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Abstract

We develop a model of consumer search with spatial learning in which sampling the payo�

of one product causes consumers to update their beliefs about the payo�s of other products

that are nearby in attribute space. Spatial learning gives rise to path dependence, as each

new search decision depends on past experiences through the updating process. We present

evidence of spatial learning in data that records online search for digital cameras. Consumers'

search paths tend to converge to the chosen product in attribute space, and consumers take

larger steps away from rarely purchased products. We estimate the structural parameters

of the model and show that these patterns can be rationalized by our model, but not by

a model without spatial learning. Eliminating spatial learning reduces consumer welfare by

12%: cross-product inferences allow consumers to locate better products in a shorter time.

Spatial learning has important implications for the power of search intermediaries. We use

simulations to show that consumer welfare can be signi�cantly reduced by unrepresentative

product recommendations. We characterize consumer-optimal product recommendations as

those that are most informative about other products.
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also like to thank Vasilis Syrgkanis and Eliot Abrams for discussions that inspired this paper, and Liran Einav,
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1 Introduction

We live in a world where the supply of information is substantial and increasing; it is more widely-

shared (through the internet) and cataloged (by search engines) than ever before. As Herbert

Simon presciently argued (Simon 1971), this has substantially increased the time spent acquiring

information: searching online is now a signi�cant part of the day for many people.1 In online

retail markets, consumers are presented with ever-growing sets of alternatives that cannot all

be costlessly considered before a purchase decision is made. Search-mediating platforms such as

Amazon, Net�ix, and AirBnB play a signi�cant role in guiding consumers' search paths through

judicious information provision. Search algorithms and recommendation systems that determine

how product information is presented to consumers are central to the economic value generated by

these �rms (Evans and Schmalensee 2016). Understanding the process of search - how consumers

choose their path through alternatives and how this path in�uences purchase decisions - is therefore

increasingly important to understanding consumer markets and the role of platforms.

Economists have long considered information frictions important, and have frequently relied on

models of costly search to rationalize phenomena from price dispersion to unemployment (Varian

1980, Pissarides 1976). Less attention has been paid to the process of search itself - the ways in

which people learn as they search, how accumulated information and changing beliefs direct their

subsequent inquiries, and how this process a�ects economic outcomes.

In most classic models of sequential search, an agent wants to choose one item from a set of

heterogeneous objects (products, jobs, etc.) that appear identical (perhaps up to some observable

characteristics) prior to search (McCall 1970, Rothschild 1974, Weitzman 1979). Sampling an

alternative allows the searcher to learn the payo� from that option, resulting in an optimal stopping

problem. Crucially, these models impose independence of the ex-ante unobserved part of utility

across alternatives (conditional on observables). What a searcher learns from one alternative does

not diferentially a�ect the expected payo�s of other alternatives. Because of this, these models

imply that options are sampled at random (if payo�s are iid) or in a pre-speci�ed order (if payo�s

1For example, Boik, Greenstein and Prince (2016) show that the average US household participating in the
Comscore survey spent around 2 hours a day online in 2013 (although much of this is content consumption, rather
than information acquisition).
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depend on ex-ante observable characteristics). In particular, what a searcher learns from searching

an alternative only determines whether to continue searching, not what to search next.

This paper starts with the observation that, in many real life settings, learning about the payo�

from one alternative should change the consumer's beliefs about the payo� from other, similar

alternatives. We introduce the idea of spatial learning : when a searcher samples an option and

observes an unexpectedly high or low payo� from that option, they update on the payo�s to other

options that are close in the space of observables. For example, a job seeker receiving a very

attractive o�er at Microsoft might reasonably infer that a potential Google o�er would be better

than they had previously expected, but not update on the value of an o�er from McKinsey; a

student deciding which colleges to apply to may cancel their campus visits to liberal arts colleges

after a bad experience with one of them; a consumer looking for a camera who reads online reviews

for a model with low resolution and decides it is not for her will probably negatively update her

beliefs about all low resolution cameras.

We o�er a framework for modeling spatial learning. The building blocks are a characteristic space

consisting of ex-ante observable characteristics of the options (in the context of online retail, these

could include price and star rating), and utility functions modeled as a Gaussian process over

that characteristic space. Gaussian processes have found wide application in machine learning

(Rasmussen and Williams 2005). They are very �exible and yet are fully speci�ed by a mean

function (giving the expected payo� to any unsearched option) and a kernel function (giving the

covariance between pairs of options). The kernel function takes as inputs the locations of any two

options in characteristic space, and outputs a covariance between them. Searchers will update

more about close-by options than far-away options. The kernel speci�es the distance metric, and

encodes the mental model that searchers use to extrapolate. We show that this model of learning

leads to path dependence in search � a consumer who has a bad experience when sampling some

part of the product space will tend to focus their search elsewhere in the future.

We apply our model to data which records the search paths of consumers shopping online for

digital cameras, originally collected by Bronnenberg, Kim and Mela (2016). We document a

series of stylized facts that are consistent with spatial learning. First, consistent with the model's
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prediction of path dependence, we show that consumers tend to take signi�cantly larger steps in

attribute space after viewing rarely purchased products. Second, replicating results documented by

Bronnenberg et al. (2016), we show that the products searched by consumers converge in attribute

space to the product ultimately purchased and that step size in attribute space and the variance

of product attributes searched declines as search progresses. These patterns are suggestive of

exploration of the characteristic space giving way to concentrated search in the neighborhood of

previously explored high-payo� options.

We argue that these search path patterns can be used to identify the learning parameters of our

model. For instance, the extent to which consumers jump away from rarely purchased products

is informative of the spatial correlation in beliefs. In this way, the model opens the black box

of the search path and uses variation that has not previously been exploited in the consumer

search literature to learn about the forces that determine search sequences. With the increasing

availability of online search data, we expect that this type of identi�cation strategy will become

increasingly feasible.

We estimate the model by Markov Chain Monte Carlo under a one-period look ahead assumption

(similar assumptions have been made by Gabaix, Laibson, Moloche and Weinberg (2006), Ursu

and Zhang (2020), and Yang, Toubia and De Jong (2015)). The estimated model suggests that

consumers are spatial learners and make inferences about the utility of unsearched objects that

guide their search paths. Search paths simulated using the estimated model �t the data well, and in

particular replicate the patterns we highlight as being suggestive of spatial learning - convergence

to the chosen attribute levels over the search path and jumps away from rarely purchased products.

These patterns cannot be replicated by a constrained version of the model estimated under the

assumption of no learning. As we hypothesized, allowing consumers to make inferences across

products is essential to matching these search path patterns.

Simulated search paths show that learning is quantitatively important to consumer welfare. Ex-

pected consumption utility is about 112% lower for simulated consumers who do not extrapolate

across products than for consumers with correct beliefs. Utility is similarly reduced if consumers

over-extrapolate and update their beliefs about unsearched objects more than is implied by the
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estimated model. Spatial learning with correct beliefs about the covariance of utility across the

product attribute space allows consumers to locate high-utility products in a shorter time. To

benchmark the value of spatial learning, we show that non-learning consumers have to extend

their search length by about 25% to obtain the same utility as consumers with correct beliefs.

These results imply that spatial learning plays an important part in directing consumers' search

paths and purchase decisions, and that incorrect beliefs can lead to welfare losses. This suggests

that changing consumer beliefs and search paths through information provision is a potentially

important mechanism which online search platforms can use to in�uence purchase decisions. For

example, by highlighting worse-than-expected products in some parts of the product space a search

intermediary can steer consumers away from those areas and towards a desired purchase.

We investigate the extent to which this type of search diversion is possible given the estimated

model of learning. We simulate product recommendations by providing consumers information

about the payo� of selected products before they begin searching. We show that recommending

products with idiosyncratically high or low utility reduces consumer welfare by providing mislead-

ing information about the utility of nearby options, shifting search paths and purchases toward

or away from the recommended product in attribute space. This mechanism leads to the surpris-

ing �nding that recommending a product that generates higher utility than similar products can

reduce �nal consumer utility by up to 2.5%.

Finally, we ask what the model implies about the characteristics of consumer-optimal recommen-

dations. We show that consumer utility is maximized when the set of recommended products are

maximally informative about other products. Informative product recommendations are located

in dense regions of the attribute space and, when multiple products are recommended, represent

diverse areas of the attribute space. We show that informative recommendations allow consumers

to locate higher utility alternatives in fewer searches.

This set of counterfactuals sheds some light on the power held by search engines and online

platforms. We do not take a stand on the platform's objective - as highlighted by Hagiu and Jullien

(2011), a pro�t maximizing platform may have competing incentives to maximize consumer welfare,

to direct consumers towards (or away from) particular products, or to keep the consumer on the
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platform for as long as possible (thereby maximizing advertising revenue). Instead, we highlight

the importance of consumer learning as a channel through which platforms can shape search and

consumption, with signi�cant potential for both improving and harming consumer welfare. These

�ndings point to consumer learning and the potential for manipulation of beliefs as an important

consideration in debates about the regulation of the online platforms and recommendation systems

that mediate an ever-growing share of our consumption choices.

Related literature. Search is a well-studied topic in microeconomic theory, empirical industrial

organization and marketing. Recent empirical work has studied the identi�cation and estimation of

some of the classic search models (Koulayev 2014) and testing the alternative of sequential versus

non-sequential search using Comscore data (De Los Santos, Hortaçsu and Wildenbeest 2012). In

the marketing literature there have been a number of papers that have taken the Weitzman (1979)

model to data, including Kim, Albuquerque and Bronnenberg (2010), Honka and Chintagunta

(2017) and Ursu (2018).

The strand of this literature most closely related to this paper is the work following Rothschild

(1974) on search with learning. Typically, these models involve consumers updating their beliefs

about the distribution from which searched objects are drawn. Recent papers in this literature

include De Los Santos et al. (2012), Koulayev (2013), and Anghel (2020). A small number of papers

study consumer learning where ex-ante unobservable payo�s are correlated across products. Adam

(2001) analyzes a model which allows for payo�s to be sampled from a discrete set of nests, so that

searchers who sample an option from one nest will update their posterior on the distribution for

all other items on this nest. Dickstein (2018) applies this type of model to data on prescription

drug demand. Our work extends this literature by estimated a �exible model of cross-product

correlation of beliefs that does not use pre-speci�ed nests.

This paper is also related to the literature on platform design and optimal information provision,

including Dinerstein, Einav, Levin and Sundaresan (2018), De Los Santos and Koulayev (2017),

and Fradkin (2018). Some papers in this literature, such as Ellison and Ellison (2009) and Hagiu

and Jullien (2011), have considered the incentives for platforms to mislead consumers or divert
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search. Of particular interest is Gardete and Hunter (2018), who use a model of consumer search

over multiple attributes to study optimal information design when the platform can choose which

attributes to make salient, �nding that there are limited incentives for platforms to obfuscate prod-

uct attributes and mislead consumers. Although Gardete and Hunter (2018) consider consumers

learning through search, the learning modeled is across attributes within a product, not across

products as in this paper. Our �ndings show that cross-product learning is an additional channel

through which a platform can in�uence search.

The Gaussian process model of beliefs builds on the literature on Gaussian processes in machine

learning, as summarized by Rasmussen and Williams (2005). In this literature, optimal Bayesian

learning based on Gaussian processes is used to construct algorithms for maximizing unknown

functions. The observation that assuming a Gaussian process is a tractable way to design machine

learning algorithms applies similarly to the modeling of learning by rational agents. The one period

look ahead policy we adopt to aid computation is widely used in this literature, where it is known as

the knowledge gradient policy (Powell and Ryzhov 2012, Frazier, Powell and Dayanik 2009). The

Gaussian processes model of spatial beliefs has also been used in recent studies in the economics

of oil and gas exploration (Covert 2015, Hodgson 2019).

Paper outline. The remainder of the paper proceeds as follows. Section 2 provides an illustrative

example of spatial learning and path dependence. Section 3 outlines a general model and derives

implications for consumer search behavior. Section 4 describes the data on consumer search paths

we use to test our model, and presents stylized facts from this data that match model predictions.

Section 5 describes the estimation of the model using data on search paths. Section 6 presents the

results of the estimation, and Section 7 concludes.

2 An Illustrative Example

We begin with an example that illustrates the main forces present in our model. Consider a world

with 3 products, A, B and C. A consumer has to buy one of the three (we add an outside option
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in the main model, but omit it here for simplicity). Their payo� from consumption depends on

price and quality according to:

uj = qj − pj

Quality is unknown to the consumer ex-ante; all they observe are the prices, which are ordered as

pA < pB < pC . By searching a product, they learn the payo� uj. Each search costs c > 0, and

products must be searched before purchase.

Assume that consumers know that q ∼ N(pµ,Σ) where q = (qA, qB, qC), p = (pA, pB, pC). µ > 1

is a known scalar. Because µ is positive, price acts as a signal of quality, and because it is

greater than one, consumers believe that increasing price implies higher expected utility. The

variance-covariance matrix Σ is also known ex-ante. Consistent with the spatial logic o�ered

in the introduction, we assume that it takes the form Σij = λ exp(
−(pi−pj)2

ρ
). This means that,

for example, cov(uA, uB) > cov(uA, uC). The ex-ante unobserved part of utility (quality in this

example) is more highly correlated between products that are closer in terms of ex-ante observable

attributes (price in this example).

As an initial baseline, consider a model where ρ ≈ 0, so that all the o�-diagonal elements of Σ

are zero and there is no spatial correlation in payo�s. The consumer's optimal policy is illustrated

graphically in the left panel of Figure 1 for a speci�c numerical example.2 After searching product

C, consumers will stop if the observed value of uC is above the reservation utility zB, and otherwise

will search product B. If the observed utilities uC and uB are both below zA, then the consumer

will then search product A. Notice that there is no path dependence; regardless of the utility

realizations, consumers will search products in the order C, B, A.

