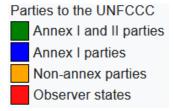


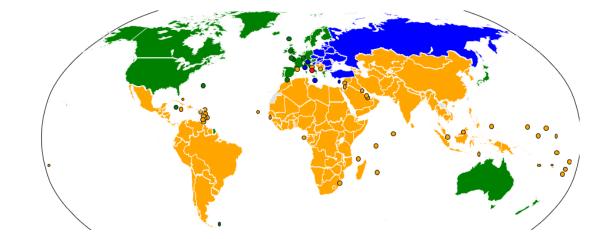
Carbon Policies and Corporate Strategy

Ulrich Hege 3 December 2021

Outline

- Limits and advances of market-based government policies
- Corporate carbon strategies:
 - Why do more than following the rules, and do what?
 - Carbon targets
 - Voluntary disclosure
 - Internal Price of Carbon
 - Scope decisions
 - Voluntary offsets
- Corporate carbon strategies are intertwined with government policies, even when they go beyond mere compliance


Market-Based Carbon Policies


- Principle of market-based policies: decentralize decisions about decarbonization, for the sake of efficiency
 - Contrast to command-and-control: successful for 100% bans (CFC)
 - But efficiency is crucial for energy transition: gradual and at gigantic cost
- First principles for efficient carbon prices
 - I. marginal abatement cost the same everywhere
 - Requires a price signal, either carbon tax or cap-and-trade
 - In practice, large-scale emissions trading much harder under a tax system
 - II. universal and uniform carbon price (externality is uniform)
 - III. efficient intertemporal allocation of carbon reduction effort
 - cumulative stock of GHG matters: trade off abatement today and tomorrow
 - social cost of carbon (SCC) increases at appropriate discount rate (Hotelling), reflecting link between cost of decarbonization and long-term risk ("carbon beta")

Market-Based Policies and Kyoto

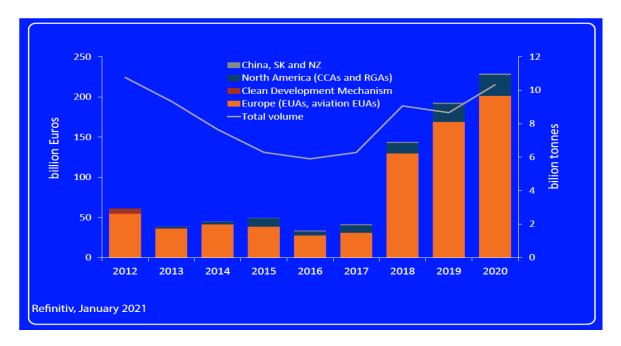
- UNFCCC process from Rio 1992 to COP26 always had a strong dose of market-based policies. As has EU policy and many national policies
- Kyoto 1997: start to large-scale carbon trading
 - Kyoto "flexible mechanisms": offsetting projects can be developed only by Non-annex countries (Clean Development Mechanism, CDM) and Annex I countries (Joint Implementation, JI)

Flexible Mechanisms: Outcomes

- Clean Development Mechanism in theory decently designed:
 - Additionality and verification core concerns from the start
 - CDM Executive Board approves projects, need to show additionality
 - project deemed additional if realistic alternative scenarios more economically attractive, or if CDM helps it to overcome barriers
- Active trading from 2005 to 2020

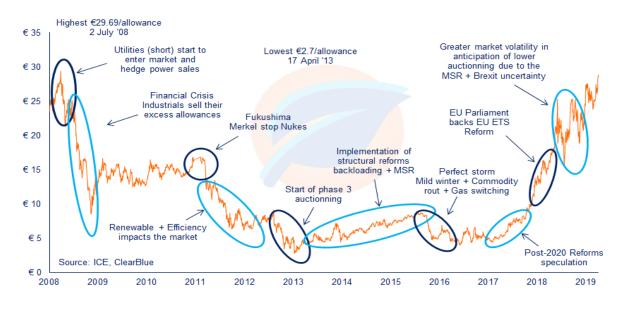
Toulouse

- CDM: 2 Gt CO2e of certificates in 8,000 projects (111 countries)
 - > 60% issued by China, then India, Brazil, Uzbekistan
- JI: 0.9 Gt CO2e of certificates in 64 projects (17 countries)
 - Mostly projects in Ukraine, Russia, Eastern Europe
- Both certificates accepted by EU ETS since 2012
 - Market dominated by EU ETS: 80% bought by EU companies (buying 96% of allowed quota) = ~10% of total EU ETS allowances
 - prices collapsed after GFC (together with EU ETS), never recovered
 - Trading at \$ 0.1-0.2/t CO2e after 2012


