, conditional on moving, we have:

h = Pr(h ≤ h)

= Pr(h ≤ h|s′−1, a
′, d−1 = 0)

= Pr(h ≤ h|D = 0, s′−1, a
′, d−1 = 0)Pr(D = 0|s′−1, a

′, d−1 = 0)

+ Pr(h ≤ h|D = 1, s′−1, a
′, d−1 = 0)Pr(D = 1|s′−1, a

′, d−1 = 0)

= Pr
+
s ≤ s̃∗0(h, s

′
−1, a

′, d−1 = 0)|D = 0, s′−1, a
′, d−1 = 0

,
Pr(D = 0|s′−1, a

′, d−1 = 0)

+ Pr
+
s ≤ s̃∗1(h, s

′
−1, a

′, d−1 = 0)|D = 1, s′−1, a
′, d−1 = 0

,
Pr(D = 1|s′−1, a

′, d−1 = 0)

= FS0|D=0,s′−1,a
′,d−1=0(s̃

∗
0(h, s

′
−1, a

′, d−1 = 0)) Pr(D = 0|s′−1, a
′, d−1 = 0)

+ FS1|D=1,s′−1,a
′,d−1=0(s̃

∗
1(h, s

′
−1, a

′, d−1 = 0)) Pr(D = 1|s′−1, a
′, d−1 = 0),

for the same reasons as what we have for d−1 = 1.8

Now, recall property (1) that, for all h, d and s′−1:

s̃∗d(h, d−1 = 1, s−1, a) = s̃∗d(h, d−1 = 0, s′−1 = ·, a′ = a+ q
s−1

1 + r
). (4)

Thus, conditional on moving, with a′ = a+ qs−1/(1 + r), we have:

h = FS0|D=0,s−1,a,d−1=1(s̃
∗
0(h, s−1, a, d−1 = 1)) Pr(D = 0|s−1, a, d−1 = 1)

+ FS1|D=1,s−1,a,d−1=1(s̃
∗
1(h, s−1, a, d−1 = 1)) Pr(D = 1|s−1, a, d−1 = 1)

= FS0|D=0,s′−1,a
′,D−1=0(s̃

∗
0(h, s

′
−1, a

′, d−1 = 0)) Pr(D = 0|s′−1, a
′, d−1 = 0)

+ FS1|D=1,s′−1,a
′,d−1=0(s̃

∗
1(h, s

′
−1, a

′, d−1 = 0)) Pr(D = 1|s′−1, a
′, d−1 = 0).

8 Notice here that s̃∗d(·, d−1 = 0) ⊥ s−1. We see later that s−1 only matters to determine the
position of the mass point of the optimal s when the household does not move if d−1 = 0. So,
for the conditional distribution function of s, we could remove s′−1.
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Therefore, we can proceed as in Bruneel-Zupanc (2021), and rewrite it as:
-
FS0|D=0,s−1,a,D−1=1(s̃

∗
0(h, s−1, a, d−1 = 1)) Pr(D = 0|s−1, a,D−1 = 1)

− FS0|D=0,s′−1,a
′,D−1=0(s̃

∗
0(h, s

′
−1, a

′, d−1 = 0)) Pr(D = 0|s′−1, a
′, D−1 = 0)

.

= −
-
FS1|D=1,s−1,a,D−1=1(s̃

∗
1(h, s−1, a, d−1 = 1)) Pr(D = 1|s−1, a,D−1 = 1)

− FS1|D=1,s′−1,a
′,D−1=0(s̃

∗
1(h, s

′
−1, a

′, d−1 = 0)) Pr(D = 1|s′−1, a
′, D−1 = 0)

.
.

Under property (1), we have a mapping between the policy functions with different

previous housing wealth but similar total wealth. Thus we have only two policy

functions to identify (instead of four, two for each d), with four different conditional

distributions thanks to the relevance of d−1. It yields
-
FS0|D=0,s−1,a,D−1=1(s̃

∗
0(h, s−1, a, d−1 = 1)) Pr(D = 0|s−1, a,D−1 = 1)

− FS0|D=0,s′−1,a
′,D−1=0(s̃

∗
0(h, s−1, a, d−1 = 1)) Pr(D = 0|s′−1, a

′, D−1 = 0)

.

= −
-
FS1|D=1,s−1,a,D−1=1(s̃

∗
1(h, s−1, a, d−1 = 1)) Pr(D = 1|s−1, a,D−1 = 1)

− FS1|D=1,s′−1,a
′,D−1=0(s̃

∗
1(h, s−1, a, d−1 = 1)) Pr(D = 1|s′−1, a

′, D−1 = 0)

.