Next consider a model in which ρ > 0, so that payo�s are spatially positively correlated. Since

|pA − pC | > |pA − pB| = |pB − pC |, consumers will update more about B than A after sampling

C. There is no straightforward characterization of the optimal search strategy, and we solve for

it numerically by backward induction. The right panel of Figure 1 illustrates the results of this

exercise. As before, the consumer starts by searching product C. But the next product they

2This is a special case of the Weitzman (1979) model. The optimal search algorithm assigns each option a score
zj � which in our example satis�es zA < zB < zC � and requires searching those in decreasing order of score,
stopping if the maximum payo� found thus far exceeds the search index of the next option to be searched.
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Figure 1: Optimal Search Strategies

Notes: The left panel shows the optimal search strategies when there is no correlation in quality across products,
and observing uj only provides information about product j. The right panel illustrates how search strategies
change when consumers believe that there is positive cross-product covariance in quality. The x-axis is the realized
utility of the �rst product searched, and the y-axis is the realized utility of the second product searched. Each
region records the order in which products are searched before the consumer stops searching. In this example,

pA = 2, pB = 3, and pC = 4. µ = 1.3, c = 0.4, Σii = 1.4, and Σij = 1.4 exp(
−(pi−pj)2

ρ ). In the left panel, ρ ≈ 0 and
in the right panel ρ = 0.8.

search depends on the observed value of uC . If uC is su�ciently high (the yellow region), they

stop and buy it. If uC is intermediate, they move on to product B, buying either B or C if B is

good enough (brown region), and only searching A if the max of B and C is low (blue region).3 If

uC is low, they infer that µ is also low, and instead target product A next, moving onto product

B (purple region) if the maximum payo� of A and C is su�ciently low, and otherwise stopping

(green region).

This example exhibits the basic logic of spatial learning in consumer search. The di�erential

correlation of utility between products, which is a function of the distance between products in the

ex-ante observable attribute space, induces path dependence: each successive outcome determines

not only whether to stop but where to go next. This example is a special case of the general model

of search with spatial learning which we develop in the next Section.

3The values of uB and uC matter individually too. The downward sloping line at the top of the blue region
indicates that for a �xed uB just above 0.8, the decision to search A depends on whether the news about C was
good. If it was good, then the posterior µ is higher and price is a stronger signal of quality, so it is optimal not to
search A; whereas if it was bad the converse applies.
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3 Model

3.1 Environment

A consumer i with unit demand faces a �nite set J of available products. Each product has a set

of characteristics Xj ∈ X ⊆ RK that are observable to consumers before search. Each product

also has an associated search cost cj. By paying the search cost, the consumer may learn the

payo� uj from buying product j. Consumers may search as many products at they like. After

terminating search, they may consume any product they have searched (they may not purchase a

product without searching it �rst) or choose to consume the outside option instead, with payo�

u0 = 0. Their �nal utility is the payo� from the product consumed, less the sum of the search

costs.

We assume that the payo�s have the following structure:

uij = mi(Xj) + ξj + εij (1)

where m : X → R is a function that maps a vector of characteristics to average payo�s, ξj is a

product-level random e�ect drawn iid across products from a distribution N(0, σξ) and common to

all consumers, and εij is an idiosyncratic shock sampled iid across consumers and products from a

distribution N(0, σε).
4 The functionm(X) is unknown to consumers, and sampled from a Gaussian

process with prior mean function µ(X) and covariance function κ(X,X ′). We assume that µ is a

continuous function, and that κ(X,X ′) ≡ κ̃
(
‖X−X′‖

ρ

)
for some weakly positive, continuous and

decreasing function κ̃, where ‖ · ‖ is the Euclidean norm and ρ is a parameter that controls how

covariance declines with distance. We assume that the consumers know the prior. As consumers

search, they update their beliefs about m(X) according to Bayes rule (see the section on beliefs

and learning below).

An interpretation of the model is that initially consumers don't know their preferences over char-

acteristic space, which are summarized by m(X). As they search, they get noisy signals of the

4Note that in discussing the model, we sometimes drom the i subscript on m(X).
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function (noisy because they observe uj, and not m(Xj)). Because κ̃ is decreasing, the covariance

in payo�s declines with distance in characteristic space, and learning is spatial: sampled payo�s

are more informative about the payo�s of close-by products than those far away.

Another interpretation consistent with the model is that consumers know their preferences over

the observable characteristics X, but there are other unobservable product characteristics whose

values are unknown without search. As they search, consumers re�ne their model of the mapping

between the observable and the unobservable characteristics, updating the model m(X).

Two special cases are worth noting. As ρ→ 0, the correlation in average payo�s between any two

points goes to zero, so that each product has independent and unknown payo�s prior to search.

This is the model of Weitzman (1979), specialized to the case of normally distributed payo�s. As

ρ → ∞, the correlation in average payo�s goes to one, so that learning the payo�s at any one

point is equally informative for all other points.

3.2 Beliefs and Learning

The search process is a non-stationary Markov Decision process. We model the state as a tuple

St = (µt(X), κt(X,X
′), ĵ, û, J), where µt(X) are the current mean beliefs, κt(X,X

′) is the current

covariance, ĵ is the best product found so far, û is the payo� to the best product found so far

and J are the available products remaining to be searched. The transitions on the state variables

ĵ, û, J are straightforward. The mean and covariance functions update according to:

µ′(X) = µ(X) +
κ(X,Xj)(uj − µ(Xj))

κ(Xj, Xj) + σ2
ξ + σ2

ε

(2)

κ′(X,X ′) = κ(X,X ′)− κ(X,Xj)κ(Xj, X
′)

κ(Xj, Xj) + σ2
ξ + σ2

ε

(3)

Notice that κ(Xj, Xj) is the variance of the �signal� in observed utilities, the part of utility that

comes from m(X), and σ2
ξ + σ2

ε is the variance of the �noise�, the part of the observed utility that

comes form product-level and idiosyncratic shocks. Figure 2 illustrates the consumer's learning

process. Panel A represents a consumer's prior beliefs and ex-ante unknown preferences over a one-
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Figure 2: Gaussian Process Learning
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(A) Prior Beliefs (B) Posterior Beliefs

Notes: This �gure illustrates Bayesian updating in a single dimensional Gaussian process with mean 0. In Panel A,
the dashed line is the prior mean, and the shaded area is a one standard deviation interval around the mean. The
solid line is the �true� function which is drawn from the Gaussian process, and the cross is the value observed by an
agent, which is equal to the value of the Gaussian process draw plus noise. In Panel B, the dashed line re�ects the
mean of the agent's posterior beliefs. The shaded area is a one standard deviation interval of the posterior beliefs.

dimensional characteristic space X ∈ [0, 100]. The consumer's prior mean, µ(X) = 0 is indicated

by a dashed line. The shaded area is a one standard deviation band of the prior Gaussian process

around the mean. The solid line is the consumer's utility function m(X) which is drawn from

the Gaussian process. The consumer searches a product j and observes the utility uj, indicated

by the by the point in Panel A. Panel B shows the consumer's posterior beliefs. Notice that the

observation has reduced the consumer's uncertainty about her utility function m(X), especially

for products close to Xj in parameter space.

3.3 Consumer Behavior

Because there are a �nite set of products that can be searched, the consumer's decision problem

can be solved by backward induction. Doing so will generally be computationally intractable with

a reasonable number of products, since the state variables are continuous functions.5

5One could instead take the set of realized utilities for searched objects as the state variable � since these are
su�cient for the beliefs � but with a large number of products this remains intractable. For example, Crawford
and Shum (2005) interpolate the value function between a discrete set of states in a setting with 5 products. In
section 5 we apply the model to a setting with around 300 products.
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We would like to get a closed form solution so that we can illustrate some of the forces in the

model. Accordingly, we analyze a heuristic solution to the problem: one period look ahead search.

This is a common solution method in the literature on Gaussian processes, which typically employ

n-period look ahead assumptions (Osborne, Garnett and Roberts 2009).

The one-period look ahead policy scores the available options based on their expected marginal

contribution over the current best option û. De�ne sj =
√
κ(Xj, Xj) + σ2, the standard deviation

of the payo� of product j (which includes the idiosyncratic shock). De�ne aj = (û − µ(xj))/sj,

the current best option normalized by the mean and variance in payo�s for item j. Then we score

option j according to:

zj = Φ(aj)û+ (1− Φ(aj))µj + φ(aj)sj − cj (4)

where the �rst term captures the chance that product j is worse than the current best, the second

two are the expected value of product j conditional on being better times the probability of that

event, and the last term subtracts the product-speci�c search cost. The one-period look ahead

policy is to search the option with the highest score zj, so long as it exceeds û; otherwise to stop

and buy the current best option.

While one-period look ahead is not generally optimal, it can often provide a close approximation

to the optimal policy. In Appendix Figure A.2, we show that the optimal and one-period look

ahead policies nearly coincide in the example of Section 2 above. Frazier et al. (2009) provides

explicit bounds on the suboptimality of the one period look ahead, or �knowledge gradient� policy

in the case of Gaussian process beliefs. They show that the this policy is close to optimal when

κ(X,X ′) varies little across pairs of products and is exactly optimal when the mean payo�s are

perfectly correlated (ρ =∞) or independent (ρ = 0).6

It may also be the case that a myopic policy provides a good empirical approximation to the

behavior of boundedly rational consumers. Gabaix et al. (2006) provide evidence that a one-period

look ahead policy matches search behavior better than a fully rational policy in an experimental

6Under independence, the beliefs never update and consequently the order of search is pre-determined. The
optimal order of search and stopping rule is given by Weitzman (1979). Under perfect correlation, the mean beliefs
update everywhere symmetrically so that each update µ′ − µ is constant in X. The updates thus don't change
the underlying decision problem � they are just a�ne transformations of the utility � and thus the problem is
essentially iid.
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setting. Our empirical application in Section 6 below will also show that consumer behavior can

be matched well under such a policy.

Under the one-period look ahead assumption it is straightforward to prove some useful comparative

static properties using the analytical characterization of the score in (4).

Proposition 1 (Comparative statics).

∂zj
∂û

= Φ(aj) > 0 ,
∂zj
∂µj

= 1− Φ(aj) > 0 ,
∂zj
∂cj

= −1 < 0 ,

Moreover the impact of the payo� to the last search uk on current scores is given by:

∂zj
∂uk

=
∂zj
∂µj

∂µj
∂uk

+ 1(uk =)
∂zj
∂

= (1− Φ(aj))(κ(Xj, Xk)/s
2
k) + 1(uk =)Φ(aj)

These properties are intuitive, but have some interesting implications. First, an improved current

best option a�ects the score of a product at a rate that depends on whether its payo� may fall

below the best option - i.e. based on the tail risk of an option. It follows that consumers score

risky options more highly when they have better existing options. Second, the comparative static

on search cost implies an important role for product rankings and visibility in driving search paths.

Finally, the main bene�ciaries of a higher payo� for the last search are options that have high

covariance, κ(Xj, Xk), with the last search location. Since the consumer's prior κ(Xj, Xk) is

decreasing in the distance between Xj and Xk, this means that observing a high utility draw from

a product k will incease the search index zj of products j that are close to k in attribute space more

than products that are far from k in attribute space.7 Likewise, a low utility draw from product k

will reduce zj more for products close to k in attribute space. Thus, di�erential covariance across

products induces path dependence in search - a low draw of uk will make a consumer less likely to

search similar products in future.

7This is precisely true when k is the �rst product searched. For later searches, κ(Xj , Xk) is not only a function
of distance but also of past searches. Intuitively, variation in κ(Xj , Xk) should largely be a function of distances
between products in areas of the search space that are less well explored.
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4 Empirical Evidence from Online Search

4.1 Data

We apply our model of consumer search with spatial learning to data which records the search

paths of consumers shopping online for digital cameras. The data comes from ComScore, who track

the online browsing behavior of panelists who have installed ComScore's tracking software. The

sample we use was constructed by Bronnenberg et al. (2016) (henceforth BKM), and comprises

the browsing activity of 967 ComScore panelists who were searching for digital cameras between

August and December 2010.

For an individual panelist, we observe the sequence of products viewed, the product eventually

purchased, and the date and time of each observation. Product views were detected by scraping

the sequence of URLs visited by consumers for product information. The data covers all browsing

behavior and therefore is not limited to one retailer. A product �view� or �search� (we use the

terms interchangeably) in the data is recorded when a webpage providing information about a

single product is loaded. This could include product pages on retail sites such as Amazon.com,

manufacturer websites, and review sites. Purchases are identi�ed using a second ComScore dataset

that tracks online transactions carried out by panelists. For each product view, the data records

the product make, model, and four continuous product attributes - price, zoom, display size,

and pixels. The conversion of the raw ComScore browsing data and the matching of this data

to product attributes was performed by BKM, and extensive details on the preparation of the

data are provided in that paper. Note that this is a selected sample and not representative of the

population of consumers. We use this data to illustrate broad patterns that motivate our modeling

approach and to test our model.

De�ning a product as a unique combination of brand, pixel, zoom, and display, and taking the

average price recorded for that combination results in 357 products described by four continuous

attributes (price, zoom, display size, and pixels). The top panel of Table 1 records summary

statistics on the distribution of these attributes across products.

14



Table 1: Summary Statistics

Products

Mean SD Min Max

Price 302.13 478.47 16.99 5250.00

Zoom 6.04 5.60 0 35

Pixel 10.54 3.13 1 21

Display 2.67 0.41 1.1 3.5

N 357

Searches

Mean SD Min Max

Search Length 5.59 4.00 6.52 1.00

Purchase Discovered 0.79 1.00 0.29 0.03

Price Searched 285.45 406.45 16.99 5250.00

Zoom Searched 6.43 5.97 0.00 35.00

Pixel Searched 11.96 2.37 1.00 21.00

Display Searched 2.78 0.30 1.10 3.50

Notes: top panel records statistics on products from the digital camera data are de�ned by unique values of brand,
zoom, pixel, and display. If there are multiple prices recorded for the same product, this table uses the average price
recorded over all searches. Bottom panel records statistics on search paths from the digital camera data. Search
path length is the number of prducts viewed. Chosen product discovered is recorded in terms of search percentile,
as de�ned in the text. Product attributes searched record the distribution over all consumer-product observations.