The Failure of the Kyoto Mechanisms

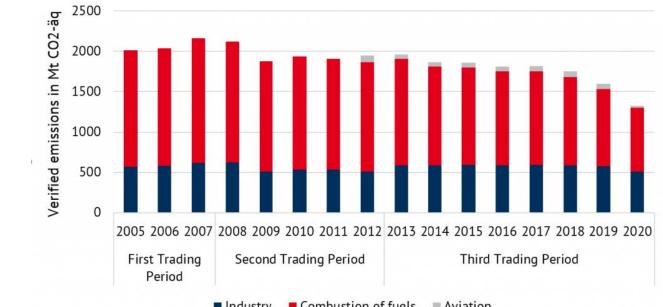
- CDM/JI achieved volume, but very limited additionality
 - CDM Executive Board largely captive to issuer interests: laxity compounded by difficulty to define additionality
 - baseline often depends on hypothetical scenario modeling, with reference to similar activities
 - DM countries had no emission target = absence of baselines
 - recipients got credits while hugely increasing emissions (China, India, Brazil)
 - only 2% of CDM projects (7% of CDM credits) were additional (SEI/Oeko-Institut, 2016)
 - many abuses with large industrial gas projects (HFC)
 - many coal power plants in CDM (at least 10GW, in CN + IN)

Markets for Carbon Cap-and-Trade


- Most important cap-and-trade markets in 2021:
 - EU ETS, since 2005
 - China: launched in July 2021, only covering energy, but soon industry. Nominally larger than EU ETS. Price collapse mimics early EU ETS.
 - California/Quebec (WCI, 2007) and 12 Northeast US states (RGGI, 2009)
 - South Korea (K-ETS) and New Zealand ETS

EU Emission Trading System (ETS)

- Energy and thermal plants > 20 MW, energy-intensive industries (cement, steel, ...): 11,000 plants, ~40% of EU emissions, mainly CO₂
- Too generous allowance allocations (weak Kyoto commitments)
 - insufficient anticipation of improved carbon intensity & energy mix
 - price crash in 2008: emissions count reveals oversupply + GFC
 - not fixed for 10 years, tightening of system after 2013 too reluctant



Source: Matthew James, energypost.eu

EU ETS: A Painful History, But Advances

- Serious attempts to fix only in 2017, with strong price reactions
 - Market Stability Reserve (MSR) since 2019 to tackle oversupply
 - MSR withdrawal in 2019 = 24% of total allowances
 - Increase annual reduction rate to 2.2% p.a. since 2021
- Decline of verified emissions: 2008: 2.1 Gt; 2019: 1.5 Gt
 - Mostly because of switch in electricity: coal to gas and renewables
 - After 15 inglorious years: world's most successful cap-and-trade system

"Fit for 55"

- "Fit for 55" EU Commission proposal in July 2021, part of EU Green Deal
 - 37% reduction from 2019 to 2030 (55% from 1990). 61% from ETS sectors
 - EU ETS reforms:
 - Steeper annual decline of allowance, by 4.2% p.a. (from 2.2%)
 - CBAM and gradual end of grandfathering (currently, 30% still grandfathered)
 - strengthen MSR
 - Include shipping in EU ETS: for large ships calling at EU ports
 - Aviation: intra-EEA flights in EU ETS since 2012, end free allowances in 2027
 - But CORSIA for extra-EEA flight: fully relies on voluntary carbon offset markets
 - Create second ETS for road transport and buildings
 - with cap that declines annually, to reach 43% reduction 2005-2030
 - no free allowances

Toulouse

- possible merger with main ETS, after "a few years of functioning"
- Social Climate Fund + Energy Efficiency, Renewables, Tax Directives
- Before and after announcement: strong market reaction on EU ETS

CBAM

- Carbon Border Adjustment Mechanism: addresses carbon leakage
 - For limited number of sectors: steel, cement, fertilizer, alu., power
 - financial adjustment based on EU ETS carbon price
 - after adjusting for carbon price in country of origin and intra-EU free allocations
 - importers need to buy certificates
 - start in 2023, fully phased in by 2026. Then EU ETS free allowances decreased by 10% a year
 - Progress on global political acceptance: G20 final communiqué mentions need to coordinate on carbon pricing schemes