⇐⇒ ∆FS0(s̃
∗
0(h, s−1, a, d−1 = 1)) = ∆FS1(s̃

∗
1(h, s−1, a, d−1 = 1)). (5)

In the model when everyone moves, the functions ∆FSd
can be directly estimated,

from the data (as conditional distributions). It only remains to identify policies:

s̃∗d(h, s−1, a, d−1 = 1). One can directly apply Bruneel-Zupanc (2021) to show that

functions s̃∗d(h, s−1, a, d−1 = 1) are identified as the unique solution to this system

of equation (5).

In fact here, because we have strict relevance (2), one can show that ∆FS0 and

∆FS1 are invertible. Thus, the mapping between s̃∗0 and s̃∗1 is identified directly.

Indeed, since s̃∗d are strictly monotone with respect to h, we can rewrite (5) as:

∆FS0(s̃
∗
0(s1, s−1, a, d−1 = 1)) = ∆FS1(s1).
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And there is a unique mapping between s1 and s0, obtain by taking the inverse:

s̃∗0(s1, s−1, a, d−1 = 1) = ∆F−1
S0

+
∆FS1(s1)

,

Now, to obtain s̃∗d as a function of h for both d, simply plug these into (3).

Therefore, in the model with only movers (m = 1), the optimal housing service

s̃∗d(h, s−1, a, d−1 = 1) are identified for all d, h, s−1 and a.

Moreover, these policies are strictly increasing, so one can invert them to re-

cover the unobserved h for each observation of sd in the data.

h = (s̃∗d)
−1(sobsd , s−1, a, d−1)

From there, it is as if h = h were observed. We can use it to compute the

conditional choice probabilities (CCPs)
Pr(D = 1|h, d−1, s−1, a).

Thus, the optimal discrete choice probabilities are also identified.

As for the consumption choice c̃∗d(h, s−1, a, d−1), we can also use the inversion

of s̃∗d(h, ·) to recover h and proceed as if it was observed. Thus, one just need to

run the non parametric regression

cobsd = c̃∗d(h, s−1, a, d−1) + ζ,

which directly identifies the optimal consumption policies and the distribution of

the measurement errors ζ.

Therefore, the three policy choices are identified without fixed moving costs in

a model where everyone moves.

4.2 Identification with fixed costs, when some households
do not move

In a model with fixed costs, when not everyone is moving, the identification will

be more complicated because some households will choose not to move, and select

s∗d = s−1, d
∗ = d−1.
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Figure 2: Optimal housing services function

The presence of the fixed cost transforms the problem as shown in Figure 2.

Between two values of h, hd(a, s−1, d−1) and h̄d(a, s−1, d−1), with 0 ≤ h ≤ h̄ ≤ 1,

households will choose to stay and s∗d(h, a, s−1, d−1) = s−1. Outside the interval

[hd(a, s−1, d−1), h̄d(a, s−1, d−1)], households will move, and select the optimal hous-

ing service defined in the previous section: s̃∗d(h, ·). Notice that it is possible that

hd = 0 or h̄d = 1 for some values of the covariates (in particular s−1). In fact we

can even have hd = h̄d = 0 or hd = h̄d = 1, in which case no one moves given these

state variables. If d ∕= d−1, s∗d(h, a, s−1, d−1 ∕= d) = s̃∗d(h, a, s−1, d−1 ∕= d) because

if they swap tenure these households are already moving by construction. So the

boundaries only matter when d = d−1.

Another property is that the mass point is shifting with the value of s−1. In

other words, if sa−1 < sb−1, then hd(a, s
a
−1, d−1) ≤ hd(a, s

b
−1, d−1) and h̄d(a, s

a
−1, d−1) ≤

h̄d(a, s
b
−1, d−1). This ordering also translate in the sd.

Moreover, households who endure the exogenous move shock m = 1 are neces-

sarily moving and their optimal housing service choice s∗d(h, ·,m = 1) = s̃∗d(h, ·) for

all h. So if we observe that an household does not move in the data, it means that

m = 0. Households with m = 0 will never pick an optimal sd different from s−1

between [s∗d(hd, ·), s∗d(h̄d, ·)] if they keep the same tenure d = d−1. Which means
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that households who move without changing tenure with an optimal s∗d choice

in [s∗d(hd, ·), s∗d(h̄d, ·)] endured the exogenous move shock m = 1. In other words,

moves to houses similar to the previous one (close to s−1) are due to the exogenous

move shock in the model. Because of the fixed cost, households would never pick

such a choice if they were not forced to move.

Identification with fixed costs is more complicated as the optimal s∗d are not

strictly monotone with respect to h anymore, and there are more objects to identify

(the bounds). We proceed piece by piece for the identification. First, we show how

to identify the boundaries in terms of sd, i.e. how to identify s∗d(hd, s−1, a, d−1) and

s∗d(h̄d, s−1, a, d−1) for all (s−1, a, d−1). Second, we show how to identify the proba-

bility of receiving and exogenous moving shock, pm. Third, we show how to identify

s∗d outside boundaries sd, s̄d. Fourth, we show how to identify s∗d(h, ·,m = 1) be-

tween boundaries. Finally, we show how to recover Pr(D = 1|h, ·,m = 1), as well

as the consumption choice of movers and the measurement error distribution.