An observation in the data is a sequence of products viewed and the identity of the product

purchased. The bottom panel of Table 1 records summary statistics on consumer search paths.

The �rst row of the records path length - the number of products searched before purchase. The

average consumer views about 5.6 products. There is a tail of consumers with very long search

paths, the longest of which is 58 products. The second row documents the search percentile at

which the ultimately purchased product is �rst discovered. If a consumer searches T products

in total, then the search percentile of the tth product is t
T
. Note that the T th product is not

necessarily the product purchased. The chosen product is typically discovered towards the end of

search. The remaining rows documents the distribution of attributes among products searched.

For example, the mean price of products searched in $285.45. This is the average over all searches

by all consumers - including multiple counts of the same product if multiple consumers search

that product. Compating these distributions to the distributions of product attributes in the top

panel indicates that products which are less expensive are searched more. Similarly, products have

higher zoom, higher resolution, and a larger display are searched more often.
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4.2 Convergence in Product Space

In this section we present several stylized facts that describe how consumers move through the

product attribute space as they search. We argue that these descriptive statistics suggest that

consumers begin search with some uncertainty about their preferences over these four attributes,

and that they update their beliefs about their preferences for un-searched items after viewing each

product in their search path.

Figure 3 replicates one of the main �ndings of BKM - that the attributes of products searched

get closer to the attributes of the product eventually purchased as search progresses. The left

panel plots search percentile on the x-axis against the distrance in log price between the product

searched at that search percentile and the product eventually purchased. This Figure shows that

the attributes of the product being viewed get closer to those of the product eventually purchased

over time. Products considered, but not purchased, in late search are more similar in price to the

purchased product than products considered in early search. The right panel shows that the same

is true of log zoom - products considered late in search are more similar to the purchased product

in terms of zoom than products searched early. The same pattern can be observed in other product

attributes (pixels, and display size), as documented in Appendix Figure A.3. Note that purchased

products are excluded from the data used to construct these �gures, so the results are not artifacts

of the fact that purchased products are discovered late in the search path.

Figure 3 shows that consumers search a wider variety of products early in the search path than

later in the search path. The left panel of Figure 4, which also replicates a �nding from BKM,

shows that consumers are not only getting closer to the purchased product in attribute space,

but are focusing on smaller areas of the attribute space as search progresses. This narrowing of

search is illustrated by plotting the distribution of prices searched in each decile of the search path,

where the tth search of a search path of length T is in search decile d if d−1
T

< t
T
≤ d

T
. Prices are

normalized by taking the di�erence in log price from the price of the product eventually purchased.

The �gure shows that the distributions of prices searched in the �rst search deciles are more spread

out than in later deciles. For example, the interquartile range in normalized log price is 2.62 for

the 1st decile and 1.83 for the 10th decile. Note that this �nding of a �narrowing� of search is
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Figure 3: Convergence to Chosen Attribute Level
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Notes: The y-axis for each panel records, for the relevant product attribute, the absolute di�erence in standard
deviations of the attribute between the searched product and the product ultimately purchased. The x-axis reports
the search percentile, as de�ned in the text. The product ultimately purchased is excluded from the data for each
consumer. The solid line is a kernel regression using an Epanechnikov kernel, and the shaded area is 95% con�dence
interval. The estimation sample includes all search paths from the ComScore data on search for digital cameras.

not necessarily implied by the convergence of search to the chosen attribute levels illustrated by

Figure 4: it could be that consumers always search a narrow area of the attribute space, but move

their focus towards the chosen product over time.

The right panel of Figure 3 supports the �nding that consumers gradually narrow the scope of

their search. The y-axis records the average �step size� in log price. For example, a consumer's

nth search has a step size in price of |pricet−1− pricet| where pricet is the price of the consumer's

tth searched product. The x-axis records search percentile, as in Figure 4. The results indicate

that step size is declining. For example, in early search the average step size in price is around

60% of the cross product standard deviation in log price, falling to less than 50% by the end of

the search path.8 The search paths used in Figures 3 and 4 include revisits - cases in which the

consumer views a product more than once, perhaps on di�erent websites. The patterns described

here persist, but are less statistically signi�cant, when revisits are excluded.9

Taken together, these patterns suggest that consumers explore a wider variety of products early in

their search before narrowing in on close substitutes to the product that is ultimately purchased.

8This pattern is documented for other product attributes in Appendix Figure A.5. These step size patterns are
not documented by BKM.

9See Appendix Figure A.4.
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Figure 4: Narrowing of Search
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Notes: The left panel displays box plots that record the distribution of the log di�erence in searched price from
the price of the product ultimately purchased, for each search decile as de�ned in the paper. The Box records the
25th, 50th, and 75th percentiles of the distribution and the whiskers record the upper and lower adjacent values.
The y-axis of the right panel records the absolute distance in standard deviations of log price between the product
searched and the previous product searched. The x-axis reports the search percentile, as de�ned in the text. The
solid line is a kernel regression using an Epanechnikov kernel, and the shaded area is 95% con�dence interval. For
both panels, the estimation sample includes all search paths from the ComScore data on search for digital cameras,
including revisits to the same camera and excluding consumers who do not make a purchase.

This behavior is not predicted by standard models of sequential search. In contrast, correlated

Gaussian process learning has been shown to exhibit this type of convergence behaviour. Frazier

et al. (2009) show that agents following a one-period look ahead rule searching over alternatives

with payo�s drawn from a multivariate normal will tend to explore the search space early on, and

then concentrate later search in high-payo� regions. The �ndings documented in Figures 3 and

4 are di�cult to rationalize without a model in which there is a spillover of information between

searched and un-searched objects.

4.3 Step Size and Path Dependence

Together these �ndings describe non-stationary search paths that are inconsistent with standard

sequential search models and are suggestive of consumer learning. In this subsection we test a

direct implication of the model of search with spatial learning developed in Section 3. The model

assumes that beliefs are correlated in attribute space, so that after viewing an object, consumers

learn their utility for that object and update their beliefs about other objects. Proposition 1
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implies that when an object is observed to have a higher than expected utility, other objects that

are nearby in attribute space move up the search ranking more than objects that are distant in

attribute space.10 Likewise, when a searched product had lower than expected utility, objects that

are closer in attribute space move down the search ranking more than distant objects.

These implications of the model are di�cult to test directly, since we do not observe consumer

preferences, and hence we do not know what a particular consumer learns when she views a

particular item, nor what her beliefs are before searching. An ideal experiment would randomly

expose consumers to one of two objects, j and k, with Xj = Xk, but ξj > 0 > ξk. That is,

two objects at the same location in the ex-ante observable product space, but with di�erent

unobservable product e�ects. After viewing object j, consumers should, on average, make the

inference that similar objects also yield higher utility than expected, and should be more likely to

subsequently search nearby products. Consumers that view object k should, on the other hand,

be less likely to subsequently search nearby products.

To approximate this experiment we rely on the observation that di�erent values of ξj not only

generate di�erent search path patterns, but also generate di�erent purchase patterns. In partic-

ular, products with high values of ξj should be purchased more frequently than similar products,

conditional on being searched. We test whether this is true: do products that are purchased less

(more) often, relative to observably similar products, also induce larger (smaller) �jumps� in at-

tribute space? To do this we construct a product level index θ̂j which measures how much more or

less likely a product is to be purchased than other products with similar attributes Xj. We then

regress a measure of the �step size� of search after a consumer observes product j on this index.

The index θ̂j for each product j is constructed as follows. Let Ji be the set of products that are

searched by consumer i. We �nd the values θ̃j that maximize the likelihood of observed purchases

10More precisely, Proposition 1 implies that
∂zj
∂uk

is increasing in κ(Xj , Xk). Consumers' prior κ(Xj , Xk) is
decreasing in the distance between k and j before consumers have started searching. As consumers search, their
posterior beliefs do not necessarily follow this pattern for every pair of products. for example, if posterior variance
in very low in a region of the atrreibute space, then κ(Xj , Xk) and

∂zj
∂uk

will also be low if j is in that region.
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when the probability that consumer i purchases product j ∈ Ji is given by:

Pij =
exp(θ̃j)

1 +
∑

k∈Ji exp(θ̃k)
(5)

θ̃j is an index that measures the probability of purchase conditional on search.11 We use OLS to

decompose θ̃j into a part that can be explained by product attributes and a residual:

θ̃j = Xjγ + θj (6)

The estimated residuals, θ̂j, are our measure of how much more or less likely product j is to be

purchased relative to products with similar attributes Xj. High values of θ̂j mean that a product is

purchased more, conditional on being searched, than similar products and vice versa for low θ̂j. In

the context of our model, variation in θ̂j across products is explained by variation in product e�ects,

ξj. Products that are purchased more frequently that others with similar observable attributes

must have higher unobservable utility across consumers.

Let j(i, t) be the product searched by consumer i on the tth search (we will sometimes write this

jit to make expressions easier to read). To test for consumer learning, we regress measures of step

size, for example |priceit− priceit−1| on the estimated index of the last product viewed, θ̂j(i,t−1). If

consumers are spatial learners, Proposition 1 implies that the size of the consumer's tth search step

should be negatively correlated with θ̂j(i,t−1). We run this regression for four observable attribute

dimensions - log price, log pixels, log display size, and log zoom - and record coe�cients in Table

2. All regressions include a number of controls: search percentile, an indicator for whether product

j(i, t−1) is the product ultimately purchased, product density controls, and consumer �xed e�ects.

The de�nition and reasoning behind each of these controls is as follows. We include search per-

centile to control for the trends recorded in Figure 3. The indicator for purchase allows us to treat

these observations di�erently (notice that in order for there to be a subsequent step, the consumer

11Note that this is not a structural object but a convenient statistical device for classifying products, and that
equation 5 is not derived from the model. Some objects are never purchased, and so we omit these objects from Ji
and do not construct an index θ̂j for them. They are omitted from the regressions in Table 2.
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Table 2: E�ect of Product Residuals on Step Size

|priceit − priceit−1| |pixelit − pixelit−1| |zoomit − zoomit−1| |displayit − displayit−1|
ξ̂j(i,t−1) -.064*** -.274*** -.076*** -.280***

(.019) (.029) (.026) (.030)

SearchPercentileit -.130*** -.105** -.087** -.101**

(.028) (.041) (.038) (.042)

Purchasedit -.104*** .002 -.083* .000

(.034) (.050) (.046) (.051)

ProductDensityit .153*** 2.159*** .311*** 22.299***

(.010) (.160) (.022) (.973)

N 5590 5590 5590 5590

Consumer FE Yes Yes Yes Yes

Mean of Dep. Var. .523 .707 .609 .732

Notes: Table presents regressions of search step size on the product residual index θ̂j(i,t−1). Step sizes are measured
using the absolute di�erence in product attributes between the tth and the t − 1th search. All product attribute
are in logs and standardized. θ̂j(i,t−1) is constructed as described in the text. Values of θ̂j(i,t−1) are standardized
so that estimated coe�cients are the e�ect of one standard deviation. Any product observations where jit−1 is
never purchased, and hence a value θ̂j(i,t−1) is not computed, are omitted form the regression. Other covariates are
described in the text. All regressions include consumer �xed e�ects. The data includes all search paths in which
at least two products are searched. *** indicates signi�cance at the 99% level. ** indicates signi�cance at the 95%
level. * indicates signi�cance at the 90% level.

must have returned to this product and purchased it later on). Product density is the average

distance between j(i, t− 1) and all other products in the relevant observable attribute dimension.

If �surprisingly bad� products tend to be located in regions of the attribute space that are sparsely

populated by other products, then step size after searching one of these products will mechanically

be larger. θ̂j(i,t−1) is standardized so that the �rst row reports the e�ects of one standard deviation

changes of θ̂j(i,t−1). Last, consumer �xed e�ects eliminate the possibility that these results are

driven by a correlation between taking large or small steps and a idiosyncratic taste for products

that are often or rarely purchased.

θ̂j(i,t−1) has a signi�cant, negative e�ect on step size for each of the four attribute dimensions.

A one standard deviation decrease in θ̂j(i,t−1) increases step size in log price by 0.093, which is

18% of the average step size in log price recorded in the �nal row of Table 2. Similarly, a one

standard deviation decrease θ̂j(i,t−1) increases step size in in log pixels by 30% of the average, in

log zoom by 15% of the average, and in log display by 18% of the average. The results indicate

that consumers take larger than average steps in attribute space after viewing products that are

rarely purchased (those with low values of θ̂j(i,t−1)). That is, purchase behavior associated with a
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speci�c product predicts search behavior after consumers have viewed that product. This �nding

is strongly suggestive of learning, and is in line with what we would expect to observe if consumers

made inferences about nearby products after each search, per Proposition 2. When consumers

view products with �surprisingly low� utility (those with low values of ξj), they jump further away

in attribute space.

The data used in these regressions includes revisits to the same product (perhaps on other websites).

In Appendix Table A.2 we present a version of these regressions that omits revisits and �nd that

the results do not change dramatically. In Appendix Table A.4 we examine the robustness of these

results to the de�nition of θ̂j using alternative binary classi�cation of products as �frequently� or

�infrequently� purchased. The results are consistent with the pattern in Table 2. 12

These e�ects suggest that the information consumers obtain from search a�ects not only their

purchase decisions but also the direction of their search paths. If the e�ects recorded in Table 2

persist, then they induce path dependence in search. Viewing a product with a low value of ξj

rather than an otherwise identical product with a high value of ξj could permanently divert the

consumer's search path by pushing search to another area of the attribute space. On the other

hand it could be that the e�ects in Table 2 are transient, and any change in the step size is undone

by subsequent search.

