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When FinTech Competes for Payment Flows

Abstract

We study the impact of FinTech competition in payment services when a bank uses

payment data to learn about consumers’ credit quality. Competition from FinTech

payment providers disrupts this information spillover. The bank’s price for payment

services and its loan offers are affected. FinTech competition promotes financial in-

clusion, may hurt consumers with a strong bank preference, and has an ambiguous

effect on the loan market. Both FinTech data sales and consumer data portability

increase bank lending, but the effects on consumer welfare are ambiguous. Under mild

conditions, consumer welfare is higher under data sales than with data portability.



1 Introduction

Historically, banks have offered a bundle of services, including payment processing and loans

to both businesses and individuals. Currently, in the United States, technology giants such as

Apple and more specialized companies such as Paypal and Venmo also compete in payments.

In China, mobile payments made through processors such as Alipay and WeChat Pay account

for over 16% of GDP (see Bank for International Settlements (2019)). In Kenya, M-Pesa is

used by about three-quarters of households (see Jack and Suri (2014)). FinTech competition

in payments has been supported by regulations such as the Payment Services Directive 2

in Europe (which requires banks to provide customers’ account information to third-party

payment providers in a standardized format) and the Open Banking initiative in the UK

and Canada.

The rise of competition for standalone payments uniquely disrupts the historical banking

model because payment flows are informative about credit risk. For example, Black (1975)

observes that the flows in an account allow a bank to better understand a customer’s credit

quality. An extensive empirical literature on consumer and business credit confirms this

intuition.1

In this paper, we construct a parsimonious model of a bank as a payment processor

and lender, and consider the effect of low-cost competition in payments. We focus on pay-

ments for two reasons. First, payment service is economically large and important. Second,

competition in payments is relatively new: prior to the rise of digital payments the only

1McKinsey (2019) states that “payments generate roughly 90 percent of banks’ useful customer data.”
The connection between transaction account flows and credit quality has been made by Puri, Rocholl, and
Steffen (2017) using German data on consumers, Mester, Nakamura, and Renault (2007) using Canadian data
on small businesses, and Hau, Huang, Shan, and Sheng (2019) using data on loans made by Ant Financial to
online vendors. Agarwal, Chomsisengphet, Liu, Song, and Souleles (2018) show that relationship customers
in the U.S. are less likely to default on credit card debt. Liberti, Sturgess, and Sutherland (2020) find that
lenders who join a commercial credit bureau early (and hence have access to the longer payment histories
of borrowers), gain market share relative to lenders who join late. Rajan, Seru, and Vig (2015) find that a
loss of in the loan-making process can lead to a consistent mis-estimation of default probabilities on the loan
portfolio.
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competition to bank-based payments was physical cash. By contrast, banks have always

faced competition in the loan market.2

In our model, the bank is a monopolist in lending, but competes with two identical

FinTech firms for payment processing. The bank and the FinTech firms have the same

payment technology. The FinTech firms engage in Bertrand competition and offer payment

services at a price normalized to zero. The bank strategically prices payment services to

maximize its total profit, and internalizes the benefit of access to payment data. Consumers

differ in their creditworthiness, which can be high or low. In addition, consumers have a

value for unmodeled bank services that we label “bank affinity.” Bank affinity serves to

generate horizontal differentiation between the bank and the FinTech firms. A negative

bank affinity means a cost to access banks. We allow the distribution of bank affinity to

depend on consumers’ creditworthiness.

Crucial to the model, payment processing is valuable to the provider—a payment proces-

sor can extract a signal about the credit quality of its customers from information about their

transactions. Thus, a bank that does not handle the payments of a loan applicant has less

precise information about their credit quality. As a result, payments have a spillover onto

the credit market. This spillover has different welfare implications for consumers, banks,

and regulators.

Consumers know their own credit type and, as is standard in a screening model, the

bank offers a menu of two contracts to each consumer and allows them to choose. The

contracts differ both in loan quantity and interest rate. The optimal screening menu has the

feature that the participation constraint of the less creditworthy consumer and the incentive

compatibility constraint of the more creditworthy consumer bind. Thus, the former obtains

2We call incumbents in the payment space “banks;” in practice, this includes large banks such as JP
Morgan and Citibank, as well as card networks such as Visa and Mastercard. We call the entrants into the
payment space “FinTech;” entrants comprise a diverse set of businesses from startups to small online banks
to “Big Tech” firms such as Alibaba, Tencent, Amazon, and Apple.
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zero surplus while the latter obtains an informational rent. The optimal menu also generates

a social inefficiency — the bank distorts the loan quantity that it offers to low creditworthy

consumers downward, whereas high creditworthy consumers are offered an efficient loan

quantity.

A consumer’s demand for bank payment services depends on their bank affinity, the price

of the bank’s payment service relative to non-bank options, and their expected utility from

a loan. A change in the price of payment services by the bank has the expected direct effect

on the bank’s profit. It also has an indirect effect, as it changes the bank’s set of payment

customers. This in turn changes the bank’s information and thus its optimal screening

contracts in the loan market, which then alters consumers’ expected loan market surplus

and hence feeds back into the demand for bank payments.

Although standard intuition about competition may lead one to expect that FinTech

competition leads to a fall in the bank’s price for payment services, we present conditions

under which the price instead increases. Facing FinTech entry, the bank’s choice is between

a higher profit margin on a narrower set of consumers versus a smaller profit margin on a

broader set of consumers. The bank may choose either response, depending on the bank

affinity distribution of consumers. The industrial organization literature has shown that

increased competition may lead to higher prices.3 Our model includes an addtional effect,

in the novel feedback loop between consumers’ demand for bank services and their expected

surplus in the loan market.

The consequences of FinTech competition for loan market surpluses are intricate. As

mentioned earlier, the bank’s optimal menu of contracts depends on the information it has

3Theoretically, Chen and Riordan (2008) show that when consumer valuations have a decreasing hazard
rate, the price of a good is higher under duopoly than monopoly. In a model with random consumer utilities,
Gabaix et al. (2016) show that firms’ markups increase in the number of firms if the distribution of consumer
valuations has “fat tails.” Empirically, Sun (2019) shows that in response to the entry of low-cost Vanguard
index funds, funds sold with broker recommendations (i.e., likely with captive customers) increased their
fees.
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about each loan applicant. In choosing a payment service, all else equal, a high credit type

consumer prefers mixing with a large number of low credit type consumers, which allows the

high credit type to capture a greater informational rent. Faced with such a pool, the bank

designs the contracts primarily to make a profit from low credit type consumers. In contrast,

a bank facing a high concentration of high credit type consumers will design the contract

to primarily extract surplus from such consumers. Because the bank affinities of high and

low credit consumers have flexible distributions, FinTech entry may leave the bank with a

consumer pool tilted toward either credit type. Therefore, the high credit consumers’ loan

surplus can go up or down with FinTech competition in payment. For a similar reason, high

credit consumers’ loan surplus is generally non-monotone in the quality of the bank’s signal

extracted from payment data.

Despite the subtle and nuanced changes in loan market surplus, the impact of FinTech

competition is unambiguous for some consumers. In particular, those who were previously

unbanked now use a FinTech firm to process payments, and benefit from financial inclusion.

In contrast, consumers with strong bank affinity stay with the bank, unswayed by FinTech

competition. Among such consumers, the welfare of low credit types depends purely on the

price of payment services, which changes on FinTech entry. Our results therefore point to

cross-sectional trade-offs across different consumer segments.

Our baseline model assumes that once payment data are diverted from the bank, they are

inaccessible in the credit market. In reality, payment data are frequently used as an input

for lending through FinTech-bank partnerships. For example, in 2012, a large bank in Kenya

and the operator of M-Pesa mobile money formed a partnership to launch M-Shwari, which

provides credit to borrowers, even if they have no banking or credit history. Bharadwaj,

Jack, and Suri (2019) find that such mobile money-enabled credit quickly gained market

share and increased household resilience. Using the Indian demonetization event, Ghosh,

Vallee, and Zeng (2021) find that firms adopting cashless payment receive better outcomes
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in the credit market, consistent with their model in which cashless payment is verifiable

information but cash payment is not.4 The synergy between data and lending is also evident

between Ant Group and its partner banks,5 between Atom Bank and Plaid, and between

TAB Bank and Mulesoft’s Anypoint Platform, among others. Such economic relationships

allow the FinTech company to transfer data to the lender.

Another possibility for data transfer is that consumers own their data and port them

when needed. Policymakers and practitioners have embraced this idea. For example, GDPR

(General Data Protection Regulation) in Europe suggests that consumers should have more

direct control of their data. In July 2021, the Biden administration in the U.S. issued an

executive order to, among other things, allow consumer portability of their data.6 Industry

initiatives such as the Financial Data Exchange seek to standardize bank payment data to

allow consumers to port their data.7

Motivated by these developments, we compare two methods by which payment data find

their way back to the lending market: FinTech firms selling data to the bank and consumers

owning their data and choosing whether to port their data to the bank. In both regimes,

the bank, as the sole lender, has access to the signal about a consumer’s credit quality

extracted from payments, even if the consumer uses a FinTech firm to process payments.

The difference is that in the case of FinTech data sales, competitive FinTech firms reimburse

the proceeds of data sales back to consumers in the form of subsidized payment services. In

contrast, when consumers port their own data, we show that a form of unraveling effectively

4The lender in their model is competitive and only makes loans, whereas the bank in our model strate-
gically prices payments and loans in two business lines.

5In the company’s prospectus ahead of its planned IPO in Hong Kong (which was later called off by
Chinese regulators), it says “[a]s of June 30, 2020, approximately 98% of credit balance originated through
our platform was underwritten by our partner financial institutions or securitized.” In September 2021, the
Chinese government proposed a plan to split up the payment and lending arms of Alipay, and to have data
be turned over to a joint venture that will be partly state-owned. See https://www.reuters.com/world/

china/china-break-up-ants-alipay-force-creation-separate-loans-app-ft-2021-09-12/.
6See, for example https://www.whitehouse.gov/briefing-room/statements-releases/2021/07/09/

fact-sheet-executive-order-on-promoting-competition-in-the-american-economy/
7https://financialdataexchange.org/

5
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forces everyone to share data with the bank for free. Put differently, while data porting is

in principle voluntary, the fact that others share data imposes a negative data externality on

those who do not. Thus, policies that aim to give consumers more direct, and potentially

stricter, control of their data may have the unintended, opposite effect. In anticipation of

such forced data sharing, the bank’s price for payment services worsens in the regime with

consumer data porting.

A third way for payment data to be used in lending is to have the FinTech firm lend

directly. We exclude this possibility from our paper, in part because oligopolistic competition

in screening contracts is significantly more complicated than monopolist screening. FinTech

lending (or non-bank lending more broadly) has been examined extensively in the literature.

For example, He, Huang, and Zhou (2021) provide a model of FinTech and bank competition

in lending with consumer data sharing. Their main result is that under some circumstances

open banking can make all consumers worse off, with the intuition again being partly based

on unraveling. In contrast, our focus is FinTech competition in the payment market, and

its effect for lending is primarily through the endogenous self-selection of consumers and the

screening by the bank. These two approaches are, thus, complementary.

In recent work, Vives and Ye (2021) consider the effect of technological advances on the

lending market in the presence of competing banks. In particular, technological improvement

can lead to reduced welfare if it mitigates the effect of distance on screening or monitoring

costs. Vives (2019) provides a detailed survey of digital disruption in banking, and Morse

(2015) reviews the P2P literature up to 2015.8

To summarize, our analysis highlights two fundamental tensions when FinTech competes

for payment flows. The first tension is between financial inclusion and disruption. For

8Recent empirical papers on P2P lending, crowdfunding, and online lenders include Iyer, Khwaja,
Luttmer, and Shue (2016), Hildebrand, Puri, and Rocholl (2017), Buchak, Matvos, Piskorski, and Seru
(2018), Fuster, Plosser, Schnabl, and Vickery (2018), Vallée and Zeng (2019), Tang (2019), and de Roure,
Pelizzon, and Thakor (2019), among others.
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unbanked or underbanked consumers, not only does FinTech competition provide access to

more convenient electronic payment systems, but the data generated in the payment process

become “hard information” that leads to increased credit provision to this population. In

contrast, enhanced competition and data sharing could harm consumers who are well off

in the current system. If, for example, banks respond to FinTech competition by raising

their price for payment services, those who stay with the bank may be worse off. Likewise,

high credit consumers may receive a lower surplus in the loan market if data sharing leads

to more accurate price discrimination by banks. The trade-off between these two effects is

likely country-specific. It is perhaps unsurprising that FinTech payment competition tends

to be viewed as “inclusive” in developing economies and “disruptive” in developed ones.