Step 1: identification of s∗d(hd) and s∗d(h̄d)

We drop the dependence of hd, h̄d, sd(hd), sd(h̄d) on (a, s−1, d−1) in the notation

here to simplify the exposition. As already mentioned, hd and h̄d only matters

when d−1 = d.

First, notice that if there was no moving shock, i.e. if m = 0 for all household,

then the boundaries are straightforward to identify. Indeed, they correspond to

the highest value of sd before s∗d = s−1 and the lowest value of sd such that s∗d = s−1

(conditional on the covariates).

The presence of exogenous moving shocks prevents us from identifying the bound-

aries as easily because household with m = 1 will move freely and could pick

sd close to s−1 without changing tenure. The idea for the identification of the

boundaries rely on the fact that, above sd and below s̄d, we should observe jumps

(proportional to pm) in the conditional density of s∗d because only the population

with m = 1 will remain, while the households with m = 0 will all choose to stay

at s∗d = s−1.

Formally, since m is an exogenous shock, independent from everything else, for
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all s we have

FSd|D=d,D−1=d,s−1,a(sd) = pm FSd|D=d,D−1=d,s−1,a,m=1(sd) + (1− pm) FSd|D=d,D−1=d,s−1,a,m=0(sd),

and for all s ∕= s−1 (because at s−1 the density has a mass point):

dFSd|D=d,D−1=d,s−1,a(sd)

dsd
= pm

dFSd|D=d,D−1=d,s−1,a,m=1(sd)

dsd
+ (1− pm)

dFSd|D=d,D−1=d,s−1,a,m=0(sd)

dsd

⇐⇒ fSd|D=d,D−1=d,s−1,a(sd) = pm fSd|D=d,D−1=d,s−1,a,m=1(sd) + (1− pm) fSd|D=d,D−1=d,s−1,a,m=0(sd),

where we define the density fSd|D=d,D−1=d,s−1,a(sd) = dFSd|D=d,D−1=d,s−1,a(sd)/dsd,

and where pm = Pr(m = 1).

Now notice that, for all s ∕∈ [s∗d(hd), s
∗
d(h̄d)]:

FSd|D=d,D−1=d,s−1,a(sd) = FSd|D=d,D−1=d,s−1,a,m=1(sd) =FSd|D=d,D−1=d,s−1,a,m=0(sd)

and

fSd|D=d,D−1=d,s−1,a(sd) = fSd|D=d,D−1=d,s−1,a,m=1(sd) =fSd|D=d,D−1=d,s−1,a,m=0(sd).

While, for all s ∈ [s∗d(hd), s
∗
d(h̄d)] \ {s−1}:

fSd|D=d,D−1=d,s−1,a,m=0(sd) = 0.

Then, for all s ∈ [s∗d(hd), s
∗
d(h̄d)] \ {s−1}:

fSd|D=d,D−1=d,s−1,a(sd) = pm fSd|D=d,D−1=d,s−1,a,m=1(sd)

Thus, we can identify s∗d(hd) and s∗d(h̄d) by observing discontinuities in the density.

Indeed, in a close neighborhood to s∗d(hd),

fSd|D=d,D−1=d,s−1,a(sd)
***
sd=s̃∗d(hd)

=

/
001

002

pm fSd|D=d,D−1=d,s−1,a,m=1(sd)

+ (1− pm) fSd|D=d,D−1=d,s−1,a,m=0(sd) if sd < s∗d(hd)

pm fSd|D=d,D−1=d,s−1,a,m=1(sd) if sd ≥ s∗d(hd)

Thus, if hd > 0, we identify s̃∗d(hd) as the only sd < s−1 such that there is a jump

in the density.And if there is no such point, it means that hd = 0, meaning that

the fixed cost covers all the optimal choices s̃d below s−1.

Similarly, in a close neighborhood to s̃∗d(h̄d),

fSd|D=d,D−1=d,s−1,a(sd)
***
sd=s̃∗d(h̄d)

=

/
001

002

pm fSd|D=d,D−1=d,s−1,a,m=1(sd) if sd < s∗d(h̄d)

pm fSd|D=d,D−1=d,s−1,a,m=1(sd)

+ (1− pm) fSd|D=d,D−1=d,s−1,a,m=0(sd) if sd ≥ s∗d(h̄d)
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Thus, if h̄d < 1, we identify s̃∗d(h̄d) as the only sd > s−1 such that there is a jump

in the density. And if we observe no such point, it means that h̄d = 1.