COP 26: Agreement on Article 6

- Art. 6 of Paris Agreement: New instrument of global carbon trading
 - no agreement at earlier COPs: Kyoto failure largely to blame
- Deadlock since based on two ideas that do not mix well: carbon trading and North-South equity
 - SDM (sustainable development mechanism) resembles CDM
 - but important differences: all countries now have emission target
 - some safeguards against double-counting, preventing seller countries cannot count credit to own GHG target
 - EU countries insisted on CDM credits not being carried forward to Paris framework, but didn't prevail at COP26
 - missed opportunity for a universal carbon price: reluctance of EU and divisions will prevent it becoming the basis for globally linked ETS

Mixed Carbon Price Signals

- Governments do not want to implement carbon prices
 - fear of political repercussions when energy prices of increase
 - even though solutions exist to redistribute carbon revenue to large majority
 - political realities favor the use of hidden carbon taxes and subsidies
 - result: contradictory price signals and capital misallocation
 - E.g., the implicit carbon price in the EU vehicle fleet standard is at least 600€/t CO2, while carbon offsets can be purchased at 2€/t CO2e
 - current dual approach (in France), with carbon tax of 44€/t for non-ETS
- Avenues for better carbon prices (Gollier and Reguant, 2021):
 - build carbon policy around ETS as anchor price
 - introduce price band/collar ("safety valve")
 - or at least a price floor, as in UK ETS
 - Needs expansion of MSR to full-fledged carbon stability agency

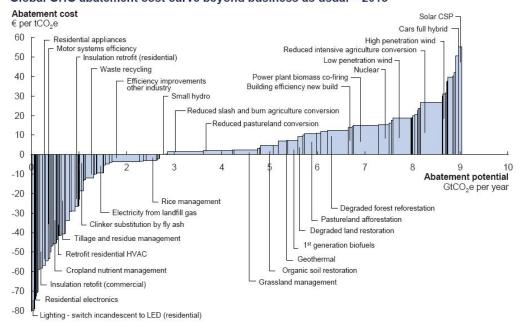
Corporate Carbon Strategy

- Do more than compliance, and what?
- Carbon targets
- Disclosure
- Internal Price of Carbon
- Scope decisions
- Voluntary offsets

The Stakeholders of Carbon Strategies

• A variety of motives behind voluntary carbon policies :

- 1. A corporate CSR conviction: putting weight on social value besides profits
- 2. Stakeholder model: because being attention to stakeholders serves shareholders well ("strategic CSR")
- 3. Because of shareholder CSR preferences
- 4. anticipation procures strategic advantage
- What are sound motives?
 - 1. only works because of 3. (shareholder CSR preferences)
 - 2. and 4.: yes, but beware the competition


Do More Than Compliance, and Do What?

- Corporate CSR policies and governments compete for same objectives: internalize externalities and provide public goods
- What principles for an efficient assignment of roles?
 - Subsidiarity: CSR policies only socially beneficial when corporations more efficient than gov. in producing public goods (Besley and Ghatak, 2007)
 - No priority for government, but efficient division of labor: for each issue, more efficient party should be in charge:
 - government when private actors would be ineffective (coordination problems, need for coercive enforcement)
 - corporate actors when governments fail: political inertia, lobbies and capture, limited territoriality, inefficiencies in public decision-making
 - failure of public carbon policies an object lesson
 - Corporate actors (and financial markets) have a role to play in overcoming government resistance and failure
 - carbon pricing, international agreements

Carbon Targets: "Net Zero 2050"

- 73% of European companies have a carbon target (Fitch).
 Many target "Net zero 2050". Is it a good thing?
- Yes: Long-term quantity goals matter (see NDCs, Fit-for-55).
 GHG emissions the single most measurable ESG objective.
- But abatement costs differ: net zero 2050 for everyone cannot be efficient

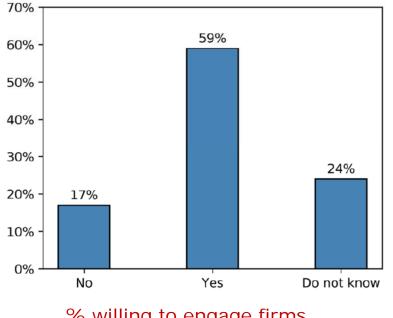
Note: The curve presents an estimate of the maximum potential of all technical GHG abatement measures below €60 per tCO₂e if each lever was pursued aggressively. It is not a forecast of what role different abatement measures and technologies will play. Source: Global GHG Abatement Coast Curve v2 0.