The second tension is between a bank regulator (such as the Federal Reserve Board) and

a competition regulator (such as the Federal Trade Commission). The bank regulator cares

about the stability of banks, and one way to achieve its goal is to keep banks profitable. The

competition regulator cares about consumer welfare. The conflict here is unavoidable. In our

model, the bank receives all surplus from lending to low credit consumers, and under some

conditions, data generated in the payment process harms high credit consumers. Consumer

data ownership is supposed to give consumers an upper hand, but we show that this policy

may backfire. How to establish consumer sovereignty over their own data while preventing

a data externality and unraveling is, to the best of our knowledge, an open problem.

2 Model

Consider an economy with two financial services: electronic payment services and consumer

loans.9 There is one strategic bank that offers both loans and payment services, while two

9One can also interpret the model as the bank offering a different non-payment (but credit-informative)
service such as investment management along with loans.

7



identical and competitive FinTech firms are stand-alone payment processors.10 All are risk-

neutral. For simplicity, the risk-free interest rate is normalized to be zero.

There is a unit mass of risk-neutral consumers, who may be thought of as small firms

or as households. With probability ψ, each consumer is hit with a liquidity shock and

requires a loan. A consumer has either a high or low repayment probability on the loan.

This probability is denoted as θj with j ∈ {h, `}, and we refer to it as the credit type of the

consumer. A mass mh of consumers have repayment probability θh, while a mass m` = 1−mh

have repayment probability θ` < θh. We emphasize that the credit types θ and masses m

are conditional on all available information other than payment data.11

Each consumer receives utility v > 0 from access to an electronic payment service. We

assume that the quality of the payment service provided by the bank and the FinTech firms

is the same.

Each consumer i with credit type θj also enjoys incremental utility bi from using the

bank’s payment service. This idiosyncratic utility generates horizontal differentiation, and

we call it bank affinity. The bank affinity bi has a probability distribution conditional on

credit type θ, denoted by F (· | θ) with density f(· | θ). Conditional on credit type θ, bank

affinity is i.i.d. and has support over the entire real line. A negative bank affinity implies a

cost to using the bank’s payment services.

A consumer who uses neither the bank nor a FinTech firm for electronic payment services

conducts all transactions in cash, in which case she receives a normalized utility of zero from

payment processing. In summary, consumer i’s utility from payments routed through a bank,

10The large literature on relationship banking suggests that banks are able to exercise some market power
in lending to long-term consumers (see, e.g., Petersen and Rajan (1995)). On the deposit side, Drechsler,
Savov, and Schnabl (2017) show that bank behavior following changes in the Federal funds rate is consistent
with banks having market power in deposits. More broadly, competition can be represented on a continuum,
with the idea that FinTech firms are more competitive than banks. For modeling simplicity, we consider the
bank to be a monopolist and FinTech firms to be perfectly competitive.

11For households and individuals, other observable information includes (but is not limited to) income,
wealth, and credit score. For businesses, other observable information includes revenues and profits.
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a FinTech firm, or from using cash are, respectively, v + bi, v and 0.

The sequence of events is depicted in Figure 1.

t = 1 t = 2 t = 3

Bank and Fin-
Tech firms each
choose a price
for payment ser-
vices

Consumer i pri-
vately observes
own credit type
θ and bank
affinity bi and
chooses a pay-
ment processor
or remains a
cash user

Consumer needs
a loan with
probability ψ

(1) Bank of-
fers a menu of
loan contracts
{(qj, rj)}j=h,`.
(2) Consumer
chooses at most
one contract
from the menu

Consumer
repays or
defaults

Figure 1: Timing of Events

At date t = 1, consumer j privately observes her bank affinity bj and her own credit type

θj. She then chooses a payment processor or remains a cash user. The FinTech firms, acting

as Bertrand competitors, charge zero for payment processing (a normalization), whereas the

bank chooses a price p. In practice, the price p consists of account fees and below-market

deposit interest rate, among others. The timing reflects the fact that payments are ongoing

and choosing a payment processor is typically a long-term decision.

At t = 2, with probability ψ > 0 each consumer receives a liquidity shock and applies

for a loan at the bank. The bank engages in monopolistic screening, and offers a menu of

contracts, {(qj, rj)}j=h,`, with the contract (qh, rh) targeted to the high credit type and the

contract (q`, r`) targeted to the low credit type. The consumer chooses at most one item

from the menu.

At date t = 3, if the consumer receives a loan, she either repays the loan fully by paying

q(1 + r) to the bank, or defaults. For simplicity, in the latter case, we assume that the bank

recovers nothing from the consumer.
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Key variables of the model, including those introduced here and in subsequent sections,

are tabulated in Appendix A for ease of reference. All proofs are in Appendix B.

3 Loan Market

We begin by analyzing the loan market at time 2. Payoffs from this market will affect both

banks and customers in the payments processing market. Suppose a consumer of credit type

θ accepts a loan contract (q, r). Their utility from the loan is:

w(q, r | θ) = θ{Aq − q(1 + r)} − λ

2
(1− θ)q2, (1)

where A > 1 and λ > 0. Here, Aq is the utility earned from the project the funds are used

for. We assume that this utility is earned only if the consumer repays the loan. The amount

repaid is q(1+r). If the consumer defaults, which happens with probability 1−θ, they incur

a reputation penalty captured by the term λ
2
q2. This term ensures that defaulting is costly,

and is more costly for low credit type consumers.12

The profit of the bank from a loan (q, r) to a consumer with credit type θ is

π(q, r | θ) = θq(1 + r)− q − γ

2
q2. (2)

The first term on the right-hand side is the expected repayment. The second term represents

the opportunity cost of the loan. The last term represents a capital charge against the loan.

Here, γ > 0, so the capital charge is convex in the size of the loan and independent of the

type of the borrower.

The first-best outcome maximizes the total surplus between the bank and the consumer,

12Technically, the quadratic default penalty ensures that the single-crossing property is satisfied. The

slope of an indifference curve of credit type θj is −∂w/∂q∂w/∂r = 1
q{A − r − ( 1

θj
− 1)λq}. As θj increases, − 1

θj

increases, so if λ > 0 the single-crossing property is satisfied.
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that is, the sum of equations (1) and (2). The total surplus for a given θ is

(θA− 1)q −
(λ

2
(1− θ) +

γ

2

)
q2.

The first-order condition is (θA− 1)− {γ + λ(1− θ)}q = 0, and it is immediate to see that

the second-order condition is satisfied.

Hence, the first-best quantity for credit type θj is

qfj =
θjA− 1

γ + λ(1− θj)
. (3)

An increase in θj increases the loan quantity qf . That is, in the first-best outcome, higher

credit types receive larger loans.

The bank in the model has noisy information about a loan applicant, and acts as a

monopolistic screener. We solve for its optimal loan contract offers using standard mechanism

design techniques. Appealing to the revelation principle, in order to screen consumers, the

bank offers two possible contracts, one targeted to each credit type. Crucial to its choice of

menu is its belief about the credit type of the consumer when she applies for a loan at the

bank.

The bank’s prior at the start of the game is that a consumer has high credit type with

probability mh. This prior probability is updated in two ways. First, as we show in Section

4 below, the relative mix of high and low credit types who either use the bank for payment

services or use an alternate payment processing method can differ from the masses mh and

m`. Therefore, knowing whether a consumer is a bank payment customer or not allows the

bank to update its beliefs. Second, as elaborated below, for its own payment customers,

the bank can extract an additional signal about credit type. Given its information about

a particular customer, let µh denote the posterior probability the bank places on a loan

applicant being the high credit type, with µ` = 1 − µh the probability the applicant is the

11



low credit type.

The optimal menu of loan contracts maximizes the bank’s expected profit subject to

incentive compatibility and individual rationality constraints on the consumer. The bank’s

problem is:

maxqh,rh,q`,r`
∑

j=h,` µj[θjqj(1 + rj)− qj − γ
2
q2
j ] (4)

subject to : (ICh) wh(qh, rh) ≥ wh(q`, r`), (5)

(IC`) w`(q`, r`) ≥ w`(qh, rh), (6)

(IRh) wh(qh, rh) ≥ 0, (7)

(IR`) w`(q`, r`) ≥ 0. (8)

Here, inequalities (5) and (6) are the incentive compatibility conditions for types θh and θ`,

and inequalities (7) and (8) are the individual rationality constraints. We assume that the

reservation utility of each credit type is zero.

We first show that the loan contracts the bank offers depend on its posterior beliefs only

through the likelihood ratio that the consumer is a high versus a low credit type. Let κ = µh
µ`

denote this likelihood ratio when the consumer applies for a loan.

Proposition 1. A bank with a posterior likelihood ratio κ optimally offers two loan contracts,

(qj, rj) for j = h, `, with

(i) q` = θ`A−1

γ+λ(1−θ`)+λκ
(
θh
θ`
−1

) < qf` , and r` is chosen to satisfy w`(q`, r`) = 0.

(ii) qh = qfh = θhA−1
γ+λ(1−θh)

, and rh is chosen to satisfy wh(qh, rh) = wh(q`, r`) > 0.

Consumers with credit type θh accept the contract (qh, rh), and consumers with credit type θ`

accept the contract (q`, r`).

The optimal menu therefore induces complete separation, with the high and low credit

types accepting different loan contracts. The quantity offered to the low credit type is
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distorted downward from the first-best quantity. The low credit type receives zero surplus in

the loan market, and the binding IR constraint determines their interest rate. In contrast,

the high credit type receives the first best quantity, qfh , and earns a positive surplus.

As is clear from Proposition 1 part (i), the degree to which the quantity for the low credit

type is distorted downwards depends on the bank’s beliefs about the customer, as captured

by the likelihood ratio the customer is the high versus the low credit type. The higher the

chance a customer is the high credit type, the more profitable it is to ensure that their IC

constraint binds, and so the bigger the distortion in the quantity offered to the low types.

We now describe how the bank updates its beliefs over credit types of loan applicants.

The initial likelihood ratio of an applicant being the high versus the low credit type is mh
m`

.

After observing whether the applicant is a bank payment customer or not, the likelihood

ratio is updated to an intermediate ratio ρ, which differs across bank payment customers and

non-customers. In addition, in the base model, on its own payment customers the bank can

access and extract information from the payment data about the applicant, which allows it

to update the intermediate likelihood ratio ρ on its own customers.13

The payment data of a consumer yield the bank a signal s ∈ {s`, sh} of the consumer’s

credit type. For some α ≥ 1,

P (s = sh | θh) = P (s = s` | θ`) =
α

1 + α
, P (s = sh | θ`) = P (s = s` | θh) =

1

1 + α
. (9)

Thus, after observing the payment signal, the bank updates the intermediate likelihood ratio

ρ to ρα if the signal is sh, and to ρ
α

if the signal is s`.

Here α captures the bank’s ability to extract useful information from the payment signal.

If α = 1, the additional signal from payments is pure noise, and as α → ∞, the signal

13The fact that payment data reside with the consumer’s bank further justifies the assumption that the
bank has market power in lending. If a consumer uses Bank 1 for payments, Bank 2 does not have access to
this information unless there is data portability by the consumer.
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perfectly reveals the credit type.