Notice that the knowledge of pm is not required for the identification of the bound-

aries: one just need to observe a jump in the density, which will occur as long as

pm ∈ (0, 1). In the extreme case where pm = 1, everyone moves and the result

of the previous section holds. In the other extreme where pm = 0, there is no

exogenous move and so we identify the boundaries as stated previously: as the

lowest value sd below s−1 and the highest value greater than s−1.

Step 2: identification of pm

To identify pm now, we will exploit the knowledge of the probability of not moving

sd = s−1.

Notice that, by construction, since m ⊥ h, e

Pr
+
Sd ∈ [s̃∗d(hd), s̃

∗
d(h̄d)]

***D = d,D−1 = d, s−1, a
,

= Pr
+
Sd ∈ [s̃∗d(hd), s̃

∗
d(h̄d)]

***D = d,D−1 = d, s−1, a,m = 0
,

-
and also = Pr

+
Sd ∈ [s̃∗d(hd), s̃

∗
d(h̄d)]

***D = d,D−1 = d, s−1, a,m = 1
,.

Moreover, we know that:

Pr
+
Sd ∈ [s̃∗d(hd), s̃

∗
d(h̄d)]

***D = d,D−1 = d, s−1, a,m = 0
,
= Pr

+
Sd = s−1

***D = d,D−1 = d, s−1, a,m = 0
,

Now, Pr(Sd = s−1

***D = d,D−1 = d, s−1, a,m = 0) is not directly estimable as we

do not observe m. But we observe Pr(Sd = s−1

***D = d,D−1 = d, s−1, a). And we

know that:

Pr
+
Sd = s−1

***D = d,D−1 = d, s−1, a
,
= (1− pm) Pr

+
Sd = s−1

***D = d,D−1 = d, s−1, a,m = 0
,

+ pm Pr
+
Sd = s−1

***D = d,D−1 = d, s−1, a,m = 1
,

# $% &
=0 by continuity of s̃∗d(·)

= (1− pm) Pr
+
Sd = s−1

***D = d,D−1 = d, s−1, a,m = 0
,
.

We obtain this because, when m = 1, the household adopts the optimal choice

s̃∗d(·). Thus Pr(Sd = s−1

***D = d,D−1 = d, s−1, a,m = 1) = 0 because s̃∗d(·) is

continuous, so the likelihood of choosing s̃∗d exactly equal to s−1 is zero.
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By mixing the three previous properties, we obtain

Pr
+
Sd ∈ [s̃∗d(hd), s̃

∗
d(h̄d)]

***D = d,D−1 = d, s−1, a
,

= Pr
+
Sd ∈ [s̃∗d(hd), s̃

∗
d(h̄d)]

***D = d,D−1 = d, s−1, a,m = 0
,

= Pr
+
Sd = s−1

***D = d,D−1 = d, s−1, a,m = 0
,

=
Pr

+
Sd = s−1

***D = d,D−1 = d, s−1, a
,

1− pm
,

where only pm is unknown since we already identified s̃∗d(hd), s̃
∗
d(h̄d). It gives that

pm =
Pr

+
Sd ∈ [s̃∗d(hd), s̃

∗
d(h̄d)]

***D = d,D−1 = d, s−1, a
,
− Pr

+
Sd = s−1

***D = d,D−1 = d, s−1, a
,

Pr
+
Sd ∈ [s̃∗d(hd), s̃

∗
d(h̄d)]

***D = d,D−1 = d, s−1, a
, ,

which identifies pm.9

Step 3: identification of s∗d(h, ·) outside the boundary points hd, h̄d

As displayed in Figure 2, outside of the boundaries (hd(a, s−1, d−1), h̄d(a, s−1, d−1)),

households move and s∗d(h, a, s−1, d−1) = s̃∗d(h, a, s−1, d−1) for all (a, s−1, d−1). In

other words, outside of the boundaries, s∗d(h, a, s−1, d−1,m = 0) = s∗d(h, a, s−1, d−1,m =

1) = s̃∗d(h, a, s−1, d−1), and the presence of the moving shock is irrelevant: house-

holds endogenously choose to move and make the same choice as if they were

facing a moving shock.

We build upon Section 4.1, using property (1) for the identification of the

optimal s∗d outside the boundaries, i.e. conditional on moving. i.e. we use:

s̃∗d(h, d−1 = 1, s−1, a) = s̃∗d(h, d−1 = 0, s′−1 = ·, a′ = a+ q
s−1

1 + r
),

where s′−1 is the previous housing service of the previously renting household

(d−1 = 0), which does not matter on their choice conditional on moving since ex

renters have no housing wealth.