To determine the extent to which jumps in step size are persistent, we regress two and three step

di�erences in product attributes, for example |priceit − priceit−2|, on two and three step lags of

θ̂j. The results of these regressions are recorded in Table 3. All speci�cations include the same

controls as those in Table 2. The estimated coe�cients indicate that the correlation between θ̂j

and step size persist. The coe�cients are signi�cant and most are slightly lower in magnitude than

the one-step coe�cients in Table 2.13

Together, the results discussed in this subsection indicate that consumers jump away from from low-

θ̂j products and tend to stay away in subsequent search, although this e�ect fades with subsequest

12In Appendix Table A.3 we show that the reuslts in Table 2 are also present with fewer control variables.
13In Appendix Table A.5 we report further regressions of forward one-step di�erences, for example |priceit+1 −

priceit| and |priceit+2−priceit+1|, on lags of θ̂j . We �nd no signi�cant e�ects of θ̂j(i,t−1) on any one-step di�erence

size except the tth. We also �nd no e�ect of θ̂j(i,t−1) on past step sizes.
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Table 3: Path Dependence: Multi-Step Di�erences

Two Steps

|priceit − priceit−2| |pixelit − pixelit−2| |zoomit − zoomit−2| |displayit − displayit−2|
ξ̂j(i,t−2) -.041*** -.263*** -.083*** -.241***

(.021) (.030) (.029) (.107)

N 4939 4939 4939 4939

Three Steps

|priceit − priceit−3| |pixelit − pixelit−3| |zoomit − zoomit−3| |displayit − displayit−3|
ξ̂j(i,t−3) -.050*** -.243*** -.045** -.220***

(.022) (.033) (.030) (.035)

N 4398 4398 4398 4398

Notes: Table presents regressions of multi-step di�erences in product attributes on the product residual index
θ̂j(i,t−2) or θ̂j(i,t−3). Step sizes are measured using the absolute di�erence in product attributes between the tth and

the t − 1th search. All product attribute are in logs and standardized.θ̂j(i,t−1) is constructed as described in the

text. Values of θ̂j(i,t−1) are standardized so that estimated coe�cients are the e�ect of one standard deviation. Any

product observations where jit−1 is never purchased, and hence a value θ̂j(i,t−1) is not computed, are omitted form
the regression. All regressions include the same covariates as in Table 2, including consumer �xed e�ects. Two step
regressions in the top panel include all search paths wwith at least three products searched. Three step regressions
in the lower panel include all search paths with at least four products searched. *** indicates signi�cance at the
99% level. ** indicates signi�cance at the 95% level. * indicates signi�cance at the 90% level.

steps as consumers obtain more information. This pattern is consistent with a persistent e�ect of

observing low-ξj products on consumers' beliefs generating path dependence in search. To quantify

the importance of these e�ects to consumer welfare, and to further investigate the implications of

path dependence in search for platform power we next turn to estimating the structural parameters

of the model.

5 Structural Estimation

5.1 Econometric Speci�cation

In order to take the model developed in Section 3 to the data on consumer search paths, we make

additional assumptions on the forms of the consumers' prior mean and covariance functions. We

assume that consumers' prior means are linear in product characteristics:

µ(Xj) = α +Xjβ (7)
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Note that in this application we restrict all consumers to having the same prior mean, µi(Xj) =

µ(Xj)∀i. This could be relaxed by allowing consumer-speci�c coe�cients βi, in which case the

model would nest the random coe�cients discrete choice model of Berry, Levinsohn and Pakes

(1995). 14

We assume that that consumers' prior covariance function κi(Xj, Xl) is of the form given by

equation (8). This is similar to the square exponential covariance function introduced earlier in

the text but allows the covariance between mi(Xj) and mi(Xl) to decay with distance at di�erent

rates along di�erent dimensions of the product characteristic space. In particular, there are K

parameters ρk that control spatial correlation in utility along the K dimensions. The parameter λ

controls the overall variance level of the prior Gaussian process.

κ(Xj, Xl) = λ2exp

(
K∑
k=1

− (Xjk −Xlk)
2

2ρ2k

)
(8)

Let ρ be the vector with kth entry ρk. To further simplify the consumer's problem, we suppose

that consumer i's cost of searching product j at period t, cijt, is given by equation 9, where c is a

parameter, and ζijt is a logit error term that is drawn independently across t, i, and j. The logit

assumption simpli�es subsequent computation.

cijt = c+ ζijt (9)

Finally, we normalize the level of utility by giving consumers an outside option with utility zero,

setting ûi0 = 0 for all i. Note that in our application to digital cameras we only observe an

individual if they make at least one search. To deal with this, we assume that consumers must

make at least one search (i.e there is no initial outside option), and afterwards can choose to stop

searching without purchasing a product and obtain outside option utility ûi0 = 0.

Thus the parameters to be estimated comprise those determining the prior mean, {β, α}, those

determining the prior covariance function, {λ,ρ}, the search cost parameter c, and the parameters

14In particular, when γ = 0 and cijt = 0 the model collapses to a probit choice model with linear utility and
random coe�cients.
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the control the �noise� in consumers' learning process - the variances {σξ, σε} and the values of the

product e�ects, ξj. Let ψ be the vector of parameters. Given ψ and a K dimensional vector of

product attributes for each of the J products, the model generates a distribution of search paths

and purchase decisions.

5.2 Parameter Interpretation and Price Endogeneity

The standard price endogeneity concern applies here. Prices may be positively correlated with

product quality that is unobserved by the econometrician. However, we can still meaningfully

interpret the estimated coe�cients, β, in light of our model. We assume that consumers have

rational beliefs about the distribution of utility, and we explicitly model this distribution. βprice

therefore measures the net e�ect on expected utility of price and any positive correlation between

price and unobserved quality, �xing beliefs. That is, βprice = ∂E(u)
∂price

, where the expectation is taken

with respect to consumers' prior beliefs.

This interpretation limits the counterfactual exercises we can perform. For instance, we cannot

think about price changes. Under counterfactual prices, the estimated consumer beliefs about

the relationship between price an expected utility would no longer be correct. To recompute

counterfactual rational beliefs we would need to decompose βprice = ∂E(u)
∂price

into the direct e�ect of

price on utility and the correlation of price with unobserved quality. This is not an issue for the

exercises we perform using the estimated model, since we are interested primarily in the e�ect of

information provision about products on search paths and consumption, �xing product locations

in attribute space.

5.3 Estimation

We estimate the model by constructing a likelihood function on the observed consumer search

paths and choices. Under the assumption that search costs are given by equation (9) with logit

errors, the probability of a consumer choosing to search product j ∈ J̃ conditional on being at
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state S, but unconditional on the realizations of the logit cost shocks is given by:

P̃i(j|S) =
exp (E[max{û, uj}|S]− c)

exp(û) +
∑

l∈J̃ exp (E[max{û, ul}|S]− c)
(10)

Suppose consumer i searches Ti times before stopping. Let jit be the tth product searched. Let

jit = 0 indicate stopping and purchasing the highest utility sampled product (or the outside

option). Finally, let ĵi indicate the product purchased. If the consumer's state variable, S, was

fully observable to the econometrician, the likelihood of the consumer's search path would then be

given by equation 11.

Li({jit}Tit=0, ĵi|{St}
Ti
t=0, ψ) =

(
Ti−1∏
t=0

P̃i(jit|St)

)
P̃i(0|STi)1

(
uĵi = ûjiTi

)
(11)

Since the econometrician does not observe the utility draws that enter S, it is necessary to integrate

them out of the likelihood function. Conditional on ψ, the vector of utilities observed by consumer

i ui =
(
ui,j(i,t=1), ..., ui,j(i,t=Ti)

)
, is distributed according to a multivariate normal distribution,

G(ui) = N(ūi,Σi). The vector of mean utilities, ūi, has a τth entry given by α +Xj(i,τ)β + ξj(i,τ).

The covariance matrix Σi has diagonal elements κ(Xj(i,τ), Xj(i,τ)) + σ2
ε and o�-diagonal elements

κ(Xj(i,τ), Xj(i,τ ′)) for τ 6= τ ′.The likelihood function unconditional on utility draws is given by

equation 12.

Li({jit}Tit=0, ĵi|ψ) =

ˆ
Li({jit}Tit=0, ĵi|{St}

Ti
t=0, ψ)dG(ui) (12)

In practice, we approximate this integral by averaging over draws from G(ui). The likelihood of

the data for all N consumers is then given by equation 13.

L(ψ) =
N∏
i=1

Li({j(i, t)}Tit=0, ĵ(i)|ψ) (13)

Our estimation procedure uses this likelihood to form a Monte Carlo Markov Chain with �at

priors. Let ψ̃ = ψ\{σξ, ξ} be the set of all parameters except the product e�ects and the variance

of the product e�ects. Using the distributional assumption ξj ∼ N(0, σξ), and assuming an inverse
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gamma conjugate prior distribution of σξ ∼ IG(1, 1) on the variance of the product e�ects, the

posterior distributions are given by equation 14 (Train, 2009).

P (ψ̃|σξ, ξ) ∝ L(ψ̃, σξ, ξ)

P (σξ|ψ̃, ξ) ∝ L(ψ̃, σξ, ξ)k

(
σξ; 1 + J,

1 +
∑
ξ2j

1 + J

)
P (ξj|ψ̃, σξ, {ξk}k 6=j) ∝ L(ψ̃, σξ, ξ)φ

(
ξj
σξ

)
(14)

Where k(σξ; a, b) is the density of the inverse gamma distribution at σξ with degrees of freedom a

and scale parameter b. The assumption ξj ∼ N(0, σξ) is discussed in the description of the model

in Section 3, but not used in construction the likelihood, since the likelihood is conditional on ξj.

The inverse gamma assumption on σξ is a frequently used di�use conjugate prior for the standard

deviation of normal distributions (Train, 2009). In Appendix B we provide details on the Markov

Chain procedure that generates draws from these posteriors. For each parameter, we take the

mean of the draws as our parameter estimate, and the standard deviation of these draws to be the

standard error of the estimate.

5.4 Identi�cation

To investigate whether the model is identi�ed by data on search paths, we run a Monte Carlo

exercise. We draw the locations of 20 products in a two dimensional attribute space where attribute

k is distributed Xk
j ∼ N(0, 1). For each product we then draw product e�ects according to

ξj ∼ N(0, σξ). We then simulate N search paths and estimate the parameters of the model on the

search path data by maximizing the likelihood given by equation 13. We repeat the search path

simulation and parameter estimation 500 times, �xing the product characteristics and parameters

over these iterations.

Table 4 reports the mean and standard deviation of the estimated parameters over the 500 itera-

tions for N = 500 and N = 1000. In both cases, estimated parameters are close to the true values,
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Table 4: Monte Carlo Exercise

True Parameter N = 500 N = 1000 True Parameter N = 500 N = 1000

β1 -0.5 -0.490 -0.492 λ 10 10.028 10.008

(0.073) (0.064) (1.426) (0.931)

β2 0.5 0.499 0.493 ρ1 1 1.022 1.002

(0.094) (0.090) (0.278) (0.227)

α -5 -4.983 -5.005 ρ2 2 2.074 2.015

(0.319) (0.207) (0.763) (0.282)

c 4 3.983 3.985 σξ 10 9.951 9.967

(0.193) (0.119) (0.730) (0.415)

σ2
ε 10 9.970 9.987

(0.238) (0.154)

Notes: Table reports the mean and standard deviation of the estimated parameters across 500 Monte Carlo replica-
tions. For each replication, N search paths are simulated, �xing the parameters are the values reported in the �True
Parameter� column, and �xing Xj and ξj for J = 20 products at values as described in the text. The N = 500 and
N = 1000 columns report the results for two separate exercises, one that uses 500 search paths, and one that uses
1000 search paths.

and standard errors are small relative to parameter magnitudes. For all parameters, the standard

deviation of the estimates is lower for the 1000 search path case than for the 500 search path case,

suggesting convergence to the truth as N →∞.

The Monte Carlo exercise provides some reassurance that the model is identi�ed. To see how it

is identi�ed, notice that our model is di�erent from standard models of sequential search, whose

identi�cation has been studied by Koulayev (2014) among others, because of the presence of the

spatially correlated beliefs controlled by the parameters {λ, ρ}. As argued above, spatial correlation

in beliefs is consistent with certain search path patterns that cannot be rationalized by a model

without learning. For instance, the patterns recorded by Table 2 that show that consumers take

larger jumps in attribute space after searching rarely purchased products. These patterns in the

search sequences identify the parameters {λ,ρ}.

The intuition is as follows. The probability of each possible search and purchase sequence is

identi�ed directly from the data as the number of consumers grows large. The probability that

each product is searched �rst indenti�es the parameters of the prior mean, β and α, and the

total variance of prior beliefs. The probability that product j is purchased, conditional on being

searched, identi�es ξj. For instance, products that are rarely purchased relative to other products

with similar attributes must have ξj < 0.
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Cross-product variation in ξj and the distance between pairs of products j and k then identi�es

the spatial covariance parameters, {λ,ρ}. For example, if ξj < 0 then P (k|j), the probability of

searching each product k after searching j, should be lower for k close to j in attribute space.

Likewise, if ξj > 0 then P (k|j) should be higher for k close to j. That is, ∂P (k|j)
∂ξj∂|Xj−Xk|

> 0, which

is an implication of Proposition 1. The size of this cross-derivative depends on the variance of the

spatially correlated part of utility, λ, and the spatial covariance parameters, ρ.15 The empirical

analogues of these cross derivatives are the patterns recorded by Table 2.