We say that a bank is “informed” (denoted by superscript I) if it has access to the con-

sumer’s payment history, and “uninformed” otherwise (denoted by superscript U). Propo-

sition 2 shows the consumer surplus and bank profit from each credit type depending on

the bank’s information status. From Proposition 1, there is a complete separation, with low

credit types accepting the contract (q`, r`) and high credit types accepting (qh, rh). Further,

the loan quantity q and interest rate r depends on the bank’s posterior likelihood ratio κ. In

turn, κ depends on the intermediate likelihood ratio ρ (after the bank has observed whether

the applicant is a payment customer, but before it has obtained the payment signal), the

signal obtained from payments s, and the precision of the payment signal, α. For notational

convenience, in Proposition 2, we write κ as a function of the signal s.

Proposition 2. Let ρ be the intermediate likelihood ratio of the bank, before it observes the

signal from the loan applicant’s payment data, and κ(s) the posterior likelihood ratio after

observing payment signal s. Then:

(i) Among bank payment customers,

(a) Low credit type consumers receive zero surplus from the loan market, that is, wI` =

0. The bank’s expected profit from such a consumer is

πI` = Es

[
Aq`(κ(s))− q`(κ(s))(1 + r`(κ(s)))− λ(1− θ`) + γ

2
(q`(κ(s)))2 | θ`

]
. (10)

(b) High credit type consumers receive an expected surplus

wIh =
(θh
θ`
− 1
)λ

2
Es[(q`(κ(s)))2 | θh]. (11)
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The bank’s expected profit from such a consumer is

πIh = Aqfh − q
f
h(1 + Es[rh(κ(s)) | θh])−

λ(1− θ`) + γ

2
(qfh)2 − wIh. (12)

(ii) Among consumers who adopt another payment option,

(a) Low credit type consumers receive zero surplus from the loan market, that is, wU` =

0. The bank’s expected profit from such a consumer is

πU` = Aq`(ρ)− q`(ρ)(1 + r`(ρ))− λ(1− θ`) + γ

2
(q`(ρ))2. (13)

(b) High credit types receive an expected surplus

wUh =
(θh
θ`
− 1
)λ

2
(q`(ρ))2. (14)

The bank’s expected profit from such a consumer is

πUh = Aqfh − q
f
h(1 + rh(ρ))− λ(1− θh) + γ

2
(qfh)2 − wUh . (15)

Notice that in part (a), an expectation is taken over signals given the credit type. When

the credit type is θh, the posterior likelihood ratio κ is equal to ρα with probability α
1+α

and

ρ
α

with probability 1
1+α

, with the probabilities being reversed when the credit type is θ`.

The payoffs to the low and high credit type consumers follow immediately from the

optimal contracts presented in Proposition 1. The bank’s profit for each type of consumer can

then be determined as the total surplus generated by the loan minus the surplus obtained by

the consumer. As the low credit type consumer is held down to their reservation constraint,

the bank retains all the surplus from the loan. In the case of the high credit type consumer,

the bank obtains the surplus from the loan less the high credit type’s information rent.
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Observe that the high credit type’s information rent, wIh or wUh as the case may be,

is strictly decreasing in ρ, the intermediate likelihood ratio. That is, all else equal, when

applying for a loan the high credit type prefers to be in a pool with a large number of low

credit types, than in a pool with mostly high credit types. If a consumer were revealed to

be the high credit type for sure, the monopolist bank lender would capture all the surplus

from the loan contract, holding the consumer down to their reservation utility.

An immediate corollary to Proposition 2 is that on a given loan applicant, the bank earns

a higher profit if it is informed, i.e., has access to the payment data.

Corollary 2.1. For all α > 1, when a consumer applies for a loan, the bank’s profit from

the loan is strictly higher if the bank is informed compared to when it is uninformed.

4 Payment Market

Each payment service provider chooses a profit-maximizing price for its services. For sim-

plicity, we normalize the cost of providing payment services to zero for both the bank and

the FinTech firms. In the context of our model, the price charged by the bank for payment

services, p, is the total economic cost of maintaining a payment account at the bank. This

includes account fees and the below-market interest rate paid on deposits.

If a consumer of credit type θj and bank affinity b chooses the bank to process payments,

their overall utility is

W b
j = v − p+ b+ ψwIj , (16)

where v > 0 is the utility from using electronic payment services (as opposed to using cash),

and wIj is the utility from a loan offered by the bank. All consumers face the same price p

at time 1 because at time 1 the bank does not have any information on the credit type of
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the consumer.

The bank affinity variable b admits different interpretations, and the distribution can

vary both across countries and across groups in the same country.14 We use the affinity

distribution to capture any reason a consumer may prefer a bank or an alternate payment

method, including intrinsic preference or a cost of using either service. Thus, the bank

affinity distribution not only depends on the credit type, but should also be viewed as

country-specific.

For example, consumers who value unmodeled bank services such as wealth management

(say, older and wealthier consumers) have a positive and high b. Conversely, those who

have a high cost to accessing a bank (say, consumers in rural India or Kenya15 who live far

from the nearest bank branch), have a large negative b. The variable b may also reflect a

relative preference between the bank and a FinTech firm, so it may be negative if the FinTech

mobile app is slicker and easier to use. Conversely, if a consumer worries about fraud or

data breaches with mobile payments, she would assign a high cost for using FinTech firms,

and would have a positive b.

The support of Fj, the distribution of b given credit type θj, is unbounded to ensure that

the bank’s optimal price for payment services remains finite. We assume that the demand

goes to zero sufficiently rapidly as the price goes to infinity.

Assumption 1. As the price of payment services becomes large, the bank’s revenue from

payment services goes to zero. Specifically, limp→∞ p(1− Fj(p)) = 0 for each j = h, `.

We consider both a benchmark case in which only the bank provides payment services

(with cash being the alternative) and a base case in which FinTech firms compete with the

14For example, Demirgüç-Kunt et al. (2018) report gender gaps among those who have bank accounts
of 7% in high income countries and 9% in low income countries, and mention that “Globally, about 1.7
billion adults remain unbanked — without an account at a financial institution or through a mobile money
provider.”

15For example, on Kenya, Jack and Suri (2014) write: “In a country with 850 bank branches in total,
roughly 28,000 M-PESA agents (as of April 2011) dramatically expanded access to a very basic financial
service—the ability to send and receive remittances or transfers.”
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bank in payment services. Intuitively, in each case high affinity consumers use the bank

and low affinity consumers use the alternative service. We further show that when FinTech

services are available, no consumer continues to use cash. The FinTech firms compete with

each other in Bertrand fashion, and charge a price of zero for payment services.

Recall that wIj (wUj ) is the surplus credit type θj obtains from a loan when the bank is

informed (uninformed).

Lemma 1. For each credit type θj, where j = h, `, the threshold consumer indifferent between

using the bank and an alternative payment service is given by:

(i) bmj (p) = p− v−ψ(wIj −wUj ) when the bank is a monopoly provider of payment services.

(ii) bcj(p) = p− ψ(wIj − wUj ) when FinTech firms also provide payment services.

Consumers with bank affinity greater than the threshold use the bank for payment services,

and those with affinity lower than the threshold use cash in case (i) and a FinTech firm in

case (ii).

Given the type-dependent bank affinity distributions, the bank faces a downward-sloping

demand curve for its payment services. Let z represent the incremental utility from bank

payment services over the next best alternative (where z = v if only the bank provides

payment services and z = 0 after FinTech entry). Then, we can write the demand for the

bank’s payment services from consumers with credit type θj as 1 − Fj(p − z − ψ∆w
j (p, z)),

where ∆w
j (p, z) = wIj − wUj is the incremental surplus from a loan if the consumer uses the

bank rather than alternative payment service. That is, rational consumers incorporate the

value of a potential banking relationship when they make their choice. From Proposition

2, wI` = wU` = 0, so it follows that ∆w
` = 0. However, the demand from high credit type

consumers for payment services depends on the endogenous incremental surplus from a loan

when the bank is informed (i.e., on ∆w
h ). Economically, this means that even if the two
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affinity distributions are the same, so that Fh = F`, the induced distributions of who chooses

the bank for payment services differ between high and low types.

From a technical point of view, this feature implies that equilibrium entails a fixed point

in consumer demand, as ∆w
h in turn depends on the mass of each credit type that use the

bank for payment services. To see this, observe that the intermediate likelihood ratio for a

bank payment customer who applies for a loan is ρB = mh
m`
× 1−Fh(p−z−ψ∆w

h (p,z))

1−F`(p−z)
, recognizing

that ∆w
` = 0. Similarly, the intermediate likelihood ratio for a non-customer of the bank

is ρN = mh
m`
× Fh(p−z−ψ∆w

h (p,z))

F`(p−z)
. Thus, the intermediate likelihood ratio ρ for each type of

consumer depends on ∆w
h = wIh − wUh , and in turn (as shown in Proposition 2), each of wIh

and wUh depend on ρ.

Given a price for bank payment services p and an incremental value of bank payment

services over the next best alternative z ∈ {v, 0}, define a mapping φ from potential values

of ∆w
h to realized values of ∆w

h as follows. Let x denote a real-valued number that is a

potential value of ∆w
h . Given ∆w

h = x, determine the intermediate likelihood ratios for

bank customers (ρB(x)) and non-customers (ρN(x)). From these likelihood ratios, in turn

determine the expected loan surplus earned by the high credit type who uses the bank for

payment services. This surplus is determined using equation (11) as

wIh(ρ
B(x), α) =

(θh
θ`
− 1
) λ

2

( α

1 + α
q`(ρ

B(x)α)2 +
1

1 + α
q`(ρ

B(x)/α)2
)
, (17)

after taking into account the probabilities of generating signals sh and s`. Similarly, the loan

surplus earned by the high credit type who uses the alternative payment technology is given

by equation (14), and may be written as

wUh (ρN(x)) =
(θh
θ`
− 1
) λ

2
(q`(ρ

N(x)))2 (18)

Denote φ(x) = wIh(ρ
B(x), α) − wUh (ρN , α). Then, a fixed point of φ(x) represents a value
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of ∆w
h that is internally consistent; given that value of ∆w

h , the demand for bank payment

services across the two credit types is such that indeed the incremental loan surplus from

using the bank for payment services works out to ∆w
h . We first show that the mapping φ(·)

has a unique fixed point, which establishes that the bank’s demand function for payment

services is well-defined.

Lemma 2. For each price p for bank payment services and each z ∈ {v, 0}, the mapping

x 7→ φ(·) has a unique fixed point.

Given that the cost of providing payment services is zero, the bank’s total profit, including

its revenue from payment services and its profit from loans, is

Π =
∑
j=h,`

mj

[
(1− Fj(pm − v − ψ∆w

j ))(pm + ψπIj ) + Fj(p
m − v − ψ∆w

j )ψπUj

]
. (19)

In what follows, we assume the second-order condition for profit maxmization holds and

the optimal price is unique. We verify this condition in our numerical examples.

While standard intuition is that competition lowers prices, we provide sufficient conditions

for the price of bank payment services to either increase or decrease in the face of FinTech

competition, compared to when the bank is the only payment service provider. In particular,

we consider the special case that the bank affinity distribution is the same for both credit

types. Note that even in this case, different proportions of high and low credit type use the

bank for payment services, and the choice of payment provider is informative about credit

type. That is, the endogenous threshold consumer of each credit type indifferent between

using the bank and not, bmj (p) or bcj(p) as the case may be, differs across the two credit types

θh and θ`. This point can be observed by noting that ∆w
` = 0 and that in general ∆w

h 6= 0 in

the expression for the threshold consumer in Lemma 1.

Proposition 3. Suppose the bank affinity distribution Fj is the same for each j = h, `, so

that Fh(b) = F`(b) = F (b) for all b. Then, there exists a ψ̄ > 0 such that, for each ψ < ψ̄,
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comparing the case in which FinTech firms compete with the bank in payment services to the

case in which the bank is a monopolist payment processor,

(i) The bank’s price for payment services decreases if the bank affinity distribution F has

an increasing hazard rate throughout.

(ii) The bank’s price for payment services increases if the bank affinity distribution F has

a decreasing hazard rate throughout.