Detailed Carbon Targets

Fixing carbon targets:

- 1) Carbon targets should be and sector- or company-specific:
 - Targets should be fixed in accordance with SCC: hard-to-decarbonize companies will still emit when others already at negative emissions
 - The right targets are specific to each activity and granular
- 2) Targets need a detailed strategy and verifiable annual milestones
 - If not, carbon target is leaving the job to successors
 - volume and carbon intensity metrics (uncertainty re. growth and scope)
 - Beware of metric shopping: continuity, backwards reporting, scope
 - ESG asset managers will always report more impressive carbon reductions than there will be in reality

Voluntary Disclosure


Should we expect companies to adopt efficient voluntary disclosures?

- Wide heterogeneity in voluntary reporting :
 - Only 18% of firms wordwide with voluntary carbon disclosure in 2018 (Bolton and Kacperczyk, 2021)
 - 50% of US companies have only boiler plate ESG disclosure (SASB)
- Obstacles to efficient voluntary disclosure:
 - manager incentives and cost of disclosure
 - concerns about competitors when disclosing voluntarily
- Ultimately, again, shareholders/institutional investors are key:
 - Shareholders may not feel concerned, have difficulties to express voice
 - But mechanisms help investors overcome these obstacles :
 - investor coordination and common ownership
 - preferences of ultimate investors
 - portfolio reallocations, exert pressure in favor of disclosure

Institutional Investors: Voluntary Disclosure

- Ilhan, Krueger, Sautner, Starks (2020): survey of > 400 large asset managers:
 Support for disclosure, willing to engage, corr. with belief that carbon mispriced
- Larger institutional ownership is associated with more carbon disclosure

% willing to engage firms on carbon disclosure

Toulouse

-conomics

			Scope 1 disclosure		
	(1)	(2)	(3)	(4)	
Total IO foreign	0.33***		0.28***		
	(3.22)		(2.87)		
Total IO local	0.12		0.14*		
	(1.56)		(1.94)		
High social norms IO foreign		0.56***		0.42***	
		(4.58)		(3.89)	
High social norms IO local		0.29***		0.27***	
		(3.77)		(3.80)	
Low social norms IO foreign		-0.06		0.05	
		(-1.04)		(0.70)	
Low social norms IO local		-0.02		0.02	
		(-0.56)		(0.51)	
Controls	Yes	Yes	Yes	Yes	
Industry FE	No	No	Yes	Yes	
Year FE	No	No	Yes	Yes	
Industry-Year FE	No	No	Yes	Yes	
Country FE	No	No	No	No	
Obs.	23,942	28,347	23,924	28,338	
Adjusted R ²	0.14	0.16	0.22	0.22	

Source: Ilhan et al. (2021)

IO = institutional ownership

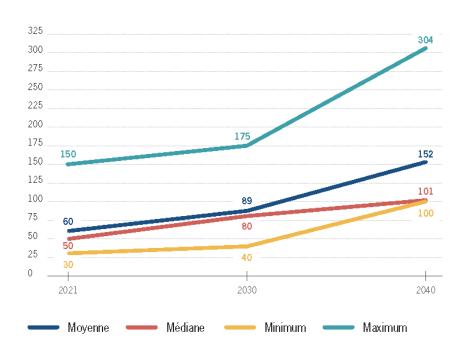
Mandatory Disclosure: UK Evidence

- Analysis of the effects of disclosure mandates helps to understand limits of voluntary disclosure:
 - if voluntary disclosure efficient, new mandates, optimal or not, should not increase value (value constant or decreasing)
- 2013 UK disclosure mandate of GHG emissions for LSE-listed companies
 - Jouvenot and Krueger, 2021: Firms cut GHG emissions by 16% and emission intensity by 21%, reducing energy usage (also Downar et al., 2021; Grewal, 2021)
 - Address identification: compare UK firms to Cont. European firms
 - Question: why do firms reduce emissions? Three findings:
 - Effect of institutional investors: reduce holding in high-emission firms
 - Positive announcement returns for firms that reduce GHG more
 - Post regulation, higher operating costs for emission-intensive firms
 - Bolton and Kacperczyk (2021) compare to UK firms voluntarily disclosing before as control sample. Find reduction in cost of capital
 - The effect is due to change in emissions, not disclosure per se