The path dependence patterns in search path data that this model seeks to explain are therefore the

source of variation in the data that helps identify the learning parameters. Appendix C presents

a more detailed argument along these lines. In the next Section, we will present the results of

the estimation and show that the estimated model rationalizes these patterns, while a no-learning

model does not.

6 Results

6.1 Parameter Estimates

We estimate the model on the digital camera search path data from BKM using the MCMC

approach discussed above. We drop revisits from the data used in estimation, since the model

does not rationalize multiple visits to the same product. Observable characteristics known to the

consumer before searching are log price, pixels, display size, and log zoom. All characteristics are

standardized to have mean 0 and standard deviation 1 across products.

The estimated parameters are presented in Table 5. As we might expect, the coe�cient on price

is negative and statistically signi�cant and the coe�cients on pixels and display are positive and

statistically signi�cant. The coe�cient on zoom is positive but not signi�cant. This does not mean

that, for an individual consumer, the marginal utility of zoom is 0. In particular,
∂uij
∂X

= β+ ∂mi(X)
∂X

.

In expectation, the second term is equal to zero, so the expected e�ect of zoom on utility is zero.

15For instance if λ = 0 then ∂P (k|j)
∂ξj∂|Xj−Xk| = 0 and consumers do not �jump� away from low-ξj products.
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The actual e�ect of zoom on utility includes the Gaussian process draw, m(X), which consumers

do not learn until they start searching. This �nding suggests that preference for cameras with

di�erent zoom is heterogeneous across consumers and that consumers use search to learn about

their preference for this attribute.16

The standard deviation of the Gaussian process m(X) from which consumers' preferences are

drawn, λ, and the covariance parameters ρk for all four attribute dimensions are positive and

signi�cant. Recall that as ρk → 0, the model converges to a standard sequential search model

without learning. Since we can reject the hypothesis that ρk = 0 in favor of the alternative ρk > 0,

the data on search paths provides evidence that consumers update their beliefs about un-searched

objects as they search.

The estimated value λ is of the same order of magnitude as the the standard deviations of the

product e�ects, σξ, and the idiosyncratic error, σε. That is about one half of the ex-ante un-

observable variation in utility is attributable to the spatially correlated component, m(X), and

consumers therefore make meaningful inferences about the utility of unsearched products from

observed utilities.17

As discussed in the previous Section, the parameters β are identi�ed by the probability that each

product is searched �rst, since they re�ect consumers beliefs about expected utility before search

begins. If consumers search paths tended follow this ex-ante ordering of products, the estimated

value of λ would be small. The extent to which consumers' search paths deviate from these

prior beliefs - for example by taking larger jumps after sampling products with negative ξj - is

rationalized by more uncertainty about m(X) through a higher value of λ.18

Finally, the search cost parameter, c, rationalizes the observed search lengths. Note that the

estimated coe�cient on price cannot be used to give a dollar interpretation to c since the coe�cient

on price includes both the direct e�ect of price on utility and the indirect e�ect of price on

consumers' prior beliefs about quality, as discussed above.

16Note that a richer model might include a consumer-speci�c coe�cient, βi and a Gaussian process component,
mi(X). This would separate consumer heterogeneity in beliefs about the expected relationship between attributes
and utility and uncertainty about m(X).

17The �signal to noise ratio� is approximately 2 : 3.
18This result could also be driven by cross-consumer heterogeneity in expected utility, Xβ. See footnote 16 above.
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Table 5: Estimated Parameters

Estimate SE Estimate SE

β1 (log price) -0.704 0.084 ρ1 (log price) 0.321 0.011

β2 (log zoom) 0.082 0.082 ρ2 (log zoom) 1.292 0.039

β3 (log pixels) 2.404 0.088 ρ3 (log pixels) 1.442 0.060

β4 (log display) 0.541 0.107 ρ4 (log display) 2.462 0.068

α -24.373 0.370 λ 20.171 0.121

c 7.065 0.120 σξ 24.850 0.628

σε 3.854 0.080

Notes: Table reports estimated parameters and standard errors. Estimation uses the MCMC procedure described
in Section 5. 5,000 draws from the chain are dropped for burn in, and the reported estimates are the mean and
standard deviations of the 15,000 draws from three parallel chains. For more details on the estmiation procedure,
see Appendix X.

Table 6 illustrates the �t of the model to the data. The �rst two columns record the mean and

standard deviation of various statistics across search paths in the data. The third and fourth

column record these same statistics across 10,000 search paths simulated using the estimated

parameters. For each simulation, we draw a new value of m(X) from the Gaussian process and

new values of the idiosyncratic errors εij. We hold ξj �xed across simulations at their estimated

values. The results in the �rst two rows indicate that the distribution of search path lengths, and

the search percentile at which the purchased product is �rst discovered in the simulated paths

match the data reasonably well. The remaining rows record the average observable characteristics

of the products searched. For instance, the third column records the average value of price across

all searches by all consumers (or simulated paths). For each attribute, the average characteristic

searched in the data is close to the simulated value. Notice also that the average simulated searched

product characteristics are di�erent from the average product characteristics recorded in Table 1,

because � just as in the real search data � simulated consumers do not sample products uniformly

at random.

6.2 Search Path Patterns

As discussed in Section 4, the model of search and learning is motivated by descriptive patterns

from the search data. First, as recorded by Table 2, consumers take systematically larger steps in
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Table 6: Model Fit

Data Simulations

Mean SD Mean SD

Search Length 5.390 6.429 6.054 4.702

Chosen Product Discovered 0.806 0.280 0.796 0.247

Average Price Searched 284.156 403.989 312.705 469.277

Average Zoom Searched 6.437 5.968 6.469 5.826

Average Pixel Searched 11.961 2.372 11.839 2.705

Average Display Searched 2.784 0.304 2.782 0.329

Notes: The �rst two columns report statistics on search paths from the data used in estimation. Sample includes
all search paths in the data, dropping revisits to the same product. Search length and chosen product discovered
are consumer averages. Chosen product discovered records the average search percentile at which the prodcut that
was ultimately purchased was �rst searched. Average product attributes searched are averages over all searches.
That is, a consumer that views 5 products will enter the average 5 times, once for each product. the second two
columns recod alalogous statistics for 10,000 simulated search paths, holding all parameters at their estimated level
and redrawing mi(X) and εij for each simulated consumer.

attribute space after viewing products that are rarely purchased. Second, as recorded by Figures 3

and 4, consumers get closer to the purchased product and take smaller steps in attribute space as

they search. We now show that our estimated model can replicate these patterns, while a restricted

version of our model without spatial learning cannot. We illustrate this by replicating some of

these descriptive exercises with simulated search paths. Two sets of search paths are simulated:

one uses the baseline parameter estimates, and the other uses a set of �no learning� parameter

estimates. The no learning estimates are constrained: we impose the restriction λ = 0 and then

otherwise proceed as described in Section 5 above. They are recorded in Appendix Table A.6.

Table 7 replicates the step size regressions recorded in Table 2 using 10,000 simulated search

paths at the estimated parameter values and the λ = 0 parameters. After generating the search

paths, we regress purchase probabilities on observable product attributes and obtain product-level

residuals, θ̂j as described above in Section 4. We then regress the tth search step size in each of

the four observable dimensions on the product residual of the t − 1th product searched. At the

baseline parameters, the model matches these step size patterns closely. As with the real data, the

coe�cient on θ̂j(i,t−1) for the simulated data is negative and statistically signi�cant for each of the

four dimensions. Data simulated from the model generates these patterns because products with

large or small residuals θ̂j correspond to products with large or small product e�ects, ξj.Products

have large estimated residuals in the simulated data because they have large product e�ects, and
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Table 7: Simulations: E�ect of Product Residuals on Step Size

Baseline Parameters

|priceit − priceit−1| |pixelit − pixelit−1| |zoomit − zoomit−1| |displayit − displayit−1|
θ̂j(i,t−1) -.039*** -.024*** -.039*** -.022***

(.004) (.004) (.004) (.005)

N 47825 47825 47825 47825

λ = 0 Parameters

|priceit − priceit−1| |pixelit − pixelit−1| |zoomit − zoomit−1| |displayit − displayit−1|
θ̂j(i,t−1) -.002 -.001 .005 .001

(.004) (.004) (.004) (.005)

N 48547 48547 48547 48547

Notes: Table presents regressions of search step size on the product residual index θ̂j(i,t−1). Sample is 10,000
simulated search paths at the estimated parameter values. The top panel uses simulations at the baseline parameter
estimate. The bottom panel uses simulations at parameters estimated under the restriction λ = 0. Step sizes are
measured using the absolute di�erence in log product attributes between the tth and the t− 1th search. θ̂j(i,t−1) is

constructed as described in Section 4 of the text. Values of θ̂j(i,t−1) are standardized so that estimated coe�cients
are the e�ect of one standard deviation. Other covariates are described in Section 4. All regressions include
consumer �xed e�ects. The data includes all search paths in which at least two products are searched. ***
indicates signi�cance at the 99% level. ** indicates signi�cance at the 95% level. * indicates signi�cance at the
90% level.

product e�ects ξj a�ect step size through consumer beliefs. As discussed in Section 5, these

patterns are an important source of identi�cation for the parameters λ and ρ of the Gaussian

process beliefs.

Under the no learning restriction, the estimated model cannot replicate these step size patterns.

Indeed, the estimated parameters on θ̂j(i,t−1) in the lower panel of Table 2 are not statistically dif-

ferent from zero for each of the product attributes. Without spatial learning, there is no mechanism

through which product e�ects ξj can a�ect beliefs about other products.

Figure 5 replicates the exercise recorded in Figure 3, which records the relationship between search

percentile and distance of the searched product from the purchased product. The top panel of

Figure 5 reports this relationship for log price and log zoom in simulations using the baseline

parameter estimates. As in the real data, simulated consumers get signi�cantly closer to the

purchased product as they search, along both product attribute dimensions19. These patterns

are generated by the dynamics of spatial learning in the model, and not an artifact of the data.

19The same exercise for display and pixels is recorded in Appendix Table A.6. The pattern is �atter in both the
data and the simulations for these attributes.
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The bottom two panels record the same relationships in search paths simulated using the λ = 0

parameters. The convergence in attribute space is eliminated in these simulations. Indeed, when

there is no learning the searched product moves away from the chosen product as search progresses,

although the pattern is less statistically signi�cant and the magnitude of the drift is smaller. The

ability of the model to rationalize these patterns and the step size patterns in Table 7 makes

the presence spatial learning a plausible explanation for several aspects of non-stationary search

behavior documented by BKM that cannot be rationalized by standard models.

6.3 The Value of Learning

How important is spatial learning to consumer welfare? To answer this, we use the estimated model

to ask how consumer search paths would be di�erent under di�erent assumptions about consumer

beliefs and learning. The model is estimated under the assumption that consumers know the

distribution of the ex-ante unobserved part of utility, m(X), and use the utilities they observe for

searched products to make correct Bayesian inferences about unsearched products. In particular,

the model assumes that consumers know the true spatial covariance parameters, ρ, that govern

the correlation of the unobserved part of utility along observed attribute dimensions. To quantify

the value of learning to consumers we simulate consumer search paths assuming consumer utilities

are distributed according the to estimated parameters but consumers have incorrect beliefs about

this distribution. In particular, we assume consumers believe the spatial covariance parameters

to be δρ̂. For example, if δ = 0, then although consumers have correct beliefs about the total

variance of unobserved utility, they do not make inferences across products because they believe

the covariance of m(X) along all dimensions to be 0.

We draw 20,000 values of m(X), and simulate search paths under the baseline assumption of δ = 1.

Let the simulated search length of simulated consumer i be li. We then simulate search paths for

these same values of m(X) with the multiplier, δ, set to values between 0 and 2, �xing the length

of each consumer's search path at li. We �x search path lengths to isolate the e�ect of di�erent

learning assumptions on the consumption utility of the best product located in a �xed number of

searches. This allows us to benchmark the e�ect of di�erent beliefs to changes in search length

34



Figure 5: Simulations: Convergence in Attribute Levels

Baseline Parameters

λ = 0 Parameters

Notes: Figures are constructed using 10,000 search paths simulated at the estimated parameters. The top two
panels use the baseline estimates, and the bottom two panels use the estimates under the restriction the λ = 0. The
y-axis records, for the relevant product attribute, the absolute di�erence in standard deviations of log price and
log zoom between the searched product and the product ultimately purchased. The product ultimately purchased
is excluded from the data for each consumer. The x-axis reports the search percentile, as de�ned in the text. The
solid line is a kernel regression using an Epanechnikov kernel, and the shaded area is 95% con�dence interval.

35



Figure 6: The Value of Learning
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Notes: In the left panel, the blue solid line records, for values δ along the lower x-axis, the average consumption
utility of 20,000 simulations when consumer beliefs have covariance parameters equal to δρ̂,with all other parameters
are at their estimated value. Each point on the blue line is a separate average over 20,000 simulations. Search length
is held �xed for each simulated consumer at li, its length in the δ = 1 simulation. The blue point is the limit of the
blue line as δ → ∞. The dashed red line records, for values of γ along the upper x-axis, the average consumption
utility for analogous simulations where search length for consumer i is set to γli, rounded to the nearest integer,
and the covariance multiplier is set to δ = 0. In the right panel the solid blue line records, for values δ along the
lower x-axis, the average total utility (consumption utility less search costs) of 20,000 simulations. Search length is
not �xed. The dashed red line records the average search length for the same simulations.

and ask how much more consumers with incorrect beliefs would have to search to achieve the same

level of consumption utility.