In the industrial organization literature, Chen and Riordan (2008) characterize conditions

under which the price of a good can be higher under duopoly than under monopoly. The

trade-off is essentially between increasing market share (which induces a lower price) and

operating at an inelastic segment of the demand curve (which could induce a higher price).

In our framework, the demand the bank faces is determined by both the price of its payments

services but also the consumers’ equilibrium perception of the surplus from a loan.

The technical condition of an increasing or decreasing hazard rate has its roots in the

standard pricing problem of a monopolist. To illustrate the intuition, suppose ψ = 0, and

consider the simplified problem of a monopolist bank maximizing its profit in the payment

market alone when Fh = F` = F . The demand for payment services is 1− F (p− z), where

z = v when the bank is a monopolist. The bank’s profit is (1− F (p− z))p. The first-order

condition for the optimal price is 1− F (p− z)− f(p− z)p = 0, so that

H(p− z)p = 1, (20)

where H(p − z) = f(p−z)
1−F (p−z) is the hazard rate of the bank affinity distribution. Assuming

the second-order condition is satisfied, let pm be the optimal price of a monopolist.

Competition by FinTech firms moves z from v to 0. If the hazard rate H(·) is decreasing,

we have H(p) < H(p − v) for all p. Thus, H(pm)pm < 1, and the optimal price must set
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pc > pm. The logic is reversed if H(·) is decreasing. If the hazard rate is constant, then

pc = pm.

In Proposition 3, we assume there is a low probability that a consumer needs a loan. We

show through a numerical example that even when (i) the affinity distributions are different

for the high and low credit types and (ii) the probability a consumer needs a loan (ψ) is high

(set to 1 in our example), the bank’s price for payment services can increase with competition.

We fix the bank affinity distribution for the low credit type consumer to be the exponential

distribution, and for the high credit type consumer to be a Weibull distribution.16 We vary

the first parameter of the Weibull distribution k between 0.5 and 1.5, and set the second

parameter λ to be 1. When k < 1, the distribution has a decreasing hazard rate, and when

k > 1 it has an increasing hazard rate. Figure 2 shows the prices both when the bank is a

monopolist in payment services and when it competes with the FinTech firms. As can be

seen from the figure, when the hazard rate for the high credit type is decreasing, the price

under FinTech competition is greater than the monopoly price, with the converse being true

with an increasing hazard rate.

4.1 Welfare Effects of FinTech Competition

FinTech competition in payments affects both consumer welfare and the overall surplus in our

model through three channels: (i) the presence of FinTech pulls cash users into the payment

system (financial inclusion), (ii) the change in the bank’s price for payment services directly

affects the welfare of consumers with high bank affinity (who remain with the bank), and

(iii) there is an indirect effect on welfare through the loan market, as the bank’s beliefs about

both payment customers and non-customers changes with FinTech entry, which affects the

menu of loan contracts the bank offers.

16The Weibull distribution, which includes the exponential distribution as a special case, satisfies the
assumption that limp→∞ p(1− F (p)) = 0 made in Proposition 3. The distribution function for the Weibull

distribution is F (x | k, λ) = 1− e−(x/λ)k , where k and λ are parameters of the distribution.
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Figure 2: FinTech Competition can lead to higher or lower prices for the bank’s
payment services.
Here, A = 2, θh = 0.99, θ` = 0.95, λ = 0.4, γ = 0.2, ψ = 1, α = 2,mh = m` = 0.5. The
bank affinity distribution for type ` is exponential. The bank affinity distribution for type
h is Weibull, with first parameter k varying from 0.5 to 1.5, and the second parameter set
to λ = 1. The solid line p∗m shows the optimal price for bank payment services when the
bank is a monopolist, and the dashed line p∗c is the corresponding price when FinTech firms
compete with the bank.

The first effect is positive—the welfare of low bank affinity consumers improves after

FinTech entry due to access to electronic payments. From Proposition 3 and Figure 2,

the second effect may be positive or negative. In particular, the bank’s price for payment

services can increase after FinTech entry, which hurts high bank affinity consumers, who are

bank payment customers even after FinTech entry. The third effect, the welfare in the loan

market, also may increase or decrease with FinTech competition.

The interaction of these three effects implies that the total impact of FinTech competition

is generally nuanced and ambiguous. Nonetheless, there are a few clear predictions from the

model, as summarized in the following proposition.
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Proposition 4. Comparing the cases of FinTech competition in payments to the bank being

a monopolist in payments,

(i) The profit of the bank is strictly lower.

(ii) The total surplus from loans to high credit type consumers is unchanged.

(iii) Among low credit type consumers,

(a) Those with low bank affinity b < min{bc(p∗c), bm(p∗m)} strictly benefit from financial

inclusion.

(b) Those with high bank affinity b > max{bc(p∗c), bm(p∗m)} benefit if p∗c < p∗m, and are

hurt if p∗c > p∗m.

Part (i) of Proposition 4 predicts an unambiguous reduction in total bank profit following

FinTech competition. This is unsurprising but also nontrivial because FinTech competition

generally has an ambiguous impact on the bank’s price for payment services and on loan

market outcomes. For parts (ii) and (iii), recall that loans to high credit type consumers

always have the first-best quantity, so the total surplus of such loans between the borrower

and the lender is not affected by FinTech competition. In comparison, low credit type

consumers always get zero surplus from the loan market, so the utility of those who stay

with the bank depends only on the price of payment services.

The total surplus from loans to low credit types and the consumer surplus accruing to

high credit types are generally ambiguous. To illustrate, we consider a numerical example.

The details of the example are presented in Appendix C. In the example, we use different

distributions for bank affinity for the high and low credit types, and show how the relative

shape of these distributions affects the welfare implications of FinTech entry. The main

conclusions that emerge from the example may be summarized as follows.
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Observation 1. (i) The expected loan surplus obtained by high credit type consumers may

increase or decrease after FinTech entry.

(ii) The total surplus from loans to low credit consumers may increase or decrease after

FinTech entry.

Broadly, if FinTech competition leads to a sufficiently greater proportion of high credit

types using the bank for payment services, high credit types who remain bank customers

obtain worse loan terms. Conversely, if FinTech competition results in proportionately more

low credit types using the bank’s payment services, high credit types who remain bank

customers obtain better loan terms. The effects on bank non-customers similarly depend on

how FinTech competition affects the mix of high and low credit types who stay away from

the bank in the payment market. As before, the overall surplus from a loan to low credit

types is inversely related to the loan surplus obtained by the high credit type.

Next, consider the comparative statics in α, the precision of the signal extracted from

payment data. As α → ∞, in the limit the type of the consumer is fully revealed. At

this point, the high credit type obtains zero surplus from a loan, and the total surplus from

a loan to the low credit type is equal to the first-best surplus. More generally, for many

parameter values, when the bank is informed the expected loan surplus of the high credit

type is decreasing in α. The intuition is that when the bank knows that a given consumer

is more likely to be the high type, it can extract greater surplus from the consumer.

However, there are also cases in which the high credit type’s loan surplus increases in α.

Suppose that the ex ante probability of high credit borrowers is very high, and consequently,

they receive a very small loan market surplus to start with. Then, the high signal from

payment data has little effect on the menu of contracts offered, and hence little effect on the

loan surplus to the high credit type. Conversely, the low payment signal can have a relatively

large (and positive) effect on this surplus. Although the likelihood of the low signal decreases
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in α, the overall effect may still be that the loan surplus to the high credit type increases in

α. Figure 3 provides such an example.

Figure 3: Expected Loan Surplus of High Credit Type
This figure plots the expected loan surplus captured by credit type θh for different parameter
values and payment market structures. Here, A = 2, θh = 0.99, θ` = 0.8, λ = 0.4, γ =
0.2, ψ = 1, α = 2,mh = 5,m` = 0.5. The bank affinity distribution for credit type θ`
is exponential, and for credit type type θh is Weibull with first parameter k = 2 (so the
hazard rate is increasing). For each set of parameters, we find the optimal price for bank
payment services. The blue lines indicate the bank is a monopolist in payment services, and
the red lines that the bank faces FinTech competition. The solid lines indicate the bank is
uninformed about the consumer, and the dashed lines that the bank is informed.

In summary, when FinTech competes with banks for core banking services it can affect

consumer welfare through three possible channels. First, FinTech competition can increase

financial inclusion. Consumers who find it costly to form a relationship with a bank are given

access to electronic payments. Second, banks will reprice their core banking services. As we
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have shown it is possible for payment prices to increase or decrease as a result of changes

in the mix of customers. Finally, FinTech competition affects the flow of information in the

economy. Consumers may choose to move their payments away from the bank because of

the cheaper payment alternative, which affects information in the loan market.

5 Using Non-Bank Payment Data for Bank Lending

We now consider one market-based and one regulatory outcome under which information

obtained from payments processed by FinTech firms may flow back to the bank and be used

in lending.

5.1 FinTechs Sell Data to Bank

Suppose that there is a private data market in which the stand-alone FinTech firms sell

customer data to the loan provider (the bank). Various institutional arrangements are con-

sistent with an active data market. In particular, our data sales regime is consistent with

the widespread practice of banks and FinTech firms forming partnerships in which banks

provide capital and FinTech firms provide the user interface and data analytics.

To simplify the actual institutional arrangement in the data sales market, we assume

that the bank and each FinTech firm agree in advance on a fixed price for the data of each

consumer. In terms of the timeline in Figure 1, the first stage at t = 1 is a negotiation

between the bank and the FinTech firms over the price of data per consumer. The new

timeline is shown in Figure 4.

It is immediate that, all else equal, access to payment data makes the bank strictly better

off whenever α > 1. Therefore, there exists a price y > 0 for data transferred by a FinTech

firm to the bank such that both the FinTech firms and the bank are willing to participate in

the data sales market. We do not model the exact negotiation details between the bank and
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t = 1 t = 2 t = 3

(1) Bank and
FinTech firms
negotiate a price
y for consumer
data
(2) Bank and
FinTech firms
each choose a
price for pay-
ment services

Consumer i pri-
vately observes
own credit type
θ and bank
affinity bi, and
chooses a pay-
ment processor
or remains a
cash user

Consumer needs
a loan with
probability ψ

(1) Bank of-
fers a menu of
loan contracts
{(qj, rj)}j=h,`.
(2) Consumer
chooses at most
one contract
from the menu

Consumer
repays or
defaults

Figure 4: Timing of Events with FinTech Data Sales

a FinTech firm. Instead, we take the price for data y as given, and analyze the implications

of the bank having access to payment data from FinTech consumers.

From the FinTech point of view, each payment customer generates data that it can sell

with probability ψ. Given Bertrand competition, this extra revenue will induce the FinTech

firms to cross-subsidize their payments. Thus, the FinTech payment price becomes −ψy per

consumer. In other words, the FinTech customers receive “freemium” products which they

value that also generate data.

The equilibrium with data sales can be solved in a similar fashion as before. Let bsj denote

the bank affinity value of a consumer with credit type θj who is indifferent between choosing

the bank and a FinTech firm for payment services, where the superscript s means data sales.

Whichever payment service the consumer chooses, the bank is informed about their payment

history at the time they seek a loan. Recall from Proposition 2 that the expected consumer

surplus earned by a high credit type from a loan, wIh, depends on both the likelihood ratio

of a high-versus-low credit type before the payment signal is obtained, ρ, and the precision

of the signal from payments, α. Let ρFT denote the likelihood ratio for a FinTech consumer,
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and ρB the corresponding ratio for a bank consumer, before the signal from payments is

extracted. Then, bsj satisfies

v − p+ bsj + wIj (ρ
B, α) = v + ψy + wIj (ρ

FT , α) (21)

bsj(p) = p+ ψy + (wIj (ρ
FT , α)− wIj (ρB, α)). (22)

A consumer with bank affinity b > bsj (b < bsj) chooses the bank (a FinTech firm) for payment

processing.