 Similar 2010 US GHG disclosure mandate: 8% reduction (Tomar, 2021) Toulouse School of Economics

Benefits of Disclosure Mandates

- Many initiatives in favor of mandatory or standardized disclosure:
 - TFCD, EU CSRD of 2021, SASB, IFSR launching ISSB, ...
- "Most academic studies find that firms tend to expand and adjust CSR activities subject to disclosure requirements" (Christensen, Hail, Leuz, 2021).
- Benefits of mandates disclosure mostly accrue from standardization of disclosure (Christensen, Hail, Leuz, 2021)
- Disclosure mandates are useful when they :
 - are enforceable and allow stakeholders to hold firms accountable
 - offer benefits to investors and stakeholders when processing information and comparing with benchmark firms
 - introduce industry-customized benchmarks in disclosures
 - reduce cost of capital or improve liquidity


Carbon Disclosure Strategy

- Corporate voluntary carbon disclosure creates benefits:
 - lower cost of capital, change in firm behavior, stakeholders
 - Mostly from changing behavior, bot disclosure per se
- While more disclosure will become mandatory, the detail and granularity likely will not
 - Consistency between detailed carbon strategy and granular disclosure is crucial (e.g., scope)
 - Strategic advantage: decarbonization leaders should have an incentive to disclose, and to disclose more than mandated

Internal Price of Carbon

- Adopting an IPC has become very popular
 - 33% of survey companies have an IPC, 50% of 500 biggest (CDP, 2020)
- Institut Montaigne (2021) report on use of IPC in France:

Toulouse

- Adopters laud role as tool for internal communication and focus
- want to keep control of their IPC and stress specificities (sector, international)
- hesitate to fully integrate in investment decisions and incentives
- emphasize its role in creating long-term predictability
- fears of loss of competitiveness are real
- Do not view it as instrument for external communication

Good Practice on IPC

IPC redundant when firm fully covered by carbon price (EU ETS)

- The need for an IPC betrays lack of predictability of carbon price, its incompleteness, and the reality of organizations
- Even when regulatory carbon prices were first best: do not underestimate power of internal communication and incentives
 - Adopting both quantity and price targets is useful: price needed for decisions and incentives
 - One of the best uses is to continuously monitor the internal consistency of carbon target and IPC
- Adopt for incentives and investment decisions like a real cost
- Be transparent and steady. ESG raters and investors will appreciate

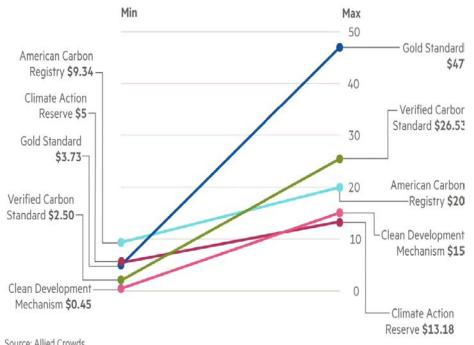
Good Practice on IPC (2)

- Companies should use an efficient IPC benchmark
 - The best benchmark for an IPC is the estimated SCC
- They should adopt IPC scenarii, in accordance with climate policy scenarios. Present long-term investment decisions depending on scenarios
- Companies need to be mindful of competitiveness
 - but that cannot be an excuse to lag behind
 - The energy transition will accelerate green creative destruction.
 Example: mobility.
 - The right response is not to save activities that become NPV-negative with socially efficient carbon prices, but to adjust corporate product portfolio

The Scope of Carbon Strategies

- What is the right scope of corporate carbon strategies: Scope 1, Scope 2, Scope 3?
 - Scope 1: direct emissions; Scope 2: energy/heat supply; Scope 3: include the value chain: upstream (and also downstream)
 - (there is no agreement how deep Scope 3 should go!)
- Companies tend to not apply IPC beyond Scope 1 (Institut Montaigne, 2021)
- Economic rationale is carbon leakage: when carbon is priced, substitutes without priced carbon become cheaper
- Fundamental trade-off: if the scope is too narrow, then there is a real risk of carbon leakage. If it is too wide, there is risk of double counting.
 - First principle: do not include the scope of entities that make decisions subject to efficient carbon prices (double counting)
 - But do include entities, upstream and downstream, that do not account for efficient carbon prices in their decisions