The left panel of Figure 6 records the results of these simulations. The solid blue line plots the

mean consumption utility across simulations for di�erent values of of the covariance multiplier, δ,

indicated by the lower x axis. Consumers obtain the best match to a product in a �xed number

of searches when δ = 1. Consumption utility is highest when consumers have correct beliefs about

the covariance parameters, ρ. When δ < 1, consumers under-extrapolate from observed products

to unobserved products, such that if a consumer obtains a particularly high utility draw or a given

product, she does not update her beliefs about surrounding products as much as a consumer with

correct beliefs, and is therefore more likely to move away from that region of the product space. this

under-extrapolation leads to a monotonic reduction in consumption utility as δ → 0. At δ = 0,

expected consumption utility is about 12% lower than at δ = 1. That is, if consumers do not

update their beliefs as they search, the best match from the resulting search paths, �xing search
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length, is 12% worse than the best product obtained when consumers update beliefs correctly.

When δ > 1, consumers over-extrapolate, and will, for example, move too far away from a region

of the product space based on a low utility draw. This also results in a decrease in consumption

utility. As δ → ∞, the perceived correlation in m(X) across products tends to 1. At this limit,

consumers update beliefs equally at all distances from an observed product. There is therefore no

spatial learning (only learning about the overall level of utility), and, for �xed search lengths, the

expected consumption utility is the same as if δ = 0. This is illustrated by the blue dot at the

far right of Figure 6, which simulates a counterfactual in which κ(X,X ′) = λ2, the limit of the

function given by equation X as ρ→∞.

To benchmark the value of learning, we ask how much longer a consumer who does not update her

beliefs (δ = 0) would have to search to obtain the same level of utility as a consumer with correct

beliefs (δ = 1). To do this, we run simulations where δ = 0 and each consumer's search length

is set to γli for values of γ between 1 and 2. When search length is extended, consumers obtain

better matches even though they do not update their beliefs as they search.The results of these

simulations are recorded by the red dashed line in Figure 6. Expected utility increases with search

length and reaches the level of utility obtained by a consumer with correct beliefs (indicated by

the horizontal line) at around γ = 1.25. This means that a consumer that does not learn as she

searches has to sample about 25% more products than a consumer who learns optimally to obtain

the same level of utility in expectation.

Similar patterns obtain when search length is not �xed in simulations. The right panel of Figure

6 repeats the simulations in which consumers believe the spatial covariance parameters to be δρ̂,

but does not �x search length. The blue line records average total utility - consumption utility

minus total search costs - and the red line records average search length. As in the �xed length

simulations, utility is maximized when δ = 1 due to over-and under-extrapolation when δ 6= 0.

However, note that total utility declines less steeply as δ → 0. Utility is about 5.6% lower at

δ = 0 than at δ = 1. The loss in utility from under-extrapolation is partially o�set by more search,

illustrated by the dashed red line. When consumers do not extrapolate across products, the

variance of beliefs about unsearched products utilities is not reduced through search (per equation
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4), and consumers persistently overestimate the potential gains from continuing to search.

7 Path Dependence and Product Recommendations

These �ndings suggest that consumer learning and in particular cross-product inference plays an

economically signi�cant part in determining consumers' search paths and purchase decisions, and

that incorrect beliefs can lead to welfare losses. The e�ect of over- and under-extrapolation on con-

sumption utility highlights one of the innovative features of our model of search - the introduction

of path dependence. What a consumer learns from the �rst product she searches determines what

she searches next, and ultimately what she purchases. A�ecting consumer beliefs and search paths

through information provision is therefore a potentially important channel through which online

retail platforms can in�uence purchase decisions. Examples of information provision that may alter

consumers' beliefs and search paths include product recommendations, comparisons, search results

rankings, and sponsored search results. For example, search engines and online retail platforms

such as Amazon, Google, and eBay frequently place sponsored products or advertisements at the

top of search results pages. Indeed, it is well documented (for example, see Ursu (2018)) that

highly ranked or salient of products on online platforms are more lilkely to be searched �rst.

Consider an experiment in which all consumers are forced to view a particular product before

beginning their search through the remaining products. In the model with spatial learning, chang-

ing this �recommended product� will change the beliefs consumers have at the beginning of their

search, and therefore change their subsequent paths. This stands in contrast to models of sequen-

tial search without spatial learning, in which manipulating the �rst object viewed has no e�ect

on the sequence of objects searched thereafter, only on the point in the sequence at which the

consumer stops searching. This also implies that in a model without learning, a consumer who

purchased product A would purchase either A or B in a counterfactual world where he is forced to

view B �rst, whereas in a model with learning, forcing a consumer to view product B �rst could

alter their search path such that they end up purchasing some third product C. For instance, if a

consumer learns that they would obtain an unexpectedly high payo� from B, they might search
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through other products that are similar to B and yield similarly high payo�s, and end up purchas-

ing such a product, C, that they would not have searched at all had they been free to start their

search anywhere.

In this section we show that information provision through product recommendations can be used

by the search platform to direct search and a�ect consumer welfare. First, we show that platforms

can manipulate consumers beliefs to direct them away from certain regions of the product space.

This �search diversion� can be exploited by platforms that want to direct consumers towards high

margin products.20 Next, we characterize the properties of consumer welfare optimizing product

recommendations, and show that a platform that wants to optimize consumer experience should

show a diverse, representative range of products to the consumer to help speed up learning.

7.1 Search Diversion

To illustrate the e�ect of information provision on search paths and consumer welfare, we use the

estimated model to simulate search paths under di�erent information provision scenarios. We draw

5000 values of m(X) and simulate search paths. For each search path, we add a �focal product�, F ,

at a random locationXF drawn from the set of existing product locations, and �show� the consumer

the utility they would obtain from this product before they begin their search. Because they have

viewed the focal product before they begin their search, consumers' beliefs at the beginning of

their search process di�er from the uninformed beliefs described by the Gaussian process prior. To

isolate the e�ect of this change in consumers' beliefs on the search path, we require consumers to

pay a search cost and view the focal product again before buying it. This means that we are only

providing information, not reducing the search cost of obtaining a particular product.

The e�ect of this type of information provision on consumers' search paths depends on the values

of the unobserved product e�ect, ξF , for the focal product F . Although consumers have rational

beliefs about the normal distribution from which ξF is drawn - consumers make correct inferences

given this distribution - they do not observe ξF separately from total utility. Particularly large

20In Appendix A, we show that it can be optimal for a �rm to recommend a �bad product� in order to divert
search towards a chosen high-margin product using the numerical example of Section 2.
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Figure 7: Search Diversion
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Notes: The left panel records the average utility (consumption utility minus search cost) over 20,000 simulated
paths. Consumers update their beliefs before searching based on viewing a product F with XF drawn at random
from the set of existing products. The x-axis records the value of ξF , and each point along the x-axis is a separate
set of 20,000 simulations.The right panel records box plots of the distribution on |logpriceĵ(i) − logpriceiF | where
ĵ(i) is the product purchased by consumer i for simulations using three di�erent values of ξF . The Box records the
25th, 50th, and 75th percentiles of the distribution and the whiskers record the upper and lower adjacent values.

(positive or negative values) of ξF can therefore divert search away from or towards di�erent

areas of the product space. For example, if consumers view a product with a particularly large

negative value of ξF , they will attribute this partly to the Gaussian process draw m(XF ) and infer

that nearby products will also yield low utility and will divert their subsequent search path. For

consumers with m(XF ) > 0, but m(XF ) + ξF < 0, this inference will lead them to incorrectly

revise down their beliefs about the expected utility of nearby products. In this sense, products

with large values of ξF are misleading and not representative of the spatially correlated part of

preferences, m(X).

To illustrate this e�ect, we run the information provision simulation for a range of values of ξF .

The left panel of Figure 7 illustrates the e�ects of information provision on consumption utility.

The blue solid line plots the mean utility (consumption utility minus search costs) among the 5000

paths for di�erent values of the focal product e�ect. Expected utility is maximized locally when ξF

is close to 0. In this case, the observed utility of focal product is equal to the consumer's Gaussian

process draw plus idiosyncratic error: XFβ + m(XF ) + εiF . In other words, the product F is

representative of the part of utility that is correlated across observable dimensions when ξF = 0.
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When ξF is increased or decreased from 0, average consumption utility falls. Reducing ξF by one

standard deviation (i.e. σξ ∼= 20) lowers expected consumption utility by about 15%, as consumers

are diverted away from products near F . As ξF is increased above 0, expected utility also falls as

consumers whose best match is farther away search more products near F . However, past some

threshold, expected utility in increasing in ξF . The e�ect of misleading information reducing on

horizontal match quality, m(X) is eventually o�set by the vertical quality component of F , ξF -

in the limit as ξF → ∞, consumers always buy F and obtain in�nitely high utility. The point at

which this takes place depends on the relative importance of these two components of unobserved

utility - if λ is large relative to σξ, then cross-product inference about m(X) is more important

and the vertical component is less important.

The diversion of search paths that generates these e�ects on consumption utility is illustrated by

the right panel of Figure 7. Recall ĵ(i) is the product purchased by simulated consumer i. Each box

plot illustrates the distribution of
∣∣∣logpriceĵ(i) − logpriceF ∣∣∣ among the 5,000 simulated consumers.

The x-axis records the value of ξF used in the simulation. A comparison of the three box plots

reveals how information provision shifts the distribution of demand across products. When ξF < 0,

demand falls for products that are close to F and rises for products that are further away, and

vice versa for ξF > 0. In a model without spatial learning, any substitution in this counterfactual

would be towards the focal product - the demand for all other products would remain the same

or fall. The signi�cant search diversion recorded in Figure 7 imply that if a retail platform wants

to direct consumers towards or away from certain products, the platform's information provision

design should take account of these e�ects.

7.2 Consumer-Optimal Recommendations

The results discussed so far have illustrated how information provision can divert search paths.

These e�ects could be exploited by a platform to increase revenue. For example, if di�erent

products are deferentially pro�table to an online retail platform, the platform may want to choose

the set of products which are displayed most prominently on the page to direct consumers towards

high margin products. However, a platform's objective function when designing its information
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provision strategy is likely more complex than simply maximizing short run revenue. A forward

looking platform may have an interest in maximizing consumer utility to encourage consumers to

return to the platform in future. Indeed, a recent report in the Wall Street Journal described an

internal debate at Amazon.com over the extent to which the search algorithm should highlight

more �relevant results� or more �pro�table results� (Mattioli 2019), with a spokesperson for the

company emphasizing that the algorithm's historical focus on relevant results was in the interest of

�long-term pro�tability�. In this subsection we ask what the model tells us about consumer-optimal

information provision: what are the characteristics of consumer optimal product recommendations

when consumers are spatial learners?

To answer this question, we simulate search paths with di�erent sets of �recommended products�.

For each simulation, we show the consumer the utility they would obtain from two products, then

let them search as normal. As with the simulations described above, the consumer has to pay the

search cost if they with to purchase one of the two �recommended� products, so the intervention

is purely informational. Platforms are typically designed in such a way that a limited number of

products can be highlighted to the consumer before they begin to examine alternatives - for example

the products at the top of the results page or highlighted in a separate recommendation panel.

This exercise models this type of information provision technique and allows us to characterize the

pairs of recommended products that optimize consumer welfare.

We select 1,000 pairs of products at random from the set of available products in the data. We

label the two recommended products j1 and j2. Each product is characterized by its observable

characteristics, Xj and its unobservable product e�ect, ξj. For each pair of recommended products,

we draw 1,000 values of m(X), and simulate 1,000 search paths. We simulate both �xed-length

paths (�xing the length of each consumer's search path at it's value from a no-recommendation

simulation), and optimal (up to the one-period look ahead assumption) search paths in which we

give the consumer the option to stop searching at any point. We then use the simulated search

paths to run regressions described by speci�cation 15 and 16.

Yr = α +Distance (j1(r), j2(r)) β1 + InvDensity (j1(r), j2(r)) β2 + f(ξj1(r)) + f(ξj2(r)) + εr (15)
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Yr = α +KL (j1(r), j2(r)) β1 + f(ξj1(r)) + f(ξj2(r)) + εr (16)

Where r indexes a simulation, and j1(r) and j2(r) are the recommended products for that sim-

ulation. f(ξ) is a �exible function of the product e�ect. In practice we allow it to be piecewise

quadratic with di�erent coe�cients for ξ > 0 and ξ < 0.

Distance (j1(r), j2(r)) is the average distance between j1 and j2 over the four (standardized)

observable product attributes. InvDensity (j1(r), j2(r)) is the average distance between prod-

ucts j1 and j2 and all other products. That is, it is a measure of �inverse density� - when

InvDensity (j1(r), j2(r)) is smaller, the recommended products are located in a denser region

of the product space. KL (j1(r), j2(r)) is the expected Kullback-Leibler divergence between the

prior and posterior beliefs about all other products after observing products j1 and j2. This is a

measure of the informativeness of the recommended products about the unobserved products.21

We run these regression for three dependent variables, Yr - the average consumption utility, the

average search length, and the average total utility including search costs. Results are reported in

Table 8.

The �rst column records the e�ects of recommended product characteristics on consumption util-

ity for �xed search length simulations. Expected consumption utility increases with the distance

between j1 and j2 and decreases with the average distance between j1 and j2 and other products.