The bank is now informed about all loan applicants. Given the price of buying consumer

data from a FinTech firm, y, the bank chooses its payment services price p to maximize

Πs =
∑
j

mj

[
(1− Fj(bsj(p)))(p+ ψπIj (ρ

B, α)) + Fj(b
s
j(p))(ψπ

I
j (ρ

FT , α)− y)
]
. (23)

We show that in the special case that the bank affinity distribution is the same for both

credit types, the relative mass of high versus low credit types that uses each payment service

(bank or FinTech ) is the same. The further implication is that there is no difference in the

contract menu offered to bank and FinTech payment customers.

Proposition 5. Suppose the bank affinity distribution is the same across the two credit type

θh and θ`, that is, Fh(b) = F`(b) for all b. Then, for every consumer data price y and bank

price for payment services p:

(i) bsh(p) = bs`(p), so that the demand for bank services, 1 − Fj(bj(p)), is the same across

the two credit types.

(ii) ρB = ρFT = mh
m`

. That is, whether a consumer is a bank or FinTech payment customer

does not convey any information about their credit type.

The arguments in Proposition 3 can be extended to the data sales case to show that

the price for the bank’s payment services may increase or decrease when data sales occur,
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compared to the price in the base model with FinTech competition but without data sales.

As a result, the welfare effects of data sales are nuanced. The presence of a data market

introduces changes to the welfare of both low and high bank affinity consumers.

Low bank affinity consumers benefit from the payment subsidy provided by the FinTech

firm, −ψy. The size of this subsidy depends on the price y negotiated between the bank

and the FinTech firms.17 The latter outcome is qualitatively similar to a data tax, which

the government could collect from the data sales transaction and reimburse to FinTech

consumers.

The loan offers received by consumers are different when the bank obtains the payment

signal about FinTech consumers. As in Section 4, high credit type consumers’ loan market

surplus can go up or down, whereas low credit type consumers’ loan market surplus still

stays at zero.

High bank affinity consumers see a change in both the price for banking payment services

and the loan offers they receive. The latter occurs because the presence of FinTech data sales

affects the sorting of consumers into bank payment customers and non-customers, which in

turn affects the bank’s beliefs about their payment customers. As a result of these two

effects, high bank affinity consumers may be better off or worse off, regardless of their credit

type.

Observation 2. Comparing FinTech sales of data to the base model with FinTech competi-

tion but no data sales:

(i) Overall expected surplus from the loan market is greater.

(ii) Consumers with low bank affinity and the low credit type are strictly better off with

FinTech sales of data.

17An important assumption we make is that the FinTech firms make zero profit in expectation and pass
the entire price for data sales back to consumers. If the FinTech firms were imperfectly competitive, only
part of the data sales revenue would be passed to consumers.
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(iii) Any of the following consumer groups, {high bank affinity, high credit type}, {high bank

affinity, low credit type}, and {low bank affinity, high credit type}, may be better off or

worse off.

Thus, although the standard intuition in economics is that introducing a missing market

alleviates an externality, the welfare effects of allowing the FinTech firm to provide data to

the bank are nuanced. In any equilibrium in which data sales occur, the bank earns a higher

profit than without data sales. However, consumer welfare may be higher or lower. The fact

that the high credit type consumers who use a FinTech firm for payments can be worse off

in the presence of an information market provides a micro-foundation for a preference for

privacy.

One interpretation of FinTech competition for payment customers and hence data is that

the FinTech company is a mechanism for the consumer to extract rents from the bank in

exchange for their data. As a vertically integrated payments and lending company, the bank

partially internalizes the benefit of data. By contrast, competing FinTech firms directly pass

the market value of data back to the consumers through a payment subsidy.

5.1.1 FinTechs Process Data for the Bank

If the FinTech firms have a superior data analysis technology compared to the bank, then

instead of selling raw payment data to the bank, the FinTech firm can sell the data processing

technology to the bank so the bank can extract better signals from its own customers’

payment data. The superior data processing capability of the FinTech firms can be thought

of as an increase in α, the precision of the signal from payment data.

It turns out that such a data processing arrangement will lead to an outcome similar to

that in data sales, in the sense that when a consumer applies for a loan, the bank always

has access to the signal from payments. The difference is that the signal is provided by the

FinTech firm. Therefore, a FinTech firm can earn revenues from the bank both for data
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sales on FinTech payment customers and for data processing on bank payment customers. If

FinTech firms are perfectly competitive, as in our model, the fees they charge for processing

data would be their cost of doing so. Compared to the base model in which information on

FinTech customers is lost to the bank, the welfare effects are similar to those for data sales.

5.2 Consumers Own and Port Their Data

Suppose that consumers control their own data, and can provide a credible record of their

payment history to a lender. Formally, in terms of the timeline in Figure 1, at t = 2

if a consumer needs a loan, the bank asks the consumer to share their payment history

data. The consumer may then either share it or decline, following which the bank chooses

a menu of contracts for the consumer. Thus, at the time of making a loan, the bank is

potentially faced with three kinds of consumers: those with high payment signals, those

with low payment signals, and those who have declined to share their payment history. In

accordance with Proposition 2, for each kind of consumer the bank will design a menu of

separating contracts, one contract for the high credit type and another for the low credit

type.

The key question is whether voluntary data porting actually leads to consumers providing

their data to the bank. We answer in the affirmative. Because the bank makes a positive

profit on each credit type, the bank can offer loan applicants an infinitesimal inducement

ε > 0 if they provide their payment history data to the bank. The low credit type obtains

zero surplus from the loan regardless of what they do, so will strictly prefer to provide their

data. At that point, any FinTech customers who decline to provide their data are easily

inferred to be the high credit type, and the monopolist bank can extract all the surplus

generated by a loan. Notice that if the high credit type also provides their data, the bank

cannot perfectly infer the credit type, as the payment signal remains noisy. The high credit

type is thus better off also providing their data. In equilibrium, all consumers willingly port
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their data to the bank. In the limit as ε→ 0, it remains an equilibrium for all consumers to

share their data with the bank. The nature of this equilibrium is reminiscent of unraveling.

By sharing data, consumers impose a data externality on everyone else. The externality is

strong enough that everyone shares data.

In what follows, we restrict attention to the equilibrium in which all consumers port

their data to the bank at no cost to the bank. In the absence of an inducement to deliver

their data, the low credit type is indifferent between giving their data to the bank and not

doing so. Thus, depending on parameters, there may also exist an equilibrium in which no

FinTech consumer transfers their data to the bank. However, this equilibrium is not robust

to infinitesimal inducements.

The bank’s optimal price for payment services can be derived in a similar fashion as the

case of data sales. Let boj be the cutoff bank affinity value of credit type j under data porting,

or open banking. Because data are shared for free, the marginal consumer’s calculation is

v − p+ boj + wIj (ρ
B, α) = v + wIj (ρ

FT , α) (24)

boj(p) = p+ (wIj (ρ
FT , α)− wIj (ρB, α)). (25)

A consumer with bank affinity b > boj (b < boj) chooses the bank (a FinTech firm) for payment

processing. In particular, because low credit type consumers always get zero surplus in the

loan market, we have bo` = p.

Likewise, the bank’s profit is

Πo =
∑
j

mj

[
(1− Fj(boj(p)))(p+ ψπIj (ρ

B, α)) + Fj(b
o
j(p))ψπ

I
j (ρ

FT , α)
]
. (26)

By this point, it is transparent that consumers owning and voluntarily porting data is a

special case of FinTech data sales, with y = 0. Intuitively, if FinTech firms sell consumer
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data at a zero price, it is equivalent to consumers porting data at a zero price. Therefore,

when compared to the base case with FinTech competition but without data transfer, most

qualitative effects of FinTech data sales also apply to data porting. In particular, the overall

loan market surplus goes up due to information sharing, but the high credit type’s loan

surplus may increase or decrease. Also, the price for payment services may go up or down.

Between data sales and data porting, which one is better for consumers? In this economy,

consumer surplus comes from payment services and loans. Low credit type consumers always

receive zero surplus in the loan market. If the distribution of bank affinity is identical

between high and low credit types, as in Proposition 5, high credit type consumers also

receive the same surplus between data sales and data porting. This is because in both cases,

the equilibrium mix between the two credit types is identical to the prior, mh/m`, and the

bank observes the consumer’s payment data when borrowing. Therefore, the comparison in

consumer welfare rests entirely on the price of payment services. The following proposition

shows conditions under which the bank’s payment services under data sales is strictly better

than that under (free) data portability.

Proposition 6. Suppose that: (i) the bank affinity distribution is the same across the two

credit types, i.e., Fh(b) = F`(b) = F (b) for all b, and (ii) under data sales, the bank and each

FinTech firm negotiate a price for FinTech data sales ŷ > 0. Then:

(i) The loan market outcomes are identical under data sales and under data portability.

(ii) Both the bank and the FinTech firms have a strictly lower price for payment services

under FinTech data sales than under consumer data portability.

Consequently, all consumers strictly prefer data sales to data portability.

The intuition behind Proposition 6 is straightforward. Under FinTech data sales, con-

sumers receive a fraction of the value of their data in the form of subsidized payments from
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FinTech firms. Thus, the bank needs to offer better prices to entice consumers to use the

bank. But if data are ported for free, the bank no longer has such an incentive, and the

price worsens.

To gain further intuition, we can write the bank’s profit with data porting, given Fh =

F` = F and ρB = ρFT , as

Πo =
∑
j

mj

[
(1− F (p))p+ ψπIj (

mh

m`

)

]
= (1− F (p))p+

∑
j

mjψπ
I
j (
mh

m`

). (27)

The second term in the profit expression, which comes from loans, has nothing to do with

the price of payment services, that is, there is a complete decoupling of payment and credit

if data are ported for free. The full decoupling does not happen under data sales because

the bank’s profit given Fh = F` = F is

Πs =
∑
j

mj

[
(1− F (p+ ψy))p+ ψπIj (

mh

m`

)− ψF (p+ ψy)y

]
, (28)

where the last term is the cost of purchasing data from FinTech firms. In general, (1−F (p+

ψy))p− ψF (p+ ψy)y 6= (1− F (p))p.

The results of this section highlight a data externality. In the presence of data transfers,

consumer welfare from the loan depends on their bargaining power relative to the bank.

Data sales are equivalent to the FinTech firm negotiating with the bank on behalf of a block

of consumers, whereas with data porting the bank is able to “divide and conquer” consumers

in one-on-one negotiations. While the data externality seems stark in our two-credit-type

setting, we expect it to be a more general phenomenon even with N > 2 credit types. As

before, the bank is able to induce data sharing from the lowest credit type consumers. Once

the lowest type is revealed, the bank can use the same inducement on the lowest of the

remaining N − 1 types. So on it goes, and unraveling ensues.

35



Our results on consumers owning their data contrast with those of Jones and Tonetti

(2020), who argue that “giving data property rights to consumers can generate allocations

that are close to optimal.” However, their framework features a representative agent and

thus homogeneous consumers. Our heterogeneous-agent framework leads to different results.

6 Conclusion

New data processing technology has increased the economic importance of data. Banks,

through their joint role as payment processors and financial service providers, have long

enjoyed privileged access to consumers’ and firms’ transaction data. We provide a flexible

framework that points to the complex effect that the loss of these data will have on both the

payments and financial services markets. Our analysis suggests that policy-makers should

take a nuanced and country-specific approach to FinTech competition.