The bounds introduce some specificities though. Depending on what a, s−1 and

s′−1 are, and using a′ = a+ qs−1/(1 + r), we will have four boundaries. For d = 1,

we will have household staying when d−1 = 1 and the boundaries will depend

on a and s−1, i.e. h1(a, s−1, d−1 = 1), h̄1(a, s−1, d−1 = 1). Similarly, previous
9Notice that, since we are studying identification at given exogenous covariates, it means that

we could allow for a pm that depend on these covariates z.
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renters (d−1 = 0) only stays in their home if they remain renters (d = 0) and

the boundaries in this case will depend on a′ and s′−1, i.e. h0(a
′, s′−1, d−1 = 0),

h̄0(a
′, s′−1, d−1 = 0). So, in fact for any given (a, s−1, s

′
−1) and a′ = a+qs−1/(1+r),

we will have identification of the optimal choices s∗d for

h ∕∈ [h0(a
′, s′−1, d−1 = 0), h̄0(a

′, s′−1, d−1 = 0)] ∪ [h1(a, s−1, d−1 = 1), h̄1(a, s−1, d−1 = 1)].

Now, notice that property (1) holds for any s′−1. So, provided that we have

enough variation in the observed support of s−1, [h0, h̄0] are not important. One

can identify s∗1 and s∗0 for all h ∕∈ [h1(a, s−1, d−1 = 1), h̄1(a, s−1, d−1 = 1)]. Only

the boundaries for a, s−1 when d = 1 matters. Indeed, we will proceed to the

identification by taking several value of s′−1 in order to move the h0, h̄0 such that

they ‘do not matter’. Recall that h0, h̄0 increase with s′−1. So typically, to identify

s∗1(h, a, s−1, d−1 = 1) and s∗0(h, a, s−1, d−1 = 1) on [0, h1(a, s−1, d−1 = 1)], pick a

sufficiently high s′−1 such that h0(a
′, s′−1, d−1 = 0) > h1(a, s−1, d−1 = 1). If we

observe enough variation in s′−1, such an s′−1 should always exists.10 Similarly, to

identify s∗1(h, a, s−1, d−1 = 1) and s∗0(h, a, s−1, d−1 = 1) on [h1(a, s−1, d−1 = 1), 1],

pick a sufficiently low s′−1 such that h̄0(a
′, s′−1, d−1 = 0) > h̄1(a, s−1, d−1 = 1).

Therefore, for all (a, s−1), s∗0(h, a, s−1, d−1 = 1) and s∗1(h, a, s−1, d−1 = 1) are

identified for all h ∕∈ [h1(a, s−1, d−1 = 1), h̄1(a, s−1, d−1 = 1)].11 In other words, we

fully identify functions s̃∗d(h, a, s−1, d−1 = 1) and s∗d(h, a, s−1, d−1 = 1,m = 1) on

this subset, i.e. conditional on endogenously moving.

Step 4: identification of s̃∗d(h, ·) for h ∈ [h1, h̄1]

It remains to identify s∗d(h, a, s−1, d−1 = 1,m = 1) for both d, on the subset of

h ∈ [h1, h̄1]. Notice that for m = 0, we do not need to identify s∗1(h, a, s−1, d−1 =

1,m = 0) because by definition it is equal to s−1 on this subsample. So what

remains to be identified are the policies for movers s̃d, or equivalently the policies
10Notice that in the first step we only identify the bounds in terms of s and not the value

of h, h̄ directly. So this is a guessing game: take s′−1, it yields s0 = s∗0(h0(a
′, s′−1, d−1 =

0), d−1 = 0, a′, s′−1). Now run the identification procedure in step 1. If we notice that s∗1(s0) <
s1 ≡ s∗1(h1(a, s−1, d−1 = 1), d−1 = 1, a, s−1), it means that s′−1 was not high enough (because
h0 < h1), and one need to run it again with a higher s′−1.

11And the policies when d−1 = 0 are identified using the ones with d−1 = 1 through property
(1), as in Section 4.1.
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conditional on m = 1.

The idea for the identification is close to what we did in the previous step: we will

once again shift s−1 in order to shift the mass point. Notice that

s̃d(h, d−1 = 1, s−1, a) =s̃d(h, d−1 = 1, s′−1, a
′) (6)

∀ s′−1, a
′ s.t.

qs′−1

1 + r
+ a′ =

qs−1

1 + r
+ a.

In words, property (6) is similar to the idea in property 1. We have that conditional

on moving, only the total wealth matters for households. So, even two ex-owners

(d−1 = 1) with the same total wealth will make the same housing service choice

when they move. How their wealth is composed of financial or housing assets does

not matter once they move.

Therefore, conditional on having enough variation in s−1, we can vary s′−1 at fixed

total wealth (= qs−1/(1 + r) + a) in order to identify sd(h, d−1 = 1, s−1, a) for all

h. For example, one can proceed to the identification procedure described in the

previous step with two different values of s−1: s−1 and s′−1. With s′−1, a
′ such that

s∗1(h1(a
′, s′−1, d−1 = 1), d−1 = 1, a′, s′−1) > s∗1(h̄1(a, s−1, d−1 = 1), d−1 = 1, a, s−1).