Both coe�cients are statistically signi�cant. These results indicate that, holding �xed product

e�ects ξj, consumers are able to obtain better product matches in a �xed number of searches when

the recommended products are located in dense regions of the search space, and the two recom-

mended products are not close together. The intuition behind these �ndings is clear. First, the

information value of viewing a recommended product is higher when it is more informative about

other products. In the context of spatial learning, consumers learn more when the recommended

product is close to other products along the observable attribute dimensions. Second, when the

consumer views two products, the information value of j2 is diminished if it located close to j1,

21The KL divergence is a measure of the di�erence between two distributions. It can be interpreted as the
information gain when moving from one distribution to another (see Kullback and Leibler (1951) and Kullback
(1997)). See Appendix D for details.
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Table 8: E�ects of Recommended Product Characteristics

Search Length: Fixed Not Fixed

Dependent Variable: Consumption Utility Cons. Utility Search Length Total Utility

Distance 0.286*** 0.159*** -0.068***

(0.054) (0.049) (0.020)

InvDensity -1.091*** -0.561*** 0.084*

(0.136) (0.124) (0.050)

KL 7.530*** 5.869***

(1.484) (1.411)

|ξj1 | (ξj1 > 0) -0.071*** -0.063*** -0.069*** 0.016*** -0.117***

(0.005) (0.006) (0.005) (0.002) (0.005)

ξ2j1 (ξj1 > 0) 0.006*** 0.006*** 0.005*** -0.001*** 0.006***

(0.000) (0.000) (0.000) (0.000) (0.000)

|ξj1 | (ξj1 < 0) -0.052*** -0.047*** -0.063*** -0.004 -0.047***

(0.009) (0.010) (0.009) (0.003) (0.009)

ξ2j1 (ξj1 < 0) 0.001*** 0.001*** 0.001*** 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

N 1000 1000 1000 1000 1000

Notes: An observation in the regressions is a simulation. Each simulation generates 1,000 paths at the estimated
parameter values after consumers observe the utility from two products, j1 and j2, drawn randomly as described
in the text. for each column, 1,000 pairs of locations, (j1, j2) are drawn, and the statistics used in the regression
are computed from the resulting search paths. Each regression controls for a peicewise quadratic function in ξj1
and ξj2 . Coe�cients on ξj2 are not reported. The �rst two columns use �xed search lengh simulations. The third
through �fth columns use simulations for which the search path length is not �xed. *** indicates signi�cance at
the 99% level. ** indicates signi�cance at the 95% level. * indicates signi�cance at the 90% level.
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since the posterior variance of beliefs conditional on viewing j1 is lower in the region of j1.

The second column shows that consumption utility is signi�cantly positively correlated with the

KL divergence in beliefs induced by ji and j2. That is, average consumption utility is higher

when the recommended products have a larger e�ect on the posterior beliefs about other products.

This �nding is consistent with the results in the �rst column - as described by Appendix Table

A.7, KL divergence is positively correlated with Distance and negatively correlated with Density.

Together, these �ndings indicate that the average consumption utility achieved in a �xed number of

searches is maximized when the platform recommends an diverse and informative set of products.

The bottom four rows for the �rst two columns of Table 8 record the e�ect of ξj1 on expected

consumption utility. These results are consistent with the pattern described in Figure 7. As dis-

cussed above, product recommendations that are representative in the sense that ξj ' 0 maximize

expected utility locally.

Economically signi�cant changes in welfare can be generated simply by relocating j1 and j2 in

product space. Fixing ξj1 = ξj2 = 0, predicted utility varies substantially over the set of recom-

mended product locations used in the simulations: the best recommendation in terms of consumer

utility generates a predicted utility that is 9% higher than the worst recommendation. Of course,

as ξj → ∞, the direct e�ect of recommending a product with a large vertical utility component

dominates the learning e�ect of product location.

The third through �fth columns of Table 8 repeat this exercise without the �xed search length

restriction. As in the �xed search length simulations, locating j1 and j2 in denser regions of

the product space and farther away from each other improve consumer welfare. These gains are

achieved both through improved consumption utility and lower search costs. When j1 and j2 are

more informative - located further apart and in dense regions of the search space - consumers

obtain better matches to products and shorten their search paths because they learn more quickly

about their preferences over a wider range of the search space.

45



8 Conclusion

In this paper, we develop a model of search with spatial learning and investigate its implications

for platform power in online retail. In this model, consumers are initially uncertain of the utility

yielded by the set of available products, which they learn about through search. Searching a

particular product not only provides information about that product, but provides a signal about

how much the consumer is likely to value similar products - those that are �nearby� in product

attribute space.

In standard models of sequential search, the consumer's choice of whether to continue searching

depends on the observed utilities of those objects already searched. With spatial learning, the

decision of which product to search also depends on past observations. For example, a negative

observed utility for a particular product is likely to direct subsequent search away from similar

products. We establish some simple comparative statics on the consumer's �search ranking� of

products under a one period look ahead assumption that formalize this intuition.

We document stylized facts using data on consumer search paths in online search for digital cameras

that provide support for the intuitive notion that consumers explore the product space to learn

about their preferences, and that learning about the payo� from one object provides information

on the payo�s from similar objects. Consumers initially take large steps over a wide range of the

product attribute space before focusing on products close to the ultimately purchased product in

later search. Consumers also take larger steps in attribute space away from products that are

rarely purchased.

We argue that these descriptive patterns identify the learning parameters of the model, and we

estimate the parameters of the model using the search sequence data. We show using simulations

that the estimated model matches these patterns closely and that a model without learning does

not. This provides striking evidence that spatial learning drives consumer search patterns. We

quantify the value of learning by simulating search paths under di�erent assumptions about con-

sumer beliefs, and show that non-learning consumers would have to search for 25% longer than

learning consumers in order to obtain the same utility.
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The path dependence induced by spatial learning has important implications for the role of search

intermediaries such as online retail platforms. We use simulations to show that platforms can

exploit spatial learning using product recommendations of idiosyncratically high or low payo�

products to divert search towards or away from regions of the search space. This means that,

unlike in a model without spatial learning, providing additional information to consumers can

reduce consumer welfare on average. In particular, recommendations can reduce welfare even if

the platform recommends a better than average product to the consumer because of the e�ect

of viewing non-representative products on consumer beliefs. An interesting direction for future

research would be to use data with observed variation in product recommendations or rankings to

provide empirical con�rmation of these path dependence e�ects.

A �nal set of simulations show that when platforms recommend sets (in our case pairs) of products,

consumer welfare is maximized when the recommended products are located in densely populated

regions of the search space and are far away from each other. Pairs of recommended products that

have these characteristics are informative in terms of Kullback-Leibler divergence. This �nding

complements work by De Los Santos and Koulayev (2017), who show how promoting products

that are expected to yield high utility to speci�c consumers can reduce consumer search costs. In

practice, a platform interested in maximizing consumer welfare might be interested in promoting

informative products in order to aid consumer learning and consumer-speci�c high value products,

depending on the extent to which the platform has ex-ante information about consumer-speci�c

preferences. Exploring the trade-o� between targeting consumer preferences and informing con-

sumer beliefs through recommendations is a promising avenue for future research.

Together, these �ndings point to the importance of cross-product learning in determining consumer

search paths. This mechanism should be taken into account debates about the regulation of

search platforms and recommendation systems. Our empirical �ndings suggest that omitting

cross-product learning from such an analysis would lead to misleading predictions about changes

in demand and welfare under di�erent information environments. Future research might apply this

modeling framework to analyzing the behavior of platforms and evaluating the e�ects of di�erent

recommendation algorithms. This line of research has the potential to contribute to the design
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of regulations that promote �trust in recommendations,� highlighted by Tirole (2019) as one of

leading challenges of the digital economy.
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Appendix

A. Proof of Proposition 1

We take the derivatives of the score zj in turn:

∂zj
∂û

= (φ(aj)/sj) + Φ(aj)− (φ(aj)/sj)µj + φ′(aj)sj/sj

= φ(aj)(û− µj)/sj + Φ(aj) + φ′(aj)

= φ(aj)aj + Φ(aj)− ajφ(aj)

= Φ(aj)

where on the third line we use the fact that φ′(x) = −xφ(x). Similarly:

∂zj
∂µj

= −(φ(aj)/sj) + (1− Φ(aj)) + (φ(aj)/sj)µj − φ′(aj)

= 1− Φ(aj)

The partial on costs is immediate. Finally, notice that from the transition equations (2) and (3)

the last observation's payo� only in�uences mean beliefs and potentially the current highest payo�

(if it was better than the prior best option). Applying the chain rule, we can use the partial

derivatives derived above, along with the derivative
∂µj
∂uk

from (2) to get the result.

B. Search Rankings and Manipulation of Beliefs in the Illustrative Ex-

ample

In the example in Section 2, we assumed equal costs of searching all products. However, it is

well documented (for example, see Ursu (2018)) that the ranking or salience of products on online

platforms a�ects the order in which consumers search through those products. We thus allow for

di�erent search costs, where higher-ranked products have lower search costs. The direct e�ect of

this is to ensure that higher-ranked products are more attractive to search. But under spatial

learning, there are also spillover e�ects: what consumers learn from searching a highly-ranked
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Figure A.1: Belief Updating

Notes: Black crosses indicate the location of the three products, A, B,and C, in price-utility space. The blue
dashed line is the consumer's prior expected utility of hypothetical products at di�erent price levels. This is given
by E(uj) = (µ − 1)pj . The red dashed line indicates the consumer's posterior expected utility at di�erent price
levels after searching product B. The posterior is computed using the bayesian updating rule described in the text.
Parameters are as described in the notes to Figure 1.

product can a�ect consumers' beliefs about other products. Product rankings can therefore be used

to manipulate both search costs and beliefs.

To show the ways in which rankings can be used to change purchase behavior, we modify our

example from before by setting pB = 3.5 so that product B is closer in price space to product C

than product A. We set the search cost for product B to zero, so that searching it is free � and

therefore it is optimal to search B �rst (this is an attempt to model it being heavily promoted by

the platform). Last we assume that the latent payo� for B is uB ≈ 0.2, much worse that expected.

Figure A.1 illustrates how the consumer's beliefs about uA and uC are updated after she searches

product B. This bad initial experience drags down the posterior mean beliefs about C more than

product A, so that after the �free� search of B, the consumer believes that A is a better option.

This �belief manipulation� can be e�ective in driving consumers towards a desired option. Suppose

for example that the search intermediary wants the consumer to buy product A, perhaps because it
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earns the highest commission on sales from that seller or because it is a �house brand�. Intuitively,

one might expect that the best the intermediary can do is to promote product A, driving its search

cost to zero and ensuring it enters the consumer's consideration set. Yet it turns out the answer

is more subtle and depends on the search costs.

Table A.1 records the consumer's purchased product as a function of the product they are shown

�rst, and the search cost, c. For low search costs (c < 0.05), the consumer will search every product

and ultimately purchase C, the highest utility product. In this search cost regime, the platform

cannot control the purchase outcome. On the other hand, for very high search costs (c > 0.91), the

consumer will not search beyond the product initially shown to them by the platform. The platform

has complete control over the purchase decision, and therefore should show product A �rst so that it

is purchased. The surprise is that in intermediate cases (c ∈ (0.05, 0.78]), the platform can achieve

its aim of getting product A purchased only by showing product B �rst. If the consumer views

either A or C �rst, the observed utility will be equal to the prior expected utility, and the consumer

will not update their expectation about the other products. Thus, if the consumer is shown product

A �rst, she will search product C second, since E(uC |uA) = (µ − 1)pC > (µ − 1)pB = E(uB|uA).

After viewing C she will purchase it. However, if she is shown the inferior product B �rst she will

infer that product C is likely to be low quality since it is close to product B in price space, and

will therefore search product A second. With intermediate search costs, it is then optimal to stop

and purchase product A.

Notice that this �intermediate case� is likely to be the most prevalent in practice, since we think

of platforms as having some but not perfect control over what is purchased on their sites. They

also often have considerable prior data on purchasing decisions which may allow them to predict

with high accuracy which products are �surprisingly bad� and may therefore be used to steer

consumers in this way (we ourselves do such prediction using a relatively small Comscore dataset

later in the paper). So belief manipulation is a realistic possibility, depending on the motivation

and sophistication of the search intermediary.
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Table A.1: Purchase as a Function of Starting Product and Search Cost

Starting Product c∈ [0, 0.05] c∈ (0.05, 0.78] c∈ (0.78, 0.91] c∈ (0.91,∞]
A C C C A
B C A B B
C C C C C

Notes: Each cell records the product purchased by a consumer with search cost c given by the column headers who
is shown the starting product indicated by the �rst column before starting to search. Parameters are as described
in the notes to Figure 1.

C. MCMC Estimation Algorithm

We estimate the model by drawing from the posterior distributions given by equations 17, 18, and

19.

P (ψ̃|σξ, ξ) ∝ L(ψ̃, σξ, ξ) (17)

P (σξ|ψ̃, ξ) ∝ L(ψ̃, σξ, ξ)k

(
σξ; 1 + J,

1 +
∑
ξ2j

1 + J

)
(18)

P (ξj|ψ̃, σξ, {ξk}k 6=j) ∝ L(ψ̃, σξ, ξ)φ

(
ξj
σξ

)
(19)

To draw from these posteriors we use a Metropolis-Hasings in Gibbs sampler (Gelman, Carlin,

Stern, Dunson, Vehtari and Rubin 2013, Chapter 11.3). The algorithm proceeds fom a set or

starting values (ψ̃, σξ, ξ). The tth iteration of the algorithm is as follows.

1. Draw Parameters: Sample proposal ψ̃′ ∼ N(ψ̃t,Ωψ). Draw α ∼ U [0, 1]. If
P (ψ̃′|σξt,ξt)
P (ψ̃t|σξt,ξt)

> α,

set ψ̃t+1 = ψ̃′t. Otherwise set ψ̃t+1 = ψ̃t.

2. Draw Product E�ect Variance: Sample proposal σ′ξ ∼ N(σξt, ωσ). Draw α ∼ U [0, 1]. If

P (σ′
ξ|ψ̃t+1,ξt)

P (σξt|ψ̃t+1,ξt)
> α, set σξt+1 = σ′ξ. Otherwise set σξt+1 = σξt.

3. Draw Product E�ects: Randomly select 10% of the entries of ξ to be updated. For

each of these entries j, sample proposal ξ′j ∼ N(ξj, ωξ). For the other entries, ξ′j = ξj.
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Starting with j = 1, iterate through entries of ξ. For each entry, draw α ∼ U [0, 1]. If

P (ξ′j |ψ̃t+1,σξt+1,{ξkt}k<j ,{ξkt+1}k>j)
P (ξjt|ψ̃t+1,σξt+1,{ξkt}k<j ,{ξkt+1}k>j)

> α, set ξjt+1 = ξ′j. Otherwise set ξjt+1 = ξjt.