Scope Complexities


- Comprehensive scope definition the most complex:
 - Leakage effects are product-specific. Thus, so is the optimal scope
 - Example: entire supply chain in transportation if one link implements
 IPC and changes its prices/products
 - Many entities, upstream/downstream, affected by partial carbon price
 - Others exposed to carbon prices but ignore them (households!)
 - missing the low hanging fruit of energy conservation forever
 - Leakage effects can be indirect
- If carbon price was efficient and universal (and decisions rational), the scope problem would not exist (again!)
- The pursuit of the perfect carbon scope will always be imperfect.
 But no excuse for not trying:
 - Broad awareness that scope matters (e.g., "go local" movements)
 - Upstream not that hard to implement
 - Scope helps explaining decisions to shareholders and stakeholders

Markets for Voluntary Offsets

- ESG-driven demand gives these markets impetus
 - Private sector push: Taskforce on Scaling Voluntary Carbon Markets 2021 (M. Carney)

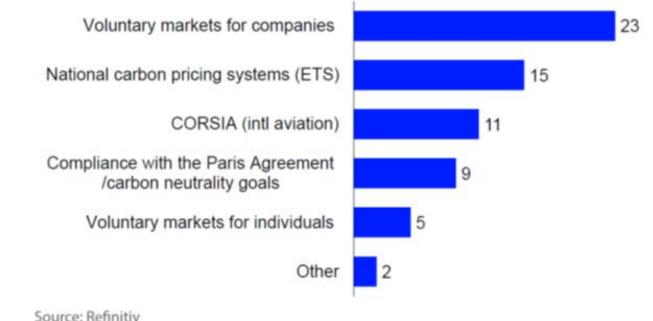
Price ranges (\$) per tonne of CO₂ equivalent on selected registries

Independent offset providers (World Bank, 2020)

- American Carbon Registry (1996), 50 Mt CO2e, (CCS, forestry)
- Climate Action Reserve (2001), 69 Mt CO2e (waste/ind. gases/forestry)
- Gold Standard (2003), 97 Mt CO2e • (renewable/fuel switch/energy efficiency)
- Verified Carbon Standard (2005), 410 • Mt CO2e (renewable/forestry)
- Plan Vivo (Agriculture/forestry) •
- ACR, CAR GS, VCR used by CORSIA.

Source: Allied Crowds

Toulouse


School of Economics Minimum carbon price in 2019: \$3-\$4/t CO2e (all 5 markets) but large price variation, depending on project

Demand for Voluntary Offsets

ESG demand from corporates will dominate

Survey Refinitiv (2021):

"What do you think will be the main source(s) of demand for offsets (old and new units) in the period up to 2025?" N=27 for a total of 65 entries

The Additionality Problem

- The problem of additionality: "Avoidance offsets are essentially counterfactual claims: because of A's intervention, B did not emit the CO2, but would have done so otherwise." (Bolton et al., 2021)
- The huge discrepancy between voluntary offset prices and efficient carbon price (SCC) is concerning
 - In principle, offset prices should converge towards dominant carbon price (EU ETS)
 - Lack of convergence shows problems with offset markets
- Recommendation on carbon disclosure of offsets: do not allow reporting of purchased offsets.
 - Only report negative emissions that were generated directly
 - Report separately from gross emissions

Should Companies Use Offsets?

- Hard to refute offsets outright: principle of emissions trading
- If carbon targets make sense, smooth carbon trajectory can be useful
 - Quality and additionality are key
 - History of CDM/JI/voluntary offsets pleads for extreme caution
- Certification of additionality/quality not solved: better steer clear
- If you must use offsets:
 - Use them only temporarily to smoothen corporate carbon trajectory
 - Be transparent about use of offset markets (volume, source, price). State economic reason for use of offsets
 - Choose high-quality projects and high-quality independent offset provider
 - Pick project directly and carefully
 - Check additionality, permanence, risk of overestimation and double-count (investment analysis, barriers analysis, common practice analysis)
 - Apply "discounts" for likely lack of additionality (Broekhoff et al., 2019)

Outlook

- Public carbon policies based on economics, but weak and inconsistent
 - need for international agreements and North-South divide
 - Fear of carbon prices
- Government policies and corporate carbon policies interact
 - CSR-oriented policies can fill gaps and overcome deadlocks
- Strong corporate carbon policies can create value
- The true source of competitive advantage is from innovation in decarbonization technology