In which case the optimal choice for the movers s̃∗1 and s̃∗0 are identified for all

h ∈ [0, 1].

Step 5: identification of h for movers and of Pr(D = 1|h, d−1, s−1, a,m = 1) for

all h ∈ [0, 1]

We proceed exactly as in steps 3 and 4 by shifting s−1. While we identify s∗d(·,m =

1), we can directly invert them, to recover h = (s̃∗d)
−1(sobsd , s−1, a, d−1). In other

words, for movers, h is identified, as if it was an observed variable. Then we use

it to compute the conditional choice probabilities (CCPs) of movers:

Pr(D = 1|h, d−1, s−1, a,m = 1) for all h ∈ [0, 1]

Remark, on the subsample of moving households, Pr(D = 1|h, d−1, s−1, a,m = 1)

= Pr(D = 1|h, d−1, s−1, a,m = 0) = Pr(D = 1|h, d−1, s−1, a). So the only case

where we do not directly identify Pr(D = 1|h, d−1, s−1, a,m = 0) is when s∗d = s−1.

Because in this case, we cannot invert s∗d to recover the corresponding value of the
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unobserved shock h.

Step 6: identification of c∗d(h, d−1, a,m = 1) for all h ∈ [0, 1] and the measurement

error ζ

Similarly, we invert s∗d(·,m = 1) to recover h from observed sd for households

who move exogenously. Then we use this h as if it was observed to run the non

parametric regression

cobsd = c∗d(h, s−1, a, d−1,m = 1) + ζ

This regression directly identifies the optimal consumption policies of movers and

the distribution of measurement errors ζ, denoted Fζ . As for Pr(D = 1|h, ·), for

movers, c∗d(h, s−1, a, d−1,m = 1) = c∗d(h, s−1, a, d−1,m = 0). So we also identify

c∗d(·,m = 0) for movers. It remains to identify the optimal consumption choice of

stayers.

4.3 Identification of c for stayers

Contrary to sd, when h ∈ [hd(a, s−1, d−1 = d), h̄d(a, s−1, d−1 = d)], cd varies and

is not fixed (as sd is equal to s−1). So it remains to identify c∗d(h, s−1, a, d−1 =

d,m = 0) for h ∈ [hd(a, s−1, d−1 = d), h̄d(a, s−1, d−1 = d)]. It is interesting that

consumption provides some information on h (though the information is noisy

because of measurement errors).

In the data, we only observe cobsd = c∗d+ζ and the distribution of cobsd . However,

ζ is an independent measurement error and we have identified its distribution Fζ

on the subset of movers in step 6 of the previous section. So, by deconvolution

(e.g. Comte and Lacour, 2011), we can recover the distribution of the true c∗d(h, ·),

denoted FCd|D=d,·(cd), from any conditional distribution of observed cobsd .

Let us identify c∗d(h, s−1, a, d−1 = d,m = 0) for all h. Recall that c∗d(h, s−1, a, d−1 =

d,m = 0) is already identify outside of the boundaries. So we only need to identify

it for stayers, i.e. for h ∈ [hd(a, s−1, d−1 = d), h̄d(a, s−1, d−1 = d)]. Proceed by

values of d. Start with d = 1. In the data, if households choose sd = s−1 and

d = d−1, it means that m = 0: they did not move so it means that they did not

endure an exogenous shock forcing them to move. It is as if m = 0 was observed
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in this case. Using these observations, we recover FCd|D=d,·,m=0(cd) (using decon-

volution).

Do the following computation at any given (a, s−1), from which we abstract in the

following notation. For any h ∈ [hd(a, s−1, d−1 = d), h̄d(a, s−1, d−1 = d)], we have

Pr(h ≤ h) = Pr(h ≤ h|D−1 = 1)

= Pr(h ≤ h|D = 1, D−1 = 1)Pr(D = 1|D−1 = 1)

+ Pr(h ≤ h|D = 0, D−1 = 1)Pr(D = 0|D−1 = 1)

= Pr(h ≤ h|D = 1, D−1 = 1,m = 0)Pr(D = 1|D−1 = 1,m = 0)(1− pm)

+ Pr(h ≤ h|D = 1, D−1 = 1,m = 1)Pr(D = 1|D−1 = 1,m = 1)pm

+ Pr(h ≤ h|D = 0, D−1 = 1)Pr(D = 0|D−1 = 1)

= Pr(C∗
1 ≥ c∗1(h, d−1 = 1,m = 0)|D−1 = 1, D = 1,m = 0)Pr(D = 1|D−1 = 1,m = 0)(1− pm)

+ Pr(h ≤ h|D = 1, D−1 = 1,m = 1)Pr(D = 1|D−1 = 1,m = 1)pm

+ Pr(h ≤ h|D = 0, D−1 = 1)Pr(D = 0|D−1 = 1). (7)