5000 draws from the chain are dropped for burn in, and the reported estimates are the mean and

standard deviations of the 15000 draws from three parallel chains. We visually inspect chains for

convergence and adjust proposal variances Ωψ, ωσ, and ωxi manually before running the chain to

optimized the speed of convergence.

D. Identi�cation Details

Fix the number of products, J , and let the number of consumers grow large, N → ∞. It is clear

that conditional search probabilities P (j(i, t) = j|j(i, 1), ..., j(i, t − 1)) and purchase probabilities

P (ĵ(i) = j|j(i, 1), ..., j(i, t−1))are identi�ed for all products j conditional on all possible sequences

of products searched (j(i, 1), ..., j(i, t−1)). In particular, the probability that product j is searched

�rst, given by equation 20, is identi�ed.

P (j(i, 1),= j) =
exp(zj)∑
k∈J exp(zk)

zj = Φ

(
α +Xjβ

σ

)
(α +Xjβ) + φ

(
α +Xjβ

σ

)
σ (20)

Where zj is product j's prior search index, which is a non-linear function of three parameters, α,

β, and σ, where σ is the total variance in utility (i.e. σ =
√
λ2 + σ2

ξ + σ2
ε ). Suppose X is one

dimensional and there are three products with XA > XB > XC . P (ji1 = A), P (ji1 = B), and

P (ji1 = C) de�ne a system of three non-linear equations with three unknown parameters. If these

equations have a unique solution, then (α, β, σ) are identi�ed from the �rst search probabilities.

Intuitively, β is identi�ed by the correlation between product attributes and search probability.

The identi�cation of α and σ from the �rst search is less clear, and comes from the non-linear

functional form imposed by Gaussian beliefs.22 Of course, there is additional variation in the data

22In discrete choice demand estimation, we usually think that the scale parameter on utility is not identi�ed.
Here, σ is di�erent from the variance of the logit shocks (which is normalized as usual) and is identi�ed because

it enters non-linearly in zj . In particular, as σ → 0,
∂zj
∂Xj
→ 0 for α + Xjβ < 0 and

∂zj
∂Xj
→ β for α + Xjβ > 0.
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identifying each of these parameters. For example, as α → −∞, the probability of taking the

outside option increases, P (ĵ(i) = 0)→ 1.

Suppose we can identify (α, β, σ) from the �rst search. Fix a product A and consider the prob-

abilities of stopping after the �rst search and purchasing product A. It is clear that P (ĵ(i) =

A|j(i, 1) = A) is increasing in ξA. Fixing the other parameters, there is a value of ξj which ratio-

nalizes the purchase probability for each product. As discussed in Section X, products that are

frequently purchased relative to others with similar Xj must have higher ξj.
23

Next, consider the second search probabilities P (j(i, 2) = B|j(i, 1) = A), P (j(i, 2) = C|j(i, 1) =

A), P (j(i, 2) = A|j(i, 1) = B) etc. For J products there are J(J − 1) such probabilities, which

depend on 3 + J free parameters, {λ, ρ, σε, {ξj}Jj=1}. Recall Proposition 1: if A is the �rst product

searched, then ∂zB
∂ξA

> ∂zC
∂ξA

> 0 if XA > XB > XC , and thus decreasing ξA lowers the probability of

searching B relative to the probability of searching C. The extent to which these e�ects decline

with distance depend on the parameters that control covariance, λ and ρ, (see equations X and

Y). Notice that there is a close analogue between this source of identi�cation and the step size

e�ects described in Table X: consumers �jump� away from low-ξj products, and the size of these

jumps depends on the spatial correlation.

The estimation procedure uses the full search path of each consumer, and therefore contains

additional identifying variation beyond the choice probabilities discussed here. Furthermore, notice

that this argument does not use the assumption that ξre ∼ N(0, σre), which is imposed in estimation

and implies that the values of ξj contain information about σxi.

As σ → ∞,
∂zj
∂Xj
→ 0.5β for all values of Xj . The size of the disconsintinuous change in in

∂zj
∂Xj

at α + Xjβ = 0

identi�es σ and the position of this change is slope identi�es α.
23Purchase probabilities P (ĵ(i) = A|j(i, 1) = A) and P (ĵ(i) = 0|j(i, 1) = A) are also informative about σε.

Higher values of σε add noise to revealed utilities and reduce the correlation between product attributes, Xj and
purchase probabilities. Similarly, ξj has a larger e�ect of purchase probability when σε is small.
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Figure A.2: Policy Approximation

Notes: The left panel shows the optimal policy and the right panel the optimal one-period look ahead policy, in the
example from earlier, with pA = 2, pB = 3, and pC = 4. µ = 1.5 c = 0.45, and Σii = 0.55, ΣAB = ΣBC = 0.15, and
ΣAB = 0.005.

E. De�nition of KL Divergence

I compute the expected KL divergence for each (j1, j2) according to the following equation:

KL(j1, j2) =
1

2

ˆ ((
Σ−10 Σ1

)
+ (µ0 − µ1)

′Σ−10 (µ0 − µ1) + ln

(
det Σ0

det Σ1

))
dF0(uj1 , uj2) (21)

Where Σ0 is the prior covariance of all product utilities, µ0 is the prior mean vector, Σ1 is the

posterior covariance after observing uj1 and uj2 , µ1 is the posterior mean vector, and F0(uj1 , uj2)

is the prior distribution of the utilities of j1 and j2.

F. Additional Tables and Figures
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Figure A.3: Covergence to Chosen Attribute Level
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Notes: The y-axis for each panel records, for the relevant product attribute, the absolute di�erence in standard
deviations of the attribute between the searched product and the product ultimately purchased. The x-axis reports
the search percentile, as de�ned in the text. The product ultimately purchased is excluded from the data for each
consumer. The solid line is a kernel regression using an Epanechnikov kernel, and the shaded area is 95% con�dence
interval. The estimation sample includes all search paths from the ComScore data on search for digital cameras.
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Figure A.4: Covergence to Chosen Attribute Level: No Revisits
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Notes: The y-axis for each panel records, for the relevant product attribute, the absolute di�erence in standard
deviations of the attribute between the searched product and the product ultimately purchased. The x-axis reports
the search percentile, as de�ned in the text. The product ultimately purchased is excluded from the data for each
consumer. The solid line is a kernel regression using an Epanechnikov kernel, and the shaded area is 95% con�dence
interval. The estimation sample includes all search paths from the ComScore data on search for digital cameras,
with revisits to the same product dropped.
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Figure A.5: Covergence to Chosen Attribute Level
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Notes:The y-axis of the each panel records the absolute distance in standard deviations of relevant attribute between
the product searched and the previous product searched. The x-axis reports the search percentile, as de�ned in
the text. The solid line is a kernel regression using an Epanechnikov kernel, and the shaded area is 95% con�dence
interval. For both panels, the estimation sample includes all search paths from the ComScore data on search for
digital cameras, including revisits to the same camera and excluding consumers who do not make a purchase.
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Figure A.6: Covergence to Chosen Attribute Level: Simulations

Baseline Parameter Estimates

λ = 0 Parameter Estimates

Notes: Figures are constructed using 15,000 search paths simulated at the estimated parameters. The top two
panels use the baseline estimates, and the bottom two panels use the estimates under the restriction the λ = 0. The
y-axis records, for the relevant product attribute, the absolute di�erence in standard deviations of log price and
log zoom between the searched product and the product ultimately purchased. The product ultimately purchased
is excluded from the data for each consumer. The x-axis reports the search percentile, as de�ned in the text. The
solid line is a kernel regression using an Epanechnikov kernel, and the shaded area is 95% con�dence interval.
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Table A.2: E�ect of Product Residuals on Step Size: No Revisits

|priceit − priceit−1| |pixelit − pixelit−1| |zoomit − zoomit−1| |displayit − displayit−1|
ξ̂j(i,t−1) -.035 -.213*** -.077** -.154***

(.024) (.037) (.034) (.039)

SearchPercentileit -.044 -.069 .044 -.024

(.039) (.059) (.055) (.061)

Purchasedit -.097** .001 -.032 .049

(.046) (.069) (.064) (.071)

ProductDensityit .172*** 2.946*** .365*** 22.838***

(.012) (.199) (.028) (1.214)

N 3385 3385 3385 3385

Consumer FE Yes Yes Yes Yes

Mean of Dep. Var. .670 .897 .784 .934

Notes: Table presents regressions of search step size on the product residual index θ̂j(i,t−1). Step sizes are measured

using the absolute di�erence in standardized log product attributes between the tth and the t−1th search. θ̂j(i,t−1) is

constructed as described in the text. Values of θ̂j(i,t−1) are standardized so that estimated coe�cients are the e�ect

of one standard deviation. Any product observations where jit−1 is never purchased, and hence a value θ̂j(i,t−1) is
not computed, are omitted form the regression. Other covariates are described in the text. All regressions include
consumer �xed e�ects. The data includes all search paths in which at least two products are searched, with revisits
to the same product dropped. *** indicates signi�cance at the 99% level. ** indicates signi�cance at the 95% level.
* indicates signi�cance at the 90% level.

Table A.3: E�ect of Product Residuals on Step Size: Fewer Controls

|priceit − priceit−1| |priceit − priceit−1| |priceit − priceit−1| |priceit − priceit−1|
ξ̂j(i,t−1) -.085 -.080*** -.073** -.040***

(.016) (.017) (.017) (.016)

SearchPercentileit -.111 -.093 -.095***

(.032) (.032) (.031)

Purchasedit -.0142 -.121***

(.027) (.027)

ProductDensityit .114***

(.007)

N 5590 5590 5590 5590

Consumer FE No No No No

Mean of Dep. Var. .523 .523 .523 .523

Notes: Table presents regressions of search step size on the product residual index θ̂j(i,t−1). Step sizes are measured

using the absolute di�erence in standardized log product attributes between the tth and the t−1th search. θ̂j(i,t−1)
is constructed as described in the text. Values of θ̂j(i,t−1) are standardized so that estimated coe�cients are the
e�ect of one standard deviation. Any product observations where jit−1 is never purchased, and hence a value
θ̂j(i,t−1) is not computed, are omitted form the regression. Other covariates are described in the text. The data
includes all search paths in which at least two products are searched. *** indicates signi�cance at the 99% level.
** indicates signi�cance at the 95% level. * indicates signi�cance at the 90% level.
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Table A.4: E�ect of Rarely Purchased Product on Step Size

|priceit − priceit−1| |pixelit − pixelit−1| |zoomit − zoomit−1| |displayit − displayit−1|
BadProductit−1 .078** .000 .183*** .199***

(.040) (.061) (.055) (.061)

SearchPercentileit -.139*** -.120*** -.089** -.094**

(.026) (.040) (.036) (.040)

N 6526 6526 6526 6526

Density Controls Yes Yes Yes Yes

Product FE Yes Yes Yes Yes

Notes: Table presents regressions of search step size on an indicator, BadProductit−1, for whether the last product
searched is rarely purchased. BadProductit−1 = 1 if product jit−1 is searched by at least 10 consumers in the data
and purchased with probability less than 5% conditional on being searched. . Step sizes are measured using the
absolute di�erence in standardized log product attributes between the tth and the t − 1th search. All regressions
include controls for search percentile, product density, and consumer �xed e�ects. The data includes all search paths
in which at least two products are searched. *** indicates signi�cance at the 99% level. ** indicates signi�cance at
the 95% level. * indicates signi�cance at the 90% level.

Table A.5: Placebo Tests: Leads and Lags of Product Residuals

ξ̂j(i,t−3) ξ̂j(i,t−2) ξ̂j(i,t−1) ξ̂j(i,t) ξ̂j(i,t+1)

|priceit − priceit−1| .015 -.002 -.064*** .003 .044**

(.022) (.020) (.019) (.019) (.020)

|pixelit − pixelit−1| .001 .025 -.274*** -.011 .009

(.033) (.030) (.029) (.029) (.030)

|zoomit − zoomit−1| .032 -.012 -.076*** -.004 -.002

(.030) (.028) (.026) (.026) (.027)

|displayit − displayit−1| .018 .035 -.280*** -.043 .022

(.033) (.031) (.030) (.029) (.030)

Notes: Each cell in this table is the coe�cient from a regression of step sizes indicated by the row titles on lagged
product residuals indicated by the column headers. Regression speci�cations are otherwise as rcorded in the notes
to Table 2. *** indicates signi�cance at the 99% level. ** indicates signi�cance at the 95% level. * indicates
signi�cance at the 90% level.

Table A.6: Estimated Parameters with λ = 0

Estimate SE Estimate SE

β1 (log price) -0.667 0.071 α -20.248 0.535

β2 (log zoom) 0.008 0.070 c 6.798 0.098

β3 (log pixels) 3.312 0.118 σξ 20.226 0.506

β4 (log display) 0.231 0.106 σε 3.029 0.119

Notes: Table reports estimated parameters under the restriction λ = 0 and standard errors. Estimation uses the
MCMC procedure described in Section 5. 5000 draws from the chain are dropped for burn in, and the reported
estimates are the mean and standard deviations of the 15000 draws from three parallel chains. For more details on
the estmiation procedure, see Appendix B.
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Table A.7: KL Divergence and Recommended Product Location

Dependent Variable: KL

Distance 0.017***

(0.001)

InvDensity -0.013***

(0.002)

N 1000

Notes: Regression of KL(j1, j2) on Distance(j1, j2) and InvDensity(j1, j2), as de�ned in the text. An observation
in the regressions is a simulation. Each simulation generates 1,000 paths at the estimated parameter values after
consumers observe the utility from two products, j1 and j2, drawn randomly as described in the text. for each
column, 1,000 pairs of locations, (j1, j2) are drawn, and the statistics used in the regression are computed from the
resulting search paths.
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