There is still much work to be done to understand the optimal way in which control

rights to our large and growing data footprints should be allocated. In our framework, a

data market is always weakly preferred to consumer data portability. This result is due to

market power: with data sales, a FinTech firm negotiates with the bank to extract part of the

market value of the data which it then reimburses to consumers. If multiple banks competed

for the data, presumably the FinTech firm would extract more of the value. By contrast,

individual consumers, each lacking market power, cannot do so. To the extent that FinTech

market power also becomes a concern—which it has, outside our model—could a social

planner do better by establish a data warehouse and negotiating on behalf of consumers?
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A Table of Notation

θj, for j = h, ` Consumer’s repayment probability
v Consumer’s value for using electronic payment rather than cash
b Consumer’s bank affinity; negative b means a cost to access the bank
F, f Distribution and density of consumer’s bank affinity
ψ Probability that a consumer needs a loan in period 2
(q, r) Loan quantity and interest rate offered by the bank
α Quality of the signal about a consumer’s credit type extracted from

payment data
wUj Consumer surplus to credit type θj from the loan when the bank is

uninformed
wIj Expected consumer surplus to credit type θj from the loan when the

bank is uninformed
∆w
h Expected change in consumer surplus from the loan for credit type θh

when the bank is informed, compared to when the bank is uninformed
πUj Bank’s expected profit from making a loan to credit type θj when the

bank is uninformed
πIj Bank’s expected profit from making a loan to credit type θj when the

bank is informed
p Price charged by bank for payment services
b∗ Threshold bank affinity of consumer who is indifferent between using

the bank for payment services and the alternative (depending on the
case being considered, the alternative is to remain unbanked or to use
the FinTech firm for payment services)

y Price per consumer at which data are sold by FinTech firm to bank
m Superscript, benchmark case in which the bank is a monopolist

provider of payment services
c Superscript, base case in which FinTech firms compete with the bank

in providing payment services
s Superscript, case in which FinTech firms can sell data to banks
o Superscript, case in which consumers own and port data

B Proofs

B.1 Proof of Proposition 1

We proceed with a series of steps.
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Step 1: At least one of the constraints IRh and IR` must bind.

Suppose not, so that we have an optimum in which both IR constraints are slack. Then,

there are two sub-cases to consider.

(i) One of the IC constraints is slack. Then, we can find a suitable increase in each of r`

and rh such that the binding IC constraint is strictly satisfied, the slack IC constraint

continues to hold, and the IR constraints hold. This contradicts the assumption that

we are at an optimum.

(ii) Both IC constraints bind. Observe that we can write w(q, r | θ) = θ{Aq − q(1 + r) +

λ
2
q2} − λ

2
q2. Therefore, the binding IC constraints ICh and IC` can respectively be

written as:

Aqh − qh(1 + rh) +
λ

2
q2
h −

1

θh

λ

2
q2
h = Aq` − q`(1 + r`) +

λ

2
q2
` −

1

θh

λ

2
q2
` (29)

Aq` − q`(1 + r`) +
λ

2
q2
` −

1

θ`

λ

2
q2
` = Aqh − qh(1 + rh) +

λ

2
q2
h −

1

θ`

λ

2
q2
h (30)

Summing the two inequalities and simplifying, we have

1

θh
(q2
h − q2

` ) ≥
1

θ`
(q2
h − q2

` ). (31)

As θh > θ`, it must be that qh = q`. This further implies that rh = r` (or the IC

constraint must be violated for at least one type), so the contract is a pooling contract.

Now, if the contract is a pooling contract and both IR conditions are slack, it

is immediate that a small increase in rh and r`, increasing both by the same amount,

leads to an increase in profit for the lender while preserving all constraints. Again we

have a contradiction that the original contract was optimal.

Therefore, at the optimum contract, at least one IR constraint must bind.
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Step 2: Optimal contract when IR` binds.

Suppose IR` binds at the optimal contract. Then θ`(1 + r`)q` = θ`Aq` − (1 − θ`)
λ
2
q2
` .

Therefore,

wh(q`, r`) = θhAq` −
θh
θ`

(
θ`Aq` − (1− θ`)

λ

2
q2
`

)
− (1− θh)

λ

2
q2
` =

(θh
θ`
− 1
)λ

2
q2
` . (32)

Hence, wh(q`, r`) > 0. From ICh, it follows immediately that wh(qh, rh) > 0, so IRh is slack.

Suppose also that ICh is slack at the optimal contract. Then, for a small enough increase

in rh, ICh and IRh continue to hold, and the RHS of IC` is reduced, so IC` must continue

to hold. There is no effect on IR`. The increase in rh strictly increases the bank’s profit, so

the contract could not have been optimal. Thus, it must be that ICh binds at the optimum.

ICh binding implies that wh(qh, rh) = wh(q`, r`) =
(
θh
θ`
− 1
)
λ
2
q2
` .

Now, the bank’s profit is

Π =
∑
j=h,`

µj

{
θj(1 + rj)qj − qj −

γ

2
q2
j

}
. (33)

As noted above, IR` binding implies that θ`(1+r`)q` = Aθ`q`−(1−θ`)λ2q
2
` . Further, from

the binding ICh constraint, we can write θh(1 + rh)qh = Aθhqh− (1− θh)λ2q
2
h− λ

2

(
θh
θ`
− 1
)
q2
` .

Substituting these expressions into the profit function,

Π = µ`

{
Aθ`q` − (1− θ`)

λ

2
q2
` − q` −

γ

2
q2
`

}
+µh

{
Aθhqh − (1− θh)

λ

2
q2
h − qh −

γ

2
q2
h −

λ

2

(θh
θ`
− 1
)
q2
`

}
. (34)

The first-order condition in qh yields

q∗h =
Aθh − 1

γ + (1− θh)λ
, (35)
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which is the first-best quantity. Similarly, the first-order condition in q` yields

q∗` =
Aθ` − 1

γ + λ
(

1− θ` + µh
µ`

(
θh
θ`
− 1
)) =

Aθ` − 1

γ + λ(1− θ`) + λκ
(
θh
θ`
− 1
) (36)

It is immediate to see that in each case the second-order condition is satisfied.

We have shown that IRh is satisfied; what remains is to check IC`. As w`(q`, r`) = 0,

IC` here reduces to w`(qh, rh) ≤ 0, or θ`Aqh − θ`(1 + rh)qh − (1− θ`)λ2q
2
h ≤ 0.

From the binding ICh constraint, we obtain:

θ`(1 + rh)qh =
θ`
θh
θh(1 + rh)qh = θ`Aqh − θ`

( 1

θh
− 1
) λ

2
q2
h −

λ

2

(
1− θ`

θh

)
q2
` . (37)

Substituting the RHS for the term θ`(1 + rh)qh) in w`(qh, rh), we obtain

w`(qh, rh) = −
(

1− θ`
θh

)
(q2
h − q2

` ) < 0, (38)

where the last inequality follows from qh > q`. To see that qh > q`, observe that the first-best

loan quantity qf is strictly increasing in θ. Further, the optimal contracts feature q∗h = qfh

and q∗` ≤ qf` , so it must be that q∗h > q∗` .

Therefore, starting with the assumption that IR` binds, we have found a solution (q∗h, q
∗
` )

such that the lender’s conditions for profit-maximization are satisfied, ICh also binds, and

IRh and IC` are both satisfied as strict inequalities. It follows immediately that r∗` is chosen

to satisfy IR`, and r∗h to satisfy ICh.

Step 3: It cannot be optimal for IRh to bind.

Next, suppose that IRh binds; i.e., wh(qh, rh) = 0. Observe that for any feasible contract

(q, r), the borrower’s utility wj(q, r) is strictly increasing in θj. To see this, observe that

wj(q, r) = θq{A − (1 + r) + λ
2
q} − λ

2
q2. Now, in any feasible solution, it must be that
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1 + r < A. Otherwise, the borrower’s IR constraint is violated even when λ = 0, and the

loan will be rejected. When 1 + r < A, it is immediate that wj(q, r) is strictly increasing in

θj.

Now it follows that if wh(qh, rh) = 0, then w`(qh, rh) < 0. In conjunction with constraint

IR` (which says that w`(q`, r`) ≥ 0), it follows that IC` is satisfied as a strict inequality.

Observe that IR` implies that θ`(1 + r`)q` ≤ θ`Aq` − (1− θ`)λ2q
2
` , so that

θh(1 + r`)q` =
θh
θ`
θ`(1 + r`)q` ≤ θhAq` −

(θh
θ`
− θh

)λ
2
q2
` . (39)

Therefore,

wh(q`, r`) = θhAq` − θh(1 + r`)q` − (1− θh)
λ

2
q2
` (40)

≥
(θh
θ`
− 1
)λ

2
q2
` . (41)

As wh(qh, rh) = 0 when IRh binds, to satisfy ICh it must be that q∗` = 0. The solution

in this case therefore has q∗h = Aθh−1
γ+λ(1−θh)

= qfh , and rh chosen so that wh(qh, rh) = 0. Further,

q∗` = 0, and we can arbitrarily set r∗` = 0.

Now, observe that the solution above is a feasible solution when maximizing the profit

function in equation (34) in the previous step. However, as shown above, this solution is

inferior to the optimal solution of q∗h = qfh and q∗` = Aθ`−1

γ+λ(1−θ`)+λκ
(
θh
θ`
−1

) , with r∗` chosen to

make IR` bind and r∗h chosen to make ICh bind.

Therefore, it cannot be optimal for IRh to bind.

Step 4: Optimal contract.

It now follows from the above analysis that the optimal contract is the one found in Step

2, with the constraints IRh and IC` binding. This contract is exhibited in the statement of

the proposition.
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B.2 Proof of Proposition 2

(i) (a) Consider bank payment customers. Observe from Proposition 1 that the loan contract

menu offered by the bank has w`(q`, r`) = 0. That is, the low credit type obtains a zero

surplus, or wI` = 0.

The total surplus generated by the loan to a low credit type depends on the payment

signal obtained by the bank, s ∈ {sh, s`}. For a given signal s, this total surplus is given

by AqI` (κ(s)) − qI` (κ(s))(1 + rI` (κ(s))) − γ+λ(1−θ`)
2

(qI` (κ(s)))2. Conditional on the consumer

being a low credit type, the expected surplus takes into account that the consumer generates

the high signal with probability 1
1+α

and the low signal with probability α
1+α

. The expected

surplus may therefore be written as

Es[Aq
I
` (κ(s))− qI` (κ(s))(1 + rI` (κ(s)))− γ + λ(1− θ`)

2
(qI` (κ(s)))2 | θ`]. (42)

The expected profit of the bank, πI` , is equal to the expected surplus, as the consumer obtains

zero surplus.

(b) From equation (32) in the proof of Proposition 1, a high credit type consumer obtains a

surplus wh(q`, r`) =
(
θh
θ`
− 1
)
λ
2
q`(κ)2. Now, q`(κ), the quantity offered to the low credit type

depends on the payment signal s. Further, a high type consumer generates a high signal

with probability α
1+α

and a low signal with probability 1
1+α

. Her expected consumer surplus

may therefore be written as

wIh =
(θh
θ`
− 1)

λ

2

)
Es[q`(κ(s))2 | θh]. (43)

Keeping in mind that the high credit type obtains the first-best loan quantity qfh , the

total surplus generated by a loan to the high type given signal s is Aqfh − q
f
h(1 + rh(κ(s)))−

γ+λ(1−θh)
2

(qfh)2. Taking an expectation over signal yields the total expected surplus, and
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subtracting the surplus obtained by the high credit type leads to the expression for bank

profit πIh in the statement of the lemma.

(ii) The proof of both parts (a) and (b) when the bank is uninformed mirror the proof of the

corresponding parts when the bank is informed. The expressions are simpler as in the case

of the uninformed bank, the posterior likelihood ratio κ equals the intermediate likelihood

ratio ρ.

B.3 Proof of Corollary 2.1

Let ρ be the likelihood ratio of the high credit type versus the low credit type before the

payment signal is processed. Then, the bank’s expected profit from a consumer when the

bank is uninformed may be written as

πU(ρ) =
ρ

1 + ρ
πh(ρ) +

1

1 + ρ
π`(ρ). (44)

Now, when the bank has the payment signal, it is informed, and its profit is

πI =
ρ

1 + ρ

( α

1 + α
πh(ρα) +

1

1 + α
πh(ρ/α)

)
+

1

1 + ρ

( 1

1 + α
π`(ρα) +

1

1 + α
π`(ρ/α)

)
. (45)

Observe that if the bank offers the contract (qj(ρ), rj(ρ)) to credit type θj for each j = h, `,

then πI = πU . Further, if the bank strictly prefers to depart from this contract (which

Proposition 1 shows that it does when α > 1), the bank earns a strictly higher profit when

informed, that is, πI > πU .