The first equality holds because h ⊥ d−1. The second and third equalities come

from the law of total probability, where pm = Pr(m = 1). We obtain the fourth

equality because c∗1(h, ·) is a strictly monotone (decreasing) function of h. The

only thing that is unknown in this equation (7) is the optimal policy. Now, when

d ∕= d−1, the households move and we identified h by inverting the optimal s∗d
choice. So, Pr(h ≤ h|D = 0, D−1 = 1) is known. Pr(D = 0|D−1 = 1) can be

directly estimated from the data too. Similarly, Pr(h ≤ h|D = 1, D−1 = 1,m = 1)

was also already identified, because when m = 1 we observe moves in sd, we can

reverse it to identify h and its distribution. Pr(D = 1|D−1 = 1,m = 1) is also

known as we identified Pr(D = 1|h,D−1 = 1,m = 1) for all h when m = 1.

Finally, we can show that Pr(D = 1|h,D−1 = 1,m = 0) is also known. Indeed,

by the law of total probability,

Pr(D = 1|D−1 = 1) = Pr(D = 1|D−1 = 1,m = 1) pm + (1− pm) Pr(D = 1|D−1 = 1,m = 0).

27



Where pm is identified, Pr(D = 1|D−1 = 1) is observed from the data and Pr(D =

1|D−1 = 1,m = 1) has also been identified. So,

Pr(D = 1|D−1 = 1,m = 0) =
Pr(D = 1|D−1 = 1)− pm Pr(D = 1|D−1 = 1,m = 1)

1− pm

and Pr(D = 1|D−1 = 1,m = 0) is known.

So, since the distribution FC1|D=1,D−1=1,m=0(cd) has been identified by decon-

volution, the only unknown in equation (7) is the optimal consumption choice

c∗1(h, d−1 = 1,m = 0). Thus, it is identified by:

1−FC1|D=1,D−1=1,m=0(c
∗
1(h, d−1 = 1,m = 0))

=
+
Pr(h ≤ h)

− Pr(h ≤ h|D = 1, D−1 = 1,m = 1)Pr(D = 1|D−1 = 1,m = 1)pm

− Pr(h ≤ h|D = 0, D−1 = 1)Pr(D = 0|D−1 = 1)
, 1

Pr(D = 1|D−1 = 1,m = 0)(1− pm)

Which means that:

c∗1(h, d−1 = 1,m = 0)

= F−1
C1|D=1,D−1=1,m=0

-
1−

+
Pr(h ≤ h)

− Pr(h ≤ h|D = 1, D−1 = 1,m = 1)Pr(D = 1|D−1 = 1,m = 1)pm

− Pr(h ≤ h|D = 0, D−1 = 1)Pr(D = 0|D−1 = 1)
, 1

Pr(D = 1|D−1 = 1,m = 0)(1− pm)

.
,

and c∗1(h, d−1,m = 0) is identified for all h in the boundaries. Since it was already

identified outside the boundaries, it is identified for all h ∈ [0, 1].

We apply exactly the same reasoning for d = 0 to identify c∗0(h, d−1 = 0,m = 0)

for all h in the boundaries [h0(a, s−1, d−1 = 0), h̄0(a, s−1, d−1 = 0)], and thus for

all h ∈ [0, 1].

Information on Pr(D = 1|h, d−1, s−1, a,m = 0) for h in [hd, h̄d]:

We can use the identified c∗d(h, s−1, a, d−1 = d,m = 0) to identify Pr(D =

1|h, d−1, s−1, a,m = 0) for h ∈ [hd(a, s−1, d−1 = d), h̄d(a, s−1, d−1 = d)]. Indeed,

inside this set, s∗d = s−1. Thus we cannot invert the observation of sd to recover
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the value of h. However, c∗d is still varying, and we identify it. As a consequence,

the observed consumption contains information on h. Because of the measurement

errors we cannot directly invert the observed consumption to recover h as we are

proceeding for the housing services. Yet cobsd still contains some information about

h: the higher it is, the more likely it is that h is low for example (since cd is de-

creasing with respect to h). More precisely, given that we observe cd, d, a, d−1, s−1,

we have

Pr(h = h|cobsd , d, s−1, d−1 = d, a) = Pr
+
ζ = cobsd − c∗d(h, s−1, a, d−1 = d,m = 0)

,
,

where we drop the conditioning in the right hand side since ζ is independent from

the rest.

Therefore, we can again compute the CCPs, Pr(D = 1|h, d−1, s−1, a,m = 0) from

the data but using the probabilistic likelihood of each h (instead of the knowledge

of h which is identified for movers) for the observations where sd = s−1.

Therefore, we identify the optimal Conditional Continuous Choices (CCCs)

s∗d(h, s−1, d−1, a, z,m) and c∗d(h, s−1, d−1, a, z,m) and the optimal Conditional Choice

Probabilities (CCPs) Pr(d|h, s−1, d−1, a, z,m), for all h, a, s−1, d−1. We also iden-

tify the measurement errors distribution Fζ , and the probability to undergo an

exogenous moving shock, pm.

4.4 Identification of the structural parameters

We have proved the identification of the optimal choices in every period. Now we

can use them and apply Bruneel-Zupanc (2021) directly to identify the structural

parameters of our dynamic model.

5 Empirical Strategy

We build a two step estimation method of the parametric model. In a first stage,

we estimate parametric optimal policies via maximum likelihood. More non-

parametric alternative estimation methods can also be used, see Bruneel-Zupanc

(2021). However here, we do not have many observations of moving individuals, so

we prefer to use a more parametric estimation procedure for the optimal choices.
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In the second stage, we estimate the structural parameters of the model via for-

ward simulation methods using the optimal policies estimated in the first stage,

in the spirit of Hotz et al. (1994).

5.1 Optimal policies

We specify parametric functional forms for the optimal policies. Then we estimate

the parameters by maximum likelihood, since the likelihood is known given the

parametric functional form. We will specify functional forms for s∗d(·), c∗d(·) and

Pr(D = 1|·). As well as functional forms for the boundaries hd, h̄d, the measure-

ment errors and the probability of exogenous move shock pm.

Housing service s:

First, we specify a functional form for the housing service conditional on moving

s̃∗d:

log(s̃∗) = δ + δ1d+ α0(1− d)ψ(h) + α1dψ(h)

+ γ0(1− d)
'
d−1

! q

1 + r
s−1 + a

"
+ (1− d−1)a+

income
1 + r

)

+ γ1d
'
d−1

! q

1 + r
s−1 + a

"
+ (1− d−1)a+

income
1 + r

)

+ λ′x,

where d−1(
q

1+r
s−1 + a) + (1 − d−1)a + income

1+r
represents the total wealth. ψ(h) is

a monotone transformation of h applied to account for nonlinear effect of h, e.g.

ψ(h) = F−1(h) where F is a standard normal distribution. By monotonicity, we

have the constraint on the parameters α0 > 0 and α1 > 0.

Now, recall that with fixed costs, the true optimal choice is:

s∗ =

3
s−1 if d = d−1 and (hd ≤ h ≤ h̄d) ⇐⇒ (sd ≤ s̃∗ ≤ s̄d)

s̃∗ otherwise.

Thus, we need a parametric specification for (sd, s̄d), which depend on s−1. For

now, we use a simple specification with two parameters for each d, κd and κ̄d:

sd(s−1) = s−1 − κd and s̄d(s−1) = s−1 + κ̄d.
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We can include additional effect from the other variables (asset, income, demo-

graphics) on the boundaries but we keep it simple for now.

Housing tenure d:

For the housing tenure choice probability d, we use a logistic specification:

Pr(D = 1|h, d−1, s−1, x) =
1

1 + exp(−(θ0d−1 + θ1ψ(h) + θ2total wealth))
.

Consumption c:

We use a specification similar to the specification of housing services for non-

housing consumption. Except that we include s into it, such that for non movers,

we will have a fixed s−1 but still have variation through h. And for the movers

the variation will be captured through s, which is a strictly increasing function

mapped to h anyway.

log(c∗) = δc + δc1d+ αc
0(1− d)s+ αc

1d s

+ 1{s = s−1}
+
αc
2(1− d)ψ(h) + αc

3dψ(h)
,

+ γc
0(1− d)(total wealth) + γc

1d(total wealth) + λc′x.

And consumption is observed with measurement errors

c = c∗ + ec with ec ∼ N (0, σc),

where σc is another parameter to estimate.

Estimation via Maximum Likelihood:

Given the specification, including also a parameter pm for the exogenous moving

shock probability, we can compute the likelihood of each observation (s, d, c) in

the data. Even when s = s−1 we know the likelihood of observing it happening.

So we can estimate all the parameters of the optimal choices laid down above via

maximum likelihood.

5.2 Structural parameters

Once the parametric optimal choices are estimated, we use them in forward simu-

lations of the model in order to estimate the structural parameters of the dynamic
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model, in the spirit of Hotz et al. (1994). In order to run these forward simula-

tion, we also estimate the transition of the exogenous state variables (income and

demographics) parametrically directly from the data beforehand.

As shown in Bruneel-Zupanc (2021), this two step estimation method has the

advantage of being fast, as it avoids having to solve for the optimal choices in the

model for each set of parameters.

6 Conclusion

This paper builds a dynamic model of household consumption and housing deci-

sions. We provide identification conditions of this dynamic model and an estima-

tion method built upon the identification proof. The planned estimation of the

model will allow to estimate key parameters for this sample of French households,

such as the substitution between housing and non-housing consumption and fixed

housing switching costs. Once the model is estimated, we will be able to run many

relevant policy counterfactuals, by modifying transaction costs for example.
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