B.4 Proof of Lemma 1

(i) Consider a consumer with credit type θj and bank affinity b. Recall that wIj (wUj ) repre-

sents the surplus that credit type θj obtains from a loan when the bank is informed (unin-
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formed). The overall utility of the consumer from using cash is thus

WC
j = ψwUj . (46)

Similarly, the overall utility from using the bank, given that p is the price of the bank’s

payment services is

WB
j = v + b− p+ ψwIJ . (47)

It follows that the consumer prefers the bank to cash if and only if WB
j ≥ WC

j , that is,

if b ≥ bmj (p), where

bmj (p) = p− v − ψ(wIj − wUj ). (48)

The statement of part (i) now follows.

(ii) When FinTech firms enter the payment market, they compete in Bertrand fashion with

each other, and so charge a price of zero. Thus, a consumer’s utility from using a FinTech

firm for payments is

W FT
j = v + ψwUj . (49)

Observe that there cannot be any cash users in equilibrium. Recall that wI` = wU` = 0.

Thus, low credit type consumers obtain utility v from using a FinTech firm and utility zero

from using cash, so they strictly prefer to use a FinTech firm to using cash. Therefore, in

equilibrium, any cash user must be a high credit type. But as seen from Proposition 1, when

µ` = 0, the bank’s optimal menu has q` = 0, so credit type θh obtains zero surplus from

the loan. If a cash-using high type deviates to a FinTech firm for payment processing, they
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obtain a payment utility v > 0, and also obtain a strictly positive loan surplus. Therefore,

in equilibrium, there cannot be any cash users in this case.

Now, a consumer prefers using the bank for payments rather than a FinTech firm if and

only if WB
j ≥ W FT

j , or b ≥ bcj(p), where

bcj(p) = p− ψ(wIj − wUj ). (50)

The statement of part (ii) now follows.

B.5 Proof of Lemma 2

Let z ∈ {0, v}, where z = v represents the case in which the non-bank alternative is cash, and

z = 0 the case in which the non-bank alternative is a FinTech firm, and let P be the price

of the bank’s payment services. The bank is uninformed about a fraction Fh(p− z − ψ∆w
h )

of high credit type consumers and a fraction F`(p− z) of low credit type consumers, and is

informed about (i.e., has payment data for) a fraction 1 − Fh(p − z − ψ∆w
h ) of high credit

type consumers and a fraction 1− F`(p− z) of low credit type consumers. When the bank

analyzes payment data, with probability α
1+α

, it obtains a correct signal about the customer,

and with probability 1
1+α

it obtains an incorrect signal.

Now, let x represent an arbitrary value of ∆w
h . Then, φ(x) = wIh − wUh , which can be
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written as

φ(x) =

(
θh
θ`
− 1

)
λ

2
(θ`A− 1)2)

 α/(1 + α)[
γ + λ(1− θ`) + λ

(
θh
θ`
− 1
)
mh
m`

1−Fh(p−z−ψx)
1−F`(p−z)

α
]2

+
1/(1 + α)[

γ + λ(1− θ`) + λ
(
θh
θ`
− 1
)
mh
m`

1−Fh(p−z−ψx)
1−F`(p−z)

1
α

]2 (51)

− 1[
γ + λ(1− θ`)λ

(
θh
θ`
− 1
)
mh
m`

Fh(p−z−ψx)
F`(p−z)

]2


The left-hand side of the previous equation increases in x. Further, Fh(p − z − ψx)

decreases in x, so that 1 − F (p − z − x) increases in x. Hence, overall, the right-hand side

decreases in x. Therefore for any p and z ∈ {0, v}, there is a unique value of x that solves

the equation φ(x) = x; i.e., the mapping x 7→ φ(x) has a unique fixed point.

B.6 Proof of Proposition 3

We first show that the proposition holds when ψ = 0, and then extend the proof to strictly

positive but small ψ.

Step 1 : The proposition holds for ψ = 0.

Suppose first that ψ = 0. Then, it follows that bmh = bm` = pm − v, and bch = bc` = pc.

Noting that the distribution of bank affinity F is the same for both credit types, the bank’s

total profit under payment monopoly is

Πm = (1− F (p− v))p, (52)
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where we use the fact that mh +m` = 1. The first-order condition is

1− F (pm − v)− f(pm − v)pm = 0 =⇒ pm =
1− F (pm − v)

f(pm − v)
. (53)

Likewise, under FinTech competition, the bank’s first-order condition reduces to

1− F (pc)− f(pc)pc = 0 =⇒ pc =
1− F (pc)

f(pc)
. (54)

Now, suppose the distribution F has an increasing hazard rate throughout. Then, f
1−F

is increasing, or 1−F
f

is decreasing. Then, because v > 0,

pm =
1− F (pm − v)

f(pm − v)
>

1− F (pm)

f(pm)
=⇒ 1− F (pm)− f(pm)pm < 0. (55)

Now, observe that the second-order condition in the FinTech competition case is that 1 −

F (p) − f(p)p decreases in p. Thus, combining 1 − F (pm) − f(pm)pm < 0 and 1 − F (pc) −

f(pc)pc = 0, we know pm > pc.

Next, suppose the distribution F has a decreasing hazard rate. Then, f
1−F is decreasing,

or 1−F
f

is increasing. Then, because v > 0,

pm =
1− F (pm − v)

f(pm − v)
<

1− F (pm)

f(pm)
=⇒ 1− F (pm)− f(pm)pm > 0. (56)

Again, the second-order condition in the FinTech competition case is that 1− F (p)− f(p)p

decreases in p. Thus, combining 1− F (pm)− f(pm)pm > 0 and 1− F (pc)− f(pc)pc = 0, we

know pm < pc.

Step 2: The proposition holds for small but strictly positive ψ.

47



The bank’s profit function when it is a monopolist in payment services is

Πm =
∑
j=h,`

mj

[
(1− F (p− v − ψ∆w

j ))(p+ ψπIj ) + F (p− v − ψ∆w
j )ψπUj

]
. (57)

Denoting xj = πIj − F (p− v − ψ∆w
j )(πIj − πUj ), we can write the bank profit as

πm =
∑
j=h,`

mj

[
(1− F (p− v − ψ∆w

j ))p+ ψxj

]
. (58)

We show that the bank’s optimal price must lie within an interval [p, p̄]. First consider

the upper bound. When ψ = 0, the profit function reduces to (1− F (p− v))p = (1− F (p−

v))(p − v) − (1 − F (p − v))v. Now, as p → ∞, F (p − v) converges to 1 as p → ∞, and

by assumption, (1 − F (p))p converges to zero. Thus, (1 − F (p − v))p converges to zero as

p→∞, so that the optimal price when ψ = 0 must be finite.

Let Sfj denote the first-best loan surplus for type θj. Then, xj = πIj−F (p−v−ψ∆w
j )∆π

j =

F (p − v − ψ∆w
j )πUj + (1 − F (p − v − ψ∆w

j )πIj > 0, and πUj , π
I
j , and ∆w

j are each bounded

above by Sfj . Now, by the continuity of Πm in ψ, we can find some ψ0 > 0 and some p > 0,

such that for any ψ < ψ0, charging any price p > p is not optimal for the bank. This is easily

seen by observing that Πm > m` maxp[(1 − F (p − v))p], where 1 − F (p − v) is the demand

from the low credit type for payment services at price (recall that ∆w
` = 0).

It is equally easy to see that the bank’s optimal price has a lower bound. One possible

lower bound is −ψSfh , i.e., if in the payment market the bank reimburses the full surplus of

the loan to the high credit type consumer, the bank would make a loss. We denote such the

lower bound by p.

Now, recalling that ∆w
h depends on p, the first-order condition when the bank is a mo-
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nopolist in payment services is

0 =
∑
j

mj

[
1− F (pm − v − ψ∆w

j )− f(p− v − ψ∆w
j )(1− ψ

d∆w
j

dp
)pm + ψ

dxj
dp

.

]
(59)

By the intermediate value theorem, we can write F (pm − v − ψ∆w
h ) = F (pm − v) −

ψ∆w
h f(pm− v− z1ψ∆w

h ), where z1 is between 0 and 1. We can also write f(pm− v−ψ∆w
h ) =

f(pm− v)−ψ∆w
h f
′(pm− v− z2ψ∆w

j ), where z2 is between 0 and 1. The first-order condition

can then be rewritten as

0 = 1− F (pm − v)− f(pm − v)pm + ψm`
dy`
dp

+ ψmh

[
∆w
h f(pm − v − z1ψ∆w

h ) (60)

+ ∆w
h f
′(pm − v − z2ψ∆w

h )(1− ψd∆w
h

dp
)pm − d∆w

h

dp
f(pm − v)pm +

dyh
dp

]
≡ 1− F (pm − v)− f(pm − v)pm + ψxm,

where xm = m`
dy`
dp

+ mh

[
∆w
h f(pm − v − z1ψ∆w

h ) + ∆w
h f
′(pm − v − z2ψ∆w

h )(1 − ψ d∆w
h

dp
)pm −

d∆w
h

dp
f(pm − v)pm + dyh

dp

]
. Because the relevant price pm is in a closed interval [p, p] and all

functions are sufficiently smooth, we can find a uniform upper bound M > 0 for |xm|. Then,

1− F (pm − v)− f(pm − v)pm ∈ [−ψM,ψM ].

If the hazard rate f/(1 − F ) is strictly increasing, (1 − F )/f is strictly decreasing. In

the closed interval p ∈ [p, p], the derivative of (1− F )/f is negative and has a lower bound,

say −c, where c > 0 is a constant. The first-order condition of the monopolist bank implies

that there exists a z3 ∈ [−1, 1] such that

pm =
1− F (pm − v)

f(pm − v)
+ z3

ψM

f(pm − v)
>

1− F (pm)

f(pm)
+ cv + z3

ψM

f(pm − v)

=⇒ 1− F (pm)− f(pm)pm < −cvf(pm)− z3
ψMf(pm)

f(pm − v)
. (61)

In similar fashion, we can write the first-order condition of the bank under FinTech
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competition as

0 = 1− F (pc)− f(pc)pc + ψxc, (62)

where the right-hand side is strictly decreasing in p, and xc is a collection of terms analogous

to xm. By an analogous argument that uses continuity, including establishing a closed

interval in which the relevant price resides in the competition case, we can find a constant

C > 0 such that 1− F (pc)− f(pc)pc ∈ [−ψC, ψC], and 1− F (p)− f(p)p is decreasing in p

over this interval.

Now, combining the conditions on pm and pc, we can choose a sufficiently small ψ so that

1−F (pm)− f(pm)pm < 1−F (pc)− f(pc)pc. Then, given that 1−F (p)− f(p)p is decreasing

in p, we have pm > pc.

The case for a strictly decreasing hazard rate is analogous.

B.7 Proof of Proposition 4

(i) Let p denote the price of the bank’s payment services, and let z denote the incremental

difference to consumer utility between the bank’s payment services and the next best alter-

native. Then, z = v when the bank is a monopolist in payments, and z = 0 when there is

FinTech competition.

Let ∆w
h (p, z) denote the solution to equation (51). Then, it follows by inspection of

equation (51) that ∆w
h (pc + v, v) = ∆w

h (pc, 0). That is, for any given price pc under compe-

tition, if the monopolist bank charges the price pc + v, the resulting value of ∆w
h remains

unchanged. Hence, bmh (pc + v) = pc − ψ∆h
w = bmh (pc), and bm` (pc + v) = pc = bc`(p

c). That

is, under monopoly, the threshold consumer of each credit type remains the same as in the

competition case if pm = pc + v. As a result, the loan contracts offered in the three cases

of uninformed bank, informed bank with high signal, and informed bank with low signal all

remain the same as well, so that the profit from the loan market is unchanged.
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Let R denote the bank’s profit from the loan market. Then, the bank’s overall profit

under competition is

Πc(pc) = R +
∑
j=h,`

pc(1− F (bcj(p
c))). (63)

Suppose the monopoly bank charges pm = pc + v. As argued above, the bank’s profit from

the loan market is unchanged. Therefore, its overall profit is

Πm(pc + v) = R +
∑
j=h,`

(pc + v)(1− F (bmj (pc + v))). (64)

But as argued above, bmj (pc+v) = bcj(p
c) for each j = h, `. It therefore follows that whenever

v > 0 and at least one of F c
h(bch) or F c

` (bc`) is strictly less than 1, we have Πm(pc+v) > Πc(pc).

To complete the argument, note that if pm is the optimal price under monopoly, it must

be that Πm(pm) ≥ Πm(pc + v), so it follows that Πm(pm) > Πc(pc).

(ii) This part follows immediately from noting that the menu of loan contracts offered by

the bank always has qh = qfh , the first-best quantity for the high credit type, and that in

equilibrium the high credit type accepts the contract designed for it.

(iii) Observe that a low credit type earns zero surplus from a loan, regardless of the bank’s

information or of their bank affinity. Therefore, the change in welfare for this type is de-

termined solely by the surplus they obtain from payments. (a) Consider a low credit type

consumer with b < min{bc(pc), bm(pm)}. When the bank is a payment monpolist, this con-

sumer is unbanked, and their overall utility is zero. When there is FinTech competition, this

consumer earns the utility from electronic payment services v > 0, and their overall utility

is v as well. Thus, they are strictly better off with FinTech competition.

(b) Consider a low credit type consumer with b > max{bc(pc), bm(pm)}. This consumer

uses the bank to process payments both when the bank is a monopolist and under FinTech
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competition. Thus the overall utility of this consumer is b + v − pm under monopoly and

b + v − pc under competition. It follows that they are strictly better off under FinTech

competition if pc < pm, and strictly worse off if pc > pm.

B.8 Proof of Proposition 5

(i) As shown in equation (11) in Proposition 2, the expected utility of the high credit type

from a loan is equal to wIh =
(
θh
θ`
− 1
)

λ
2
Es[q`(κ(s))2 | θh]. Let ρ be the intermediate

likelihood ratio before the payment signal is obtained. Then, we can write

wIh(ρ, α) =

(
θh
θ`
− 1

)
λ

2

{ α

1 + α
(q`(ρα))2 +

1

1 + α
(q`(ρ/α))2

}
. (65)

From Proposition 1 part (i), q`(κ) = θ`A−1

γ+λ(1−θ`)+λκ
(
θh
θ`
−1

) is strictly decreasing in κ. Hence,

it follows that q`(ρα) and q`(ρ/α) are each strictly decreasing in ρ, so that wIh(ρ, α) is strictly

decreasing in ρ.

As the low credit type obtains zero surplus in all cases, we have wI` (ρ, α) = 0. Therefore,

bs`(p) = p+ ψy.

Now, suppose that bsh(p) < bs`(p) = p+ ψy. Then, as the bank affinity distribution is the

same for both types, it follows that 1 − F (bsh(p)) > 1 − F (bs`(p)) and F (bsh(p)) < F (bs`(p)),

so that ρB =
1−F (bsh(p))

1−F (bs`(p))
mh
m`

> ρFT =
F (bsh(p))

F (bs`(p))
mh
m`

. But wIh(ρ, α) is strictly decreasing in ρ, so it

follows that wIh(ρ
B, α) < wIh(ρ

FT , α), so that bsh = p+ ψy + (wIh(ρ
FT , α)−wIh(ρB, α)) > bs` =

p+ ψy, which is a contradiction.

A similar argument rules out the case that bsh(p) > bs`(p), leaving only the possibility that

bsh(p) = bs`(p).

(ii) This part follows immediately from part (i) on noting that ρB =
1−F (bsh(p))

1−F (bs`(p))
mh
m`

and

ρFT =
F (bsh(p))

F (bs`(p))
mh
m`

.
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B.9 Proof of Proposition 6

(i) Consider the equilibrium under data portability in which all consumers port their data

to the bank for free. As discussed in the text, this case is equivalent to data sales by the

FinTech firm at a price of zero. The proof of Proposition 5 applies for all values of the price

of data under data sales, including y > 0 and zero. Hence, it follows that the loan market

outcomes are identical between data sales and data portability.

(ii) Consider the data sales regime, and suppose the bank pays a price y to the FinTech firms

for acquiring payment data of FinTech customers. Write the bank’s expected profit from a

loan to credit type θj when it is informed as πIj (ρ, α), where ρ is the intermediate likelihood

ratio before the payment signal. Under the same affinity distribution between the two credit

types, we have bsh = bs` = p+ ψy, and ρB = ρFT = mh/m`.

Then, the bank’s overall profit is simplified as

Π =
∑
j

mj

[
(1− F (p+ ψy))p+ ψ(1− F (p+ ψy))πIj (

mh

m`

, α) + ψF (p+ ψy)(πIj (
mh

m`

, α)− y)

]
.

(66)

The first-order condition for the optimal price is

0 =
∑
j

mj [−f(p+ ψy)(p+ ψy) + 1− F (p+ ψy)] . (67)

Observe that this equation is of the form

0 =
∑
j

mj [−f(x)x+ 1− F (x)] , (68)

where x = p+ ψy.
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Denote G(x) = −f(x)x+ 1− F (x). Then, by the implicit function theorem,

dp

dy
= −

G′(x)∂x
∂y

G′(x)∂x
∂p

= −ψ < 0. (69)

That is, the bank’s price for payment services increases as y decreases. Hence, comparing

data sales (with a data price of ŷ > 0 and data portability (with a data price of zero), the

bank’s price for payment services is strictly greater under data portability.

The FinTech firms charge a price for payment services −ψŷ under data sales, and a

price zero under data portability. Hence, all consumers are paying strictly more for payment

services under data portability, whereas the loan market outcomes are identical in both the

data sales and data portability regimes. It follows that all consumers strictly prefer data

sales to data portability.

C Example on the Effects of FinTech Competition

We set A = 2, θh = 0.99, θ` = 0.8, λ = 0.4, γ = 0.2, ψ = 1, α = 2, and mh = 5 = m` = 0.5.

Figure 5 shows the equilibrium loan surplus captured by credit type θh as a function of

α, the precision of the signal extracted from payments. Figure 6 shows the total surplus

from a loan to the low credit type in equilibrium, as α varies.18 In each figure, the bank

affinity distribution for the low credit type, F`, is set to be exponential with mean 1. The

bank affinity distribution for the high credit type, Fh is Weibull with first parameter k = 2

(implying an increasing hazard rate) in Figure (a) and k = 0.5 (implying a decreasing hazard

rate) in Figure (b). The second parameter of the Weibull distribution is set to 1.

For each set of parameter values and payment market structure, we first compute the

optimal price of bank payment services. The numerical computation involves using Lemma 2

to pin down a fixed point in ∆w
h for each p. The bank’s profit function can then be computed,

18Recall that the bank captures the entire loan surplus from a loan to the low credit type.
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and the optimal price determined. The relative masses of consumers using the bank (and

not using the bank) at the optimal price determine the optimal menu of contracts in each

case.

Bank payment customers obtain a menu based on the signal they have generated. Recall

that high credit types generate a high signal with probability α
1+α

and a low signal with

probability 1
1+α

, with the probabilities being reversed for low credit types. When the bank

is informed, the expected loan surplus captured by a high credit type and the total surplus

from a loan to the low credit type take these probabilities into account.

(a) Fh has increasing hazard rate (b) Fh has decreasing hazard rate

Figure 5: Expected Loan Surplus Captured by Credit Type θh
This figure plots the expected loan surplus captured by credit type θh for different parameter
values and payment market structures. Here, A = 2, θh = 0.99, θ` = 0.8, λ = 0.4, γ =
0.2, ψ = 1, α = 2,mh = 5,m` = 0.5. The bank affinity distribution for credit type θ` is
exponential with parameter 1. In figure (a), the bank affinity distribution for credit type
θh is Weibull with first parameter k = 2. In figure (b), the bank affinity distribution for
credit type θh is Weibull with first parameter k = 0.5. The second parameter of the Weibull
is set to 1 in both cases. For each set of parameters, we find the optimal price for bank
payment services. The blue lines indicate the bank is a monopolist in payment services, and
the red lines that the bank faces FinTech competition. The solid lines indicate the bank is
uninformed about the consumer, and the dashed lines that the bank is informed.

Consider Figure 5 (a), and start with the case in which the bank is a monopoly provider of
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payment services. Here, the bank affinity distribution for the low credit type is exponential,

and the bank affinity distribution for the high credit type has an increasing hazard rate.

Given the parameters, at any price, the pool of consumers who use the bank for payment

services includes a larger proportion of high credit types than the prior probability of 0.5.

Conversely, the pool of consumers who are not bank payment customers includes fewer

high credit types than the prior. Therefore, the bank extracts a higher rent from payment

customers who have the high credit type. As a result, the latter have a lower utility from the

loan. Conversely, high credit types who do not use the bank for payment services benefit.

Now, consider the effects of FinTech competition. Relative to the bank monopoly case,

FinTech competition skews the pool of bank payment customers a little more toward the low

credit type. Thus, when the bank is uninformed, the high-credit type obtains less favorable

terms and has an even lower utility from the loan. That is, high credit types who are payment

non-customers are worse off after FinTech entry. As a result, high-credit types who remain

bank payment customers obtain a lower surplus from the loan after FinTech competition.

Figure 5 (b) embodies similar reasoning. Here, the bank affinity distribution of high credit

types has an increasing hazard rate. FinTech competition skews the pool of bank payment

customers toward the high credit type, so that the high credit type obtains less favorable

terms (compared to the bank monopoly case) when the bank is informed. Therefore, bank

payment customers are worse off in the loan market under FinTech competition. Conversely,

among high credit types, bank payment non-customers obtain a higher surplus from the loan

under FinTech competition.

Figure 6 shows the total surplus from a loan to the low credit type. Recall that this loan

surplus is entirely captured by the bank. From Proposition 2, both the total surplus from a

loan to the low credit type and the amount of loan surplus captured by the high credit type

depend on the quantity offered to the low credit type. Thus, it is not surprising that the

effect of FinTech competition on the total surplus from the low credit type is similar to its
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(a) Fh has increasing hazard rate (b) Fh has decreasing hazard rate

Figure 6: Expected Total Surplus from Loan to Credit Type θ`
This figure plots the expected total surplus (i.e., the sum of bank profit and consumer surplus)
from a loan to credit type θ` for different parameter values and payment market structures.
Here, A = 2, θh = 0.99, θ` = 0.8, λ = 0.4, γ = 0.2, ψ = 1, α = 2,mh = 0.95,m` = 0.05. The
bank affinity distribution for credit type θ` is exponential. In figure (a), the bank affinity
distribution for credit type θh is Weibull with first parameter k = 2. In figure (b), the bank
affinity distribution for credit type θh is Weibull with first parameter k = 0.5. For each set
of parameters, we find the optimal price for bank payment services. The blue lines indicate
the bank is a monopolist in payment services, and the red lines that the bank faces FinTech
competition. The solid lines indicate the bank is uninformed about the consumer, and the
dashed lines that the bank is informed.

effect in Figure 5. Keeping all else fixed, when Fh has an increasing hazard rate, FinTech

competition improves this surplus among bank payment customers, and reduces it among

non-customers. The converse effects occur when Fh has a decreasing hazard rate.

More surprisingly, the expected surplus from a loan to the low credit type payment

customer is non-monotone in α, the precision of the signal extracted from payments. When

α is high, the low credit type is unlikely to generate a high signal. The high precision of the

low signal allows the bank to set the loan quantity for the low type close to its first-best level.

Therefore, for high α, the surplus from a loan to the low-credit type must be increasing in

α. For values of α close to 1, the additional information from payments allows the bank to

vary q` with the signal in a non-linear way. As the low credit type still generates the high
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signal with sufficiently large probability for such values of α, the overall expected surplus

falls given our parameter values.
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